A000628 - OEIS
1, 1, 1, 1, 2, 3, 5, 11, 24, 55, 136, 345, 900, 2412, 6563, 18127, 50699, 143255, 408429, 1173770, 3396844, 9892302, 28972080, 85289390, 252260276, 749329719, 2234695030, 6688893605, 20089296554, 60526543480, 182896187256, 554188210352, 1683557607211, 5126819371356, 15647855317080, 47862049187447, 146691564302648, 450451875783866, 1385724615285949
COMMENTS
Trees are unrooted; nodes are unlabeled and have degree <= 4.
Regarding stereoisomers as different means that only the alternating group A_4 acts at each node, not the full symmetric group S_4. See A000602 for the analogous sequence when stereoisomers are not counted as different.
Has also been described as steric planted trees (paraffins) with n nodes.
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 290.
R. Davies and P. J. Freyd, C_{167}H_{336} is The Smallest Alkane with More Realizable Isomers than the Observable Universe has Particles, Journal of Chemical Education, Vol. 66, 1989, pp. 278-281.
J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Pierre Leroux and Brahim Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
R. C. Read, The Enumeration of Acyclic Chemical Compounds, pp. 25-61 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976. [Annotated scanned copy] See p. 44.
FORMULA
Blair and Henze give recurrence (see the Maple code).
MAPLE
s[0]:=1:s[1]:=1:for n from 0 to 60 do s[n+1/3]:=0 od:for n from 0 to 60 do s[n+2/3]:=0 od:for n from 0 to 60 do s[n+1/4]:=0 od:for n from 0 to 60 do s[n+1/2]:=0 od:for n from 0 to 60 do s[n+3/4]:=0 od:s[ -1]:=0:for n from 1 to 50 do s[n+1]:=(2*n/3*s[n/3]+sum(j*s[j]*sum(s[k]*s[n-j-k], k=0..n-j), j=1..n))/n od:for n from 0 to 50 do q[n]:=sum(s[i]*s[n-i], i=0..n) od:for n from 0 to 50 do q[n-1/2]:=0 od:for n from 0 to 40 do f:=n->(3*s[n]+2*s[n/2]+q[(n-1)/2]-q[n]+2*sum(s[j]*s[n-3*j-1], j=0..n/3))/4 od:seq(f(n), n=0..38); # the formulas for s[n+1] and f(n) are from eq.(4) and (12), respectively, of the Robinson et al. paper; s[n]=A000625(n), f(n)=A000628(n); q[n] is the convolution of s[n] with itself; # Emeric Deutsch
MATHEMATICA
max = 40; s[0] = s[1] = 1; s[_] = 0; For[n=1, n <= max, n++, s[n+1] = (2*n/3*s[n/3] + Sum[j*s[j]*Sum[s[k]*s[n-j-k], {k, 0, n-j}], {j, 1, n}])/n]; For[n=0, n <= max, n++, q[n] = Sum[s[i]*s[n-i], {i, 0, n}]]; For[n=0, n <= max, n++, q[n-1/2]=0]; f[n_] := (3*s[n] + 2*s[n/2] + q[(n-1)/2] - q[n] + 2*Sum[s[j]*s[n-3*j-1], {j, 0, n/3}])/4; Table[f[n], {n, 0, max}] (* Jean-François Alcover, Dec 29 2014, after Emeric Deutsch *)
EXTENSIONS
Additional comments from Steve Strand (snstrand(AT)comcast.net), Aug 20 2003