oeis.org

A002981 - OEIS

0, 1, 2, 3, 11, 27, 37, 41, 73, 77, 116, 154, 320, 340, 399, 427, 872, 1477, 6380, 26951, 110059, 150209, 288465, 308084, 422429

COMMENTS

If n + 1 is prime then (by Wilson's theorem) n + 1 divides n! + 1. Thus for n > 2 if n + 1 is prime n is not in the sequence. - Farideh Firoozbakht, Aug 22 2003

For n > 2, n! + 1 is prime <==> nextprime((n+1)!) > (n+1)nextprime(n!) and we can conjecture that for n > 2 if n! + 1 is prime then (n+1)! + 1 is not prime. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 03 2004

The prime members are in A093804 (numbers n such that Sum_{d|n} d! is prime) since Sum_{d|n} d! = n! + 1 if n is prime. - Jonathan Sondow

150209 is also in the sequence, cf. the link to Caldwell's prime pages. - M. F. Hasler, Nov 04 2011

REFERENCES

J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 116, p. 40, Ellipses, Paris 2008.

Harvey Dubner, Factorial and primorial primes, J. Rec. Math., 19 (No. 3, 1987), 197-203.

Richard K. Guy, Unsolved Problems in Number Theory, Section A2.

F. Le Lionnais, Les Nombres Remarquables, Paris, Hermann, 1983, p. 100.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 70.

EXAMPLE

3! + 1 = 7 is prime, so 3 is in the sequence.

MATHEMATICA

v = {0, 1, 2}; Do[If[ !PrimeQ[n + 1] && PrimeQ[n! + 1], v = Append[v, n]; Print[v]], {n, 3, 29651}]

Select[Range[100], PrimeQ[#! + 1] &] (* Alonso del Arte, Jul 24 2014 *)

PROG

(PARI) for(n=0, 500, if(ispseudoprime(n!+1), print1(n", "))) \\ Charles R Greathouse IV, Jun 16 2011

(Magma) [n: n in [0..800] | IsPrime(Factorial(n)+1)]; // Vincenzo Librandi, Oct 31 2018

(Python)

from sympy import factorial, isprime

for n in range(0, 800):

if isprime(factorial(n)+1):

EXTENSIONS

a(20) from Ken Davis (kraden(AT)ozemail.com.au), May 24 2002

a(21) found by PrimeGrid around Jun 11 2011, submitted by Eric W. Weisstein, Jun 13 2011