oeis.org

A006454 - OEIS

A006454

Solution to a Diophantine equation: each term is a triangular number and each term + 1 is a square.
(Formerly M3004)

15

0, 3, 15, 120, 528, 4095, 17955, 139128, 609960, 4726275, 20720703, 160554240, 703893960, 5454117903, 23911673955, 185279454480, 812293020528, 6294047334435, 27594051024015, 213812329916328, 937385441796000, 7263325169820735, 31843510970040003, 246739243443988680

COMMENTS

Alternative definition: a(n) is triangular and a(n)/2 is the harmonic average of consecutive triangular numbers. See comments and formula section of A005563, of which this sequence is a subsequence. - Raphie Frank, Sep 28 2012

As with the Sophie Germain triangular numbers (A124174), 35 = (a(n) - a(n-6))/(a(n-2) - a(n-4)). - Raphie Frank, Sep 28 2012

Sophie Germain triangular numbers of the second kind as defined in A217278. - Raphie Frank, Feb 02 2013

Triangular numbers m such that m+1 is a square. - Bruno Berselli, Jul 15 2014

Numbers a(n) which are the triangular number T(b(n)), where b(n) is the sequence A006451(n) of numbers n such that T(n)+1 is a square.

a(n) also gives the x solutions of the 3rd-degree Diophantine Bachet-Mordell equation y^2 = x^3 + K, with y = T(b(n))*sqrt(T(b(n))+1) = A285955(n) and K = T(b(n))^2 = A285985(n), the square of the triangular number of b(n) = A006451(n).

Also: This sequence is a subsequence of A000217(n), namely A000217(A006451(n)). (End)

REFERENCES

Edward J. Barbeau, Pell's Equation, New York: Springer-Verlag, 2003, p. 17, Exercise 1.2.

Allan J. Gottlieb, How four dogs meet in a field, and other problems, Technology Review, Jul/August 1973, pp. 73-74.

Vladimir Pletser, On some solutions of the Bachet-Mordell equation for large parameter values, to be submitted, April 2017.

Jeffrey Shallit, personal communication.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

FORMULA

a(n) = 35*(a(n-2) - a(n-4)) + a(n-6). - Raphie Frank, Sep 28 2012

a(0) = 0, a(1) = 3, and a(n+2) = (2x + 3y + 1)^2 - 1 = 1/2*((3x + 4y + 1)^2 + (3x + 4y + 1)) where x = (sqrt(8*a(n) + 1) - 1)/2 = A006451(n) = 1/2*(A216134(n + 1) + A216134(n - 1)) and y = sqrt(a(n) + 1) = A006452(n + 1) = 1/2*(A216134(n + 1) - A216134(n - 1)).

Note that A216134(n + 1) = x + y, and A216134(n + 3) = (2x + 3y + 1) + (3x + 4y + 1) = (5x + 7y + 2), where A216134 gives the indices of the Sophie Germain triangular numbers. (End)

a(n) = (1/64)*(((4 + sqrt(2))*(1 -(-1)^(n+1)*sqrt(2))^(2* floor((n+1)/2)) + (4 - sqrt(2))*(1 + (-1)^(n+1)*sqrt(2))^(2*floor((n+1)/2))))^2 - 1. - Raphie Frank, Dec 20 2015

Since b(n) = 8*sqrt(T(b(n-2))+1)+ b(n-4) = 8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4), with b(-1)=-1, b(0)=0, b(1)=2, b(2)=5 (see A006451) and a(n) = T(b(n)) (this sequence), we have:

a(n) = ((8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4))*(8*sqrt((b(n-2)*(b(n-2)+1)/2)+1)+ b(n-4)+1)/2). (End)

G.f.: 3*x*(1 + 4*x + x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)).

a(n) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5) for n > 4.

(End)

a(n) = (A001109(n/2+1) - 2*A001109(n/2))^2 - 1 if n is even, and (A001109((n+3)/2) - 4*A001109((n+1)/2))^2 - 1 if n is odd (Subramaniam, 1999). - Amiram Eldar, Jan 13 2022

EXAMPLE

35*(528 - 15) + 0 = 17955 = a(6),

35*(4095 - 120) + 3 = 139128 = a(7),

35*(17955 - 528) + 15 = 609960 = a(8),

35*(139128 - 4095) + 120 = 4726275 = a(9). (End)

a(7) = 139128 and a(9) = 4726275.

a(9) = (2*(sqrt(8*a(7) + 1) - 1)/2 + 3*sqrt(a(7) + 1) + 1)^2 - 1 = (2*(sqrt(8*139128 + 1) - 1)/2 + 3*sqrt(139128 + 1) + 1)^2 - 1 = 4726275.

a(9) = 1/2*((3*(sqrt(8*a(7) + 1) - 1)/2 + 4*sqrt(a(7) + 1) + 1)^2 + (3*(sqrt(8*a(7) + 1) - 1)/2 + 4*sqrt(a(7) + 1) + 1)) = 1/2*((3*(sqrt(8*139128 + 1) - 1)/2 + 4*sqrt(139128 + 1) + 1)^2 + (3*(sqrt(8*139128 + 1) - 1)/2 + 4*sqrt(139128 + 1) + 1)) = 4726275. (End)

For n=2, b(n)=5, a(n)=15

For n=5, b(n)=90, a(n)= 4095

MAPLE

A006454:=-3*z*(1+4*z+z**2)/(z-1)/(z**2-6*z+1)/(z**2+6*z+1); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation

restart: bm2:=-1: bm1:=0: bp1:=2: bp2:=5: print ('0, 0', '1, 3', '2, 15'); for n from 3 to 1000 do b:= 8*sqrt((bp1^2+bp1)/2+1)+bm2; a:=b*(b+1)/2; print(n, a); bm2:=bm1; bm1:=bp1; bp1:=bp2; bp2:=b; end do: # Vladimir Pletser, Apr 30 2017

MATHEMATICA

Clear[a]; a[0] = a[1] = 1; a[2] = 2; a[3] = 4; a[n_] := 6a[n - 2] - a[n - 4]; Array[a, 40]^2 - 1 (* Vladimir Joseph Stephan Orlovsky, Mar 03 2011 *)

LinearRecurrence[{1, 34, -34, -1, 1}, {0, 3, 15, 120, 528}, 30] (* Harvey P. Dale, Feb 18 2023 *)

PROG

(Magma) I:=[0, 3, 15, 120, 528, 4095]; [n le 6 select I[n] else 35*(Self(n-2) - Self(n-4)) + Self(n-6): n in [1..30]]; // Vincenzo Librandi, Dec 21 2015

(PARI) concat(0, Vec(3*x*(1 + 4*x + x^2) / ((1 - x)*(1 - 6*x + x^2)*(1 + 6*x + x^2)) + O(x^30))) \\ Colin Barker, Apr 30 2017

EXTENSIONS

More terms from Larry Reeves (larryr(AT)acm.org), Feb 07 2001