oeis.org

A023000 - OEIS

0, 1, 8, 57, 400, 2801, 19608, 137257, 960800, 6725601, 47079208, 329554457, 2306881200, 16148168401, 113037178808, 791260251657, 5538821761600, 38771752331201, 271402266318408, 1899815864228857, 13298711049602000

COMMENTS

Apart from a(0), numbers of the form 11...11 (i.e., repunits) in base 7.

7^(floor(7^n/6)) is the highest power of 7 dividing (7^n)!. - Benoit Cloitre, Feb 04 2002

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=7, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Feb 21 2010

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=8, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^n*charpoly(A,1). - Milan Janjic, Feb 21 2010

This is the sequence A(0,1;6,7;2) = A(0,1;8,-7;0) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010

6*a(n) =: z(n) gives the approximation up to 7^n for one of the three 7-adic integers (-1)^(1/3), i.e. z(n)^3 + 1 == 0 (mod 7^n), n>=0, and z(n) == 6 (mod 7) == -1 (mod 7), n>=1. The companion sequences are x(n) = A210852(n) and y(n) = A212153(n). This leads to a(n) == 1 (mod 7) for n>=1 (this is also clear from some of the formulas given below). Also 216*a(n)^3 + 1 == 0 (mod 7^n), n>=0, as well as 3*216*a(n)^2 + A212156(n) == 0 (mod 7^n), n>=0. a(n) = 6^(7^(n-1)-1) (mod 7^n), n>=1. A recurrence is a(n) = a(n-1) + 7^(n-1), with a(0)=0, for n>=1.

Also a(n) = (1/6)*(6*a(n-1))^7 (mod 7^n) with a(1)=1 for n>=1. Finally, 6^3*a(n-1)*a(n)^2 + 1 == 0 (mod 7^(n-1)), n>=1.

(End)

LINKS

Eric Weisstein's World of Mathematics, Repunit.

FORMULA

a(n) = 8*a(n-1) - 7*a(n-2).

G.f.: x/((1-x)*(1-7*x)). (End)

a(n) = 6*a(n-1) + 7*a(n-2) + 2, a(0)=0, a(1)=1.

a(n) = 7*a(n-1) + a(n-2) - 7*a(n-3) = 9*a(n-1) - 15*a(n-2) + 7*a(n-3), a(0)=0, a(1)=1, a(2)=8. Observation by G. Detlefs. See the W. Lang comment and link. (End)

a(n) = a(n-1) + 7^(n-1), with a(0)=0, n >= 1. - See a Wolfdieter Lang comment above, May 02 2012

E.g.f.: exp(4*x)*sinh(3*x)/3. - Stefano Spezia, Mar 11 2023

MATHEMATICA

LinearRecurrence[{8, -7}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *)

PROG

(Sage)

def a(n): return (7**n-1)//6

[a(n) for n in range(66)] # show terms

(PARI) a(n)=(7^n-1)/6; /* Joerg Arndt, May 28 2012 */

(Maxima) A023000(n):=floor((7^n-1)/6)$ makelist(A023000(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */

(Magma) [n le 2 select n-1 else 8*Self(n-1) - 7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 08 2012