oeis.org

A033429 - OEIS

0, 5, 20, 45, 80, 125, 180, 245, 320, 405, 500, 605, 720, 845, 980, 1125, 1280, 1445, 1620, 1805, 2000, 2205, 2420, 2645, 2880, 3125, 3380, 3645, 3920, 4205, 4500, 4805, 5120, 5445, 5780, 6125, 6480, 6845, 7220, 7605, 8000, 8405, 8820, 9245, 9680, 10125, 10580, 11045, 11520, 12005, 12500

COMMENTS

Number of edges of the complete bipartite graph of order 6n, K_n,5n. - Roberto E. Martinez II, Jan 07 2002

Number of edges of the complete tripartite graph of order 4n, K_n,n,2n. - Roberto E. Martinez II, Jan 07 2002

The sum of the areas of 2 squares that equals the area of a rectangle with whole number sides using the formula x^2 + y^2 = (x+y+sqrt(2*x*y))(x+y-sqrt(2*x*y)), where the substitution y=2*x obtains the whole number sides of the rectangle. So x^2+(2*x)^2=5x(x).

x squares sum rectangle (l,w) area

1 1,4 5 5,1 5

2 4,16 20 10,2 20 (End)

FORMULA

G.f.: 5*x*(1+x)/(1-x)^3.

a(n) = a(n-1)+5*(2*n-1) (with a(0)=0). - Vincenzo Librandi, Nov 17 2010

E.g.f.: 5*x*(x+1)*exp(x). - G. C. Greubel, Jul 17 2017

a(n) = Sum_{i = 2..6} P(i,n), where P(i,m) = m*((i-2)*m-(i-4))/2. - Bruno Berselli, Jul 04 2018

Sum_{n>=1} 1/a(n) = Pi^2/30.

Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/60.

Product_{n>=1} (1 + 1/a(n)) = sqrt(5)*sinh(Pi/sqrt(5))/Pi.

Product_{n>=1} (1 - 1/a(n)) = sqrt(5)*sin(Pi/sqrt(5))/Pi. (End)

CROSSREFS

Similar sequences are listed in A316466.