oeis.org

A056000 - OEIS

0, 5, 11, 18, 26, 35, 45, 56, 68, 81, 95, 110, 126, 143, 161, 180, 200, 221, 243, 266, 290, 315, 341, 368, 396, 425, 455, 486, 518, 551, 585, 620, 656, 693, 731, 770, 810, 851, 893, 936, 980, 1025, 1071, 1118, 1166, 1215, 1265, 1316, 1368, 1421, 1475

REFERENCES

Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 193.

FORMULA

G.f.: x(5-4x)/(1-x)^3.

(End)

a(n) = binomial(n,2) - 4*n, n >= 9. - Zerinvary Lajos, Nov 25 2006

If we define f(n,i,a) = Sum_{k=0..(n-i)} binomial(n,k)*stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then a(n) = -f(n,n-1,5), for n >= 1. - Milan Janjic, Dec 20 2008

a(n) = Sum_{k=1..n} (k+4). - Gary Detlefs, Aug 10 2010

Sum_{n>=1} 1/a(n) = 7129/11340. - R. J. Mathar, Jul 14 2012

a(n) = 5n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013

E.g.f.: (1/2)*(x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017

Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/9 - 1879/11340. - Amiram Eldar, Jul 03 2020

Product_{n>=1} (1 - 1/a(n)) = -567*cos(sqrt(89)*Pi/2)/(220*Pi).

Product_{n>=1} (1 + 1/a(n)) = 35*cos(sqrt(73)*Pi/2)/(4*Pi). (End)

MATHEMATICA

Table[n (n + 9)/2, {n, 0, 50}] (* or *)

FoldList[#1 + #2 + 4 &, Range[0, 50]] (* or *)

Table[PolygonalNumber[n + 4] - 10, {n, 0, 50}] (* or *)

CoefficientList[Series[x (5 - 4 x)/(1 - x)^3, {x, 0, 50}], x] (* Michael De Vlieger, Jul 30 2017 *)

CROSSREFS

Column m=2 of (1, 5)-Pascal triangle A096940.

Cf. numbers of the form n*(d*n+10-d)/2 indexed in A140090.