A069274 - OEIS
8192, 12288, 18432, 20480, 27648, 28672, 30720, 41472, 43008, 45056, 46080, 51200, 53248, 62208, 64512, 67584, 69120, 69632, 71680, 76800, 77824, 79872, 93312, 94208, 96768, 100352, 101376, 103680, 104448, 107520, 112640, 115200
COMMENTS
Product of 13 not necessarily distinct primes.
Divisible by exactly 13 prime powers (not including 1).
FORMULA
Product p_i^e_i with Sum e_i = 13.
MATHEMATICA
Select[Range[116000], PrimeOmega[#]==13&] (* Harvey P. Dale, Mar 11 2019 *)
PROG
(PARI) k=13; start=2^k; finish=130000; v=[]; for(n=start, finish, if(bigomega(n)==k, v=concat(v, n))); v
(Python)
from math import isqrt, prod
from sympy import primerange, integer_nthroot, primepi
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, 13)))
return bisection(f, n, n) # Chai Wah Wu, Nov 03 2024
CROSSREFS
Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), this sequence (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011