oeis.org

A069274 - OEIS

8192, 12288, 18432, 20480, 27648, 28672, 30720, 41472, 43008, 45056, 46080, 51200, 53248, 62208, 64512, 67584, 69120, 69632, 71680, 76800, 77824, 79872, 93312, 94208, 96768, 100352, 101376, 103680, 104448, 107520, 112640, 115200

COMMENTS

Product of 13 not necessarily distinct primes.

Divisible by exactly 13 prime powers (not including 1).

FORMULA

Product p_i^e_i with Sum e_i = 13.

MATHEMATICA

Select[Range[116000], PrimeOmega[#]==13&] (* Harvey P. Dale, Mar 11 2019 *)

PROG

(PARI) k=13; start=2^k; finish=130000; v=[]; for(n=start, finish, if(bigomega(n)==k, v=concat(v, n))); v

(Python)

from math import isqrt, prod

from sympy import primerange, integer_nthroot, primepi

def bisection(f, kmin=0, kmax=1):

while f(kmax) > kmax: kmax <<= 1

while kmax-kmin > 1:

kmid = kmax+kmin>>1

if f(kmid) <= kmid:

kmax = kmid

else:

kmin = kmid

return kmax

def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))

def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, 13)))

return bisection(f, n, n) # Chai Wah Wu, Nov 03 2024

CROSSREFS

Sequences listing r-almost primes, that is, the n such that A001222(n) = r: A000040 (r = 1), A001358 (r = 2), A014612 (r = 3), A014613 (r = 4), A014614 (r = 5), A046306 (r = 6), A046308 (r = 7), A046310 (r = 8), A046312 (r = 9), A046314 (r = 10), A069272 (r = 11), A069273 (r = 12), this sequence (r = 13), A069275 (r = 14), A069276 (r = 15), A069277 (r = 16), A069278 (r = 17), A069279 (r = 18), A069280 (r = 19), A069281 (r = 20). - Jason Kimberley, Oct 02 2011