oeis.org

A124152 - OEIS

A124152

a(n) = Fibonacci(6, n).

5

0, 8, 70, 360, 1292, 3640, 8658, 18200, 34840, 61992, 104030, 166408, 255780, 380120, 548842, 772920, 1065008, 1439560, 1912950, 2503592, 3232060, 4121208, 5196290, 6485080, 8017992, 9828200, 11951758, 14427720, 17298260, 20608792, 24408090, 28748408

FORMULA

G.f.: 2*x*(4 + 11*x + 30*x^2 + 11*x^3 + 4*x^4) / (1 - x)^6.

a(n) = n*(3 + 4*n^2 + n^4).

a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.

(End)

MAPLE

with(combinat, fibonacci):seq(fibonacci(6, i), i=0..35);

MATHEMATICA

LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 8, 70, 360, 1292, 3640}, 40] (* Harvey P. Dale, Apr 18 2019 *)

PROG

(Sage) [lucas_number1(6, n, -1) for n in range(0, 30)] # Zerinvary Lajos, May 16 2009

(PARI) concat(0, Vec(2*x*(4 + 11*x + 30*x^2 + 11*x^3 + 4*x^4) / (1 - x)^6 + O(x^30))) \\ Colin Barker, Apr 06 2017

CROSSREFS

Cf. A117715 formatted as a triangular array: row 7.