oeis.org

A132764 - OEIS

0, 23, 48, 75, 104, 135, 168, 203, 240, 279, 320, 363, 408, 455, 504, 555, 608, 663, 720, 779, 840, 903, 968, 1035, 1104, 1175, 1248, 1323, 1400, 1479, 1560, 1643, 1728, 1815, 1904, 1995, 2088, 2183, 2280, 2379, 2480, 2583, 2688, 2795, 2904, 3015, 3128, 3243, 3360

FORMULA

a(n) = n*(n + 22).

a(n) = 2*n + a(n-1) + 21 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010

a(0)=0, a(1)=23, a(2)=48, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 02 2012

Sum_{n>=1} 1/a(n) = H(22)/22 = A001008(22)/A102928(22) = 19093197/113809696, where H(k) is the k-th harmonic number.

Sum_{n>=1} (-1)^(n+1)/a(n) = 156188887/5121436320. (End)

G.f.: x*(23 - 21*x)/(1-x)^3.

E.g.f.: x*(23 + x)*exp(x). (End)

EXAMPLE

a(1)=2*1+0+21=23; a(2)=2*2+23+21=48; a(3)=2*3+48+21=75. - Vincenzo Librandi, Aug 03 2010

MATHEMATICA

Table[n(n+22), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 23, 48}, 50] (* Harvey P. Dale, May 02 2012 *)

PROG

(Sage) [n*(n+22) for n in (0..50)] # G. C. Greubel, Mar 14 2022