patents.google.com

CN105444673A - Device and method for determining center of optical element according to rotating translation absolute detection method - Google Patents

  • ️Wed Mar 30 2016
Device and method for determining center of optical element according to rotating translation absolute detection method Download PDF

Info

Publication number
CN105444673A
CN105444673A CN201510962258.4A CN201510962258A CN105444673A CN 105444673 A CN105444673 A CN 105444673A CN 201510962258 A CN201510962258 A CN 201510962258A CN 105444673 A CN105444673 A CN 105444673A Authority
CN
China
Prior art keywords
optical element
center
interferometer
tested optical
tested
Prior art date
2015-12-21
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510962258.4A
Other languages
Chinese (zh)
Other versions
CN105444673B (en
Inventor
刘钰
苗亮
张文龙
马冬梅
金春水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changguang Jizhi Optical Technology Co ltd
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
2015-12-21
Filing date
2015-12-21
Publication date
2016-03-30
2015-12-21 Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
2015-12-21 Priority to CN201510962258.4A priority Critical patent/CN105444673B/en
2016-03-30 Publication of CN105444673A publication Critical patent/CN105444673A/en
2018-06-22 Application granted granted Critical
2018-06-22 Publication of CN105444673B publication Critical patent/CN105444673B/en
Status Active legal-status Critical Current
2035-12-21 Anticipated expiration legal-status Critical

Links

  • 230000003287 optical effect Effects 0.000 title claims abstract description 135
  • 238000001514 detection method Methods 0.000 title claims abstract description 43
  • 238000013519 translation Methods 0.000 title claims abstract description 30
  • 238000000034 method Methods 0.000 title claims abstract description 22
  • 230000005540 biological transmission Effects 0.000 claims description 6
  • 230000001105 regulatory effect Effects 0.000 claims 1
  • 238000012545 processing Methods 0.000 abstract description 3
  • 238000007689 inspection Methods 0.000 description 8
  • 238000005516 engineering process Methods 0.000 description 3
  • 230000002411 adverse Effects 0.000 description 2
  • 238000010586 diagram Methods 0.000 description 2
  • 230000000694 effects Effects 0.000 description 2
  • 238000004519 manufacturing process Methods 0.000 description 2
  • 241000282326 Felis catus Species 0.000 description 1
  • 230000009286 beneficial effect Effects 0.000 description 1
  • 239000003550 marker Substances 0.000 description 1
  • 238000005259 measurement Methods 0.000 description 1
  • 238000012360 testing method Methods 0.000 description 1

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

旋转平移绝对检测法中确定光学元件中心的装置及方法,涉及高精度球面面形检测加工领域。该方法为以光学元件外圆为中心做4个标记点;调节光学元件使干涉仪条纹为零条纹;当转台在0度位置时检测光学元件,记录4个标记点的像素位置坐标得到光学元件中心的像素位置坐标(X1,Y1);旋转转台在0度、90度、180度、270度位置检测光学元件记录4个角度位置下任一标记点的像素位置坐标,得到光学元件被检区域中心的像素位置坐标(X2,Y2);光学元件外圆中心与被检测区域中心偏离的像素数为(X1-X2,Y1-Y2),用调整机构在X,Y方向上分别共心平移光学元件,使得光学元件被检测区域中心与光学元件中心重合。本发明快速、结构和过程简单、成本低、精度高。

The invention relates to a device and a method for determining the center of an optical element in an absolute detection method of rotation and translation, and relates to the field of high-precision spherical surface shape detection and processing. The method is to make 4 marking points with the outer circle of the optical element as the center; adjust the optical element so that the interferometer fringes are zero fringes; detect the optical element when the turntable is at 0 degrees, and record the pixel position coordinates of the 4 marking points to obtain the optical element The pixel position coordinates of the center (X1, Y1); rotate the turntable at 0 degrees, 90 degrees, 180 degrees, and 270 degrees to detect the optical element and record the pixel position coordinates of any mark point under the 4 angular positions to obtain the inspected area of the optical element The pixel position coordinates of the center (X2, Y2); the number of pixels that deviate from the center of the outer circle of the optical element and the center of the detected area is (X1-X2, Y1-Y2), and the adjustment mechanism is used to concentrically translate the optics in the X and Y directions Components, so that the center of the detected area of the optical component coincides with the center of the optical component. The invention is quick, simple in structure and process, low in cost and high in precision.

Description

旋转平移绝对检测法中确定光学元件中心的装置及方法Device and method for determining center of optical element in rotation and translation absolute detection method

技术领域technical field

本发明属于高精度球面面形检测加工技术领域,具体涉及一种旋转平移绝对检测法中确定光学元件中心的装置及方法。The invention belongs to the technical field of high-precision spherical surface shape detection and processing, and in particular relates to a device and method for determining the center of an optical element in a rotation-translation absolute detection method.

背景技术Background technique

目前,各种光学系统对光学元件面形精度的要求越来越高,光学元件制造的精度和效率很大程度上依赖于检测技术,因此高精度检测对于光学元件制造有着重大的意义。At present, various optical systems have higher and higher requirements for the surface shape accuracy of optical components, and the precision and efficiency of optical component manufacturing largely depend on detection technology, so high-precision detection is of great significance to the manufacture of optical components.

旋转平移绝对检测法是提高光学元件面形检测精度的一种常用的方法。1999年,日本的Nikon公司报道了基于旋转平移的光学球面绝对检测技术原理与实验装置,2001年,德国的CarlZeiss公司在自制的斐索型干涉仪上运用该技术实现了光学球面的绝对检测,检测精度达到了0.15nmRMS(BerndD,GuntherS.Interferometrictestingofopticalsurfacesatitscurrentlimit[J],Optik,2001,112(9):392-398)。相比于现有的双球面绝对检测法,旋转平移绝对检测法无需猫眼位置的精确判断,并在检测凸球面时能够体现出短干涉腔测量的优势,且这种旋转平移绝对检测法可用于光学平面的绝对检测,通用性较强。The absolute detection method of rotation and translation is a commonly used method to improve the detection accuracy of the surface shape of optical components. In 1999, Nikon Corporation of Japan reported the principle and experimental device of the absolute detection technology of optical spheres based on rotation and translation. In 2001, CarlZeiss Corporation of Germany realized the absolute detection of optical spheres by using this technology on a self-made Fizeau interferometer. The detection accuracy has reached 0.15nmRMS (BerndD, GuntherS. Interferometric testing of optical surface satits current limit [J], Optik, 2001, 112 (9): 392-398). Compared with the existing double-sphere absolute detection method, the rotation-translation absolute detection method does not require accurate judgment of the cat's eye position, and can reflect the advantages of short interference cavity measurement when detecting convex spherical surfaces, and this rotation-translation absolute detection method can be used for Absolute detection of optical plane, strong versatility.

在利用旋转平移绝对检测法检测光学元件时,由于被检光学元件为球面,球面的中心不唯一,因此一般情况下检测的区域并不是光学元件的中心区域,这样加工的区域也必然不是光学元件的中心区域,这为后面的光学元件装调产生了诸多不利的影响。When using the rotation-translation absolute detection method to detect optical components, since the optical component to be tested is a spherical surface, the center of the spherical surface is not unique, so in general, the detected area is not the central area of the optical component, so the processed area must not be the optical component The central area, which has a lot of adverse effects on the adjustment of the optical components behind.

发明内容Contents of the invention

为了解决在利用旋转平移绝对检测法检测光学元件时存在的所检测的区域并不是光学元件的中心区域,从而对光学元件装调产生诸多不利影响的问题,本发明提供一种旋转平移绝对检测法中确定光学元件中心的装置及方法。In order to solve the problem that the detected area is not the central area of the optical element when the optical element is detected by the absolute detection method of rotation and translation, thus causing many adverse effects on the assembly and adjustment of the optical element, the present invention provides an absolute detection method of rotation and translation Apparatus and method for determining the center of an optical element.

本发明为解决技术问题所采用的技术方案如下:The technical scheme that the present invention adopts for solving technical problems is as follows:

本发明的旋转平移绝对检测法中确定光学元件中心的装置,包括:干涉仪、安装在干涉仪下端的透射球面波系统、调整机构、安装在调整机构上的转台、安装在转台上的检测支撑平台、安装在检测支撑平台上的被检光学元件;通过旋转转台使被检光学元件位于不同角度的检测位置,通过调整机构调整被检光学元件的倾斜、偏心及离焦,从而使被检光学元件在不同角度的检测位置下干涉条纹均为零条纹。The device for determining the center of the optical element in the rotation-translation absolute detection method of the present invention includes: an interferometer, a transmission spherical wave system installed at the lower end of the interferometer, an adjustment mechanism, a turntable installed on the adjustment mechanism, and a detection support installed on the turntable Platform, the inspected optical element installed on the inspection support platform; by rotating the turntable, the inspected optical element is located at the detection position at different angles, and the inclination, eccentricity and defocus of the inspected optical element are adjusted by the adjustment mechanism, so that the inspected optical element The interference fringes of the element are all zero fringes at the detection positions of different angles.

进一步的,所述干涉仪发出的光经透射球面波系统后形成理想的球面波入射到被检光学元件表面,被检光学元件将该理想的球面波反射回干涉仪中,并在干涉仪的CCD上形成干涉条纹。Further, the light emitted by the interferometer is transmitted through the spherical wave system to form an ideal spherical wave incident on the surface of the optical element to be inspected, and the optical element to be inspected reflects the ideal spherical wave back into the interferometer, and the ideal spherical wave is reflected on the surface of the interferometer. Interference fringes are formed on the CCD.

进一步的,所述调整机构为电动或手动的五自由度调整机构。Further, the adjustment mechanism is an electric or manual five-degree-of-freedom adjustment mechanism.

进一步的,所述被检光学元件为凸球面镜或凹球面镜。Further, the optical element to be inspected is a convex spherical mirror or a concave spherical mirror.

本发明还提供了一种旋转平移绝对检测法中确定光学元件中心的方法,包括以下步骤:The present invention also provides a method for determining the center of the optical element in the absolute detection method of rotation and translation, comprising the following steps:

步骤一、在被检光学元件表面以被检光学元件外圆为中心做4个标记点A、B、C、D;Step 1. Make four marking points A, B, C, and D on the surface of the optical element to be inspected with the outer circle of the optical element to be inspected as the center;

步骤二、将被检光学元件安装在检测支撑平台上,通过调节调整机构调整被检光学元件的空间位置,使得转台在旋转过程中,干涉仪的CCD上的干涉条纹为零条纹;Step 2. Install the optical element to be inspected on the inspection support platform, and adjust the spatial position of the optical element to be inspected by adjusting the adjustment mechanism, so that the interference fringes on the CCD of the interferometer are zero fringes during the rotation of the turntable;

步骤三、当转台处于0度位置时检测被检光学元件,记录此时4个标记点A、B、C、D在干涉仪的CCD上的像素位置坐标(XA,YA)、(XB,YB)、(XC,YC)、(XD,YD),得到被检光学元件外圆中心在干涉仪的CCD上的像素位置坐标(X1,Y1),X1=(XA+XB+XC+XD)/4,X2=(YA+YB+YC+YD)/4;Step 3: When the turntable is at the 0 degree position, detect the optical element to be inspected, and record the pixel position coordinates (X A , Y A ), (X A ) and (X B , Y B ), (X C , Y C ), (X D , Y D ), to obtain the pixel position coordinates (X1, Y1) of the center of the outer circle of the tested optical element on the CCD of the interferometer, X1=(X A +X B +X C +X D )/4, X2=(Y A +Y B +Y C +Y D )/4;

步骤四、旋转转台,分别在0度、90度、180度、270度4个角度位置处检测被检光学元件,记录4个角度位置处任一标记点在干涉仪的CCD上的像素位置坐标(XA1,YA1)、(XA2,YA2)、(XA3,YA3)、(XA4,YA4),得到被检光学元件被检区域中心在干涉仪的CCD上的像素位置坐标(X2,Y2),X2=(XA1+XA2+XA3+XA4)/4,X2=(YA1+YA2+YA3+YA4)/4;Step 4. Rotate the turntable to detect the optical element to be inspected at 4 angular positions of 0°, 90°, 180°, and 270°, and record the pixel position coordinates of any mark point at the 4 angular positions on the CCD of the interferometer (X A1 , Y A1 ), (X A2 , Y A2 ), (X A3 , Y A3 ), (X A4 , Y A4 ), get the pixel position of the center of the inspected area of the optical element to be inspected on the CCD of the interferometer Coordinates (X2, Y2), X2=(X A1 +X A2 +X A3 +X A4 )/4, X2=(Y A1 +Y A2 +Y A3 +Y A4 )/4;

步骤五、被检光学元件外圆中心与被检光学元件被检测区域中心偏离的像素数即为(X1-X2,Y1-Y2),利用调整机构在X方向和Y方向上分别共心平移被检光学元件,使得被检光学元件被检区域中心在干涉仪的CCD上的像素位置坐标(X2,Y2)与被检光学元件外圆中心在干涉仪的CCD上的像素位置坐标(X1,Y1)重合,此时被检光学元件的被检区域中心即为被检光学元件的中心区域。Step 5. The number of pixels deviated from the center of the outer circle of the optical element to be inspected and the center of the inspected area of the optical element to be inspected is (X1-X2, Y1-Y2). Inspect the optical element so that the pixel position coordinates (X2, Y2) of the center of the inspected area of the inspected optical element on the CCD of the interferometer and the pixel position coordinates (X1, Y1) of the center of the outer circle of the inspected optical element on the CCD of the interferometer ) overlap, at this time the center of the inspected area of the inspected optical element is the central area of the inspected optical element.

进一步的,步骤一中,利用三座标机在被检光学元件表面以被检光学元件外圆为中心做4个标记点A、B、C、D。Further, in Step 1, four marking points A, B, C, and D are made on the surface of the optical element to be inspected with the outer circle of the optical element to be inspected as the center by using a three-coordinate machine.

本发明的有益效果是:本发明提出了一种旋转平移绝对检测过程中确定被检光学元件中心区域的装置和方法。本发明原理如下:利用三座标机在被检光学元件表面以元件外圆为中心做4个标记点;将被检光学元件安装在旋转平移绝对检测装置上,调节被检光学元件的空间位置,使得旋转平移绝对检测装置中转台旋转过程中,干涉仪CCD上的干涉仪条纹保持为零条纹;当转台处于0度位置时检测被检光学元件,记录4个标记点此时在干涉仪CCD上的像素位置坐标,即可得被检光学元件外圆中心在干涉仪CCD上的像素位置坐标(X1,Y1);旋转转台,在0度、90度、180度以及270度等4个角度位置处检测被检光学元件,记录4个角度位置下任一标记点在干涉仪CCD上的像素位置坐标,利用这4个像素位置坐标即可得到被检光学元件被检区域中心在干涉仪CCD上的像素位置坐标(X2,Y2);被检光学元件外圆中心与被检光学元件被检测区域中心偏离的像素数即为(X1-X2,Y1-Y2),利用调整机构在X,Y方向上分别共心平移被检光学元件,使得被检光学元件被检测区域中心(X2,Y2)与被检光学元件中心(X1,Y1)重合,此时被检光学元件的检测区域即为被检光学元件的中心区域。The beneficial effects of the present invention are: the present invention provides a device and method for determining the central area of the optical element to be inspected during the absolute inspection process of rotation and translation. The principle of the invention is as follows: use a three-coordinate machine to make 4 marking points on the surface of the optical element to be inspected with the outer circle of the element as the center; install the optical element to be inspected on the absolute detection device for rotation and translation, and adjust the spatial position of the optical element to be inspected , so that during the rotation of the turntable in the rotation-translation absolute detection device, the interferometer fringes on the interferometer CCD remain zero fringes; when the turntable is at 0 degrees, the optical element to be inspected is detected, and 4 mark points are recorded on the interferometer CCD at this time The pixel position coordinates on the interferometer CCD can be obtained from the pixel position coordinates (X1, Y1) of the center of the outer circle of the tested optical element on the interferometer CCD; rotate the turntable at 4 angles of 0°, 90°, 180° and 270° Detect the optical element under inspection at the position, record the pixel position coordinates of any mark point on the interferometer CCD under the 4 angular positions, and use these 4 pixel position coordinates to obtain the center of the inspected area of the optical element under inspection on the interferometer CCD The pixel position coordinates on (X2, Y2); the number of pixels that deviate from the center of the outer circle of the tested optical element and the center of the detected area of the tested optical component is (X1-X2, Y1-Y2), and the adjustment mechanism is used in X, Y Concentrically translate the optical element under inspection in the direction, so that the center of the inspected optical element (X2, Y2) coincides with the center (X1, Y1) of the inspected optical element. At this time, the inspection area of the inspected optical element is the The central area of the optometric element.

本发明的旋转平移绝对检测法中确定光学元件中心的方法,在绝对检测光学元件面形的同时即可确定被检光学元件中心区域,具有快速、简单、精度高等优点。The method for determining the center of the optical element in the absolute detection method of rotation and translation of the present invention can determine the center area of the optical element to be inspected while absolutely detecting the surface shape of the optical element, and has the advantages of fastness, simplicity, and high precision.

本发明的旋转平移绝对检测法中确定光学元件中心的装置,结构简单、成本低、检测精度高。The device for determining the center of the optical element in the rotation and translation absolute detection method of the present invention has simple structure, low cost and high detection precision.

本发明的旋转平移绝对检测法中确定光学元件中心的装置及方法用于确定被检光学元件的中心区域,指导光学元件的加工。The device and method for determining the center of the optical element in the rotation and translation absolute detection method of the present invention are used to determine the central area of the optical element to be inspected and guide the processing of the optical element.

附图说明Description of drawings

图1为本发明的旋转平移绝对检测法中确定光学元件中心的装置结构示意图。FIG. 1 is a schematic structural diagram of a device for determining the center of an optical element in the rotation-translation absolute detection method of the present invention.

图2为被检光学元件表面标记点位置示意图。Fig. 2 is a schematic diagram of the positions of marking points on the surface of the optical element to be inspected.

图中:1、干涉仪,2、透射球面波系统,3、被检光学元件,4、检测支撑平台,5、转台,6、调整机构。In the figure: 1. Interferometer, 2. Transmission spherical wave system, 3. Optical element to be inspected, 4. Inspection support platform, 5. Turntable, 6. Adjustment mechanism.

具体实施方式detailed description

以下结合附图对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings.

如图1所示,本发明的旋转平移绝对检测法中确定光学元件中心的装置,主要包括干涉仪1、透射球面波系统2、被检光学元件3、检测支撑平台4、转台5以及调整机构6。透射球面波系统2属于干涉仪1的一部分,安装于干涉仪1的下端,被检光学元件3安装在检测支撑平台4上,检测支撑平台4连同被检光学元件3安装在转台5上,转台5安装在调整机构6上,调整机构6为电动或手动的五自由度调整机构,转台5用于旋转被检光学元件3使之位于不同角度的检测位置,调整机构6用于调整被检光学元件3的倾斜、偏心以及离焦,使得被检光学元件3在不同的转台5的角度位置下,干涉条纹均为零条纹。As shown in Figure 1, the device for determining the center of the optical element in the absolute detection method of rotation and translation of the present invention mainly includes an interferometer 1, a transmission spherical wave system 2, an optical element 3 to be inspected, a detection support platform 4, a turntable 5, and an adjustment mechanism 6. The transmitted spherical wave system 2 belongs to the part of the interferometer 1 and is installed at the lower end of the interferometer 1. The optical element 3 to be inspected is installed on the detection support platform 4, and the detection support platform 4 together with the optical element 3 to be inspected is installed on the turntable 5. The turntable 5 is installed on the adjustment mechanism 6, the adjustment mechanism 6 is an electric or manual five-degree-of-freedom adjustment mechanism, the turntable 5 is used to rotate the inspected optical element 3 so that it is located at a detection position at different angles, and the adjustment mechanism 6 is used to adjust the inspected optical element. The inclination, eccentricity and defocus of the component 3 make the interference fringes of the tested optical component 3 in different angular positions of the turntable 5 all be zero fringes.

干涉仪1发出的光经过透射球面波系统2后形成理想的球面波入射到被检光学元件3的表面,被检光学元件3将该理想的球面波反射回干涉仪1中,并在干涉仪1的CCD上形成干涉条纹。The light emitted by the interferometer 1 passes through the transmission spherical wave system 2 and forms an ideal spherical wave incident on the surface of the optical element 3 to be inspected. 1. Interference fringes are formed on the CCD.

本发明的旋转平移绝对检测法中确定光学元件中心的方法,具体步骤如下:The method for determining the center of the optical element in the rotation translation absolute detection method of the present invention, the specific steps are as follows:

步骤一、利用三座标机在被检光学元件3表面以被检光学元件3外圆为中心做4个标记点,如图2所示,4个标记点分别为A、B、C、D,这4个标记点位于XOY平面内,点C位于0°、点D位于90°、点A位于180°、点D位于270°。Step 1. Use a three-coordinate machine to make 4 marking points on the surface of the optical element 3 to be inspected, with the outer circle of the optical element 3 being inspected as the center. As shown in Figure 2, the 4 marking points are A, B, C, and D respectively. , the four marker points are located in the XOY plane, point C is at 0°, point D is at 90°, point A is at 180°, and point D is at 270°.

步骤二、将被检光学元件3安装在旋转平移绝对检测装置上,即将被检光学元件3安装在检测支撑平台4上,通过调整调整机构6调节被检光学元件3的空间位置,使得旋转平移绝对检测装置中转台5旋转过程中,干涉仪1的CCD上的干涉条纹保持为零条纹。Step 2: Install the tested optical component 3 on the rotation and translation absolute detection device, that is, install the tested optical component 3 on the detection support platform 4, and adjust the spatial position of the tested optical component 3 by adjusting the adjustment mechanism 6, so that the rotation and translation During the rotation of the turntable 5 in the absolute detection device, the interference fringes on the CCD of the interferometer 1 remain as zero fringes.

步骤三、当转台5处于0度位置时检测被检光学元件3,记录4个标记点A、B、C、D此时在干涉仪1的CCD上的像素位置坐标(XA,YA)、(XB,YB)、(XC,YC)、(XD,YD),即可得到被检光学元件3外圆中心在干涉仪1的CCD上的像素位置坐标(X1,Y1),其中X1=(XA+XB+XC+XD)/4,X2=(YA+YB+YC+YD)/4。Step 3: When the turntable 5 is at the 0 degree position, detect the optical element 3 to be inspected, and record the pixel position coordinates (X A , Y A ) of the 4 mark points A, B, C, and D on the CCD of the interferometer 1 at this time , (X B , Y B ), (X C , Y C ), (X D , Y D ), the pixel position coordinates (X1, Y1), where X1=(X A +X B +X C +X D )/4, X2=(Y A +Y B +Y C +Y D )/4.

步骤四、旋转转台5,分别在0度、90度、180度以及270度4个角度位置处检测被检光学元件3,记录4个角度位置处任一标记点(例如标记点A)在干涉仪1的CCD上的像素位置坐标(XA1,YA1)、(XA2,YA2)、(XA3,YA3)、(XA4,YA4),利用这4个像素位置坐标即可得到被检光学元件3被检区域中心在干涉仪1的CCD上的像素位置坐标(X2,Y2),其中X2=(XA1+XA2+XA3+XA4)/4,X2=(YA1+YA2+YA3+YA4)/4。Step 4: Rotate the turntable 5 to detect the optical element 3 to be inspected at 4 angular positions of 0°, 90°, 180° and 270° respectively, and record any mark point (such as mark point A) at the 4 angular positions in the interference The pixel position coordinates (X A1 , Y A1 ), (X A2 , Y A2 ), (X A3 , Y A3 ), (X A4 , Y A4 ) on the CCD of instrument 1 can be obtained by using these 4 pixel position coordinates Obtain the pixel position coordinates (X2, Y2) of the center of the inspected area of the optical element 3 on the CCD of the interferometer 1, wherein X2=(X A1 +X A2 +X A3 +X A4 )/4, X2=(Y A1 +Y A2 +Y A3 +Y A4 )/4.

步骤五、被检光学元件3外圆中心与被检光学元件3被检测区域中心偏离的像素数即为(X1-X2,Y1-Y2),利用调整机构6在X方向和Y方向上分别共心平移被检光学元件3,使得被检光学元件3被检区域中心在干涉仪1的CCD上的像素位置坐标(X2,Y2)与被检光学元件3外圆中心在干涉仪1的CCD上的像素位置坐标(X1,Y1)重合,此时被检光学元件3的被检区域中心即为被检光学元件3的中心区域。Step 5, the number of pixels deviated from the center of the outer circle of the optical element 3 to be inspected and the center of the detected area of the optical element 3 to be inspected is (X1-X2, Y1-Y2). Translate the tested optical component 3 so that the pixel position coordinates (X2, Y2) of the center of the tested area of the tested optical component 3 on the CCD of the interferometer 1 and the center of the outer circle of the tested optical component 3 are on the CCD of the interferometer 1 The coordinates (X1, Y1) of the pixel positions coincide, and at this time the center of the inspected area of the inspected optical element 3 is the central area of the inspected optical element 3 .

本发明中,被检光学元件3为凸球面镜或者凹球面镜,可以具有中心孔或者不具有中心孔。In the present invention, the optical element 3 to be inspected is a convex spherical mirror or a concave spherical mirror, which may have a central hole or not have a central hole.

Claims (6)

1. rotate the device determining center of optical element in translation absolute sense method, it is characterized in that, comprising: interferometer (1), be arranged on interferometer (1) lower end transmission sphere wave system system (2), adjusting mechanism (6), the turntable (5) be arranged on adjusting mechanism (6), the detection support platform (4) be arranged on turntable (5), be arranged on the tested optical element (3) detected on support platform (4); Tested optical element (3) is made to be positioned at the detection position of different angles by revolving-turret (5), adjust the inclination of tested optical element (3), bias and out of focus by adjusting mechanism (6), thus make tested optical element (3) interference fringe under the detection position of different angles be zero striped.

2. in rotation translation absolute sense method according to claim 1, determine the device of center of optical element, it is characterized in that, the light that described interferometer (1) sends forms desirable spherical wave and incides tested optical element (3) surface after transmission sphere wave system system (2), this desirable spherical wave is reflected back in interferometer (1) by tested optical element (3), and forms interference fringe on the CCD of interferometer (1).

3. determine the device of center of optical element in rotation translation absolute sense method according to claim 1, it is characterized in that, described adjusting mechanism (6) is electronic or manual five degree of freedom adjusting mechanism.

4. determine the device of center of optical element in rotation translation absolute sense method according to claim 1, it is characterized in that, described tested optical element (3) is convex spherical mirror or concave spherical mirror.

5. determine the method for center of optical element in rotation translation absolute sense method as claimed in claim 1, it is characterized in that, comprise the following steps:

Step one, tested optical element (3) surface centered by tested optical element (3) cylindrical, be 4 gauge points A, B, C, D;

Step 2, tested optical element (3) is arranged on and detects in support platform (4), by the locus regulating adjusting mechanism (6) to adjust tested optical element (3), make turntable (5) in rotary course, the interference fringe on the CCD of interferometer (1) is zero striped;

Step 3, detect tested optical element (3) when turntable (5) is in 0 degree of position, record now 4 gauge point A, B, C, D location of pixels coordinate (X on the CCD of interferometer (1) a, Y a), (X b, Y b), (X c, Y c), (X d, Y d), obtain location of pixels coordinate (X1, Y1) of tested optical element (3) cylindrical center on the CCD of interferometer (1), X1=(X a+ X b+ X c+ X d)/4, X2=(Y a+ Y b+ Y c+ Y d)/4;

Step 4, revolving-turret (5), detect tested optical element (3) 0 degree, 90 degree, 180 degree, 270 degree 4 angular position respectively, record the location of pixels coordinate (X of 4 arbitrary gauge points of angular position on the CCD of interferometer (1) a1, Y a1), (X a2, Y a2), (X a3, Y a3), (X a4, Y a4), obtain location of pixels coordinate (X2, Y2) of tested optical element (3) tested regional center on the CCD of interferometer (1), X2=(X a1+ X a2+ X a3+ X a4)/4, X2=(Y a1+ Y a2+ Y a3+ Y a4)/4;

Step 5, the pixel count that tested optical element (3) cylindrical center and the detected regional center of tested optical element (3) depart from is (X1-X2, Y1-Y2), adjusting mechanism (6) is utilized to distinguish the tested optical element of homocentric translation (3) in the x-direction and the z-direction, make the location of pixels coordinate (X2 of tested optical element (3) tested regional center on the CCD of interferometer (1), Y2) with the location of pixels coordinate (X1 of tested optical element (3) cylindrical center on the CCD of interferometer (1), Y1) overlap, now the tested regional center of tested optical element (3) is the central area of tested optical element (3).

6. in rotation translation absolute sense method according to claim 5, determine the method for center of optical element, it is characterized in that, in step one, three coordinate machines are utilized centered by tested optical element (3) cylindrical, to be 4 gauge points A, B, C, D on tested optical element (3) surface.

CN201510962258.4A 2015-12-21 2015-12-21 The device and method of center of optical element is determined in rotation translation absolute sense method Active CN105444673B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510962258.4A CN105444673B (en) 2015-12-21 2015-12-21 The device and method of center of optical element is determined in rotation translation absolute sense method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510962258.4A CN105444673B (en) 2015-12-21 2015-12-21 The device and method of center of optical element is determined in rotation translation absolute sense method

Publications (2)

Publication Number Publication Date
CN105444673A true CN105444673A (en) 2016-03-30
CN105444673B CN105444673B (en) 2018-06-22

Family

ID=55555152

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510962258.4A Active CN105444673B (en) 2015-12-21 2015-12-21 The device and method of center of optical element is determined in rotation translation absolute sense method

Country Status (1)

Country Link
CN (1) CN105444673B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106767498A (en) * 2016-11-25 2017-05-31 中国科学院长春光学精密机械与物理研究所 It is a kind of for spherical lens face shape absolute calibration by microscopy Method of Adjustment and device
CN108801178A (en) * 2017-05-04 2018-11-13 北京理工大学 Differential confocal auto-collimation center is partially and curvature radius measurement method and device
CN110045477A (en) * 2019-04-16 2019-07-23 中国科学院光电技术研究所 A kind of optical element automatic centering method based on Phase-Resolved Analysis
CN111336918A (en) * 2020-03-10 2020-06-26 深圳市兴华炜科技有限公司 Plug-in clamping jaw detection process and system and clamping jaw
CN113516645A (en) * 2021-07-23 2021-10-19 南京中安半导体设备有限责任公司 Method and device for correcting imaging plane space and wafer measuring device
CN115031679A (en) * 2022-08-09 2022-09-09 四川至臻光电有限公司 A centering method, device and system for optical component detection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707191B (en) * 2020-06-30 2021-09-07 西安工业大学 A center alignment method for absolute detection of rotation and translation of plane optical components

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519389A (en) * 2011-11-30 2012-06-27 中国科学院上海光学精密机械研究所 Rotation positioning clamp and rotation positioning method for optical element
CN103335609A (en) * 2013-07-05 2013-10-02 中国科学院光电技术研究所 Method for determining rotation center, rotation angle and translation amount of optical surface shape data
CN104315997A (en) * 2014-11-06 2015-01-28 中国科学院光电技术研究所 Device and method for marking detection data coordinate system in plane mirror detection
CN104483664A (en) * 2015-01-05 2015-04-01 中国科学院光电研究院 Single-linear-array laser radar equipment centering method
CN104779191A (en) * 2014-01-10 2015-07-15 株式会社迪思科 Mark detecting method
CN105115444A (en) * 2015-09-08 2015-12-02 上海现代先进超精密制造中心有限公司 Detection device and detection method of off-axis parabolic mirror surface shape precision

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102519389A (en) * 2011-11-30 2012-06-27 中国科学院上海光学精密机械研究所 Rotation positioning clamp and rotation positioning method for optical element
CN103335609A (en) * 2013-07-05 2013-10-02 中国科学院光电技术研究所 Method for determining rotation center, rotation angle and translation amount of optical surface shape data
CN104779191A (en) * 2014-01-10 2015-07-15 株式会社迪思科 Mark detecting method
CN104315997A (en) * 2014-11-06 2015-01-28 中国科学院光电技术研究所 Device and method for marking detection data coordinate system in plane mirror detection
CN104483664A (en) * 2015-01-05 2015-04-01 中国科学院光电研究院 Single-linear-array laser radar equipment centering method
CN105115444A (en) * 2015-09-08 2015-12-02 上海现代先进超精密制造中心有限公司 Detection device and detection method of off-axis parabolic mirror surface shape precision

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106767498A (en) * 2016-11-25 2017-05-31 中国科学院长春光学精密机械与物理研究所 It is a kind of for spherical lens face shape absolute calibration by microscopy Method of Adjustment and device
CN108801178A (en) * 2017-05-04 2018-11-13 北京理工大学 Differential confocal auto-collimation center is partially and curvature radius measurement method and device
CN110045477A (en) * 2019-04-16 2019-07-23 中国科学院光电技术研究所 A kind of optical element automatic centering method based on Phase-Resolved Analysis
CN110045477B (en) * 2019-04-16 2020-11-03 中国科学院光电技术研究所 An Automatic Centering Method of Optical Components Based on Phase Resolution
CN111336918A (en) * 2020-03-10 2020-06-26 深圳市兴华炜科技有限公司 Plug-in clamping jaw detection process and system and clamping jaw
CN113516645A (en) * 2021-07-23 2021-10-19 南京中安半导体设备有限责任公司 Method and device for correcting imaging plane space and wafer measuring device
CN115031679A (en) * 2022-08-09 2022-09-09 四川至臻光电有限公司 A centering method, device and system for optical component detection

Also Published As

Publication number Publication date
CN105444673B (en) 2018-06-22

Similar Documents

Publication Publication Date Title
CN105444673B (en) 2018-06-22 The device and method of center of optical element is determined in rotation translation absolute sense method
CN107741198B (en) 2019-11-15 A method of it is demarcated based on four axis optical scanning system turntables
CN105157606B (en) 2018-01-05 Contactless complicated optical surface profile high precision three-dimensional measurement method and measurement apparatus
CN103557802B (en) 2015-10-07 A kind of method of non-cpntact measurement space curved surface micro hole diameter and coordinate position
CN104316001B (en) 2017-02-01 Non-reference hole coaxiality error measurement system and measurement method thereof
CN105423946A (en) 2016-03-23 Laser-displacement-sensor-based journal axle center measurement apparatus, and measurement and calibration methods thereof
CN105571514B (en) 2018-06-26 The device and method of optical element is quickly adjusted in rotation translation absolute sense method
CN103424088B (en) 2016-01-13 A kind of chamfering measuring instrument
JP2007327771A5 (en) 2009-07-09
CN206132015U (en) 2017-04-26 Etalon that multisensor measuring engine coordinate is unified and precision is examined and determine
CN104315985B (en) 2017-03-15 Interferometric method for measuring central thickness of lens
CN103175486A (en) 2013-06-26 Device and method for splicing interferometry of cylindricity errors
CN104296654A (en) 2015-01-21 Device and method for detecting zero position installation errors of position detector of laser tracker
CN112013797A (en) 2020-12-01 Method for calibrating spatial revolution axis based on cylinder and line structured light and application thereof
CN106959082A (en) 2017-07-18 A kind of many optical axis systematic optical axis Parallel testing method and system
CN106940175A (en) 2017-07-11 Sphere ring gauge and gauge head lengthy calibration method for endoporus parameter measuring apparatus gauge head lengthy calibration
CN101451825A (en) 2009-06-10 Calibrating method of image measuring instrument
CN105627945B (en) 2017-12-26 Non-spherical element center and the measurement apparatus and measuring method of cylindrical center shift amount
CN201096611Y (en) 2008-08-06 Aspheric lens eccentric measuring apparatus
US10444008B2 (en) 2019-10-15 Spherical shape measurement method and apparatus for rotating a sphere about first rotation axis and rotating a sphere hold mechanism about second rotation axis orthogonal to first rotation axis
CN106767498A (en) 2017-05-31 It is a kind of for spherical lens face shape absolute calibration by microscopy Method of Adjustment and device
CN101413788B (en) 2010-11-24 Surface topography measuring method and device thereof
CN106052577B (en) 2018-12-21 A kind of Through Optical Interference Spectra sphere diameter sphericity detector and detection method
CN108286950A (en) 2018-07-17 A kind of online test method of reflecting mirror surface shape
CN116007532A (en) 2023-04-25 Device for adjusting swing arm type contour measuring instrument by mechanical arm and error calibration method

Legal Events

Date Code Title Description
2016-03-30 C06 Publication
2016-03-30 PB01 Publication
2016-04-27 C10 Entry into substantive examination
2016-04-27 SE01 Entry into force of request for substantive examination
2018-06-22 GR01 Patent grant
2018-06-22 GR01 Patent grant
2024-11-12 TR01 Transfer of patent right
2024-11-12 TR01 Transfer of patent right

Effective date of registration: 20241031

Address after: Room 1, No. 3033 Pudong Road, Economic and Technological Development Zone, Changchun City, Jilin Province, China 130012

Patentee after: Changguang Jizhi Optical Technology Co.,Ltd.

Country or region after: China

Address before: 130033, 3888 southeast Lake Road, Jilin, Changchun

Patentee before: CHANGCHUN INSTITUTE OF OPTICS, FINE MECHANICS AND PHYSICS, CHINESE ACADEMY OF SCIENCE

Country or region before: China