patents.google.com

CN107256568A - A kind of high-accuracy mechanical arm trick camera calibration method and calibration system - Google Patents

  • ️Tue Oct 17 2017
A kind of high-accuracy mechanical arm trick camera calibration method and calibration system Download PDF

Info

Publication number
CN107256568A
CN107256568A CN201710324006.8A CN201710324006A CN107256568A CN 107256568 A CN107256568 A CN 107256568A CN 201710324006 A CN201710324006 A CN 201710324006A CN 107256568 A CN107256568 A CN 107256568A Authority
CN
China
Prior art keywords
mtd
mrow
msub
mechanical arm
camera
Prior art date
2017-05-08
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710324006.8A
Other languages
Chinese (zh)
Other versions
CN107256568B (en
Inventor
王飞
刘彤
王伟农
王丽霞
杨海伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Beijing Institute of Spacecraft System Engineering
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
2017-05-08
Filing date
2017-05-08
Publication date
2017-10-17
2017-05-08 Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
2017-05-08 Priority to CN201710324006.8A priority Critical patent/CN107256568B/en
2017-10-17 Publication of CN107256568A publication Critical patent/CN107256568A/en
2020-10-27 Application granted granted Critical
2020-10-27 Publication of CN107256568B publication Critical patent/CN107256568B/en
Status Active legal-status Critical Current
2037-05-08 Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Manipulator (AREA)

Abstract

本发明公开的一种高精度机械臂手眼相机标定方法及标定系统,通过采集不同位置的标定板图像,通过视觉方法,测出相机内部参数,以及腕部相机与标定板之间的外部参数;通过高精度自准经纬仪、机械臂靶标设计和标定板上选取的关键点,测出机械臂靶标和标定板之间的外部参数;最后,由视觉计算方法,完成机械臂腕部相机的标定。本发明的标定系统通过两台高精度测量仪器,以标定板坐标系作为中间坐标系,实现高精度坐标系参数转换,最终求得机械臂末端和相机之间的外参数,该方法能够实现机械臂与相机之间外参的高精度标定。

The invention discloses a high-precision robotic arm hand-eye camera calibration method and a calibration system. By collecting calibration board images at different positions, the internal parameters of the camera and the external parameters between the wrist camera and the calibration board are measured through a visual method; Through the high-precision autocollimation theodolite, the design of the manipulator target and the key points selected on the calibration board, the external parameters between the manipulator target and the calibration board are measured; finally, the calibration of the wrist camera of the manipulator is completed by the visual calculation method. The calibration system of the present invention uses two high-precision measuring instruments and takes the coordinate system of the calibration plate as the intermediate coordinate system to realize the parameter conversion of the high-precision coordinate system, and finally obtain the external parameters between the end of the mechanical arm and the camera. This method can realize mechanical High-precision calibration of extrinsic parameters between arm and camera.

Description

一种高精度机械臂手眼相机标定方法及标定系统A high-precision robotic arm hand-eye camera calibration method and calibration system

技术领域technical field

本发明属于计算机视觉测量和图像处理领域,具体涉及一种高精度机械臂手眼相机标定方法及标定系统。The invention belongs to the field of computer vision measurement and image processing, and in particular relates to a calibration method and a calibration system for a hand-eye camera of a high-precision mechanical arm.

背景技术Background technique

在机器人领域,利用视觉方法进行位姿估计来帮助机械臂实现精确的目标抓取有着重要的应用。而其中,高精度的相机内外参标定和相机与机械臂外参标定是保证视觉测量精度的重要条件。通过标定算法实现的相机内外参标定在算法上保证了对相机自身内外参数的标定精度,但对于机械臂与相机之间外参的高精度标定方法一直没有得到解决。In the field of robotics, the use of vision methods for pose estimation to help robotic arms achieve precise target grasping has important applications. Among them, high-precision calibration of the internal and external parameters of the camera and the calibration of the external parameters of the camera and the robotic arm are important conditions to ensure the accuracy of visual measurement. The calibration of internal and external parameters of the camera realized by the calibration algorithm ensures the calibration accuracy of the internal and external parameters of the camera itself, but the high-precision calibration method of the external parameters between the robotic arm and the camera has not been resolved.

发明内容Contents of the invention

本发明的目的在于提供一种高精度机械臂手眼相机标定方法及标定系统,该标定系统设置合理,该方法能够实现相机内外参数和相机与机械臂之间的外参数的高精度标定。The purpose of the present invention is to provide a high-precision robotic arm hand-eye camera calibration method and calibration system. The calibration system is reasonably set up, and the method can realize high-precision calibration of the internal and external parameters of the camera and the external parameters between the camera and the mechanical arm.

本发明是通过以下技术方案来实现:The present invention is achieved through the following technical solutions:

本发明公开了一种高精度机械臂手眼相机标定方法,包括以下步骤:The invention discloses a method for calibrating a hand-eye camera of a high-precision mechanical arm, which includes the following steps:

步骤一:固定腕部相机和机械臂,使腕部相机的光轴方向与机械臂的中心视轴方向平行;Step 1: Fix the wrist camera and the robotic arm so that the optical axis of the wrist camera is parallel to the central visual axis of the robotic arm;

定义相机坐标系Oc、标定板世界坐标系Ow、机械臂末端坐标系Om;Define the camera coordinate system Oc, the world coordinate system Ow of the calibration board, and the end coordinate system Om of the manipulator;

对腕部相机的内部参数进行标定,得到腕部相机的内部参数矩阵为:The internal parameters of the wrist camera are calibrated, and the internal parameter matrix of the wrist camera is obtained as:

(fx,fy)为腕部相机的等效焦距,(u0,v0)为腕部相机的光心坐标;(f x , f y ) is the equivalent focal length of the wrist camera, (u 0 , v 0 ) is the optical center coordinates of the wrist camera;

步骤二:放置并调整两台高精密测量仪器A1和A2,确保标定板在腕部相机的视野范围内,标定板和机械臂末端在高精密测量仪器的视野范围内;Step 2: Place and adjust two high-precision measuring instruments A 1 and A 2 to ensure that the calibration plate is within the field of view of the wrist camera, and the calibration plate and the end of the mechanical arm are within the field of view of the high-precision measuring instrument;

定义参考坐标系Or,并在标定板上选取n个关键点,获得所有关键点的世界坐标;Define the reference coordinate system O r , and select n key points on the calibration board to obtain the world coordinates of all key points;

步骤三:使用两台高精密测量仪器分别测量并记录机械臂末端靶标上k个十字刻线的方位、俯仰读数,由标定工具计算出此时机械臂末端坐标系Om相对于参考坐标系Or的外参[Rmr Tmr];其中,k为大于等于4的正整数;Step 3: Use two high-precision measuring instruments to measure and record the azimuth and pitch readings of the k cross marks on the target at the end of the manipulator, and calculate the coordinate system Om at the end of the manipulator relative to the reference coordinate system O r by the calibration tool The external parameter [R mr T mr ]; where, k is a positive integer greater than or equal to 4;

步骤四:将标定板放于相机前,用相机采集一幅标定板图像;使用两台高精密测量仪器分别测量并记录标定板上n个关键点的方位、俯仰读数;然后将标定板由近及远放置在不同位置上;Step 4: Put the calibration board in front of the camera, and use the camera to collect an image of the calibration board; use two high-precision measuring instruments to measure and record the azimuth and elevation readings of n key points on the calibration board; and far placed in different positions;

重复本步骤内的操作(包括用相机采集一幅标定板图像;使用两台高精密测量仪器分别测量并记录标定板上n个关键点的方位、俯仰读数);Repeat the operations in this step (including collecting an image of the calibration board with a camera; using two high-precision measuring instruments to measure and record the azimuth and elevation readings of n key points on the calibration board respectively);

然后由标定工具计算出此时标定板世界坐标系Ow相对于相机坐标系Oc的外参[RwcTwc],以及标定板世界坐标系Ow相对于参考坐标系Or的外参[Rwr Twr];Then the calibration tool calculates the external parameters [R wc T wc ] of the calibration board world coordinate system Ow relative to the camera coordinate system Oc at this time, and the external parameters [R wr of the calibration board world coordinate system Ow relative to the reference coordinate system O r T wr ];

步骤五:由步骤三中机械臂末端坐标系Om相对于参考坐标系Or的外参[Rmr Tmr]和步骤四中标定板世界坐标系Ow相对于参考坐标系Or的外参[Rwr Twr],计算得到机械臂末端坐标系Om相对于标定板世界坐标系Ow的外参[Rmw Tmw]=f([Rmr Tmr],[Rwr Twr]);Step 5: From the external parameter [R mr T mr ] of the end coordinate system Om of the manipulator relative to the reference coordinate system O r in step 3 and the external parameter [R mr T mr ] of the world coordinate system Ow of the calibration board relative to the reference coordinate system O r in step 4 [ R wr T wr ], calculate the external parameters [R mw T mw ]=f([R mr T mr ],[R wr T wr ]) of the coordinate system Om at the end of the manipulator relative to the world coordinate system Ow of the calibration plate;

步骤六:由步骤五中机械臂末端坐标系Om相对于标定板世界坐标系Ow的外参[RmwTmw]和步骤四中标定板世界坐标系Ow相对于相机坐标系Oc的外参[Rwc Twc],计算得到机械臂末端坐标系Om相对于相机坐标系Oc的外参[Rmc Tmc]=f([Rmw Tmw],[Rwc Twc])。Step 6: From the extrinsic parameter [R mw T mw ] of the end coordinate system Om of the manipulator relative to the world coordinate system Ow of the calibration board in step 5 and the extrinsic parameter [R mw T mw ] of the world coordinate system Ow of the calibration board relative to the camera coordinate system Oc in step 4 [ R wc T wc ], calculate the extrinsic parameters [R mc T mc ]=f([R mw T mw ],[R wc T wc ]) of the end coordinate system Om of the manipulator relative to the camera coordinate system Oc.

所述标定板采用黑白格棋盘标定板,且该黑白格棋盘标定板图像上黑色区域和白色区域的灰度值之差大于等于某个阈值,本发明优选为70。The calibration board adopts a black and white checkerboard calibration board, and the gray value difference between the black area and the white area on the image of the black and white checkerboard calibration board is greater than or equal to a certain threshold, preferably 70 in the present invention.

黑白格棋盘标定板上的黑白格数为25*24,边长为15mm,加工精度大于0.05mm。The number of black and white grids on the black and white checkerboard calibration board is 25*24, the side length is 15mm, and the processing accuracy is greater than 0.05mm.

选定标定板上任意一个点作为标定板世界坐标系原点,标定互相垂直的两边为X轴和Y轴,Z轴垂直于标定板平面,以机械臂末端靶标中心为机械臂末端坐标系原点,水平和垂直的两条边为X轴和Y轴,Z轴垂直于靶标所在平面。Select any point on the calibration board as the origin of the world coordinate system of the calibration board, calibrate the two sides perpendicular to each other as the X-axis and Y-axis, and the Z-axis is perpendicular to the plane of the calibration board, and take the center of the target at the end of the manipulator as the origin of the coordinate system at the end of the manipulator. The two horizontal and vertical sides are the X axis and the Y axis, and the Z axis is perpendicular to the plane where the target is located.

高精密测量仪器A1的中心为参考坐标系Or的原点,高精密测量仪器A1指高精密测量仪器A2的方向为X轴方向,垂直水平面为Z轴方向,与X轴和Z轴垂直的方向为Y轴方向。The center of the high - precision measuring instrument A1 is the origin of the reference coordinate system O r , the high - precision measuring instrument A1 refers to the direction of the high-precision measuring instrument A2 as the X - axis direction, the vertical horizontal plane is the Z-axis direction, and the X-axis and Z-axis The vertical direction is the Y-axis direction.

步骤二中,在标定板上选取n个关键点,n为正整数,且n≥4;当n=4时,四个关键点中的任意三个关键点不共线。In step 2, select n key points on the calibration board, where n is a positive integer and n≥4; when n=4, any three of the four key points are not collinear.

步骤三,具体操作包括以下步骤:Step 3, the specific operation includes the following steps:

1)设定k个十字刻线在参考坐标系Or下的坐标,记为:1) Set the coordinates of the k reticle lines in the reference coordinate system O r , which is recorded as:

其中,(Xrm1,Yrm1,0),(Xrm2,Yrm2,0)...(Xrmk,Yrmk,0)分别为各个十字刻线的坐标;Among them, (X rm1 ,Y rm1 ,0),(X rm2 ,Y rm2 ,0)...(X rmk ,Y rmk ,0) are the coordinates of each reticle respectively;

2)设定十字刻线在机械臂末端坐标系Om下的坐标,记为:2) Set the coordinates of the reticle in the coordinate system Om at the end of the mechanical arm, which is recorded as:

则根据Prm=Rmr*Pm+Tmr,计算出此时机械臂末端坐标系Om相对于参考坐标系Or的外参[Rmr Tmr]。Then, according to P rm =R mr *P m +T mr , calculate the extrinsic parameters [R mr T mr ] of the end coordinate system Om of the manipulator relative to the reference coordinate system O r at this time.

步骤四中,将标定板分别放置在距离腕部相机的不同距离处,在每个位置上使标定板侧对腕部相机。In step 4, the calibration board is placed at different distances from the wrist camera, and the side of the calibration board faces the wrist camera at each position.

本发明还公开了实现上述标定方法的高精度机械臂手眼相机标定系统,包括腕部相机、机械臂、标定板及两个高精密测量仪器A1和A2;其中,腕部相机的光轴方向与机械臂的中心视轴方向平行;标定板设置在腕部相机的视野范围前方,标定板和机械臂末端设置在两个高精密测量仪器A1和A2的视野范围内部。The present invention also discloses a high-precision mechanical arm hand-eye camera calibration system for realizing the above calibration method, including a wrist camera, a mechanical arm, a calibration plate and two high - precision measuring instruments A1 and A2 ; wherein, the optical axis of the wrist camera The direction is parallel to the direction of the central visual axis of the robotic arm; the calibration plate is set in front of the field of view of the wrist camera, and the calibration plate and the end of the robotic arm are set within the field of view of two high-precision measuring instruments A 1 and A 2 .

高精密测量仪器A1和高精密测量仪器A2之间的距离为d,定义高精密测量仪器A1的中心为参考坐标系Or的原点,高精密测量仪器A1指向高精密测量仪器A2的方向为X轴方向,垂直水平面为Z轴方向,与X轴和Z轴垂直的方向为Y轴方向,经高精密测量仪器A1测得某空间目标点的水平角为αa,垂直角为βa;经高精密测量仪器A2测得该点的水平角为αb,垂直角为βb,则有:The distance between the high-precision measuring instrument A 1 and the high-precision measuring instrument A 2 is d, the center of the high-precision measuring instrument A 1 is defined as the origin of the reference coordinate system O r , and the high-precision measuring instrument A 1 points to the high-precision measuring instrument A 2 is the X-axis direction, the vertical horizontal plane is the Z-axis direction, and the direction perpendicular to the X-axis and Z-axis is the Y-axis direction. The horizontal angle of a certain space target point measured by the high - precision measuring instrument A1 is α a , and the vertical The angle is βa; the horizontal angle of this point is α b and the vertical angle is β b measured by the high - precision measuring instrument A2, then:

与现有技术相比,本发明具有以下有益的技术效果:Compared with the prior art, the present invention has the following beneficial technical effects:

本发明公开的高精度机械臂手眼相机标定方法,通过采集不同位置的标定板图像,通过视觉方法,测出腕部相机内部参数,以及腕部相机与标定板之间的外部参数;通过高精密测量仪、机械臂靶标设计和标定板上选取的关键点,测出机械臂靶标和标定板之间的外部参数;最后,由视觉计算方法,完成机械臂腕部相机的标定。The high-precision mechanical arm hand-eye camera calibration method disclosed in the present invention measures the internal parameters of the wrist camera and the external parameters between the wrist camera and the calibration plate by collecting images of calibration plates at different positions and through a visual method; The measuring instrument, the design of the manipulator target and the key points selected on the calibration board measure the external parameters between the manipulator target and the calibration board; finally, the calibration of the wrist camera of the manipulator is completed by the visual calculation method.

本发明公开的标定系统通过两台高精度测量仪器,以标定板坐标系作为中间坐标系,实现高精度坐标系参数转换,最终求得机械臂末端和腕部相机之间的外参数,该方法能够实现机械臂与相机之间外参的高精度标定。The calibration system disclosed in the present invention uses two high-precision measuring instruments and takes the coordinate system of the calibration plate as the intermediate coordinate system to realize the parameter conversion of the high-precision coordinate system, and finally obtain the external parameters between the end of the mechanical arm and the wrist camera. It can achieve high-precision calibration of external parameters between the robot arm and the camera.

进一步地,本发明采用精心设计的黑白格棋盘标定板,黑白格数为25*24,边长为15mm,加工精度优于0.05mm,棋盘格标定板图像上黑色区域和白色区域的灰度值之差大于等于70,具有极易识别的图像模式,易于实现黑白格顶点的自动检测,实现高精度定位,保证了后续测量的精度。Further, the present invention adopts a well-designed black and white checkerboard calibration board, the number of black and white grids is 25*24, the side length is 15mm, the processing accuracy is better than 0.05mm, and the gray value of the black area and white area on the checkerboard calibration board image The difference is greater than or equal to 70. It has an image pattern that is easy to recognize, and it is easy to realize the automatic detection of black and white grid vertices, realize high-precision positioning, and ensure the accuracy of subsequent measurements.

附图说明Description of drawings

图1为本发明方法流程示意图;Fig. 1 is a schematic flow sheet of the method of the present invention;

图2为本发明的装置结构示意图;Fig. 2 is a schematic view of the device structure of the present invention;

图3为本发明参考坐标系的建立示意图;Fig. 3 is the establishment schematic diagram of the reference coordinate system of the present invention;

图4为本发明世界坐标系的建立示意图;Fig. 4 is the schematic diagram of establishing the world coordinate system of the present invention;

图5为本发明腕部相机坐标系和机械臂末端坐标系的建立和关系示意图。Fig. 5 is a schematic diagram of the establishment and relationship between the wrist camera coordinate system and the robot end coordinate system of the present invention.

其中,1为腕部相机;2为机械臂;3为高精密测量仪器A1;4为高精密测量仪器A2;5为标定板。Among them, 1 is a wrist camera; 2 is a mechanical arm; 3 is a high-precision measuring instrument A 1 ; 4 is a high-precision measuring instrument A 2 ; 5 is a calibration plate.

具体实施方式detailed description

下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。The present invention will be further described in detail below in conjunction with specific embodiments, which are explanations of the present invention rather than limitations.

本发明公开的高精度机械臂手眼相机标定方法,如图1流程所示。The calibration method of the high-precision robotic arm hand-eye camera disclosed in the present invention is shown in the flow chart of FIG. 1 .

具体实施实例,包括以下步骤:A specific implementation example includes the following steps:

1)参见图2,将腕部相机1和机械臂2固定在一起,并保证他们的相对位置和相机内参不再发生改变。选定标定板5,该标定板为棋盘格标定板,其黑白格数为25*24,边长为15mm,加工精度优于0.05mm,棋盘格标定板图像上黑色区域和白色区域的灰度值之差大于等于70。1) Referring to Figure 2, fix the wrist camera 1 and the robotic arm 2 together, and ensure that their relative positions and camera internal parameters will not change. Select the calibration board 5, which is a checkerboard calibration board, the number of black and white grids is 25*24, the side length is 15mm, the processing accuracy is better than 0.05mm, the grayscale of the black area and the white area on the checkerboard calibration board image The difference between the values is greater than or equal to 70.

放置并调整两台高精密测量仪A1和A2,使高精密测量仪器A13、高精密测量仪器A24之间的距离d为1.5m,调平、互瞄、清零,记录高精密测量仪器基准。确保标定板5在腕部相机1相机的视野范围内,确保标定板5和机械臂2末端在两台经纬仪的视野范围内。Place and adjust two high-precision measuring instruments A 1 and A 2 so that the distance d between high-precision measuring instrument A 1 3 and high-precision measuring instrument A 2 4 is 1.5m. High precision measuring instrument benchmark. Make sure that the calibration plate 5 is within the field of view of the wrist camera 1, and ensure that the calibration plate 5 and the end of the robotic arm 2 are within the field of view of the two theodolites.

2)同时参见图3、图4及图5,定义相机坐标系Oc、世界坐标系Ow,参考坐标系Or、机械臂末端坐标系Om,其中Oc、Ow、Or和Om均为右手坐标系。对于世界坐标系Ow,原点定义为标定板的左上角顶点,X轴方向为由原点沿着棋盘格的边向下,Y轴方向为由原点沿着棋盘格的边向右,Z轴方向为垂直于XOY平面指向相机;2) Referring to Figure 3, Figure 4 and Figure 5 at the same time, define the camera coordinate system Oc, the world coordinate system Ow, the reference coordinate system O r , and the end coordinate system of the manipulator Om, where Oc, Ow, O r and Om are all right-handed coordinates Tie. For the world coordinate system Ow, the origin is defined as the vertex of the upper left corner of the calibration board, the X-axis direction is from the origin down along the edge of the checkerboard, the Y-axis direction is from the origin to the right along the edge of the checkerboard, and the Z-axis direction is Point the camera perpendicular to the XOY plane;

对于参考坐标系Or,设定高精密测量仪器A1的中心为参考坐标系的原点,高精密测量仪器A1指向高精密测量仪器A2的方向为X轴方向,垂直水平面为Z轴方向,与X轴和Z轴垂直的方向为Y轴方向,经高精密测量仪器A1测得某空间目标点的水平角为αa,垂直角为βa;经高精密测量仪器A2测得该点的水平角为αb,垂直角为βb,如图3,则空间目标点在参考坐标系下的坐标为:For the reference coordinate system O r , set the center of the high - precision measuring instrument A1 as the origin of the reference coordinate system, the direction of the high-precision measuring instrument A1 pointing to the high - precision measuring instrument A2 is the X - axis direction, and the vertical horizontal plane is the Z-axis direction , the direction perpendicular to the X-axis and Z-axis is the Y-axis direction, the horizontal angle of a certain space target point measured by the high-precision measuring instrument A 1 is α a , and the vertical angle is βa; measured by the high-precision measuring instrument A 2 The horizontal angle of the point is α b , and the vertical angle is β b , as shown in Figure 3, then the coordinates of the space target point in the reference coordinate system are:

3)对机械臂腕部相机进行内参标定,包括等效焦距和光心,要求内参的置信区间不超过±1mm,腕部相机的内部参数矩阵为:3) Calibrate the internal parameters of the wrist camera of the manipulator, including the equivalent focal length and optical center. The confidence interval of the internal parameters is required to be no more than ±1mm. The internal parameter matrix of the wrist camera is:

其中(fx,fy)为相机的等效焦距,(u0,v0)为相机的光心坐标,标定过程如下:Where (f x , f y ) is the equivalent focal length of the camera, (u 0 , v 0 ) is the optical center coordinates of the camera, and the calibration process is as follows:

固定腕部相机不动,将标定板分别放在距腕部相机500mm,900mm,1100mm处,在每个位置上,首先使标定板正对腕部相机(标定板平面与腕部相机光轴垂直),腕部相机采集一幅标定板图像;然后,沿4个方向调整标定板角度(每次调整均从标定板正对腕部相机的情况开始),即:标定板沿水平方向的正向分别旋转15°和30°,沿水平方向的负向分别旋转15°和30°,沿俯仰方向的正向分别旋转15°和30°,沿俯仰方向的负向分别旋转15°和30°,每次调整角度后,腕部相机采集1幅标定板图像;在每个位置上,腕部相机采集1+4*2=9幅图像,5个位置相机采集5*9=45幅图像,然后用标定工具计算出相机的内参。Fix the wrist camera still, place the calibration board at 500mm, 900mm, and 1100mm away from the wrist camera respectively. At each position, first make the calibration board face the wrist camera (the plane of the calibration board is perpendicular to the optical axis of the wrist camera) ), the wrist camera captures an image of the calibration board; then, adjust the angle of the calibration board in four directions (each adjustment starts from the situation where the calibration board is facing the wrist camera), namely: the positive direction of the calibration board along the horizontal direction Rotate 15° and 30° respectively, rotate 15° and 30° in the negative direction of the horizontal direction, rotate 15° and 30° in the positive direction of the pitch direction, and rotate 15° and 30° in the negative direction of the pitch direction, After each angle adjustment, the wrist camera collects 1 calibration plate image; at each position, the wrist camera collects 1+4*2=9 images, and the 5 position cameras collect 5*9=45 images, and then Use the calibration tool to calculate the internal parameters of the camera.

4)固定两台高精密测量仪器,使用高精密测量仪器A1和高精密测量仪器A2分别测量机械臂末端靶标上四个十字刻线的方位、俯仰读数;4) Fix two high-precision measuring instruments, and use high-precision measuring instrument A 1 and high-precision measuring instrument A 2 to measure the azimuth and pitch readings of the four cross marks on the target at the end of the mechanical arm respectively;

由步骤2)能够获得4个十字刻线在参考坐标系Or下的坐标:(Xrm1,Yrm1,0),(Xrm2,Yrm2,0),(Xrm3,Yrm3,0),(Xrm4,Yrm4,0),记为:From step 2), the coordinates of the four reticles in the reference coordinate system O r can be obtained: (X rm1 ,Y rm1 ,0),(X rm2 ,Y rm2 ,0),(X rm3 ,Y rm3 ,0) ,(X rm4 ,Y rm4 ,0), recorded as:

则由标定工具计算出此时机械臂末端坐标系Om相对于参考坐标系Or的外参[RmrTmr],坐标系定义方式如图3、图5所示(若十字刻线在机械臂末端坐标系下的坐标标记为:即Prm=Rmr*Pm+Tmr)。Then the external parameter [R mr T mr ] of the coordinate system Om at the end of the manipulator relative to the reference coordinate system O r is calculated by the calibration tool. Coordinates in the end-of-arm coordinate system are marked as: That is, P rm =R mr *P m +T mr ).

5)在标定板上选取n个关键点,其中,n为正整数,且n≥4,选取的关键点需要保证至少存在一组(以任意四个关键点为一组),其中任意三个点不共线;在已知标定板上方格边长的前提下,得到各关键点在世界坐标系Ow坐标系下的坐标(Xw1,Yw1,0),(Xw2,Yw2,0)…(Xwn,Ywn,0);5) Select n key points on the calibration board, where n is a positive integer, and n≥4, the selected key points need to ensure that there is at least one group (with any four key points as a group), and any three of them The points are not collinear; on the premise of knowing the length of the grid side on the calibration board, the coordinates of each key point in the world coordinate system Ow coordinate system (X w1 , Y w1 ,0), (X w2 , Y w2 , 0)...(X wn ,Y wn ,0);

记为:Recorded as:

6)将标定板分别放在距腕部相机500mm,700mm,900mm,1100mm,1300mm处,在每个位置上,使棋盘格稍微侧对(如:沿水平方向旋转15°)腕部相机,腕部相机采集一幅图像,使用高精密测量仪器A1和高精密测量仪器A2分别测量棋盘格标定板上n个关键点的方位、俯仰读数,由步骤2)可获得n个关键点在参考坐标系Or下的坐标(Xr1,Yr1,0),(Xr2,Yr2,0)…(Xrn,Yrn,0),记为则由标定工具计算出此时标定板世界坐标系Ow相对于参考坐标系Or的外参[Rwr Twr],坐标系定义方式如图3、4所示,其中,Prw=Rwr*PW+Twr6) Place the calibration board at 500mm, 700mm, 900mm, 1100mm, and 1300mm away from the wrist camera, and at each position, make the checkerboard slightly sideways (for example: rotate 15° along the horizontal direction). The internal camera collects an image, uses the high-precision measuring instrument A 1 and the high-precision measuring instrument A 2 to measure the azimuth and elevation readings of n key points on the checkerboard calibration board respectively, and the n key points can be obtained by step 2) in the reference The coordinates (X r1 ,Y r1 ,0),(X r2 ,Y r2 ,0)…(X rn ,Y rn ,0) in the coordinate system O r are denoted as Then the external parameter [R wr T wr ] of the world coordinate system Ow of the calibration plate relative to the reference coordinate system O r is calculated by the calibration tool . *P W +T wr .

7)由步骤4)和6)可得出机械臂末端坐标系Om相对于标定板世界坐标系Ow的外参[Rmw Tmw],其中 7) From steps 4) and 6), the external parameters [R mw T mw ] of the end coordinate system Om of the manipulator relative to the world coordinate system Ow of the calibration board can be obtained, where

8)同理,利用腕部相机采集的图像,由标定工具计算出此时标定板世界坐标系Ow相对于相机坐标系Oc的外参[Rwc Twc],若标定板上关键点在相机坐标系Oc下的坐标标记为则Pcw=Rwc*PW+Twc8) Similarly, using the image collected by the wrist camera, the calibration tool calculates the extrinsic parameters [R wc T wc ] of the world coordinate system Ow of the calibration board relative to the camera coordinate system Oc at this time. The coordinates in the coordinate system Oc are marked as Then P cw =R wc *P w +T wc .

9)由步骤7)和步骤8)可得出机械臂末端坐标系Om相对于相机坐标系Oc的外参[RmcTmc],其中 9) From step 7) and step 8), the extrinsic parameter [R mc T mc ] of the end coordinate system Om of the manipulator relative to the camera coordinate system Oc can be obtained, where

Claims (10)

1. a kind of high-accuracy mechanical arm trick camera calibration method, it is characterised in that comprise the following steps:

Step one:Fixed wrist camera and mechanical arm, put down the optical axis direction of wrist camera and the central optical axis direction of mechanical arm OK;

Define camera coordinates system Oc, scaling board world coordinate system Ow, mechanical arm tail end coordinate system Om;

The inner parameter of wrist camera is demarcated, the inner parameter matrix for obtaining wrist camera is:

<mrow> <mi>A</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>f</mi> <mi>x</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>u</mi> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>f</mi> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mi>v</mi> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>

(fx,fy) be wrist camera equivalent focal length, (u0,v0) be wrist camera photocentre coordinate;

Step 2:Place and adjust two high-accuracy measuring instrument A1And A2, it is ensured that field range of the scaling board in wrist camera It is interior, scaling board and mechanical arm tail end in high-accuracy measuring instrument within sweep of the eye;

Define reference frame Or, and n key point is chosen on scaling board, obtain the world coordinates of all key points;

Step 3:Measured respectively using two high-accuracy measuring instruments and record on mechanical arm tail end target k cross groove Orientation, pitching reading, by calibration tool calculate now mechanical arm tail end coordinate system Om relative to reference frame OrOuter ginseng [Rmr Tmr];Wherein, k is the positive integer more than or equal to 4;

Step 4:Scaling board is put in before wrist camera, a width scaling board image is gathered with wrist camera;It is high-accuracy using two Measuring instrument measures and records the orientation of n key point on scaling board, pitching reading respectively;Then scaling board is from the close-by examples to those far off put Put on diverse location, repeat the operation of collection image, measurement record orientation and pitching reading in this step;Then by demarcation work Tool calculates now outer ginseng [Rs of the scaling board world coordinate system Ow relative to camera coordinates system Ocwc Twc], and the scaling board world Coordinate system Ow is relative to reference frame OrOuter ginseng [Rwr Twr];

Step 5:Mechanical arm tail end coordinate system Om is relative to reference frame O in step 3rOuter ginseng [Rmr Tmr] and step Scaling board world coordinate system Ow is relative to reference frame O in fourrOuter ginseng [Rwr Twr], calculating obtains mechanical arm tail end coordinate It is outer ginseng [Rs of the Om relative to scaling board world coordinate system Owmw Tmw]=f ([Rmr Tmr],[Rwr Twr]);

Step 6:Outer ginseng [Rs of the mechanical arm tail end coordinate system Om relative to scaling board world coordinate system Ow in step 5mw Tmw] Outer ginseng [R with scaling board world coordinate system Ow in step 4 relative to camera coordinates system Ocwc Twc], calculating obtains mechanical arm end Hold outer ginseng [Rs of the coordinate system Om relative to camera coordinates system Ocmc Tmc]=f ([Rmw Tmw],[Rwc Twc])。

2. high-accuracy mechanical arm trick camera calibration method according to claim 1, it is characterised in that the scaling board is adopted Difference with the gray value of black region and white portion on black and white lattice chessboard calibration plate, and the black and white lattice chessboard calibration plate image is big In equal to 70.

3. high-accuracy mechanical arm trick camera calibration method according to claim 2, it is characterised in that black and white lattice chessboard mark Black and white lattice number in fixed board is 25*24, and the length of side is 15mm, and machining accuracy is more than 0.05mm.

4. high-accuracy mechanical arm trick camera calibration method according to claim 1, it is characterised in that on selected scaling board Any one point is as scaling board world coordinate system origin, and it is X-axis and Y-axis to demarcate mutually perpendicular both sides, and Z axis is perpendicular to demarcation Plate plane, using mechanical arm tail end target center as mechanical arm tail end coordinate origin, two horizontal and vertical sides are X-axis and Y Axle, Z axis is perpendicular to plane where target.

5. high-accuracy mechanical arm trick camera calibration method according to claim 1, it is characterised in that in step 2, high Fine measuring instrument A1Center be reference frame OrOrigin, high-accuracy measuring instrument A1Refer to high-accuracy measuring instrument A2's Direction is X-direction, and vertical level is Z-direction, and the direction vertical with Z axis with X-axis is Y direction.

6. high-accuracy mechanical arm trick camera calibration method according to claim 1, it is characterised in that in step 2, N key point is chosen on scaling board, n is positive integer, and n >=4;As n=4, any three key points in four key points It is not conllinear.

7. high-accuracy mechanical arm trick camera calibration method according to claim 1, it is characterised in that step 3, specifically Operation comprises the following steps:

1) k cross groove is set in reference frame OrUnder coordinate, be designated as:

<mrow> <msub> <mi>P</mi> <mrow> <mi>r</mi> <mi>m</mi> </mrow> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mrow> <mi>r</mi> <mi>m</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>X</mi> <mrow> <mi>r</mi> <mi>m</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <msub> <mi>X</mi> <mrow> <mi>r</mi> <mi>m</mi> <mi>k</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mrow> <mi>r</mi> <mi>m</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>Y</mi> <mrow> <mi>r</mi> <mi>m</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <msub> <mi>Y</mi> <mrow> <mi>r</mi> <mi>m</mi> <mi>k</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>

Wherein, (Xrm1,Yrm1,0),(Xrm2,Yrm2,0)...(Xrmk,Yrmk, 0) be respectively each cross groove coordinate;

2) coordinate of the setting cross groove under mechanical arm tail end coordinate system Om, is designated as:

<mrow> <msub> <mi>P</mi> <mi>m</mi> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>X</mi> <mrow> <mi>m</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>X</mi> <mrow> <mi>m</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <msub> <mi>X</mi> <mrow> <mi>m</mi> <mi>k</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Y</mi> <mrow> <mi>m</mi> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>Y</mi> <mrow> <mi>m</mi> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <msub> <mi>Y</mi> <mrow> <mi>m</mi> <mi>k</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow></mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow>

Then according to Prm=Rmr*Pm+Tmr, calculate now mechanical arm tail end coordinate system Om relative to reference frame OrOuter ginseng [Rmr Tmr]。

8. high-accuracy mechanical arm trick camera calibration method according to claim 1, it is characterised in that in step 4, will Scaling board is individually positioned at the different distance of wrist camera, and scaling board side is made on each position to wrist camera.

9. the high-accuracy mechanical arm trick camera calibration system of the scaling method in claim 1~8 described in any one is realized, It is characterised in that it includes wrist camera (1), mechanical arm (2), scaling board (5) and two high-accuracy measuring instrument A1And A2;Wherein, The optical axis direction of wrist camera (1) is parallel with the central optical axis direction of mechanical arm (2);Scaling board (5) is arranged on wrist camera (1) Field range in front of, scaling board (5) and mechanical arm (2) end are arranged on two high-accuracy measuring instrument A1And A2Visual field model Enclose inside.

10. high-accuracy mechanical arm trick camera calibration system according to claim 9, it is characterised in that high-accuracy measurement Instrument A1And high-accuracy measuring instrument A (3)2The distance between (4) it is d, defines high-accuracy measuring instrument A1(3) center is ginseng Examine coordinate system OrOrigin, high-accuracy measuring instrument A1(3) high-accuracy measuring instrument A is pointed to2(4) direction is X-direction, is hung down Straight horizontal plane is Z-direction, and the direction vertical with Z axis with X-axis is Y direction, through high-accuracy measuring instrument A1(3) certain is measured empty Between target point horizontal angle be αa, vertical angle is β a;Through high-accuracy measuring instrument A2(4) horizontal angle for measuring the point is αb, vertically Angle is βb, then have:

<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>x</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>sin&amp;alpha;</mi> <mi>b</mi> </msub> <msub> <mi>cos&amp;alpha;</mi> <mi>a</mi> </msub> </mrow> <mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>&amp;alpha;</mi> <mi>b</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mi>d</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>y</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>sin&amp;alpha;</mi> <mi>b</mi> </msub> <msub> <mi>sin&amp;alpha;</mi> <mi>a</mi> </msub> </mrow> <mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>&amp;alpha;</mi> <mi>b</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mi>d</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>z</mi> <mo>=</mo> <mfrac> <mrow> <msub> <mi>sin&amp;alpha;</mi> <mi>b</mi> </msub> <msub> <mi>tan&amp;beta;</mi> <mi>a</mi> </msub> </mrow> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;alpha;</mi> <mi>a</mi> </msub> <mo>+</mo> <msub> <mi>&amp;alpha;</mi> <mi>b</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mi>d</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow> 2

CN201710324006.8A 2017-05-08 2017-05-08 A kind of high-precision robotic arm hand-eye camera calibration method and calibration system Active CN107256568B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710324006.8A CN107256568B (en) 2017-05-08 2017-05-08 A kind of high-precision robotic arm hand-eye camera calibration method and calibration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710324006.8A CN107256568B (en) 2017-05-08 2017-05-08 A kind of high-precision robotic arm hand-eye camera calibration method and calibration system

Publications (2)

Publication Number Publication Date
CN107256568A true CN107256568A (en) 2017-10-17
CN107256568B CN107256568B (en) 2020-10-27

Family

ID=60028131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710324006.8A Active CN107256568B (en) 2017-05-08 2017-05-08 A kind of high-precision robotic arm hand-eye camera calibration method and calibration system

Country Status (1)

Country Link
CN (1) CN107256568B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107817682A (en) * 2017-10-20 2018-03-20 北京控制工程研究所 A kind of space manipulator on-orbit calibration method and system based on trick camera
CN108908399A (en) * 2018-06-11 2018-11-30 杭州灵西机器人智能科技有限公司 A kind of Robotic Hand-Eye Calibration method based on concentric loop template
CN108942929A (en) * 2018-07-10 2018-12-07 广州供电局有限公司 The method and device of mechanical arm positioning crawl based on binocular stereo vision
CN108994844A (en) * 2018-09-26 2018-12-14 广东工业大学 A kind of scaling method and device of sanding operation arm trick relationship
CN109087360A (en) * 2018-06-20 2018-12-25 北京云迹科技有限公司 A kind of scaling method that robot camera is joined outside
CN109325980A (en) * 2018-07-27 2019-02-12 深圳大学 A method, device and manipulator for manipulator positioning target
CN109360243A (en) * 2018-09-28 2019-02-19 上海爱观视觉科技有限公司 A kind of scaling method of the movable vision system of multiple degrees of freedom
CN109605344A (en) * 2019-01-09 2019-04-12 北京精密机电控制设备研究所 A kind of multiple degrees of freedom open loop stepping series connection mechanical arm and its control method
CN109887041A (en) * 2019-03-05 2019-06-14 中测国检(北京)测绘仪器检测中心 A kind of method of mechanical arm control digital camera photo centre position and posture
CN110298878A (en) * 2018-03-21 2019-10-01 北京猎户星空科技有限公司 A kind of the determination method, apparatus and electronic equipment of target object three-dimensional pose
CN110660108A (en) * 2019-09-11 2020-01-07 北京控制工程研究所 A joint calibration method for a rendezvous and docking measurement camera and a docking capture mechanism
CN110766759A (en) * 2019-10-09 2020-02-07 北京航空航天大学 A multi-camera calibration method and device without overlapping fields of view
CN114046889A (en) * 2021-11-18 2022-02-15 南京佗道医疗科技有限公司 Automatic calibration method of infrared camera
CN115674179A (en) * 2021-07-26 2023-02-03 广州视源电子科技股份有限公司 Machine vision calibration method and device and computer equipment
US12275157B2 (en) 2020-01-22 2025-04-15 Abb Schweiz Ag Method and electronic device, system and computer readable medium for time calibration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102794963A (en) * 2011-05-10 2012-11-28 纳幕尔杜邦公司 Waterproofing coating laminated plate and manufacturing method thereof
CN103759716A (en) * 2014-01-14 2014-04-30 清华大学 Dynamic target position and attitude measurement method based on monocular vision at tail end of mechanical arm
CN104217441A (en) * 2013-08-28 2014-12-17 北京嘉恒中自图像技术有限公司 Mechanical arm positioning fetching method based on machine vision
CN105278454A (en) * 2015-11-05 2016-01-27 合肥图迅电子科技有限公司 Robot hand-eye positioning algorithm based on mechanical arm visual positioning system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102794963A (en) * 2011-05-10 2012-11-28 纳幕尔杜邦公司 Waterproofing coating laminated plate and manufacturing method thereof
CN104217441A (en) * 2013-08-28 2014-12-17 北京嘉恒中自图像技术有限公司 Mechanical arm positioning fetching method based on machine vision
CN103759716A (en) * 2014-01-14 2014-04-30 清华大学 Dynamic target position and attitude measurement method based on monocular vision at tail end of mechanical arm
CN105278454A (en) * 2015-11-05 2016-01-27 合肥图迅电子科技有限公司 Robot hand-eye positioning algorithm based on mechanical arm visual positioning system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
温卓漫等: "基于合作靶标的在轨手眼标定", 《仪器仪表学报》 *
莫宇达等: "基于Sylvester方程变形的荔枝采摘机器人手眼标定方法", 《农业工程学报》 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107817682A (en) * 2017-10-20 2018-03-20 北京控制工程研究所 A kind of space manipulator on-orbit calibration method and system based on trick camera
CN107817682B (en) * 2017-10-20 2021-02-09 北京控制工程研究所 Space manipulator on-orbit calibration method and system based on hand-eye camera
CN110298878A (en) * 2018-03-21 2019-10-01 北京猎户星空科技有限公司 A kind of the determination method, apparatus and electronic equipment of target object three-dimensional pose
CN110298878B (en) * 2018-03-21 2021-03-12 北京猎户星空科技有限公司 Method and device for determining three-dimensional pose of target object and electronic equipment
CN108908399B (en) * 2018-06-11 2020-07-21 杭州灵西机器人智能科技有限公司 Robot hand-eye calibration method based on concentric ring template
CN108908399A (en) * 2018-06-11 2018-11-30 杭州灵西机器人智能科技有限公司 A kind of Robotic Hand-Eye Calibration method based on concentric loop template
CN109087360A (en) * 2018-06-20 2018-12-25 北京云迹科技有限公司 A kind of scaling method that robot camera is joined outside
CN108942929A (en) * 2018-07-10 2018-12-07 广州供电局有限公司 The method and device of mechanical arm positioning crawl based on binocular stereo vision
CN109325980A (en) * 2018-07-27 2019-02-12 深圳大学 A method, device and manipulator for manipulator positioning target
CN109325980B (en) * 2018-07-27 2021-09-21 深圳大学 Method and device for positioning target by mechanical arm and mechanical arm
CN108994844A (en) * 2018-09-26 2018-12-14 广东工业大学 A kind of scaling method and device of sanding operation arm trick relationship
CN108994844B (en) * 2018-09-26 2021-09-03 广东工业大学 Calibration method and device for hand-eye relationship of polishing operation arm
CN109360243A (en) * 2018-09-28 2019-02-19 上海爱观视觉科技有限公司 A kind of scaling method of the movable vision system of multiple degrees of freedom
US11847797B2 (en) 2018-09-28 2023-12-19 Anhui Eyevolution Technology Co., Ltd. Calibration method for multi-degree-of-freedom movable vision system
CN109605344B (en) * 2019-01-09 2021-02-09 北京精密机电控制设备研究所 Multi-degree-of-freedom open-loop stepping series mechanical arm and control method thereof
CN109605344A (en) * 2019-01-09 2019-04-12 北京精密机电控制设备研究所 A kind of multiple degrees of freedom open loop stepping series connection mechanical arm and its control method
CN109887041A (en) * 2019-03-05 2019-06-14 中测国检(北京)测绘仪器检测中心 A kind of method of mechanical arm control digital camera photo centre position and posture
CN110660108A (en) * 2019-09-11 2020-01-07 北京控制工程研究所 A joint calibration method for a rendezvous and docking measurement camera and a docking capture mechanism
CN110660108B (en) * 2019-09-11 2022-12-27 北京控制工程研究所 Joint calibration method for rendezvous and docking measuring camera and docking capture mechanism
CN110766759A (en) * 2019-10-09 2020-02-07 北京航空航天大学 A multi-camera calibration method and device without overlapping fields of view
CN110766759B (en) * 2019-10-09 2022-08-02 北京航空航天大学 Multi-camera calibration method and device without overlapped view fields
US12275157B2 (en) 2020-01-22 2025-04-15 Abb Schweiz Ag Method and electronic device, system and computer readable medium for time calibration
CN115674179A (en) * 2021-07-26 2023-02-03 广州视源电子科技股份有限公司 Machine vision calibration method and device and computer equipment
CN114046889A (en) * 2021-11-18 2022-02-15 南京佗道医疗科技有限公司 Automatic calibration method of infrared camera
CN114046889B (en) * 2021-11-18 2024-04-30 佗道医疗科技有限公司 Automatic calibration method for infrared camera

Also Published As

Publication number Publication date
CN107256568B (en) 2020-10-27

Similar Documents

Publication Publication Date Title
CN107256568A (en) 2017-10-17 A kind of high-accuracy mechanical arm trick camera calibration method and calibration system
CN105678785B (en) 2018-03-02 A kind of laser and the scaling method of camera relative pose relation
CN111735390B (en) 2020-12-11 A calibration block and hand-eye calibration method for line laser sensor
CN100493207C (en) 2009-05-27 Distortion Measurement Correction Method and Comprehensive Test Target of CCD Camera System
CN106920261B (en) 2019-09-03 A static calibration method for robot hand and eye
CN105913439B (en) 2018-12-11 A kind of large-field shooting machine scaling method based on laser tracker
CN107186548B (en) 2018-12-18 A kind of five-axle number control machine tool rotating shaft geometric error detection method
CN106092057B (en) 2018-05-29 A kind of helicopter rotor blade dynamic trajectory measuring method based on four item stereo visions
CN112223285A (en) 2021-01-15 Robot hand-eye calibration method based on combined measurement
CN105157592B (en) 2018-03-06 The deformed shape of the deformable wing of flexible trailing edge and the measuring method of speed based on binocular vision
CN102699733B (en) 2014-06-25 Method and device for measuring movement locus of automatic tool changing mechanical arm
CN103606147B (en) 2016-10-19 Coordinate system conversion and calibration method for multiple measurement cameras with different fields of view
CN106863014A (en) 2017-06-20 A kind of five-axle number control machine tool linear axis geometric error detection method
CN101261738A (en) 2008-09-10 A camera calibration method based on dual one-dimensional targets
CN101876532A (en) 2010-11-03 Camera Field Calibration Method in Measuring System
CN102927908A (en) 2013-02-13 Robot eye-on-hand system structured light plane parameter calibration device and method
CN205333067U (en) 2016-06-22 Laser photogrammetric survey system
CN101814185A (en) 2010-08-25 Line structured light vision sensor calibration method for micro-size measurement
CN110030926B (en) 2020-12-15 Calibration Method of Laser Beam Spatial Pose
CN105486289A (en) 2016-04-13 Laser photography measuring system and camera calibration method
WO2024011981A1 (en) 2024-01-18 Method for verifying light spot of cylindrical target
CN103697811B (en) 2016-08-17 A kind of camera is combined the method obtaining contour of object three-dimensional coordinate with structure light source
CN101865721A (en) 2010-10-20 New method for automatically measuring weight of propeller blades
CN115187612A (en) 2022-10-14 Plane area measuring method, device and system based on machine vision
CN109342008B (en) 2020-04-21 Wind tunnel test model attack angle single-camera video measuring method based on homography matrix

Legal Events

Date Code Title Description
2017-10-17 PB01 Publication
2017-10-17 PB01 Publication
2017-11-14 SE01 Entry into force of request for substantive examination
2017-11-14 SE01 Entry into force of request for substantive examination
2020-10-27 GR01 Patent grant
2020-10-27 GR01 Patent grant
2021-02-09 CB03 Change of inventor or designer information
2021-02-09 CB03 Change of inventor or designer information

Inventor after: Wang Fei

Inventor after: Chen Lei

Inventor after: Liu Tong

Inventor after: Wang Weinong

Inventor after: Wang Lixia

Inventor after: Yang Haiwei

Inventor before: Wang Fei

Inventor before: Liu Tong

Inventor before: Wang Weinong

Inventor before: Wang Lixia

Inventor before: Yang Haiwei

2021-02-09 TR01 Transfer of patent right
2021-02-09 TR01 Transfer of patent right

Effective date of registration: 20210128

Address after: 710049 No. 28 West Xianning Road, Shaanxi, Xi'an

Patentee after: XI'AN JIAOTONG University

Patentee after: Beijing Institute of Spacecraft System Engineering

Address before: Beilin District Xianning West Road 710049, Shaanxi city of Xi'an province No. 28

Patentee before: XI'AN JIAOTONG University