CN111879317A - Accurate positioning instrument for air drop - Google Patents
- ️Tue Nov 03 2020
CN111879317A - Accurate positioning instrument for air drop - Google Patents
Accurate positioning instrument for air drop Download PDFInfo
-
Publication number
- CN111879317A CN111879317A CN202010668122.3A CN202010668122A CN111879317A CN 111879317 A CN111879317 A CN 111879317A CN 202010668122 A CN202010668122 A CN 202010668122A CN 111879317 A CN111879317 A CN 111879317A Authority
- CN
- China Prior art keywords
- unit
- module
- navigation
- route generation
- optimized route Prior art date
- 2020-07-13 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 19
- 238000004891 communication Methods 0.000 claims abstract description 10
- 238000013210 evaluation model Methods 0.000 claims description 12
- 238000000605 extraction Methods 0.000 claims description 11
- 238000011156 evaluation Methods 0.000 claims description 7
- 230000002457 bidirectional effect Effects 0.000 claims 3
- 238000012544 monitoring process Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 15
- 238000005516 engineering process Methods 0.000 abstract description 7
- 238000000034 method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Position Fixing By Use Of Radio Waves (AREA)
Abstract
本发明公开了一种空投精准定位仪,包括精准定位系统,精准定位系统包括处理器、通信模块、导航模块、抗震模块、监管系统、控制系统、优化路线生成模块和动力系统,通信模块、导航模块、抗震模块、监管系统、控制系统、优化路线生成模块和动力系统均与处理器实现双向连接,导航模块包括北斗导航单元、图像识别单元和地形匹配单元,动力系统包括风阻变换单元和动力调整单元,本发明涉及物资空投精准定位技术领域。该空投精准定位仪,通过设有精准定位系统,并且导航定位和控制技术具备冗余性,有力保障定位控制技术实时有效可用,通过轨迹控制动力为风电混合动力,可借用风阻进行轨迹调整,进一步提升了运动轨迹的稳定性。
The invention discloses an airdrop precise locator, including a precise positioning system. The precise positioning system includes a processor, a communication module, a navigation module, an anti-seismic module, a supervision system, a control system, an optimized route generation module and a power system, a communication module, a navigation module, and a navigation module. Module, seismic module, supervision system, control system, optimized route generation module and power system are all connected with the processor in two directions. The navigation module includes Beidou navigation unit, image recognition unit and terrain matching unit, and the power system includes wind resistance conversion unit and power adjustment unit. The invention relates to the technical field of precise positioning of material airdrops. The airdrop precision locator is equipped with a precise positioning system, and the navigation positioning and control technology is redundant, which effectively guarantees the real-time and effective availability of the positioning control technology. Improved the stability of the motion trajectory.
Description
技术领域technical field
本发明涉及物资空投精准定位技术领域,尤其是涉及高山海岛等小散远单 位保障物资空投时的精准定位。The invention relates to the technical field of accurate positioning of material airdrops, in particular to the accurate positioning when small scattered and distant units such as mountains and islands guarantee material airdrops.
背景技术Background technique
采用运输机空投物资成为艰苦边远和高山海岛等小散远单位后勤物资保 障的重要手段,但由于我国运输机空投模式应用较晚,目前尚缺乏必须的空 投辅助保障技术措施,后勤保障物资受当地复杂环境条件影响,发生失联、 坠崖、落海等现象较为频繁,空投精准性较低。The use of air-dropping materials by transport aircraft has become an important means of logistics material support for small and scattered units such as remote and alpine islands. However, due to the late application of the air-dropping mode of transport aircraft in my country, there is currently a lack of necessary air-drop auxiliary support technical measures. The logistics support materials are affected by the complex local environment Affected by conditions, loss of contact, falling off cliffs, and falling into the sea are more frequent, and the accuracy of airdrops is low.
发明内容SUMMARY OF THE INVENTION
(一)解决的技术问题(1) Technical problems solved
本发明的目的是针对现有技术存在的上述问题,采用冗余性的组合导航定 位技术和风电混合动力驱动的方式,辅助空投物资精准定位,确保物资投放于 指定地点。The purpose of the present invention is to solve the above-mentioned problems existing in the prior art, using redundant combined navigation and positioning technology and wind power hybrid drive mode to assist the accurate positioning of air-dropped materials and ensure that the materials are placed in designated locations.
(二)技术方案(2) Technical solutions
为实现以上目的,本发明通过以下技术方案予以实现:一种空投精准定位 仪,包括精准定位系统,所述精准定位系统包括处理器、通信模块、导航模块、 抗震模块、监管系统、控制系统、优化路线生成模块和动力系统,所述通信模 块、导航模块、抗震模块、监管系统、控制系统、优化路线生成模块和动力系 统均与处理器实现双向连接。In order to achieve the above purpose, the present invention is achieved through the following technical solutions: an airdrop precision locator, including a precision positioning system, the precise positioning system includes a processor, a communication module, a navigation module, an anti-seismic module, a supervision system, a control system, The optimized route generation module and the power system, the communication module, the navigation module, the anti-seismic module, the supervision system, the control system, the optimized route generation module and the power system are all connected with the processor in two directions.
优选的,所述导航模块包括北斗导航单元、图像识别单元和地形匹配单元, 所述动力系统包括风阻变换单元和动力调整单元。Preferably, the navigation module includes a Beidou navigation unit, an image recognition unit and a terrain matching unit, and the power system includes a wind resistance conversion unit and a power adjustment unit.
优选的,所述风阻变换单元和动力调整单元时间实现双向连接,所述风阻 变换单元包括风板,所述动力调整单元包括电控动力伞和步进电机。Preferably, the wind resistance conversion unit and the power adjustment unit are connected in a two-way time, the wind resistance conversion unit includes a wind panel, and the power adjustment unit includes an electronically controlled paramotor and a stepping motor.
优选的,所述监管系统包括气象传感器、信息配置单元、信息提取单元和 数据库,所述气象传感器的输出端与信息配置单元的输入端连接,且信息配置 单元与信息提取单元实现双向连接,所述信息提取单元与数据库实现双向连接。Preferably, the supervision system includes a weather sensor, an information configuration unit, an information extraction unit and a database, the output end of the weather sensor is connected to the input end of the information configuration unit, and the information configuration unit and the information extraction unit are connected in a two-way manner, so The information extraction unit is connected to the database in two directions.
优选的,所述优化路线生成模块包括数据转换单元、数据对比单元、算法 单元、导航误差评估单元、运行状态评估模型建立单元和优化路线生成单元。Preferably, the optimized route generation module includes a data conversion unit, a data comparison unit, an algorithm unit, a navigation error assessment unit, an operation state assessment model establishment unit and an optimized route generation unit.
优选的,所述数据转换单元的输出端与数据对比单元的输入端连接,所述 数据对比单元、算法单元和导航误差评估单元的输出端均与运行状态评估模型 建立单元的输入端连接,且运行状态评估模型建立单元的输出端与优化路线生 成单元的输入端连接。Preferably, the output end of the data conversion unit is connected to the input end of the data comparison unit, the output ends of the data comparison unit, the algorithm unit and the navigation error evaluation unit are all connected to the input end of the operating state evaluation model establishment unit, and The output end of the operating state evaluation model establishment unit is connected with the input end of the optimized route generation unit.
(三)有益效果(3) Beneficial effects
本发明提供了一种空投精准定位仪。与现有技术相比,具备以下有益效果:The invention provides an airdrop precise locator. Compared with the prior art, it has the following beneficial effects:
(1)、该空投精准定位仪,通过设有精准定位系统,并且导航定位和控制 技术具备冗余性,有力保障定位控制技术实时有效可用,通过轨迹控制动力为 风电混合动力,可借用风阻进行轨迹调整,进一步提升了运动轨迹的稳定性。(1) The airdrop precision locator is equipped with a precise positioning system, and the navigation positioning and control technology is redundant, which effectively guarantees the real-time and effective availability of the positioning control technology. The trajectory adjustment further improves the stability of the motion trajectory.
(2)、该空投精准定位仪,通过设有优化路线生成模块,投放过程中一直 周期性优化运动轨迹,进而大大地提升了空投的精准性。(2) The airdrop precision locator is equipped with an optimized route generation module, and the movement trajectory has been optimized periodically during the delivery process, thereby greatly improving the accuracy of the airdrop.
附图说明Description of drawings
图1为本发明精准定位系统的原理框图;Fig. 1 is the principle block diagram of the precise positioning system of the present invention;
图2为本发明导航模块的原理框图;Fig. 2 is the principle block diagram of the navigation module of the present invention;
图3为本发明监管系统的原理框图;Fig. 3 is the principle block diagram of the supervision system of the present invention;
图4为本发明优化路线生成模块的原理框图;Fig. 4 is the principle block diagram of the optimized route generation module of the present invention;
图5为本发明动力系统的原理框图。FIG. 5 is a schematic block diagram of the power system of the present invention.
图中,1、精准定位系统;2、处理器;3、通信模块;4、导航模块;41、北斗 导航单元;42、图像识别单元;43、地形匹配单元;5、抗震模块;6、监管系 统;61、气象传感器;62、信息配置单元;63、信息提取单元;64、数据库;7、 控制系统;8、优化路线生成模块;81、数据转换单元;82、数据对比单元;83、 算法单元;84、导航误差评估单元;85、运行状态评估模型建立单元;86、优 化路线生成单元;9、动力系统;91、风阻变换单元;911、风板;92、动力调 整单元;921、电控动力伞;922、步进电机。In the figure, 1, precise positioning system; 2, processor; 3, communication module; 4, navigation module; 41, Beidou navigation unit; 42, image recognition unit; 43, terrain matching unit; 5, seismic module; 6, supervision system; 61, meteorological sensor; 62, information configuration unit; 63, information extraction unit; 64, database; 7, control system; 8, optimized route generation module; 81, data conversion unit; 82, data comparison unit; 83, algorithm unit; 84, navigation error evaluation unit; 85, operation state evaluation model establishment unit; 86, optimized route generation unit; 9, power system; 91, wind resistance conversion unit; 911, wind panel; 92, power adjustment unit; 921, electrical Control power umbrella; 922, stepper motor.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是 全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, rather than all the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without making creative efforts shall fall within the protection scope of the present invention.
请参阅图1-5,本发明实施例提供一种技术方案:一种空投精准定位仪,包 括精准定位系统1,精准定位系统1包括处理器2、通信模块3、导航模块4、 抗震模块5、监管系统6、控制系统7、优化路线生成模块8和动力系统9,通 信模块3、导航模块4、抗震模块5、监管系统6、控制系统7、优化路线生成模 块8和动力系统9均与处理器2实现双向连接,导航模块4包括北斗导航单元41、图像识别单元42和地形匹配单元43,动力系统9包括风阻变换单元91和 动力调整单元92,风阻变换单元91和动力调整单元92时间实现双向连接,风 阻变换单元91包括风板911,动力调整单元92包括电控动力伞921和步进电机 922,监管系统6包括气象传感器61、信息配置单元62、信息提取单元63和数 据库64,气象传感器61的输出端与信息配置单元62的输入端连接,且信息配 置单元62与信息提取单元63实现双向连接,信息提取单元63与数据库64实 现双向连接,优化路线生成模块8包括数据转换单元81、数据对比单元82、算 法单元83、导航误差评估单元84、运行状态评估模型建立单元85和优化路线 生成单元86,数据转换单元81的输出端与数据对比单元82的输入端连接,数 据对比单元82、算法单元83和导航误差评估单元84的输出端均与运行状态评 估模型建立单元85的输入端连接,且运行状态评估模型建立单元85的输出端 与优化路线生成单元86的输入端连接,通过设有精准定位系统1,并且导航定 位和控制技术具备冗余性,有力保障定位控制技术实时有效可用,通过轨迹控 制动力为风电混合动力,可借用风阻进行轨迹调整,进一步提升了运动轨迹的 稳定性,通过设有优化路线生成模块8,投放过程中一直周期性优化运动轨迹, 进而大大地提升了空投的精准性。Referring to FIGS. 1-5 , an embodiment of the present invention provides a technical solution: an airdrop precise locator, including a precise positioning system 1 , and the precise positioning system 1 includes a processor 2 , a communication module 3 , a navigation module 4 , and an anti-seismic module 5 . , supervision system 6, control system 7, optimized route generation module 8 and power system 9, communication module 3, navigation module 4, seismic module 5, supervision system 6, control system 7, optimized route generation module 8 and power system 9 are all related to The processor 2 realizes a two-way connection, the navigation module 4 includes a Beidou navigation unit 41, an image recognition unit 42 and a terrain matching unit 43, and the power system 9 includes a wind resistance conversion unit 91 and a power adjustment unit 92. The wind resistance conversion unit 91 and the power adjustment unit 92 time To achieve two-way connection, the wind resistance conversion unit 91 includes a wind plate 911, the power adjustment unit 92 includes an electronically controlled power umbrella 921 and a stepping motor 922, and the supervision system 6 includes a weather sensor 61, an information configuration unit 62, an information extraction unit 63 and a database 64. The output end of the weather sensor 61 is connected to the input end of the information configuration unit 62, and the information configuration unit 62 is connected to the information extraction unit 63 in a two-way connection, the information extraction unit 63 is connected to the database 64 in a two-way connection, and the optimized route generation module 8 includes a data conversion unit. 81, the data comparison unit 82, the algorithm unit 83, the navigation error evaluation unit 84, the operation state evaluation model establishment unit 85 and the optimized route generation unit 86, the output end of the data conversion unit 81 is connected with the input end of the data comparison unit 82, the data comparison The outputs of the unit 82, the algorithm unit 83 and the navigation error evaluation unit 84 are all connected to the input of the operation state evaluation model establishment unit 85, and the output end of the operation state evaluation model establishment unit 85 is connected to the input end of the optimized route generation unit 86 , By having a precise positioning system 1, and the redundancy of the navigation positioning and control technology, the real-time and effective availability of the positioning control technology is effectively guaranteed. The trajectory control power is a wind power hybrid, and the wind resistance can be used to adjust the trajectory, which further improves the movement trajectory. With the optimized route generation module 8, the movement trajectory has been optimized periodically during the delivery process, thereby greatly improving the accuracy of the airdrop.
同时本说明书中未作详细描述的内容均属于本领域技术人员公知的现有技 术。Meanwhile, the content not described in detail in this specification belongs to the prior art known to those skilled in the art.
空投前,在监管系统6中配置当前空投环境,由气象传感器61将测得的水 平风气压、大气密度、大气温度、大气湿度、风向和风速数据传输到信息配置 单元62,并将数据储存到数据库64,信息提取单元63将数据库64中的物资空 投初速度,着陆目标地和空投轨迹数据提取,并且传输给信息配置单元62,对 大气进行高分辨率四维环境预测;Before the airdrop, the current airdrop environment is configured in the supervision system 6, and the measured data of horizontal wind pressure, atmospheric density, atmospheric temperature, atmospheric humidity, wind direction and wind speed are transmitted to the information configuration unit 62 by the meteorological sensor 61, and the data is stored in the The database 64, the information extraction unit 63 extracts the initial velocity of the material airdrop, the landing target and the airdrop trajectory data in the database 64, and transmits it to the information configuration unit 62 to perform high-resolution four-dimensional environmental prediction on the atmosphere;
投放后,当物资空投于高空运输机时,通过地形匹配单元43和北斗导航单 元41生成数据,将数据传输给处理器2,处理器2将数据传输给控制系统7和 优化路线生成模块8,控制系统7生成控制信号,而优化路线生成模块8通过地 形匹配单元43和北斗导航单元41间隔一定周期获得物资位置和速度等数据, 通过数据转换单元81将数据转换,转换后的数据传输给运行状态评估模型建立 单元85,然后配合算法单元83、数据对比单元82和导航误差评估单元共同组 建运行状态评估模型,然后将运行状态评估模型传输给优化路线生成单元86, 由优化路线生成单元86生成优化路线,然后将信息传输回处理器2,处理器2 将信息传输给控制系统7,控制系统7选取最优导航数据生成控制信号;接近着 陆目标地时,由图像识别单元42和北斗导航单元41生成的数据为参考,重复 上述操作,从而生成最优导航数据然后由控制系统7生成控制信号;After the delivery, when the materials are air-dropped on the high-altitude transport aircraft, data is generated by the terrain matching unit 43 and the Beidou navigation unit 41, and the data is transmitted to the processor 2, and the processor 2 transmits the data to the control system 7 and the optimized route generation module 8. The system 7 generates a control signal, and the optimized route generation module 8 obtains data such as material position and speed through the terrain matching unit 43 and the Beidou navigation unit 41 at certain intervals, and converts the data through the data conversion unit 81, and the converted data is transmitted to the running state. The evaluation model establishment unit 85 then cooperates with the algorithm unit 83, the data comparison unit 82 and the navigation error evaluation unit to jointly build an operation state evaluation model, and then transmits the operation state evaluation model to the optimized route generation unit 86, and the optimized route generation unit 86 generates an optimized model. route, and then transmit the information back to the processor 2, the processor 2 transmits the information to the control system 7, and the control system 7 selects the optimal navigation data to generate the control signal; when approaching the landing target, the image recognition unit 42 and the Beidou navigation unit 41 The generated data is used as a reference, and the above operations are repeated to generate optimal navigation data and then control signals are generated by the control system 7;
投放后,在顺风或轨迹偏离顺风位置时,由处理器2计算数据,然后传输 给动力系统9,动力系统9的风板911伸展相对应数据的伸开量,配合电控动力 伞921完成物资轨迹调整,当逆风或轨迹偏离逆风位置时,动力系统9收取风 板911,采用电控动力伞921调整物资轨迹,通信模块3即时反馈物资位置信息, 监管系统6接收、监督、管理物资投放全程信息。After delivery, when the data is downwind or the trajectory deviates from the downwind position, the processor 2 calculates the data, and then transmits it to the power system 9. The wind panel 911 of the power system 9 stretches the amount corresponding to the data, and cooperates with the electronically controlled paramotor 921 to complete the materials. Trajectory adjustment, when the headwind or the trajectory deviates from the headwind position, the power system 9 collects the wind panel 911, uses the electronically controlled power parachute 921 to adjust the material trajectory, the communication module 3 feeds back the material position information in real time, and the supervision system 6 receives, supervises and manages the whole process of material delivery. information.
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将 一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些 实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包 含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素 的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的 其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。It should be noted that, in this document, relational terms such as first and second are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any relationship between these entities or operations. any such actual relationship or sequence exists. Moreover, the terms "comprising", "comprising" or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device that includes a list of elements includes not only those elements, but also includes not explicitly listed or other elements inherent to such a process, method, article or apparatus.
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言, 可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变 化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although the embodiments of the present invention have been shown and described, it will be understood by those skilled in the art that various changes, modifications and substitutions can be made in these embodiments without departing from the principle and spirit of the invention and modifications, the scope of the present invention is defined by the appended claims and their equivalents.
Claims (6)
1. The utility model provides an accurate locater of air-drop, includes accurate positioning system (1), its characterized in that: the precise positioning system (1) comprises a processor (2), a communication module (3), a navigation module (4), an anti-seismic module (5), a supervisory system (6), a control system (7), an optimized route generation module (8) and a power system (9), wherein the communication module (3), the navigation module (4), the anti-seismic module (5), the supervisory system (6), the control system (7), the optimized route generation module (8) and the power system (9) are all in bidirectional connection with the processor (2).
2. An aerial delivery accurate positioning instrument according to claim 1, wherein: the navigation module (4) comprises a Beidou navigation unit (41), an image recognition unit (42) and a terrain matching unit (43), and the power system (9) comprises a wind resistance conversion unit (91) and a power adjusting unit (92).
3. An airdrop accurate positioning instrument according to claim 2, wherein: the wind resistance conversion unit (91) and the power adjusting unit (92) are connected in a two-way mode, the wind resistance conversion unit (91) comprises a wind plate (911), and the power adjusting unit (92) comprises an electric control power umbrella (921) and a stepping motor (922).
4. An aerial delivery accurate positioning instrument according to claim 1, wherein: the monitoring system (6) comprises a meteorological sensor (61), an information configuration unit (62), an information extraction unit (63) and a database (64), wherein the output end of the meteorological sensor (61) is connected with the input end of the information configuration unit (62), the information configuration unit (62) is in bidirectional connection with the information extraction unit (63), and the information extraction unit (63) is in bidirectional connection with the database (64).
5. An aerial delivery accurate positioning instrument according to claim 1, wherein: the optimized route generation module (8) comprises a data conversion unit (81), a data comparison unit (82), an algorithm unit (83), a navigation error evaluation unit (84), an operation state evaluation model establishing unit (85) and an optimized route generation unit (86).
6. An aerial delivery accurate positioning instrument according to claim 5, wherein: the output end of the data conversion unit (81) is connected with the input end of the data comparison unit (82), the output ends of the data comparison unit (82), the algorithm unit (83) and the navigation error evaluation unit (84) are connected with the input end of the running state evaluation model establishment unit (85), and the output end of the running state evaluation model establishment unit (85) is connected with the input end of the optimized route generation unit (86).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010668122.3A CN111879317A (en) | 2020-07-13 | 2020-07-13 | Accurate positioning instrument for air drop |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010668122.3A CN111879317A (en) | 2020-07-13 | 2020-07-13 | Accurate positioning instrument for air drop |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111879317A true CN111879317A (en) | 2020-11-03 |
Family
ID=73150856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010668122.3A Pending CN111879317A (en) | 2020-07-13 | 2020-07-13 | Accurate positioning instrument for air drop |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111879317A (en) |
Citations (7)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103472503A (en) * | 2013-07-24 | 2013-12-25 | 中国人民解放军理工大学 | Sonde and upper-air-wind detecting method based on INS |
CN105116915A (en) * | 2015-09-16 | 2015-12-02 | 航宇救生装备有限公司 | Multi-mode satellite navigation-based parafoil flight path control system |
CN106843281A (en) * | 2017-03-09 | 2017-06-13 | 北京航天控制仪器研究所 | A kind of intelligence accurately drop from the air aerial delivery system |
CN206598984U (en) * | 2017-04-07 | 2017-10-31 | 西南科技大学 | It is a kind of precisely to deliver parachute |
CN108008470A (en) * | 2017-11-21 | 2018-05-08 | 西安航天动力技术研究所 | A kind of compound rocketsonde of bimodulus |
CN109903592A (en) * | 2017-12-11 | 2019-06-18 | 上海航空电器有限公司 | A kind of automatic near-earth anti-collision system topographical scan method of high-precision aircraft based on error theory |
CN110825117A (en) * | 2019-12-12 | 2020-02-21 | 扬州大学 | A high-precision UAV system and intelligent control method |
-
2020
- 2020-07-13 CN CN202010668122.3A patent/CN111879317A/en active Pending
Patent Citations (7)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103472503A (en) * | 2013-07-24 | 2013-12-25 | 中国人民解放军理工大学 | Sonde and upper-air-wind detecting method based on INS |
CN105116915A (en) * | 2015-09-16 | 2015-12-02 | 航宇救生装备有限公司 | Multi-mode satellite navigation-based parafoil flight path control system |
CN106843281A (en) * | 2017-03-09 | 2017-06-13 | 北京航天控制仪器研究所 | A kind of intelligence accurately drop from the air aerial delivery system |
CN206598984U (en) * | 2017-04-07 | 2017-10-31 | 西南科技大学 | It is a kind of precisely to deliver parachute |
CN108008470A (en) * | 2017-11-21 | 2018-05-08 | 西安航天动力技术研究所 | A kind of compound rocketsonde of bimodulus |
CN109903592A (en) * | 2017-12-11 | 2019-06-18 | 上海航空电器有限公司 | A kind of automatic near-earth anti-collision system topographical scan method of high-precision aircraft based on error theory |
CN110825117A (en) * | 2019-12-12 | 2020-02-21 | 扬州大学 | A high-precision UAV system and intelligent control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021204226A1 (en) | 2021-10-14 | Photovoltaic power prediction method under lightning condition based on thundercloud trajectory tracking |
US9851716B2 (en) | 2017-12-26 | Unmanned aerial vehicle and methods for controlling same |
CN103809600B (en) | 2016-08-17 | A kind of human-computer interactive control system of unmanned airship |
CN104833393A (en) | 2015-08-12 | Transmission line iced conductor galloping aerodynamic parameter monitoring device and monitoring method |
CN110687925A (en) | 2020-01-14 | Unmanned aerial vehicle autonomous cruise wire and ground wire inspection detection device and method |
CN111879275A (en) | 2020-11-03 | On-line monitoring device and method for ice coating on transmission lines |
CN102589618B (en) | 2014-10-29 | Intelligent method for monitoring icing status of power grid transmission line |
CN106443831A (en) | 2017-02-22 | All-weather meteorological detection system based on unmanned aerial vehicle |
CN205426883U (en) | 2016-08-03 | A unmanned aerial vehicle for air monitering |
CN205302006U (en) | 2016-06-08 | Many rotor unmanned aerial vehicle's oil -gas pipeline system of patrolling and examining based on planning airline operation |
CN110207747A (en) | 2019-09-06 | Remote high-voltage transmission line wire clamp automatic monitoring system |
CN204903698U (en) | 2015-12-23 | Insulator pollution flashover early warning device based on meteorological phenomena and neural network |
CN105915275B (en) | 2017-08-29 | A kind of wide area cooperates with accurate remote sensing platform and its remote sensing technique |
CN110749943A (en) | 2020-02-04 | A Weather Detection System Based on Weather UAV |
CN111879317A (en) | 2020-11-03 | Accurate positioning instrument for air drop |
CN204758845U (en) | 2015-11-11 | Miniature meteorological monitoring device based on thing networking |
CN204203187U (en) | 2015-03-11 | Base station type air-quality monitoring system |
WO2021155391A1 (en) | 2021-08-05 | Environmental detection systems and methods for high altitude platforms |
CN212276008U (en) | 2021-01-01 | A wind farm measuring device and system |
CN105445818A (en) | 2016-03-30 | Automatic meteorological station data acquisition device checking system and checking method thereof |
CN208508614U (en) | 2019-02-15 | A kind of icing monitoring and warning system |
CN114018335B (en) | 2022-07-19 | A mobile bridge wind temperature combined automatic monitoring system |
CN206096512U (en) | 2017-04-12 | All -weather meteorological detection system based on unmanned aerial vehicle |
CN106371154A (en) | 2017-02-01 | Sonde |
CN207636796U (en) | 2018-07-20 | Automatic weather data monitoring system based on cloud server |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
2020-11-03 | PB01 | Publication | |
2020-11-03 | PB01 | Publication | |
2020-11-24 | SE01 | Entry into force of request for substantive examination | |
2020-11-24 | SE01 | Entry into force of request for substantive examination | |
2023-01-13 | RJ01 | Rejection of invention patent application after publication | |
2023-01-13 | RJ01 | Rejection of invention patent application after publication |
Application publication date: 20201103 |