patents.google.com

CN118840369A - Method, system and storage medium for detecting double-shaft butt joint deviation - Google Patents

  • ️Fri Oct 25 2024

CN118840369A - Method, system and storage medium for detecting double-shaft butt joint deviation - Google Patents

Method, system and storage medium for detecting double-shaft butt joint deviation Download PDF

Info

Publication number
CN118840369A
CN118840369A CN202411313868.7A CN202411313868A CN118840369A CN 118840369 A CN118840369 A CN 118840369A CN 202411313868 A CN202411313868 A CN 202411313868A CN 118840369 A CN118840369 A CN 118840369A Authority
CN
China
Prior art keywords
axis
angle
center point
deviation data
docking
Prior art date
2024-09-20
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202411313868.7A
Other languages
Chinese (zh)
Other versions
CN118840369B (en
Inventor
贾瑞武
邵尉
罗海颖
张令波
潘浩
周兵鑫
吴豪筠
李昀鸿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghai Laboratory
Original Assignee
Donghai Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
2024-09-20
Filing date
2024-09-20
Publication date
2024-10-25
2024-09-20 Application filed by Donghai Laboratory filed Critical Donghai Laboratory
2024-09-20 Priority to CN202411313868.7A priority Critical patent/CN118840369B/en
2024-10-25 Publication of CN118840369A publication Critical patent/CN118840369A/en
2025-01-21 Application granted granted Critical
2025-01-21 Publication of CN118840369B publication Critical patent/CN118840369B/en
Status Active legal-status Critical Current
2044-09-20 Anticipated expiration legal-status Critical

Links

  • 238000000034 method Methods 0.000 title claims abstract description 38
  • 210000001503 joint Anatomy 0.000 title claims 7
  • 238000003032 molecular docking Methods 0.000 claims abstract description 102
  • 230000000007 visual effect Effects 0.000 claims abstract description 76
  • 238000001514 detection method Methods 0.000 claims abstract description 58
  • 238000004422 calculation algorithm Methods 0.000 claims abstract description 26
  • 238000012545 processing Methods 0.000 claims abstract description 20
  • 238000010586 diagram Methods 0.000 claims description 24
  • 238000004364 calculation method Methods 0.000 claims description 12
  • 238000004590 computer program Methods 0.000 claims description 9
  • 230000005484 gravity Effects 0.000 claims description 6
  • 238000005516 engineering process Methods 0.000 abstract description 9
  • 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 8
  • 230000006870 function Effects 0.000 description 8
  • 230000008569 process Effects 0.000 description 7
  • 230000008878 coupling Effects 0.000 description 6
  • 238000010168 coupling process Methods 0.000 description 6
  • 238000005859 coupling reaction Methods 0.000 description 6
  • 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 4
  • 238000004891 communication Methods 0.000 description 4
  • 230000009977 dual effect Effects 0.000 description 4
  • 238000009434 installation Methods 0.000 description 4
  • 230000003287 optical effect Effects 0.000 description 4
  • 238000005259 measurement Methods 0.000 description 3
  • 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
  • 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
  • 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
  • 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
  • 230000009286 beneficial effect Effects 0.000 description 1
  • 230000005540 biological transmission Effects 0.000 description 1
  • 230000008859 change Effects 0.000 description 1
  • 239000003086 colorant Substances 0.000 description 1
  • 238000013500 data storage Methods 0.000 description 1
  • 238000000354 decomposition reaction Methods 0.000 description 1
  • 238000000605 extraction Methods 0.000 description 1
  • 238000010191 image analysis Methods 0.000 description 1
  • 238000003709 image segmentation Methods 0.000 description 1
  • 238000000691 measurement method Methods 0.000 description 1
  • 238000012986 modification Methods 0.000 description 1
  • 230000004048 modification Effects 0.000 description 1
  • 239000013307 optical fiber Substances 0.000 description 1
  • 239000003973 paint Substances 0.000 description 1
  • 239000000049 pigment Substances 0.000 description 1
  • 239000004065 semiconductor Substances 0.000 description 1
  • 239000007787 solid Substances 0.000 description 1
  • 230000003068 static effect Effects 0.000 description 1
  • 238000006467 substitution reaction Methods 0.000 description 1

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Quality & Reliability (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本申请公开了一种双轴对接偏差的检测方法、系统和存储介质,涉及图像处理技术领域。所述方法包括:获取能够表征所述第一端面和所述第二端面位于焦平面投影中相对位置的视觉平面图;基于椭圆检测算法由所述视觉平面图,获取表征所述第一端面的第一椭圆轮廓曲线和表征所述第二端面的第二椭圆轮廓曲线;基于所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线,获取对接偏差数据。本申请不会受限于视觉可达性,即便两个轴之间的视觉可达性较小(甚至为0),也能够基于本申请,获取两个轴的对接偏差。

The present application discloses a detection method, system and storage medium for dual-axis docking deviation, and relates to the field of image processing technology. The method comprises: obtaining a visual plane map that can characterize the relative positions of the first end face and the second end face in the focal plane projection; obtaining a first elliptical contour curve characterizing the first end face and a second elliptical contour curve characterizing the second end face from the visual plane map based on an ellipse detection algorithm; obtaining docking deviation data based on the first elliptical contour curve and the second elliptical contour curve. The present application is not limited by visual accessibility, and even if the visual accessibility between the two axes is small (even 0), the docking deviation of the two axes can be obtained based on the present application.

Description

一种双轴对接偏差的检测方法、系统和存储介质A method, system and storage medium for detecting double-axis docking deviation

技术领域Technical Field

本申请涉及图像处理技术领域,具体为一种双轴对接偏差的检测方法、系统和存储介质。The present application relates to the field of image processing technology, and specifically to a method, system and storage medium for detecting dual-axis docking deviation.

背景技术Background Art

双轴的对接偏差是指两个轴(例如,下文中的第一轴和第二轴)对接后的实际位置与预设位置之间的差距。若双轴的对接偏差越大,则说明两个轴对接后的实际位置与预设位置之间的差距也越大。现有技术中,由于轴类物体(圆柱状的轴或者轴承等)的对接偏差一般是通过轴的外圆面、内圆面或端面进行传递,因此轴类物体的对接偏差检测一般也是通过对轴的外圆面、内圆面或端面进行检测而实现的。现有技术中,可以采用接触式检测法(例如,直接测量法或者光学投影检测法)对被检测轴类物体实际位置之间的偏差进行检测,进而确定双轴的对接偏差。若双轴的位置受限(例如,用于进行检测的空间较小等),无法采用接触式检测法测量双轴的对接偏差,还可以采用非接触式检测法(例如,3D相机检测法)。在操作空间允许的应用场景下,在适当位置和视角布设多个3D相机,对被测轴类物体及其空间位置进行空间3D测量,将获取3D测量数据使用专业软件进行处理,建立被测轴类物体及其空间位置基准的3D模型,并计算得出3D模型中被测轴类物体的双轴对接偏差。The docking deviation of the two axes refers to the difference between the actual position and the preset position of the two axes (for example, the first axis and the second axis hereinafter) after docking. The larger the docking deviation of the two axes, the larger the difference between the actual position and the preset position of the two axes after docking. In the prior art, since the docking deviation of shaft objects (cylindrical shafts or bearings, etc.) is generally transmitted through the outer cylindrical surface, inner cylindrical surface or end surface of the shaft, the docking deviation detection of shaft objects is generally also achieved by detecting the outer cylindrical surface, inner cylindrical surface or end surface of the shaft. In the prior art, a contact detection method (for example, a direct measurement method or an optical projection detection method) can be used to detect the deviation between the actual positions of the detected shaft objects, and then determine the docking deviation of the two axes. If the position of the two axes is limited (for example, the space for detection is small, etc.), it is impossible to use a contact detection method to measure the docking deviation of the two axes, and a non-contact detection method (for example, a 3D camera detection method) can also be used. In application scenarios where the operating space allows, multiple 3D cameras are arranged at appropriate positions and viewing angles to perform spatial 3D measurements of the measured shaft objects and their spatial positions. The acquired 3D measurement data is processed using professional software to establish a 3D model of the measured shaft objects and their spatial position reference, and the dual-axis docking deviation of the measured shaft objects in the 3D model is calculated.

需要清楚的是,现有的非接触式检测法只能够应用于具有较大的操作空间和视觉可达的应用场景中,在很多使用环境中无法满足使用要求。例如,某型号的飞机驾驶座舱盖击发动作器的轴(以下简称第一轴)与座舱接收器轴(以下简称第二轴)的安装位置存在偏差,由于座舱内操作空间和处于安装位置的轴具有较小的视觉可达性(也即只能从某些角度看清第一轴和第二轴),因此现有技术中的检测方法均不适用。It should be clear that the existing non-contact detection method can only be applied to application scenarios with large operating space and visual accessibility, and cannot meet the use requirements in many use environments. For example, there is a deviation in the installation position of the axis of the cockpit canopy trigger actuator (hereinafter referred to as the first axis) and the cockpit receiver axis (hereinafter referred to as the second axis) of a certain type of aircraft. Since the operating space in the cockpit and the axis at the installation position have low visual accessibility (that is, the first axis and the second axis can only be seen from certain angles), the detection methods in the existing technology are not applicable.

发明内容Summary of the invention

本申请的目的在于提供一种双轴对接偏差的检测方法、系统和存储介质,以解决现有技术中无法检测视觉可达性较小的两个轴之间的对接偏差的技术问题。The purpose of the present application is to provide a method, system and storage medium for detecting dual-axis docking deviation, so as to solve the technical problem in the prior art that the docking deviation between two axes with less visual accessibility cannot be detected.

为实现上述目的,本申请提供如下技术方案:To achieve the above objectives, this application provides the following technical solutions:

第一方面,本申请提出一种双轴对接偏差的检测方法,所述双轴包括第一轴和第二轴;所述第一轴的第一端面与所述第二轴的第二端面为相对面;所述方法包括:In a first aspect, the present application provides a method for detecting a double-axis docking deviation, wherein the double-axis includes a first axis and a second axis; a first end surface of the first axis and a second end surface of the second axis are opposite surfaces; the method includes:

获取能够表征所述第一端面和所述第二端面位于焦平面投影中相对位置的视觉平面图;Acquire a visual plane image capable of characterizing the relative positions of the first end surface and the second end surface in the focal plane projection;

基于椭圆检测算法由所述视觉平面图,获取表征所述第一端面的第一椭圆轮廓曲线和表征所述第二端面的第二椭圆轮廓曲线;Based on an ellipse detection algorithm, obtaining a first ellipse contour curve representing the first end surface and a second ellipse contour curve representing the second end surface from the visual plane image;

基于所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线,获取对接偏差数据;所述对接偏差数据包括角度偏差数据和/或位置偏差数据;所述角度偏差数据至少用于表征所述第一轴和所述第二轴轴心线的空间夹角;所述位置偏差数据至少用于表征所述第一端面中心点和所述第二端面中心点的空间距离。Based on the first elliptical contour curve and the second elliptical contour curve, docking deviation data is obtained; the docking deviation data includes angle deviation data and/or position deviation data; the angle deviation data is at least used to characterize the spatial angle between the center lines of the first axis and the second axis; the position deviation data is at least used to characterize the spatial distance between the center point of the first end face and the center point of the second end face.

作为本申请技术方案中一个具体的方案,所述对接偏差数据包括角度偏差数据;所述第一轴的轴心线为第一轴心线;所述第二轴的轴心线为第二轴心线;所述基于所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线,获取对接偏差数据,包括:As a specific solution in the technical solution of the present application, the docking deviation data includes angle deviation data; the axis centerline of the first axis is the first axis centerline; the axis centerline of the second axis is the second axis centerline; the acquisition of docking deviation data based on the first elliptical profile curve and the second elliptical profile curve includes:

将所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线投影至三维坐标系;所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线位于所述三维坐标系中x轴和y轴所形成的平面内;Projecting the first elliptical profile curve and the second elliptical profile curve into a three-dimensional coordinate system; the first elliptical profile curve and the second elliptical profile curve are located in a plane formed by an x-axis and a y-axis in the three-dimensional coordinate system;

获取第一夹角和第二夹角;所述第一夹角为所述第一轴心线与z轴形成的夹角;所述第二夹角为所述第一椭圆轮廓曲线的长轴与x轴所形成的夹角;Obtain a first angle and a second angle; the first angle is the angle formed by the first axis line and the z-axis; the second angle is the angle formed by the major axis of the first elliptical profile curve and the x-axis;

基于所述第一夹角和所述第二夹角,获取第一单位向量;所述第一单位向量用于表征所述第一轴心线位于所述三维坐标系中的延伸方向;Based on the first angle and the second angle, a first unit vector is acquired; the first unit vector is used to represent an extension direction of the first axis line in the three-dimensional coordinate system;

获取第三夹角和第四夹角;所述第三夹角为所述第二轴心线与z轴形成的夹角;所述第四夹角为所述第二椭圆轮廓曲线的长轴与x轴所形成的夹角;Obtaining a third angle and a fourth angle; the third angle is the angle formed by the second axis center line and the z-axis; the fourth angle is the angle formed by the major axis of the second elliptical profile curve and the x-axis;

基于所述第三夹角和第四夹角,获取第二单位向量;所述第二单位向量用于表征所述第二轴心线位于所述三维坐标系中的延伸方向;Based on the third angle and the fourth angle, a second unit vector is obtained; the second unit vector is used to represent the extension direction of the second axis line in the three-dimensional coordinate system;

基于所述第一单位向量和所述第二单位向量,获取所述角度偏差数据。The angle deviation data is acquired based on the first unit vector and the second unit vector.

作为本申请技术方案中一个具体的方案,所述对接偏差数据包括位置偏差数据;所述第一端面的中心点为第一中心点;所述第二端面的中心点为第二中心点;所述基于所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线,获取对接偏差数据,包括:As a specific solution in the technical solution of the present application, the docking deviation data includes position deviation data; the center point of the first end surface is the first center point; the center point of the second end surface is the second center point; the docking deviation data is obtained based on the first elliptical contour curve and the second elliptical contour curve, including:

将所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线投影至三维坐标系;所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线位于所述三维坐标系中x轴和y轴所形成的平面内;Projecting the first elliptical profile curve and the second elliptical profile curve into a three-dimensional coordinate system; the first elliptical profile curve and the second elliptical profile curve are located in a plane formed by an x-axis and a y-axis in the three-dimensional coordinate system;

获取所述第一椭圆轮廓曲线的第三中心点和所述第二椭圆轮廓曲线的第四中心点;Acquire a third center point of the first elliptical profile curve and a fourth center point of the second elliptical profile curve;

基于所述第三中心点和所述第四中心点,获取所述位置偏差数据。The position deviation data is acquired based on the third center point and the fourth center point.

作为本申请技术方案中一个具体的方案,所述基于所述第三中心点和所述第四中心点,获取所述位置偏差数据的计算公式如下:As a specific solution in the technical solution of the present application, the calculation formula for obtaining the position deviation data based on the third center point and the fourth center point is as follows:

其中,表示位置偏差数据,δ表示第一轴心线和第二轴心线所形成的空间夹角;表示第一距离;表示第一端面的实际直径;表示第一椭圆轮廓曲线的长轴长度;表示第一椭圆轮廓曲线的短轴长度;表示由第三中心点指向第四中心点的向量;表示第一椭圆轮廓曲线长轴方向上的单位向量;表示第一椭圆轮廓曲线短轴方向上的单位向量。in, represents the position deviation data, δ represents the spatial angle formed by the first axis and the second axis; represents the first distance; represents the actual diameter of the first end surface; represents the length of the major axis of the first ellipse contour curve; represents the length of the minor axis of the first ellipse contour curve; represents the vector from the third center point to the fourth center point; represents the unit vector in the major axis direction of the first elliptical contour curve; Represents the unit vector in the direction of the minor axis of the first ellipse contour curve.

作为本申请技术方案中一个具体的方案,所述基于所述第三中心点和所述第四中心点,获取所述位置偏差数据,包括:As a specific solution in the technical solution of the present application, the acquiring of the position deviation data based on the third center point and the fourth center point includes:

基于所述第三中心点和所述第四中心点,获取第一距离;所述第一距离表征所述第一中心点和所述第二中心点沿第一方向位于同一平面内投影的距离;所述第一方向平行于所述第一轴的轴心线;Based on the third center point and the fourth center point, a first distance is acquired; the first distance represents the distance between the projections of the first center point and the second center point in the same plane along a first direction; the first direction is parallel to the axis of the first axis;

获取所述第一轴和所述第二轴轴心线的空间夹角;Obtaining a spatial angle between the center lines of the first axis and the second axis;

基于所述第一距离和所述空间夹角,获取所述位置偏差数据。The position deviation data is acquired based on the first distance and the spatial angle.

作为本申请技术方案中一个具体的方案,所述方法使用了导引工装,所述导引工装至少包括导引圆环;所述获取能够表征所述第一端面和所述第二端面位于焦平面投影中相对位置的视觉平面图,包括:As a specific solution in the technical solution of the present application, the method uses a guide fixture, and the guide fixture includes at least a guide ring; the obtaining of a visual plane diagram capable of characterizing the relative positions of the first end face and the second end face in the focal plane projection includes:

在所述第一轴设置第一导引工装,以使所述第一导引工装中的第一导引圆环的轴心线与所述第一轴的轴心线重合;A first guide fixture is arranged on the first shaft so that the axis center line of the first guide ring in the first guide fixture coincides with the axis center line of the first shaft;

和/或,在所述第二轴设置第二导引工装,以使所述第二导引工装中的第二导引圆环的轴心线与所述第二轴的轴心线重合;and/or, a second guide fixture is provided on the second shaft so that the axis center line of the second guide ring in the second guide fixture coincides with the axis center line of the second shaft;

若同时使用了第一导引工装和第二导引工装,则获取具有所述第一导引圆环和所述第二导引圆环的视觉平面图;若只使用了第一导引工装,则获取具有所述第一导引圆环和所述第二端面的视觉平面图;若只使用了第二导引工装,则获取具有所述第一端面和所述第二导引圆环的视觉平面图。If the first guide fixture and the second guide fixture are used at the same time, a visual plan view including the first guide ring and the second guide ring is obtained; if only the first guide fixture is used, a visual plan view including the first guide ring and the second end face is obtained; if only the second guide fixture is used, a visual plan view including the first end face and the second guide ring is obtained.

作为本申请技术方案中一个具体的方案,所述导引工装还包括紧固圆环和多个连接杆,所述紧固圆环和所述导引圆环的轴心线重合,且每个连接杆一端均与所述紧固圆环相连接,每个连接杆另一端均与所述导引圆环相连接。As a specific solution in the technical solution of the present application, the guiding tool also includes a fastening ring and a plurality of connecting rods, the axial center lines of the fastening ring and the guiding ring coincide with each other, and one end of each connecting rod is connected to the fastening ring, and the other end of each connecting rod is connected to the guiding ring.

作为本申请技术方案中一个具体的方案,使用所述第一导引圆环时,所述第一端面位于第一面内;所述第一导引圆环的重心属于所述第一面,且所述第一导引圆环的轴心线垂直于所述第一面;As a specific solution in the technical solution of the present application, when the first guide ring is used, the first end face is located inside the first surface; the center of gravity of the first guide ring belongs to the first surface, and the axis of the first guide ring is perpendicular to the first surface;

使用所述第二导引圆环时,所述第二端面位于第二面内;所述第二导引圆环的重心属于所述第二面,且所述第二导引圆环的轴心线垂直于所述第二面。When the second guide ring is used, the second end face is located inside the second face; the center of gravity of the second guide ring belongs to the second face, and the axis of the second guide ring is perpendicular to the second face.

第二方面,本申请提出一种双轴对接偏差的检测系统,所述双轴包括第一轴和第二轴;所述第一轴的第一端面与所述第二轴的第二端面为相对面;该系统包括:In a second aspect, the present application provides a detection system for a double-axis docking deviation, wherein the double-axis includes a first axis and a second axis; a first end surface of the first axis and a second end surface of the second axis are opposite surfaces; the system includes:

拍摄装置,用于获取能够表征所述第一端面和所述第二端面位于焦平面投影中相对位置的视觉平面图;A photographing device, used for acquiring a visual plane image capable of representing the relative positions of the first end surface and the second end surface in a focal plane projection;

处理装置,基于椭圆检测算法由所述视觉平面图,获取表征所述第一端面的第一椭圆轮廓曲线和表征所述第二端面的第二椭圆轮廓曲线;所述椭圆检测算法预先获取;A processing device, based on an ellipse detection algorithm, obtains a first ellipse contour curve representing the first end surface and a second ellipse contour curve representing the second end surface from the visual plane image; the ellipse detection algorithm is pre-acquired;

以及,基于所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线,获取对接偏差数据;所述对接偏差数据包括角度偏差数据和/或位置偏差数据;所述角度偏差数据至少用于表征所述第一轴和所述第二轴轴心线的空间夹角;所述位置偏差数据至少用于表征所述第一端面中心点和所述第二端面中心点的空间距离。And, based on the first elliptical contour curve and the second elliptical contour curve, docking deviation data is obtained; the docking deviation data includes angle deviation data and/or position deviation data; the angle deviation data is at least used to characterize the spatial angle between the center lines of the first axis and the second axis; the position deviation data is at least used to characterize the spatial distance between the center point of the first end face and the center point of the second end face.

作为本申请技术方案中一个具体的方案,所述对接偏差数据包括角度偏差数据;所述第一轴的轴心线为第一轴心线;所述第二轴的轴心线为第二轴心线;所述处理装置还用于,将所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线投影至三维坐标系;所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线位于所述三维坐标系中x轴和y轴所形成的平面内;As a specific solution in the technical solution of the present application, the docking deviation data includes angle deviation data; the axis centerline of the first axis is the first axis centerline; the axis centerline of the second axis is the second axis centerline; the processing device is also used to project the first elliptical contour curve and the second elliptical contour curve into a three-dimensional coordinate system; the first elliptical contour curve and the second elliptical contour curve are located in a plane formed by the x-axis and the y-axis in the three-dimensional coordinate system;

以及,获取第一夹角和第二夹角;所述第一夹角为所述第一轴心线与z轴形成的夹角;所述第二夹角为所述第一椭圆轮廓曲线的长轴与x轴所形成的夹角;And, obtaining a first angle and a second angle; the first angle is the angle formed by the first axis line and the z-axis; the second angle is the angle formed by the major axis of the first elliptical profile curve and the x-axis;

以及,基于所述第一夹角和所述第二夹角,获取第一单位向量;所述第一单位向量用于表征所述第一轴心线位于所述三维坐标系中的延伸方向;And, based on the first angle and the second angle, a first unit vector is obtained; the first unit vector is used to represent the extension direction of the first axis line in the three-dimensional coordinate system;

以及,获取第三夹角和第四夹角;所述第三夹角为所述第二轴心线与z轴形成的夹角;所述第四夹角为所述第二椭圆轮廓曲线的长轴与x轴所形成的夹角;And, obtaining a third angle and a fourth angle; the third angle is the angle formed by the second axis center line and the z-axis; the fourth angle is the angle formed by the major axis of the second elliptical profile curve and the x-axis;

以及,基于所述第三夹角和第四夹角,获取第二单位向量;所述第二单位向量用于表征所述第二轴心线位于所述三维坐标系中的延伸方向;And, based on the third angle and the fourth angle, a second unit vector is obtained; the second unit vector is used to represent the extension direction of the second axis line in the three-dimensional coordinate system;

以及,基于所述第一单位向量和所述第二单位向量,获取所述角度偏差数据。And, based on the first unit vector and the second unit vector, the angle deviation data is acquired.

作为本申请技术方案中一个具体的方案,所述对接偏差数据包括位置偏差数据;所述第一端面的中心点为第一中心点;所述第二端面的中心点为第二中心点;所述处理装置还用于,将所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线投影至三维坐标系;所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线位于所述三维坐标系中x轴和y轴所形成的平面内;As a specific solution in the technical solution of the present application, the docking deviation data includes position deviation data; the center point of the first end face is the first center point; the center point of the second end face is the second center point; the processing device is also used to project the first elliptical contour curve and the second elliptical contour curve into a three-dimensional coordinate system; the first elliptical contour curve and the second elliptical contour curve are located in the plane formed by the x-axis and the y-axis in the three-dimensional coordinate system;

以及,获取所述第一椭圆轮廓曲线的第三中心点和所述第二椭圆轮廓曲线的第四中心点;And, obtaining a third center point of the first elliptical profile curve and a fourth center point of the second elliptical profile curve;

以及,基于所述第三中心点和所述第四中心点,获取所述位置偏差数据。And, based on the third center point and the fourth center point, the position deviation data is acquired.

作为本申请技术方案中一个具体的方案,处理装置基于所述第三中心点和所述第四中心点,获取所述位置偏差数据的计算公式如下:As a specific solution in the technical solution of the present application, the processing device obtains the calculation formula of the position deviation data based on the third center point and the fourth center point as follows:

其中,表示位置偏差数据,δ表示第一轴心线和第二轴心线所形成的空间夹角;表示第一距离;表示第一端面的实际直径;表示第一椭圆轮廓曲线的长轴长度;表示第一椭圆轮廓曲线的短轴长度;表示由第三中心点指向第四中心点的向量;表示第一椭圆轮廓曲线长轴方向上的单位向量;表示第一椭圆轮廓曲线短轴方向上的单位向量。in, represents the position deviation data, δ represents the spatial angle formed by the first axis and the second axis; represents the first distance; represents the actual diameter of the first end surface; represents the length of the major axis of the first ellipse contour curve; represents the length of the minor axis of the first ellipse contour curve; represents the vector from the third center point to the fourth center point; represents the unit vector in the major axis direction of the first elliptical contour curve; Represents the unit vector in the direction of the minor axis of the first ellipse contour curve.

作为本申请技术方案中一个具体的方案,所述处理装置还用于,基于所述第三中心点和所述第四中心点,获取第一距离;所述第一距离表征所述第一中心点和所述第二中心点沿第一方向位于同一平面内投影的距离;所述第一方向平行于所述第一轴的轴心线;As a specific solution in the technical solution of the present application, the processing device is further used to obtain a first distance based on the third center point and the fourth center point; the first distance represents the distance between the projections of the first center point and the second center point in the same plane along a first direction; the first direction is parallel to the axis of the first axis;

以及,获取所述第一轴和所述第二轴轴心线的空间夹角;And, obtaining a spatial angle between the center lines of the first axis and the second axis;

以及,基于所述第一距离和所述空间夹角,获取所述位置偏差数据。And, based on the first distance and the spatial angle, the position deviation data is acquired.

作为本申请技术方案中一个具体的方案,还包括导引工装,每个导引工装至少包括导引圆环;所述导引工装包括:第一导引工装和第二导引工装;As a specific solution of the technical solution of the present application, it also includes a guiding tool, each guiding tool includes at least a guiding ring; the guiding tool includes: a first guiding tool and a second guiding tool;

所述第一导引工装用于设置于所述第一轴,以使所述第一导引工装中的第一导引圆环的轴心线与所述第一轴的轴心线重合;The first guide fixture is used to be arranged on the first shaft so that the axis center line of the first guide ring in the first guide fixture coincides with the axis center line of the first shaft;

所述第二导引工装用于设置于所述第二轴,以使所述第二导引工装中的第二导引圆环的轴心线与所述第二轴的轴心线重合;The second guide fixture is used to be arranged on the second shaft so that the axis center line of the second guide ring in the second guide fixture coincides with the axis center line of the second shaft;

所述拍摄装置还用于,若同时使用了第一导引工装和第二导引工装,则获取具有所述第一导引圆环和所述第二导引圆环的视觉平面图;若只使用了第一导引工装,则获取具有所述第一导引圆环和所述第二端面的视觉平面图;若只使用了第二导引工装,则获取具有所述第一端面和所述第二导引圆环的视觉平面图。The photographing device is also used to obtain a visual plan view having the first guide ring and the second guide ring if the first guide fixture and the second guide fixture are used at the same time; to obtain a visual plan view having the first guide ring and the second end face if only the first guide fixture is used; and to obtain a visual plan view having the first end face and the second guide ring if only the second guide fixture is used.

作为本申请技术方案中一个具体的方案,所述导引工装还包括紧固圆环和多个连接杆,所述紧固圆环和所述导引圆环的轴心线重合,且每个连接杆一端均与所述紧固圆环相连接,每个连接杆另一端均与所述导引圆环相连接。As a specific solution in the technical solution of the present application, the guiding tool also includes a fastening ring and a plurality of connecting rods, the axial center lines of the fastening ring and the guiding ring coincide with each other, and one end of each connecting rod is connected to the fastening ring, and the other end of each connecting rod is connected to the guiding ring.

第三方面,本申请提出一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面中任一项所述的双轴对接偏差的检测方法。In a third aspect, the present application proposes a computer-readable storage medium having a computer program stored thereon, and when the computer program is executed by a processor, the method for detecting a dual-axis docking deviation as described in any one of the first aspects is implemented.

与现有技术相比,本申请的有益效果是:Compared with the prior art, the beneficial effects of this application are:

本申请不会受限于视觉可达性,即便两个轴之间的视觉可达性较小(甚至为0),也能够基于本申请,获取两个轴的对接偏差。The present application is not limited by visual accessibility. Even if the visual accessibility between the two axes is small (even 0), the docking deviation of the two axes can be obtained based on the present application.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为本申请实施例所提出的一种双轴对接偏差的检测方法的流程图;FIG1 is a flow chart of a method for detecting a double-axis docking deviation proposed in an embodiment of the present application;

图2为本申请实施例所提出的一种双轴对接的示意图;FIG2 is a schematic diagram of a dual-axis docking proposed in an embodiment of the present application;

图3为本申请实施例所提出的再一种双轴对接的示意图;FIG3 is a schematic diagram of another dual-axis docking proposed in an embodiment of the present application;

图4为本申请实施例所提出的又一种双轴对接的示意图;FIG4 is a schematic diagram of another dual-axis docking proposed in an embodiment of the present application;

图5为本申请实施例所提出的导引工装安装示意图;FIG5 is a schematic diagram of the installation of the guide tooling proposed in the embodiment of the present application;

图6为本申请实施例所提出的一种导引工装的结构示意图;FIG6 is a schematic structural diagram of a guide tooling proposed in an embodiment of the present application;

图7为本申请实施例所提出的视觉平面图获取的相机位置示意图;FIG7 is a schematic diagram of camera positions for obtaining a visual plane map according to an embodiment of the present application;

图8为本申请实施例所提出的一种视觉平面图;FIG8 is a visual plan view of an embodiment of the present application;

图9为本申请实施例所提出的基于视觉平面图获取的椭圆轮廓曲线的示意图;FIG9 is a schematic diagram of an ellipse contour curve obtained based on a visual plane diagram according to an embodiment of the present application;

图10为本申请实施例所提出的将第一椭圆轮廓曲线投影至三维坐标系中的立体结构示意图;FIG10 is a schematic diagram of a three-dimensional structure in which a first elliptical contour curve is projected into a three-dimensional coordinate system according to an embodiment of the present application;

图11为本申请实施例所提出的将第二椭圆轮廓曲线投影至三维坐标系中的立体结构示意图;FIG11 is a schematic diagram of a three-dimensional structure of projecting a second elliptical profile curve into a three-dimensional coordinate system according to an embodiment of the present application;

图12本申请实施例所提出的一种双轴对接偏差的检测系统的结构示意图。FIG12 is a schematic diagram of the structure of a dual-axis docking deviation detection system proposed in an embodiment of the present application.

图中:1、第一轴;11、第一轴心线;12、第一端面;13、第一中心点;2、第二轴;21、第二轴心线;22、第二端面;23、第二中心点;3、遮挡物;4、导引工装;401、第一导引工装;402、第二导引工装;41、紧固圆环;42、导引圆环;421、第一导引圆环;422、第二导引圆环;423、第一椭圆轮廓曲线;424、第二椭圆轮廓曲线;43、连接杆。In the figure: 1. first axis; 11. first axis center line; 12. first end face; 13. first center point; 2. second axis; 21. second axis center line; 22. second end face; 23. second center point; 3. obstruction; 4. guide tooling; 401. first guide tooling; 402. second guide tooling; 41. fastening ring; 42. guide ring; 421. first guide ring; 422. second guide ring; 423. first elliptical contour curve; 424. second elliptical contour curve; 43. connecting rod.

具体实施方式DETAILED DESCRIPTION

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The following will be combined with the drawings in the embodiments of the present application to clearly and completely describe the technical solutions in the embodiments of the present application. Obviously, the described embodiments are only part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of this application.

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application will be described clearly and completely below in conjunction with the drawings in the embodiments of the present application. Obviously, the described embodiments are only part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of this application.

本申请实施例的说明书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序,例如下文中所提出的第一中心点和第二中心点,其属于不同的中心点。应该理解这样使用的中心点在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块,本申请实施例中所出现的模块的划分,仅仅是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个模块可以结合成或集成在另一个系统中,或一些特征可以忽略,或不执行,另外,所显示的或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块之间的间接耦合或通信连接可以是电性或其他类似的形式,本申请实施例中均不作限定。并且,作为分离部件说明的模块或子模块可以是也可以不是物理上的分离,可以是也可以不是物理模块,或者可以分布到多个电路模块中,可以根据实际的需要选择其中的部分或全部模块来实现本申请实施例方案的目的。The terms "first", "second", etc. in the description of the embodiment of the present application and the above-mentioned drawings are used to distinguish similar objects, and are not necessarily used to describe a specific order or sequence, such as the first center point and the second center point proposed below, which belong to different center points. It should be understood that the center points used in this way can be interchanged where appropriate, so that the embodiments described here can be implemented in an order other than the content illustrated or described here. In addition, the terms "including" and "having" and any of their variations are intended to cover non-exclusive inclusions, for example, a process, method, system, product or device that includes a series of steps or modules is not necessarily limited to those steps or modules clearly listed, but may include other steps or modules that are not clearly listed or inherent to these processes, methods, products or devices. The division of the modules that appear in the embodiment of the present application is only a logical division. There may be other division methods when implemented in actual applications, such as multiple modules can be combined or integrated into another system, or some features can be ignored, or not executed. In addition, the coupling or direct coupling or communication connection between each other shown or discussed can be through some interfaces, and the indirect coupling or communication connection between modules can be electrical or other similar forms, which are not limited in the embodiment of the present application. Furthermore, the modules or sub-modules described as separate components may or may not be physically separated, may or may not be physical modules, or may be distributed in multiple circuit modules, and some or all of the modules may be selected according to actual needs to achieve the purpose of the embodiment of the present application.

需要清楚的是,为了使得本领域技术人员清楚的了解本申请实施例所提出的双轴的对接偏差,在本申请的一个实施例中,假设图2为双轴对接的预设位置示意图,图3为双轴对接的实际位置示意图。It should be clear that in order to enable those skilled in the art to clearly understand the dual-axis docking deviation proposed in the embodiment of the present application, in one embodiment of the present application, it is assumed that Figure 2 is a schematic diagram of the preset position of the dual-axis docking, and Figure 3 is a schematic diagram of the actual position of the dual-axis docking.

如图2所示,在理想状态下,双轴(也即如图2所示的第一轴1和第二轴2)对接后,第一轴1的轴心线(也即如图2所示的第一轴心线11)与第二轴的轴心线(也即如图2所示的第二轴心线21)重合(也即第一轴心线11和第二轴心线21的空间夹角为0°);第一轴1上第一端面12的中心点(也即如图2所示的第一中心点13)和第二轴2上第二端面22的中心点(也即如图2所示的第二中心点23)重合。在本实施例中,第一轴1的第一端面12与第二轴2的第二端面22为相对面。As shown in FIG2, in an ideal state, after the two axes (i.e., the first axis 1 and the second axis 2 as shown in FIG2) are butted, the axis centerline of the first axis 1 (i.e., the first axis centerline 11 as shown in FIG2) coincides with the axis centerline of the second axis (i.e., the second axis centerline 21 as shown in FIG2) (i.e., the spatial angle between the first axis centerline 11 and the second axis centerline 21 is 0°); the center point of the first end surface 12 on the first axis 1 (i.e., the first center point 13 as shown in FIG2) coincides with the center point of the second end surface 22 on the second axis 2 (i.e., the second center point 23 as shown in FIG2). In this embodiment, the first end surface 12 of the first axis 1 and the second end surface 22 of the second axis 2 are opposite surfaces.

如图3所示,在实际对接过程中,双轴(也即如图3所示的第一轴1和第二轴2)对接后,由于第一轴1和/或第二轴2不在预设位置,因此第一轴心线11和第二轴心线21不重合,第一中心点13和第二中心点23也不重合。容易理解的是,若第一轴心线11和第二轴心线21的空间夹角与0°的差值越大,则说明双轴的对接偏差越大;若第一中心点13和第二中心点23之间的空间距离越大,则说明双轴的对接偏差也越大。也就是说,在本申请的实施例中,可以通过第一轴心线11和第二轴心线21的空间夹角和/或第一中心点13和第二中心点23之间的空间距离表征双轴的对接偏差。As shown in FIG3, in the actual docking process, after the dual axes (i.e., the first axis 1 and the second axis 2 as shown in FIG3) are docked, since the first axis 1 and/or the second axis 2 are not in the preset position, the first axis centerline 11 and the second axis centerline 21 do not coincide, and the first center point 13 and the second center point 23 do not coincide. It is easy to understand that if the difference between the spatial angle between the first axis centerline 11 and the second axis centerline 21 and 0° is larger, the docking deviation of the dual axes is larger; if the spatial distance between the first center point 13 and the second center point 23 is larger, the docking deviation of the dual axes is also larger. That is to say, in the embodiments of the present application, the docking deviation of the dual axes can be characterized by the spatial angle between the first axis centerline 11 and the second axis centerline 21 and/or the spatial distance between the first center point 13 and the second center point 23.

需要注意的是,图2展示的只是现有技术中最常见的一种双轴对接状态,并不是指本申请的实施例只适用于图2所示对接状态的双轴的对接偏差的检测。本申请的实施例还适用于在预设位置中第一轴心线和第二轴心线不重合(例如,在预设位置第一轴心线和第二轴心线的空间夹角为20°或者30°等)的双轴的对接偏差的检测,还适用于在预设位置中第一中心点和第二中心点不重合(例如,在预设位置第一中心点和第二中心点的空间距离为2mm或者10mm等)的双轴的对接偏差的检测。为了避免冗余,在本申请中仅以图2的应用场景为例,对本申请的各个实施例进行说明。It should be noted that FIG. 2 only shows the most common dual-axis docking state in the prior art, and does not mean that the embodiments of the present application are only applicable to the detection of dual-axis docking deviation in the docking state shown in FIG. 2. The embodiments of the present application are also applicable to the detection of dual-axis docking deviation in which the first axis centerline and the second axis centerline do not coincide with each other in the preset position (for example, the spatial angle between the first axis centerline and the second axis centerline in the preset position is 20° or 30°, etc.), and are also applicable to the detection of dual-axis docking deviation in which the first center point and the second center point in the preset position do not coincide with each other (for example, the spatial distance between the first center point and the second center point in the preset position is 2mm or 10mm, etc.). In order to avoid redundancy, in this application, only the application scenario of FIG. 2 is taken as an example to illustrate the various embodiments of the present application.

为了解决背景技术所提出的现有技术中无法检测视觉可达性较小的两个轴之间的对接偏差的技术问题,本申请提出一种双轴对接偏差的检测方法的实施例,如图2和图3所示,双轴包括第一轴1和第二轴2。其中,第一轴1的第一端面12与第二轴2的第二端面22为相对面。在本申请的实施例中,轴可以是外形呈圆柱状的任意零件,例如:轴可以为圆柱、圆管或者轴承等。如图1所示,该双轴对接偏差的检测方法包括步骤S100至步骤S300。In order to solve the technical problem that the prior art proposed by the background technology cannot detect the docking deviation between two axes with small visual accessibility, the present application proposes an embodiment of a method for detecting double-axis docking deviation, as shown in Figures 2 and 3, the double axis includes a first axis 1 and a second axis 2. Among them, the first end face 12 of the first axis 1 and the second end face 22 of the second axis 2 are opposite faces. In the embodiment of the present application, the axis can be any part with a cylindrical shape, for example: the axis can be a cylinder, a round tube or a bearing, etc. As shown in Figure 1, the method for detecting double-axis docking deviation includes steps S100 to S300.

步骤S100:获取能够表征第一端面12和第二端面22位于焦平面投影中相对位置的视觉平面图。Step S100: Acquire a visual plane image that can characterize the relative positions of the first end surface 12 and the second end surface 22 in the focal plane projection.

具体的,在摄影中,焦平面指的是光线通过镜头后聚焦形成的清晰图像所在的平面。这个平面与镜头的光轴垂直,且距离镜头的距离恰好等于镜头的焦距。由于焦平面为成熟,技术此处不做赘述。‌Specifically, in photography, the focal plane refers to the plane where the clear image is formed after the light passes through the lens. This plane is perpendicular to the optical axis of the lens, and the distance from the lens is exactly equal to the focal length of the lens. Since the focal plane is mature, the technology will not be described here.

由图2和图3(相机的拍摄位置和拍摄角度相同)可知,若双轴(也即第一轴1和第二轴2)对接后的位置不同,则基于同样的拍摄位置和拍摄角度所获取的视觉平面图中第一端面12和第二端面22相对位置也不同。如图2所示,若第一轴心线11和第二轴心线21重合,则无论从任何角度进行拍摄,第一端面12和第二端面22在视觉平面图中均呈同心椭圆状。如图3所示,若第一轴心线11和第二轴心线21不重合,则无论从任何角度第一端面12和第二端面22在视觉平面图中均呈非同心椭圆状。由本申请下文可知,在本申请的实施例中,可以基于第一端面12和第二端面22位于视觉平面图中的相对位置,获取第一轴1和第二轴2的对接偏差。It can be seen from Figures 2 and 3 (the shooting position and shooting angle of the camera are the same) that if the positions of the two axes (that is, the first axis 1 and the second axis 2) after docking are different, the relative positions of the first end face 12 and the second end face 22 in the visual plane view obtained based on the same shooting position and shooting angle are also different. As shown in Figure 2, if the first axis centerline 11 and the second axis centerline 21 coincide, then no matter from which angle the first end face 12 and the second end face 22 are concentric ellipses in the visual plane view. As shown in Figure 3, if the first axis centerline 11 and the second axis centerline 21 do not coincide, then no matter from which angle the first end face 12 and the second end face 22 are non-concentric ellipses in the visual plane view. It can be seen from the following text of this application that in an embodiment of the present application, the docking deviation of the first axis 1 and the second axis 2 can be obtained based on the relative positions of the first end face 12 and the second end face 22 in the visual plane view.

在本申请的实施例中,可以基于任意拍摄角度和拍摄位置获取第一端面12和第二端面22位于焦平面投影中相对位置的视觉平面图,只要视觉平面图中同时具有第一端面12和第二端面22即可;或者同时具有如下文所述表征第一端面12的第一导引圆环421和表征第二端面22的第二导引圆环422即可。如图7所示,在本申请的实施例中,若第一轴1和第二轴2沿竖直向下的方向依次设置,则基于第一端面12的右下角(也即如图7所示的位置A)获取视觉平面图,或者基于第一端面12的左下角(也即如图7所示的位置B)获取视觉平面图,或者基于第一端面12的左上角(也即如图7所示的位置C)获取视觉平面图等。也就是说,本申请所提出的双轴对接偏差的检测方法不受视觉可达性的限制(具体原理见下文步骤S300),即使视觉可达性非常小,只要能够获取同时具有第一端面12和第二端面22的视觉平面图,即可获取第一轴1和第二轴2的对接偏差。当然,在本申请的其他实施例中,为了统一各个产品的检测标准,可以基于同一视觉可达位置(例如:如图7所示的位置A、位置B或者位置C等)获取各个产品的视觉平面图。In the embodiment of the present application, a visual plane diagram of the relative positions of the first end surface 12 and the second end surface 22 in the focal plane projection can be obtained based on any shooting angle and shooting position, as long as the visual plane diagram has both the first end surface 12 and the second end surface 22; or has both the first guide ring 421 representing the first end surface 12 and the second guide ring 422 representing the second end surface 22 as described below. As shown in FIG7, in the embodiment of the present application, if the first axis 1 and the second axis 2 are sequentially arranged in the vertical downward direction, the visual plane diagram is obtained based on the lower right corner of the first end surface 12 (that is, position A as shown in FIG7), or the visual plane diagram is obtained based on the lower left corner of the first end surface 12 (that is, position B as shown in FIG7), or the visual plane diagram is obtained based on the upper left corner of the first end surface 12 (that is, position C as shown in FIG7), etc. That is to say, the detection method of the double-axis docking deviation proposed in the present application is not limited by visual accessibility (the specific principle is shown in step S300 below). Even if the visual accessibility is very small, as long as the visual plane view having both the first end face 12 and the second end face 22 can be obtained, the docking deviation of the first axis 1 and the second axis 2 can be obtained. Of course, in other embodiments of the present application, in order to unify the detection standards of various products, the visual plane view of each product can be obtained based on the same visually accessible position (for example, position A, position B or position C as shown in Figure 7, etc.).

由背景技术可知,本申请实施例所提出的双轴对接偏差的检测方法的应用场景可以为视觉可达性较小的应用场景,当然也可以为视觉可达性较大的应用场景。假设装配过程中,如图4所示,第一端面12和第二端面22均被遮挡物3遮挡,也即在该应用场景中第一轴1和第二轴2的视觉可达性达到最小(也即视觉可达性为0)。也就是说,无法获取第一端面12和/或第二端面22的视觉平面图。As can be seen from the background technology, the application scenario of the double-axis docking deviation detection method proposed in the embodiment of the present application can be an application scenario with low visual accessibility, and of course it can also be an application scenario with high visual accessibility. Assume that during the assembly process, as shown in FIG4 , the first end face 12 and the second end face 22 are both blocked by the obstruction 3, that is, in this application scenario, the visual accessibility of the first axis 1 and the second axis 2 reaches the minimum (that is, the visual accessibility is 0). In other words, it is impossible to obtain a visual plan view of the first end face 12 and/or the second end face 22.

为了能够基于本申请实施例所提出的双轴对接偏差的检测方法,获取视觉可达性为0的应用场景中的双轴的对接偏差。在本申请的一个实施例中,该方法可以使用导引工装4,导引工装4至少包括导引圆环42。使用了导引工装4之后,步骤S100,获取能够表征第一端面12和第二端面22位于焦平面投影中相对位置的视觉平面图,包括步骤S110至步骤S130。In order to be able to obtain the dual-axis docking deviation in an application scenario where the visual accessibility is 0 based on the dual-axis docking deviation detection method proposed in the embodiment of the present application. In one embodiment of the present application, the method can use a guide fixture 4, and the guide fixture 4 at least includes a guide ring 42. After using the guide fixture 4, step S100, obtain a visual plane diagram that can characterize the relative positions of the first end face 12 and the second end face 22 in the focal plane projection, including steps S110 to S130.

步骤S110:在第一轴1设置第一导引工装401,以使第一导引工装401中的第一导引圆环421的轴心线与第一轴1的轴心线重合。Step S110 : setting a first guiding fixture 401 on the first shaft 1 so that the axis center line of the first guiding ring 421 in the first guiding fixture 401 coincides with the axis center line of the first shaft 1 .

需要清楚的是,在本申请的实施例中,忽略第一导引圆环421的厚度和宽度,将第一导引圆环421理解为立体空间中的一个线性圆环,该线性圆环所围成的面为圆形面。由于第一导引圆环421的轴心线与第一轴1的轴心线重合,因此第一端面12与上述圆形面平行,或者第一端面12属于上述圆形面。也就是说,在本实施例中,可以采用上述圆形面代表本实施例中的第一端面12。换句话说,在后续获取的视觉平面图中,该圆形面就能够表征第一端面12。It should be clear that in the embodiments of the present application, the thickness and width of the first guide ring 421 are ignored, and the first guide ring 421 is understood as a linear ring in a three-dimensional space, and the surface enclosed by the linear ring is a circular surface. Since the axis line of the first guide ring 421 coincides with the axis line of the first axis 1, the first end face 12 is parallel to the above-mentioned circular surface, or the first end face 12 belongs to the above-mentioned circular surface. In other words, in this embodiment, the above-mentioned circular surface can be used to represent the first end face 12 in this embodiment. In other words, in the visual plan view obtained subsequently, the circular surface can represent the first end face 12.

在本申请的实施例中可以采用任意的方式将第一导引工装401设置于第一轴1,只要保证第一导引圆环421的轴心线与第一轴1的轴心线重合即可。需要清楚的是,在本申请的实施例中,可以将第一导引圆环421通过多个支杆与第一轴1裸露的部分焊接固定,测量完成后,再将第一导引圆环421与第一轴1切割分离。为了保证不破坏第一导引圆环421或者第一轴1,在本申请的一个实施例中,如图6所示,导引工装4还包括紧固圆环41和多个连接杆43,紧固圆环41和导引圆环42的轴心线重合,且每个连接杆43一端均与紧固圆环41相连接,每个连接杆43另一端均与导引圆环42相连接,紧固圆环41和导引圆环42均设置有缺口。使用时,如图5所示,通过紧固圆环41上的缺口,使得紧固圆环41能够穿过第一轴1的裸露部分,进而与第一轴1的裸露部分相卡接,紧固圆环41具有弹性。通过导引圆环42上的缺口使得导引圆环42能够顺利穿过遮挡物3。当然,在本申请的其他实施例中,紧固圆环41和导引圆环42可以均为两个半圆环拼接(例如,螺接、铆接或者粘接等)形成(图中未示出)。In the embodiment of the present application, the first guide tool 401 can be set on the first shaft 1 in any manner, as long as the axis center line of the first guide ring 421 coincides with the axis center line of the first shaft 1. It should be clear that in the embodiment of the present application, the first guide ring 421 can be welded and fixed to the exposed part of the first shaft 1 through multiple support rods, and after the measurement is completed, the first guide ring 421 is cut and separated from the first shaft 1. In order to ensure that the first guide ring 421 or the first shaft 1 is not damaged, in one embodiment of the present application, as shown in Figure 6, the guide tool 4 also includes a fastening ring 41 and a plurality of connecting rods 43, the axis center lines of the fastening ring 41 and the guide ring 42 coincide, and one end of each connecting rod 43 is connected to the fastening ring 41, and the other end of each connecting rod 43 is connected to the guide ring 42, and the fastening ring 41 and the guide ring 42 are both provided with gaps. When in use, as shown in FIG5 , the fastening ring 41 can pass through the exposed portion of the first shaft 1 through the notch on the fastening ring 41, and then be engaged with the exposed portion of the first shaft 1, and the fastening ring 41 is elastic. The notch on the guide ring 42 allows the guide ring 42 to pass through the shielding 3 smoothly. Of course, in other embodiments of the present application, the fastening ring 41 and the guide ring 42 can both be formed by splicing two semicircular rings (for example, screwing, riveting, or bonding, etc.) (not shown in the figure).

在本申请的实施例中,为了使得紧固圆环41的轴心线与轴(也即第一轴1或者第二轴2)的轴心线稳定重合。紧固圆环41的内径可以等于轴的外径,且紧固圆环41沿轴向上的高度较高(例如:5cm、10cm或者20cm等),高度越高紧固圆环41与第一轴1的裸露部分所形成的接触面积越大,越容易保持紧固圆环41和轴(也即第一轴1或者第二轴2)的轴心线重合。In the embodiment of the present application, in order to make the axis center line of the fastening ring 41 and the axis center line of the shaft (that is, the first shaft 1 or the second shaft 2) coincide stably, the inner diameter of the fastening ring 41 can be equal to the outer diameter of the shaft, and the height of the fastening ring 41 along the axial direction is relatively high (for example, 5 cm, 10 cm or 20 cm, etc.), the higher the height, the larger the contact area formed by the fastening ring 41 and the exposed part of the first shaft 1, and the easier it is to keep the axis center line of the fastening ring 41 and the shaft (that is, the first shaft 1 or the second shaft 2) coincident.

。为了能够对导引圆环42的位置和形态进行调整,连接杆43的两端设置有纹路相反的螺纹(图中未示出),且连接杆43一端与紧固圆环41螺纹连接,另一端与导引圆环42螺纹连接。使用时,若正向旋转连接杆43,则紧固圆环41和导引圆环42之间的该连接杆43长度变长;反向旋转连接杆43,则紧固圆环41和导引圆环42之间的该连接杆43长度变短。由于紧固圆环41的位置不可变,因此通过旋转各个连接杆43即可调整导引圆环42的位置和形态。. In order to adjust the position and shape of the guide ring 42, threads with opposite patterns are provided at both ends of the connecting rod 43 (not shown in the figure), and one end of the connecting rod 43 is threadedly connected to the fastening ring 41, and the other end is threadedly connected to the guide ring 42. When in use, if the connecting rod 43 is rotated in the forward direction, the length of the connecting rod 43 between the fastening ring 41 and the guide ring 42 becomes longer; if the connecting rod 43 is rotated in the reverse direction, the length of the connecting rod 43 between the fastening ring 41 and the guide ring 42 becomes shorter. Since the position of the fastening ring 41 is immutable, the position and shape of the guide ring 42 can be adjusted by rotating each connecting rod 43.

步骤S120:在第二轴2设置第二导引工装402,以使第二导引工装402中的第二导引圆环422的轴心线与第二轴2的轴心线重合。Step S120 : Disposing the second guiding fixture 402 on the second shaft 2 so that the axis center line of the second guiding ring 422 in the second guiding fixture 402 coincides with the axis center line of the second shaft 2 .

在本实施例中,第二导引工装402可以与第一导引工装401相同,或者基于第二轴2和第一轴1直径的比值,等比例缩放(按照第二轴2的直径:第一轴1的直径=第二导引圆环422的直径:第一导引圆环421的直径)第二导引工装402中第二导引圆环422的直径。第二导引工装402的作用与安装方式与上文中的第一导引工装401类似,此处不做赘述。In this embodiment, the second guide fixture 402 can be the same as the first guide fixture 401, or the diameter of the second guide ring 422 in the second guide fixture 402 can be scaled proportionally (according to the diameter of the second shaft 2: the diameter of the first shaft 1 = the diameter of the second guide ring 422: the diameter of the first guide ring 421) based on the ratio of the diameters of the second shaft 2 and the first shaft 1. The function and installation method of the second guide fixture 402 are similar to those of the first guide fixture 401 described above, and will not be repeated here.

在本申请的实施例中,若既无法拍清楚第一端面12,也无法拍清楚第二端面22,则可以同时使用第一导引工装401和第二导引工装402,也即既执行步骤S110至S120。当然,由下文可知,若第一导引圆环421的直径大于第一端面12的直径,第二导引圆环422的直径大于第二端面22的直径,且第一轴1和第二轴2之间存在对接偏差,则第一导引圆环421和第二导引圆环422能够在后续获取的视觉平面图中放大该误差,利于提升后续检测精度,也即能够检测出第一轴1和第二轴2之间存在的微小对接偏差。也就是说,在本申请的一些实施例中,即使能够拍清楚第一端面12和第二端面22,也可以使用第一导引工装401和第二导引工装402,以提升后续检测精度。In an embodiment of the present application, if it is not possible to clearly photograph the first end face 12 and the second end face 22, the first guide fixture 401 and the second guide fixture 402 can be used at the same time, that is, steps S110 to S120 are performed. Of course, it can be seen from the following that if the diameter of the first guide ring 421 is larger than the diameter of the first end face 12, the diameter of the second guide ring 422 is larger than the diameter of the second end face 22, and there is a docking deviation between the first axis 1 and the second axis 2, the first guide ring 421 and the second guide ring 422 can magnify the error in the visual plane view obtained later, which is conducive to improving the subsequent detection accuracy, that is, it can detect the slight docking deviation between the first axis 1 and the second axis 2. That is to say, in some embodiments of the present application, even if the first end face 12 and the second end face 22 can be clearly photographed, the first guide fixture 401 and the second guide fixture 402 can be used to improve the subsequent detection accuracy.

容易理解的是,在本申请的实施例中,若由于遮挡,无法拍摄到第一端面12,但是能够拍摄到第二端面22,则可以只使用第一导引工装401,而不使用第二导引工装402,也即只执行步骤S110,不执行步骤S120。在本申请的实施例中,若由于遮挡,无法拍摄到第二端面22,但是能够拍摄到第一端面12,则可以不使用第一导引工装401,只使用第二导引工装402,也即不执行步骤S110,只执行步骤S120。It is easy to understand that in the embodiment of the present application, if the first end face 12 cannot be photographed due to obstruction, but the second end face 22 can be photographed, then only the first guide fixture 401 can be used, and the second guide fixture 402 is not used, that is, only step S110 is performed, and step S120 is not performed. In the embodiment of the present application, if the second end face 22 cannot be photographed due to obstruction, but the first end face 12 can be photographed, then the first guide fixture 401 can be not used, and only the second guide fixture 402 is used, that is, step S110 is not performed, and only step S120 is performed.

需要注意的是,在本申请的实施例中,各个步骤序号并不代表步骤的先后执行顺序,其只是为了区分不同的步骤。例如,在本申请的实施例中,可以先执行步骤S110,再执行步骤S120;也可以先执行步骤S120,再执行步骤S110;还可以同时执行步骤S110和步骤S120;还可以只执行步骤S110,而不执行步骤S120等。在本申请的实施例中,其他步骤序号亦是如此,后续不做赘述。It should be noted that, in the embodiments of the present application, the sequence numbers of each step do not represent the order in which the steps are executed, but are only used to distinguish different steps. For example, in the embodiments of the present application, step S110 may be executed first, and then step S120; step S120 may be executed first, and then step S110; step S110 and step S120 may be executed simultaneously; step S110 may be executed only, and step S120 may not be executed, etc. In the embodiments of the present application, the sequence numbers of other steps are also the same, and will not be described in detail later.

步骤S130:若同时使用了第一导引工装401和第二导引工装402,则获取具有第一导引圆环421和第二导引圆环422的视觉平面图;若只使用了第一导引工装401,则获取具有第一导引圆环421和第二端面22的视觉平面图;若只使用了第二导引工装402,则获取具有第一端面12和第二导引圆环422的视觉平面图。Step S130: If the first guide fixture 401 and the second guide fixture 402 are used at the same time, a visual plan view with the first guide ring 421 and the second guide ring 422 is obtained; if only the first guide fixture 401 is used, a visual plan view with the first guide ring 421 and the second end face 22 is obtained; if only the second guide fixture 402 is used, a visual plan view with the first end face 12 and the second guide ring 422 is obtained.

需要清楚的是,在本实施例中,如前文所述可以如图7所示,基于任意视觉可达的角度获取视觉平面图。在本实施例中,采用第一导引圆环421表征第一端面12,采用第二导引圆环422表征第二端面22,即便第一端面12和第二端面22视觉可达性为0,仍然能够基于本申请实施例所提出的双轴对接偏差的检测方法,获取第一轴1和第二轴2的对接偏差。It should be clear that in this embodiment, as described above, a visual plane view can be obtained based on any visually accessible angle as shown in Figure 7. In this embodiment, a first guide ring 421 is used to represent the first end face 12, and a second guide ring 422 is used to represent the second end face 22. Even if the visual accessibility of the first end face 12 and the second end face 22 is 0, the docking deviation of the first axis 1 and the second axis 2 can still be obtained based on the detection method of the dual-axis docking deviation proposed in the embodiment of the present application.

步骤S200:基于椭圆检测算法由视觉平面图,获取表征第一端面12的第一椭圆轮廓曲线423和表征第二端面22的第二椭圆轮廓曲线424。Step S200 : obtaining a first ellipse contour curve 423 representing the first end surface 12 and a second ellipse contour curve 424 representing the second end surface 22 from the visual plane image based on an ellipse detection algorithm.

需要清楚的是,在本申请的实施例中,椭圆检测算法可以预先获取。椭圆检测算法是计算机视觉和图像处理中的一种重要技术,其用于识别图像中亮度变化显著的点。将这些点连接成曲线,进而反映图像中对象的边界。椭圆检测算法通过对图像进行特定操作来突出显示这些边界,使得后续的图像分析和处理(例如:图像分割、特征提取等)变得更加容易和准确。在本申请的实施例中,可以采用任意的椭圆检测算法,由视觉平面图获取表征第一端面12的第一椭圆轮廓曲线423和表征第二端面22的第二椭圆轮廓曲线424。例如:Sobel算法、Canny算法、Laplacian算法、Prewitt算法、OpenCV算法或者Roberts Cross算法等,由于成熟的椭圆检测算法众多,此处不做一一列举赘述。It should be clear that in the embodiments of the present application, the ellipse detection algorithm can be acquired in advance. The ellipse detection algorithm is an important technology in computer vision and image processing, which is used to identify points in an image where the brightness changes significantly. These points are connected into a curve to reflect the boundaries of the object in the image. The ellipse detection algorithm highlights these boundaries by performing specific operations on the image, making subsequent image analysis and processing (for example: image segmentation, feature extraction, etc.) easier and more accurate. In the embodiments of the present application, any ellipse detection algorithm can be used to obtain the first ellipse contour curve 423 representing the first end face 12 and the second ellipse contour curve 424 representing the second end face 22 from the visual plane. For example: Sobel algorithm, Canny algorithm, Laplacian algorithm, Prewitt algorithm, OpenCV algorithm or Roberts Cross algorithm, etc., due to the large number of mature ellipse detection algorithms, they are not listed here one by one.

需要注意的是,在本申请的实施例中可以基于椭圆检测算法由如图3所示的第一端面12或者由如图8所示的第一导引圆环421,获取如图9所示的第一椭圆轮廓曲线423。在本申请的实施例中,可以基于椭圆检测算法由如图3所示的第二端面22或者由如图8所示的第二导引圆环422,获取如图9所示的第二椭圆轮廓曲线424。It should be noted that, in the embodiment of the present application, the first ellipse profile curve 423 as shown in FIG. 9 can be obtained from the first end face 12 as shown in FIG. 3 or from the first guide ring 421 as shown in FIG. 8 based on the ellipse detection algorithm. In the embodiment of the present application, the second ellipse profile curve 424 as shown in FIG. 9 can be obtained from the second end face 22 as shown in FIG. 3 or from the second guide ring 422 as shown in FIG. 8 based on the ellipse detection algorithm.

由前文可知,椭圆检测算法的原理为识别图像中亮度变化显著的点,并将这些点连接成曲线,进而反映图像中对象的边界。也就是说,若第一端面12、第一导引圆环421、第二端面22或者第二导引圆环422在视觉平面图中的轮廓并不显著;或者虽然第一导引圆环421和第二导引圆环422较为显著,但是第一导引圆环421和第二导引圆环422较粗,则难以基于椭圆检测算法获取精准的第一椭圆轮廓曲线423和第二椭圆轮廓曲线424。为了获取的椭圆轮廓曲线更加精确,在本申请的一个实施例中,可以在第一端面12、第一导引圆环421、第二端面22或者第二导引圆环422采用颜色显著不同的颜料或者涂料绘画出对应的圆形轮廓。As can be seen from the foregoing, the principle of the ellipse detection algorithm is to identify points in the image where the brightness changes significantly, and connect these points into a curve, thereby reflecting the boundary of the object in the image. That is to say, if the outline of the first end face 12, the first guide ring 421, the second end face 22 or the second guide ring 422 in the visual plane is not significant; or although the first guide ring 421 and the second guide ring 422 are more significant, but the first guide ring 421 and the second guide ring 422 are relatively thick, it is difficult to obtain the accurate first ellipse contour curve 423 and the second ellipse contour curve 424 based on the ellipse detection algorithm. In order to obtain a more accurate ellipse contour curve, in one embodiment of the present application, the corresponding circular contour can be painted on the first end face 12, the first guide ring 421, the second end face 22 or the second guide ring 422 using pigments or paints of significantly different colors.

为了使得第一导引圆环421能够准确的表征第一端面12空间位置;第二导引圆环422能够准确的表征第二端面22空间位置,在本申请的一个实施例中,使用第一导引圆环421时,第一端面12位于第一面内;第一导引圆环421的重心属于第一面,且第一导引圆环421的轴心线垂直于第一面。使用第二导引圆环422时,第二端面22位于第二面内;第二导引圆环422的重心属于第二面,且第二导引圆环422的轴心线垂直于第二面。由于第一端面12和第一面位于同一平面内,第二端面22和第二面位于同一平面内,因此第一导引圆环421能够精准的表征第一端面12的空间位置,第二导引圆环422能够精准的表征第二端面22的空间位置。当然,在本申请的其他实施例中,第一面可以与第一端面12具有微小距离(第二面和第二端面22亦是如此),例如:该微小距离可以是1.0mm、5.0mm或者10.0mm等。In order to enable the first guide ring 421 to accurately characterize the spatial position of the first end face 12; the second guide ring 422 to accurately characterize the spatial position of the second end face 22, in one embodiment of the present application, when the first guide ring 421 is used, the first end face 12 is located in the first surface; the center of gravity of the first guide ring 421 belongs to the first surface, and the axis of the first guide ring 421 is perpendicular to the first surface. When the second guide ring 422 is used, the second end face 22 is located in the second surface; the center of gravity of the second guide ring 422 belongs to the second surface, and the axis of the second guide ring 422 is perpendicular to the second surface. Since the first end face 12 and the first surface are located in the same plane, and the second end face 22 and the second surface are located in the same plane, the first guide ring 421 can accurately characterize the spatial position of the first end face 12, and the second guide ring 422 can accurately characterize the spatial position of the second end face 22. Of course, in other embodiments of the present application, the first surface may have a small distance from the first end surface 12 (the same applies to the second surface and the second end surface 22 ), for example, the small distance may be 1.0 mm, 5.0 mm or 10.0 mm.

在本申请的实施例中,对第一导引圆环421和第二导引圆环422的直径不做任何限制。由图2可知,若第一轴1和第二轴2对接后无偏差,则第一端面12和第二端面22位于同一个平面内。为了避免上文中的第一面和第二面位于同一平面内(也即第一端面12和第二端面22位于同一平面内)时,第一导引圆环421和第二导引圆环422形成干涉,在本申请的实施例中,第一导引圆环421的内径可以大于第二导引圆环422的外径,或者第一导引圆环421的外径小于第二导引圆环422的内径。使用时,如图7所示,即便第一面和第二面位于同一平面内,第一导引圆环421和第二导引圆环422也不会形成干涉。In the embodiment of the present application, there is no restriction on the diameter of the first guide ring 421 and the second guide ring 422. As can be seen from Figure 2, if there is no deviation after the first shaft 1 and the second shaft 2 are docked, the first end face 12 and the second end face 22 are located in the same plane. In order to avoid the interference between the first guide ring 421 and the second guide ring 422 when the first face and the second face are located in the same plane (that is, the first end face 12 and the second end face 22 are located in the same plane), in the embodiment of the present application, the inner diameter of the first guide ring 421 can be larger than the outer diameter of the second guide ring 422, or the outer diameter of the first guide ring 421 is smaller than the inner diameter of the second guide ring 422. When in use, as shown in Figure 7, even if the first face and the second face are located in the same plane, the first guide ring 421 and the second guide ring 422 will not interfere.

步骤S300:基于第一椭圆轮廓曲线423和第二椭圆轮廓曲线424,获取对接偏差数据。Step S300 : acquiring docking deviation data based on the first elliptical profile curve 423 and the second elliptical profile curve 424 .

由前文可知,在本申请的实施例中,对接偏差数据是用于表征第一轴1和第二轴2对接偏差大小的数据。也就是说,在本申请的实施例中,可以采用任意与对接偏差大小相关的数据作为对接偏差数据。例如,下文中所提出的角度偏差数据和/或位置偏差数据。在本申请的实施例中,角度偏差数据至少用于表征第一轴1和第二轴2轴心线的空间夹角;位置偏差数据至少用于表征第一端面12中心点和第二端面22中心点的空间距离。As can be seen from the foregoing, in the embodiments of the present application, the docking deviation data is data used to characterize the docking deviation size between the first axis 1 and the second axis 2. That is to say, in the embodiments of the present application, any data related to the docking deviation size can be used as the docking deviation data. For example, the angle deviation data and/or position deviation data proposed below. In the embodiments of the present application, the angle deviation data is at least used to characterize the spatial angle between the axis center lines of the first axis 1 and the second axis 2; the position deviation data is at least used to characterize the spatial distance between the center point of the first end face 12 and the center point of the second end face 22.

由前文可知,若第一轴1和第二轴2的轴心线重合(也即第一轴心线11和第二轴心线21的空间夹角为0°),则获取的第一椭圆轮廓曲线423的长轴应该和第二椭圆轮廓曲线424的长轴重合;第一椭圆轮廓曲线423的中心点和第二椭圆轮廓曲线424的中心点也应该基本重合。若第一轴1和第二轴2的轴心线重合程度越差(也即第一轴心线11和第二轴心线21的空间夹角不为0°),则如图9所示,获取的第一椭圆轮廓曲线423的长轴(如图9所示的a1,以下简称第一长轴)和第二椭圆轮廓曲线424的长轴(如图9所示的a2,以下简称第二长轴)所形成的夹角越大;第一椭圆轮廓曲线423的中心点(如图9所示的点O1,以下简称第三中心点)和第二椭圆轮廓曲线424的中心点(如图9所示的点O2,以下简称第四中心点)之间的距离也越大。也就是说,在本申请的实施例中,可以采用第一长轴和第二长轴之间所形成的夹角(也即如图9所示的角β)作为角度偏差数据;可以采用第三中心点和第四中心点之间的距离作为位置偏差数据。As can be seen from the foregoing, if the axis lines of the first axis 1 and the second axis 2 coincide (that is, the spatial angle between the first axis line 11 and the second axis line 21 is 0°), the major axis of the first elliptical profile curve 423 obtained should coincide with the major axis of the second elliptical profile curve 424; the center point of the first elliptical profile curve 423 and the center point of the second elliptical profile curve 424 should also basically coincide. If the degree of coincidence between the axis lines of the first axis 1 and the second axis 2 is worse (that is, the spatial angle between the first axis line 11 and the second axis line 21 is not 0°), as shown in FIG9 , the angle formed by the major axis of the first elliptical profile curve 423 (a 1 as shown in FIG9 , hereinafter referred to as the first major axis) and the major axis of the second elliptical profile curve 424 (a 2 as shown in FIG9 , hereinafter referred to as the second major axis) obtained is larger; the distance between the center point of the first elliptical profile curve 423 (point O 1 as shown in FIG9 , hereinafter referred to as the third center point) and the center point of the second elliptical profile curve 424 (point O 2 as shown in FIG9 , hereinafter referred to as the fourth center point) is also larger. That is to say, in the embodiments of the present application, the angle formed between the first major axis and the second major axis (ie, the angle β as shown in FIG. 9 ) can be used as the angle deviation data; the distance between the third center point and the fourth center point can be used as the position deviation data.

为了能够精准的计算出第一轴1和第二轴2对接后,第一轴心线11与第二轴心线21所形成的空间夹角。在本申请的一个实施例中,如图3所示,第一轴1的轴心线为第一轴心线11;第二轴2的轴心线为第二轴心线21。步骤S300,基于第一椭圆轮廓曲线423和第二椭圆轮廓曲线424,获取对接偏差数据(也即角度偏差数据),包括步骤S310至步骤S360。In order to accurately calculate the spatial angle formed by the first axis centerline 11 and the second axis centerline 21 after the first axis 1 and the second axis 2 are docked. In one embodiment of the present application, as shown in FIG3 , the axis centerline of the first axis 1 is the first axis centerline 11; the axis centerline of the second axis 2 is the second axis centerline 21. Step S300, based on the first elliptical profile curve 423 and the second elliptical profile curve 424, obtain docking deviation data (i.e., angle deviation data), including steps S310 to S360.

步骤S310:将第一椭圆轮廓曲线423和第二椭圆轮廓曲线424投影至三维坐标系。Step S310: Projecting the first ellipse profile curve 423 and the second ellipse profile curve 424 to a three-dimensional coordinate system.

需要清楚的是,在本申请中为了便于本领域技术人员观察和理解,未将第一椭圆轮廓曲线423和第二椭圆轮廓曲线424在同一个附图的三维坐标系中进行同时展示。而是在如图10所示的三维坐标系中展示了第一椭圆轮廓曲线423,在如图11所示的三维坐标系中展示了第二椭圆轮廓曲线424。需要清楚的是,在本申请中,图10所示的三维坐标系和图11所示的三维坐标系实际为同一个三维坐标系。It should be clear that in order to facilitate observation and understanding by those skilled in the art, the first elliptical profile curve 423 and the second elliptical profile curve 424 are not simultaneously displayed in the three-dimensional coordinate system of the same figure in this application. Instead, the first elliptical profile curve 423 is displayed in the three-dimensional coordinate system shown in FIG. 10 , and the second elliptical profile curve 424 is displayed in the three-dimensional coordinate system shown in FIG. 11 . It should be clear that in this application, the three-dimensional coordinate system shown in FIG. 10 and the three-dimensional coordinate system shown in FIG. 11 are actually the same three-dimensional coordinate system.

在本申请的实施例中,对于三维坐标系中原点以及x、y和z轴的设置不做任何限制。在本申请一个具体的实施例中,原点可以是视觉平面图焦平面的中点,z轴可以为镜头视轴,x轴和y轴所形成的平面可以为焦平面。也即,如图10和图11所示,第一椭圆轮廓曲线423和第二椭圆轮廓曲线424位于三维坐标系中x轴和y轴所形成的平面内。In the embodiments of the present application, there is no restriction on the setting of the origin and the x, y and z axes in the three-dimensional coordinate system. In a specific embodiment of the present application, the origin can be the midpoint of the focal plane of the visual plane, the z axis can be the lens visual axis, and the plane formed by the x axis and the y axis can be the focal plane. That is, as shown in Figures 10 and 11, the first elliptical profile curve 423 and the second elliptical profile curve 424 are located in the plane formed by the x axis and the y axis in the three-dimensional coordinate system.

步骤S320:获取第一夹角和第二夹角。Step S320: Obtain the first angle and the second angle.

需要清楚的是,在本实施例中第一夹角为第一轴心线11与z轴形成的空间夹角(也即如图10所示的角α1)。第二夹角为第一椭圆轮廓曲线423的长轴与x轴所形成的夹角(也即如图10所示的角β1)。容易理解的是,角β1能够基于椭圆检测算法模拟出的第一椭圆轮廓曲线423的长轴函数直接计算得到。假设在本实施例中,镜头视轴与图2中所示的第一端面12垂直(也即角α1等于0),则后续获取的第一椭圆轮廓曲线423近似为圆形,也即此时的第一椭圆轮廓曲线423的短轴长度(也即如图10所示的b1)和长轴长度(也即如图10所示的a1)比值近似等于1。若角α1越大,则第一椭圆轮廓曲线423的短轴长度越短,第一椭圆轮廓曲线423的长轴长度几乎不变,也就是说,在本申请的实施例中,可以通过第一椭圆轮廓曲线423短轴长度和长轴长度的比值,进而计算出角α1。具体的,角α1约等于arccos(b1/a1),其中arccos表示反余弦函数。It should be clear that in this embodiment, the first angle is the spatial angle formed by the first axis line 11 and the z-axis (i.e., the angle α1 shown in FIG10 ). The second angle is the angle formed by the major axis of the first elliptical profile curve 423 and the x-axis (i.e., the angle β1 shown in FIG10 ). It is easy to understand that the angle β1 can be directly calculated based on the major axis function of the first elliptical profile curve 423 simulated by the ellipse detection algorithm. Assuming that in this embodiment, the lens visual axis is perpendicular to the first end face 12 shown in FIG2 (i.e., the angle α1 is equal to 0), the first elliptical profile curve 423 obtained subsequently is approximately circular, that is, the ratio of the minor axis length (i.e., b1 shown in FIG10 ) to the major axis length (i.e., a1 shown in FIG10 ) of the first elliptical profile curve 423 at this time is approximately equal to 1. If the angle α1 is larger, the short axis length of the first elliptical profile curve 423 is shorter, and the long axis length of the first elliptical profile curve 423 is almost unchanged, that is, in the embodiment of the present application, the angle α1 can be calculated by the ratio of the short axis length to the long axis length of the first elliptical profile curve 423. Specifically, the angle α1 is approximately equal to arccos( b1 / a1 ), where arccos represents the inverse cosine function.

步骤S330:基于第一夹角和第二夹角,获取第一单位向量。Step S330: Obtain a first unit vector based on the first angle and the second angle.

在本申请的实施例中,第一单位向量用于表征第一轴心线11位于三维坐标系中的延伸方向。具体的,根据投影定理第一单位向量的计算公式如下:In the embodiment of the present application, the first unit vector is used to represent the extension direction of the first axis line 11 in the three-dimensional coordinate system. Specifically, according to the projection theorem, the calculation formula of the first unit vector is as follows:

其中,表示第一单位向量;α1表示第一轴心线11与z轴形成的空间夹角;β1表示第一椭圆轮廓曲线423的长轴与x轴所形成的夹角;表示三维坐标系中x轴方向的单位向量;表示三维坐标系中y轴方向的单位向量;表示三维坐标系中z轴方向的单位向量。in, represents the first unit vector; α 1 represents the spatial angle formed by the first axis line 11 and the z-axis; β 1 represents the angle formed by the major axis of the first elliptical profile curve 423 and the x-axis; Represents the unit vector in the x-axis direction in the three-dimensional coordinate system; Represents the unit vector in the y-axis direction in the three-dimensional coordinate system; A unit vector representing the z-axis direction in a three-dimensional coordinate system.

具体的,由于的长度等于1,因此该向量为单位向量,也即该向量的长度计算公式如下:Specifically, due to The length of is equal to 1, so the vector is a unit vector, that is, the length of the vector is calculated as follows:

步骤S340:获取第三夹角和第四夹角。Step S340: Obtain the third angle and the fourth angle.

需要清楚的是,在本实施例中第三夹角为第二轴心线21与z轴形成的夹角(也即如图11所示的角α2)。第四夹角为第二椭圆轮廓曲线424的长轴与x轴所形成的夹角(也即如图11所示的角β2)。类似于步骤S320,角β2可以直接计算得到;角α2可以基于第二椭圆轮廓曲线424短轴长度(也即如图11所示的b2)和长轴长度(也即如图11所示的a2)的比值得到。也即,角α2约等于arccos(b2/a2),其中arccos表示反余弦函数。It should be noted that in this embodiment, the third angle is the angle formed by the second axis line 21 and the z-axis (i.e., the angle α2 shown in FIG11). The fourth angle is the angle formed by the major axis of the second elliptical profile curve 424 and the x-axis (i.e., the angle β2 shown in FIG11). Similar to step S320, the angle β2 can be directly calculated; the angle α2 can be obtained based on the ratio of the minor axis length (i.e., b2 shown in FIG11) and the major axis length (i.e., a2 shown in FIG11) of the second elliptical profile curve 424. That is, the angle α2 is approximately equal to arccos ( b2 / a2 ), where arccos represents the inverse cosine function.

步骤S350:基于第三夹角和第四夹角,获取第二单位向量。Step S350: Obtain a second unit vector based on the third angle and the fourth angle.

在本申请的实施例中,第二单位向量用于表征第二轴心线21位于三维坐标系中的延伸方向。具体的,根据投影定理第二单位向量的计算公式如下:In the embodiment of the present application, the second unit vector is used to represent the extension direction of the second axis line 21 in the three-dimensional coordinate system. Specifically, according to the projection theorem, the calculation formula of the second unit vector is as follows:

其中,表示第二单位向量;α2表示第二轴心线21与z轴形成的空间夹角;β2表示第二椭圆轮廓曲线424的长轴与x轴所形成的夹角;表示三维坐标系中x轴方向的单位向量;表示三维坐标系中y轴方向的单位向量;表示三维坐标系中z轴方向的单位向量。in, represents the second unit vector; α 2 represents the spatial angle formed by the second axis line 21 and the z-axis; β 2 represents the angle formed by the major axis of the second elliptical profile curve 424 and the x-axis; Represents the unit vector in the x-axis direction in the three-dimensional coordinate system; Represents the unit vector in the y-axis direction in the three-dimensional coordinate system; A unit vector representing the z-axis direction in a three-dimensional coordinate system.

具体的,由于的长度等于1,因此该向量为单位向量,也即该向量的长度计算公式如下:Specifically, due to The length of is equal to 1, so the vector is a unit vector, that is, the length of the vector is calculated as follows:

步骤S360:基于第一单位向量和第二单位向量,获取角度偏差数据。Step S360: Obtain angle deviation data based on the first unit vector and the second unit vector.

需要清楚的是,在本实施例中角度偏差数据可以为第一轴心线11和第二轴心线21所形成的空间夹角。具体的,可以根据第一单位向量和第二单位向量计算得到第一轴心线11和第二轴心线21所形成的空间夹角。其计算公式如下:It should be clear that in this embodiment, the angle deviation data may be the spatial angle formed by the first axis line 11 and the second axis line 21. Specifically, the spatial angle formed by the first axis line 11 and the second axis line 21 may be calculated based on the first unit vector and the second unit vector. The calculation formula is as follows:

其中,δ表示第一轴心线11和第二轴心线21所形成的空间夹角;arccos表示反余弦函数;表示第一单位向量;表示第二单位向量;表示第一单位向量的模;表示第二单位向量的模;表示第一单位向量和第二单位向量的点积。具体的,第一单位向量和第二单位向量的点积的计算公式如下:Wherein, δ represents the space angle formed by the first axis line 11 and the second axis line 21; arccos represents the inverse cosine function; represents the first unit vector; represents the second unit vector; represents the magnitude of the first unit vector; represents the magnitude of the second unit vector; Represents the dot product of the first unit vector and the second unit vector. Specifically, the calculation formula of the dot product of the first unit vector and the second unit vector is as follows:

也就是说,在本申请的实施例中,相对于采用如图9所示的角β作为角度偏差数据,角δ更加接近第一轴心线11和第二轴心线21真实的空间夹角,因此将角δ作为角度偏差数据能够更加精准的反映出第一轴1和第二轴2对接后,第一轴心线11与第二轴心线21所形成的空间夹角。That is to say, in the embodiment of the present application, compared with using the angle β shown in Figure 9 as the angle deviation data, the angle δ is closer to the actual spatial angle between the first axis line 11 and the second axis line 21. Therefore, using the angle δ as the angle deviation data can more accurately reflect the spatial angle formed by the first axis line 11 and the second axis line 21 after the first axis 1 and the second axis 2 are docked.

在本申请的一个实施例中,如图3所示,第一端面12的中心点为第一中心点13,第二端面22的中心点为第二中心点23。步骤S300,基于第一椭圆轮廓曲线423和第二椭圆轮廓曲线424,获取对接偏差数据(也即位置偏差数据),还可以包括步骤S370至步骤S390。In one embodiment of the present application, as shown in Fig. 3, the center point of the first end surface 12 is the first center point 13, and the center point of the second end surface 22 is the second center point 23. Step S300, based on the first elliptical profile curve 423 and the second elliptical profile curve 424, obtains docking deviation data (i.e., position deviation data), and may also include steps S370 to S390.

步骤S370:将第一椭圆轮廓曲线和第二椭圆轮廓曲线投影至三维坐标系。Step S370: Projecting the first ellipse contour curve and the second ellipse contour curve into a three-dimensional coordinate system.

需要清楚的是,在本实施例中,步骤S370与步骤S310类似,此次不做赘述。It should be noted that, in this embodiment, step S370 is similar to step S310 and will not be described in detail here.

步骤S380:获取第一椭圆轮廓曲线423的第三中心点(也即如图9和图10中所示的点O1)和第二椭圆轮廓曲线424的第四中心点(也即如图9和图11中所示的点O2)。Step S380 : acquiring the third center point of the first ellipse profile curve 423 (ie, point O 1 as shown in FIGS. 9 and 10 ) and the fourth center point of the second ellipse profile curve 424 (ie, point O 2 as shown in FIGS. 9 and 11 ).

步骤S390:基于第三中心点和第四中心点,获取位置偏差数据。Step S390: Based on the third center point and the fourth center point, obtain position deviation data.

由前文可知,在本申请的实施例中,可以直接将点O1和点O2之间的距离作为位置偏差数据。As can be seen from the foregoing, in the embodiments of the present application, the distance between point O1 and point O2 can be directly used as position deviation data.

为了能够精准的表征出第一轴1和第二轴2对接后,第一中心点13和第二中心点23之间的空间距离。在本申请的一个实施例中,步骤S390,基于第三中心点和第四中心点,获取位置偏差数据,包括步骤S391至步骤S393。In order to accurately characterize the spatial distance between the first center point 13 and the second center point 23 after the first axis 1 and the second axis 2 are docked, in one embodiment of the present application, step S390, based on the third center point and the fourth center point, obtains position deviation data, including steps S391 to S393.

步骤S391:基于第三中心点和第四中心点,获取第一距离。Step S391: Based on the third center point and the fourth center point, obtain the first distance.

具体的,在本申请的实施例中,第一距离表征第一中心点13和第二中心点23沿第一方向位于同一平面内投影的距离,第一方向平行于第一轴1的轴心线。由前文可知,虽然从各个方向(摄像机距离焦平面的距离一致)获取的椭圆轮廓曲线形状不同,但是各个椭圆轮廓曲线的长轴长度基本一致。也就是说,在本申请的实施例中,可以通过正交分解,基于第三中心点和第四中心点,获取第一距离。具体的,第一距离的计算公式如下:Specifically, in the embodiment of the present application, the first distance represents the distance between the projections of the first center point 13 and the second center point 23 in the same plane along the first direction, and the first direction is parallel to the axis of the first axis 1. As can be seen from the foregoing, although the shapes of the elliptical contour curves obtained from various directions (the distance between the camera and the focal plane is consistent) are different, the major axis lengths of the various elliptical contour curves are basically the same. That is to say, in the embodiment of the present application, the first distance can be obtained based on the third center point and the fourth center point through orthogonal decomposition. Specifically, the calculation formula for the first distance is as follows:

其中,表示第一距离,表示第一端面12或者第一导引工装401的实际直径;表示第一椭圆轮廓曲线423的长轴长度;表示第一椭圆轮廓曲线423的短轴长度;表示由第三中心点指向第四中心点的向量;表示第一椭圆轮廓曲线423长轴方向上的单位向量;表示第一椭圆轮廓曲线423短轴方向上的单位向量。in, represents the first distance, Indicates the actual diameter of the first end surface 12 or the first guide fixture 401; represents the major axis length of the first ellipse profile curve 423; represents the minor axis length of the first ellipse profile curve 423; represents the vector from the third center point to the fourth center point; represents a unit vector in the major axis direction of the first elliptical contour curve 423; Represents the unit vector in the minor axis direction of the first elliptical contour curve 423 .

需要清楚的是,在本实施例中的计算公式,分别如下:It should be clear that in this embodiment and The calculation formulas are as follows:

其中,表示三维坐标系中x轴方向的单位向量;表示三维坐标系中y轴方向的单位向量;β1表示第一椭圆轮廓曲线423的长轴与x轴所形成的夹角。in, Represents the unit vector in the x-axis direction in the three-dimensional coordinate system; represents the unit vector in the y-axis direction in the three-dimensional coordinate system; β1 represents the angle formed by the major axis of the first elliptical profile curve 423 and the x-axis.

步骤S392:获取第一轴1和第二轴2轴心线的空间夹角。Step S392: Obtain the spatial angle between the center lines of the first axis 1 and the second axis 2.

需要清楚的是,获取第一轴1和第二轴2轴心线(也即第一轴心线11和第二轴心线21)的空间夹角如上文中步骤S320至步骤S360所述,此处不做赘述。It should be noted that obtaining the spatial angle between the axis center lines of the first axis 1 and the second axis 2 (ie, the first axis center line 11 and the second axis center line 21 ) is as described in steps S320 to S360 above, and will not be repeated here.

步骤S393:基于第一距离和空间夹角,获取位置偏差数据。Step S393: Acquire position deviation data based on the first distance and the spatial angle.

在本实施例中,可以将上文中的第一距离作为位置偏差数据。当然,为了使得位置偏差数据更接近立体空间中第一中心点13和第二中心点23之间的实际距离,根据投影定理,位置偏差数据的计算公式可以如下:In this embodiment, the first distance mentioned above can be used as position deviation data. Of course, in order to make the position deviation data closer to the actual distance between the first center point 13 and the second center point 23 in the three-dimensional space, according to the projection theorem, the calculation formula of the position deviation data can be as follows:

其中,表示位置偏差数据,δ表示第一轴心线11和第二轴心线21所形成的空间夹角;表示第一距离。in, represents the position deviation data, δ represents the spatial angle formed by the first axis 11 and the second axis 21; Indicates the first distance.

需要清楚的是,本实施例所计算出的位置偏差数据(也即距离S),接近于真实的第一中心点13和第二中心点23之间的空间距离,也即能够精准的表征出第一轴1和第二轴2对接后,第一中心点13和第二中心点23之间的空间距离。It should be clear that the position deviation data (i.e., distance S) calculated in this embodiment is close to the actual spatial distance between the first center point 13 and the second center point 23, that is, it can accurately characterize the spatial distance between the first center point 13 and the second center point 23 after the first axis 1 and the second axis 2 are docked.

由前文可知,在本申请的实施例中,获取的位置偏差数据并不受限于摄像机拍摄获取视觉平面图的拍摄角度或者距离,也就是说,在本申请的实施例中,可以通过多个不同角度或者距离的视觉平面图获取多个位置偏差数据,并且求取多个位置偏差数据的平均值,以进一步地提升双轴对接偏差检测的精准度。As can be seen from the foregoing, in the embodiments of the present application, the acquired position deviation data is not limited to the shooting angle or distance of the visual plane view captured by the camera. That is to say, in the embodiments of the present application, multiple position deviation data can be acquired through visual plane views at multiple different angles or distances, and the average value of the multiple position deviation data can be calculated to further improve the accuracy of dual-axis docking deviation detection.

需要清楚的是,本申请实施例所提出的双轴对接偏差的检测方法,不会受限于视觉可达性,即便两个轴之间的视觉可达性较小(甚至为0),也能够基于本申请实施例所提出的双轴对接偏差的检测方法,获取两个轴的对接偏差。It should be clear that the dual-axis docking deviation detection method proposed in the embodiment of the present application is not limited by visual accessibility. Even if the visual accessibility between the two axes is small (even 0), the docking deviation of the two axes can be obtained based on the dual-axis docking deviation detection method proposed in the embodiment of the present application.

介绍完本申请实施例所提出的双轴对接偏差的检测方法,下面介绍本申请实施例所提出的一种双轴对接偏差的检测系统,双轴包括第一轴1和第二轴2;第一轴1的第一端面12与第二轴2的第二端面22为相对面;如图12所示,该双轴对接偏差的检测系统50包括:After introducing the detection method of the double-axis docking deviation proposed in the embodiment of the present application, a detection system of the double-axis docking deviation proposed in the embodiment of the present application is introduced below. The double axis includes a first axis 1 and a second axis 2; the first end surface 12 of the first axis 1 and the second end surface 22 of the second axis 2 are opposite surfaces; as shown in FIG. 12, the detection system 50 of the double-axis docking deviation includes:

拍摄装置51,用于获取能够表征所述第一端面12和所述第二端面22位于焦平面投影中相对位置的视觉平面图;A photographing device 51, used for acquiring a visual plane image capable of representing the relative positions of the first end surface 12 and the second end surface 22 in the focal plane projection;

处理装置52,基于椭圆检测算法由所述视觉平面图,获取表征所述第一端面12的第一椭圆轮廓曲线和表征所述第二端面22的第二椭圆轮廓曲线;所述椭圆检测算法预先获取;The processing device 52 acquires a first ellipse contour curve representing the first end surface 12 and a second ellipse contour curve representing the second end surface 22 from the visual plane diagram based on an ellipse detection algorithm; the ellipse detection algorithm acquires in advance;

以及,基于所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线,获取对接偏差数据;所述对接偏差数据包括角度偏差数据和/或位置偏差数据;所述角度偏差数据至少用于表征所述第一轴1和所述第二轴2轴心线的空间夹角;所述位置偏差数据至少用于表征所述第一端面12中心点和所述第二端面22中心点的空间距离。And, based on the first elliptical contour curve and the second elliptical contour curve, docking deviation data is obtained; the docking deviation data includes angle deviation data and/or position deviation data; the angle deviation data is at least used to characterize the spatial angle between the center lines of the first axis 1 and the second axis 2; the position deviation data is at least used to characterize the spatial distance between the center point of the first end face 12 and the center point of the second end face 22.

作为本申请中一个具体的实施例,所述对接偏差数据包括角度偏差数据;所述第一轴1的轴心线为第一轴心线11;所述第二轴2的轴心线为第二轴心线21;所述处理装置52还用于,将所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线投影至三维坐标系;所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线位于所述三维坐标系中x轴和y轴所形成的平面内;As a specific embodiment of the present application, the docking deviation data includes angle deviation data; the axis centerline of the first axis 1 is the first axis centerline 11; the axis centerline of the second axis 2 is the second axis centerline 21; the processing device 52 is further used to project the first elliptical contour curve and the second elliptical contour curve into a three-dimensional coordinate system; the first elliptical contour curve and the second elliptical contour curve are located in a plane formed by the x-axis and the y-axis in the three-dimensional coordinate system;

以及,获取第一夹角和第二夹角;所述第一夹角为所述第一轴心线11与z轴形成的夹角;所述第二夹角为所述第一椭圆轮廓曲线的长轴与x轴所形成的夹角;And, obtaining a first angle and a second angle; the first angle is the angle formed by the first axis line 11 and the z-axis; the second angle is the angle formed by the major axis of the first elliptical profile curve and the x-axis;

以及,基于所述第一夹角和所述第二夹角,获取第一单位向量;所述第一单位向量用于表征所述第一轴心线11位于所述三维坐标系中的延伸方向;And, based on the first angle and the second angle, a first unit vector is obtained; the first unit vector is used to represent the extension direction of the first axis line 11 in the three-dimensional coordinate system;

以及,获取第三夹角和第四夹角;所述第三夹角为所述第二轴心线21与z轴形成的夹角;所述第四夹角为所述第二椭圆轮廓曲线的长轴与x轴所形成的夹角;And, obtaining a third angle and a fourth angle; the third angle is the angle formed by the second axis line 21 and the z-axis; the fourth angle is the angle formed by the major axis of the second elliptical profile curve and the x-axis;

以及,基于所述第三夹角和第四夹角,获取第二单位向量;所述第二单位向量用于表征所述第二轴心线21位于所述三维坐标系中的延伸方向;And, based on the third angle and the fourth angle, a second unit vector is obtained; the second unit vector is used to represent the extension direction of the second axis line 21 in the three-dimensional coordinate system;

以及,基于所述第一单位向量和所述第二单位向量,获取所述角度偏差数据。And, based on the first unit vector and the second unit vector, the angle deviation data is acquired.

作为本申请中一个具体的实施例,处理装置52基于所述第一单位向量和所述第二单位向量,获取所述角度偏差数据的计算公式如下:As a specific embodiment of the present application, the processing device 52 obtains the angle deviation data based on the first unit vector and the second unit vector using the following calculation formula:

其中,δ表示第一轴心线11和第二轴心线21所形成的空间夹角;arccos表示反余弦函数;表示第一单位向量;表示第二单位向量;表示第一单位向量的模;表示第二单位向量的模;表示第一单位向量和第二单位向量的点积。Wherein, δ represents the space angle formed by the first axis line 11 and the second axis line 21; arccos represents the inverse cosine function; represents the first unit vector; represents the second unit vector; represents the magnitude of the first unit vector; represents the magnitude of the second unit vector; Represents the dot product of the first unit vector and the second unit vector.

作为本申请中一个具体的实施例,所述对接偏差数据包括位置偏差数据;所述第一端面12的中心点为第一中心点13;所述第二端面22的中心点为第二中心点23;所述处理装置52还用于,将所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线投影至三维坐标系;所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线位于所述三维坐标系中x轴和y轴所形成的平面内;As a specific embodiment of the present application, the docking deviation data includes position deviation data; the center point of the first end surface 12 is the first center point 13; the center point of the second end surface 22 is the second center point 23; the processing device 52 is also used to project the first elliptical contour curve and the second elliptical contour curve to a three-dimensional coordinate system; the first elliptical contour curve and the second elliptical contour curve are located in the plane formed by the x-axis and the y-axis in the three-dimensional coordinate system;

以及,获取所述第一椭圆轮廓曲线的第三中心点和所述第二椭圆轮廓曲线的第四中心点;And, obtaining a third center point of the first elliptical profile curve and a fourth center point of the second elliptical profile curve;

以及,基于所述第三中心点和所述第四中心点,获取所述位置偏差数据。And, based on the third center point and the fourth center point, the position deviation data is acquired.

作为本申请中一个具体的实施例,处理装置52基于所述第三中心点和所述第四中心点,获取所述位置偏差数据的计算公式如下:As a specific embodiment of the present application, the processing device 52 obtains the calculation formula of the position deviation data based on the third center point and the fourth center point as follows:

其中,表示位置偏差数据,δ表示第一轴心线11和第二轴心线21所形成的空间夹角;表示第一距离;表示第一端面的实际直径;表示第一椭圆轮廓曲线的长轴长度;表示第一椭圆轮廓曲线的短轴长度;表示由第三中心点指向第四中心点的向量;表示第一椭圆轮廓曲线长轴方向上的单位向量;表示第一椭圆轮廓曲线短轴方向上的单位向量。in, represents the position deviation data, δ represents the spatial angle formed by the first axis 11 and the second axis 21; represents the first distance; represents the actual diameter of the first end surface; represents the length of the major axis of the first ellipse contour curve; represents the length of the minor axis of the first ellipse contour curve; represents the vector from the third center point to the fourth center point; represents the unit vector in the major axis direction of the first elliptical contour curve; Represents the unit vector in the direction of the minor axis of the first ellipse contour curve.

作为本申请中一个具体的实施例,所述处理装置52还用于,基于所述第三中心点和所述第四中心点,获取第一距离;所述第一距离表征所述第一中心点13和所述第二中心点23沿第一方向位于同一平面内投影的距离;所述第一方向平行于所述第一轴1的轴心线;As a specific embodiment of the present application, the processing device 52 is further used to obtain a first distance based on the third center point and the fourth center point; the first distance represents the distance between the projections of the first center point 13 and the second center point 23 in the same plane along a first direction; the first direction is parallel to the axis of the first axis 1;

以及,获取所述第一轴1和所述第二轴2轴心线的空间夹角;And, obtaining a spatial angle between the center lines of the first axis 1 and the second axis 2;

以及,基于所述第一距离和所述空间夹角,获取所述位置偏差数据。And, based on the first distance and the spatial angle, the position deviation data is acquired.

作为本申请中一个具体的实施例,还包括导引工装4,每个导引工装4至少包括导引圆环42;所述导引工装4包括:第一导引工装401和第二导引工装402;As a specific embodiment of the present application, it also includes a guide fixture 4, each of which includes at least a guide ring 42; the guide fixture 4 includes: a first guide fixture 401 and a second guide fixture 402;

所述第一导引工装401用于设置于所述第一轴1,以使所述第一导引工装401中的第一导引圆环421的轴心线与所述第一轴1的轴心线重合;The first guiding fixture 401 is used to be arranged on the first shaft 1 so that the axis center line of the first guiding ring 421 in the first guiding fixture 401 coincides with the axis center line of the first shaft 1;

所述第二导引工装402用于设置于所述第二轴2,以使所述第二导引工装402中的第二导引圆环422的轴心线与所述第二轴2的轴心线重合;The second guiding fixture 402 is used to be arranged on the second shaft 2 so that the axis center line of the second guiding ring 422 in the second guiding fixture 402 coincides with the axis center line of the second shaft 2;

所述拍摄装置51还用于,若同时使用了第一导引工装401和第二导引工装402,则获取具有所述第一导引圆环421和所述第二导引圆环422的视觉平面图;若只使用了第一导引工装401,则获取具有所述第一导引圆环421和所述第二端面22的视觉平面图;若只使用了第二导引工装402,则获取具有所述第一端面12和所述第二导引圆环422的视觉平面图。The photographing device 51 is also used to obtain a visual plan view having the first guide ring 421 and the second guide ring 422 if the first guide fixture 401 and the second guide fixture 402 are used at the same time; to obtain a visual plan view having the first guide ring 421 and the second end face 22 if only the first guide fixture 401 is used; and to obtain a visual plan view having the first end face 12 and the second guide ring 422 if only the second guide fixture 402 is used.

作为本申请中一个具体的实施例,所述导引工装4还包括紧固圆环41和多个连接杆43,所述紧固圆环41和所述导引圆环42的轴心线重合,且每个连接杆43一端均与所述紧固圆环41相连接,每个连接杆43另一端均与所述导引圆环42相连接。As a specific embodiment of the present application, the guiding tool 4 also includes a fastening ring 41 and a plurality of connecting rods 43, the axis lines of the fastening ring 41 and the guiding ring 42 coincide with each other, and one end of each connecting rod 43 is connected to the fastening ring 41, and the other end of each connecting rod 43 is connected to the guiding ring 42.

需要清楚的是,本申请实施例所提出的双轴对接偏差的检测系统,不会受限于视觉可达性,即便两个轴之间的视觉可达性较小(甚至为0),也能够基于本申请实施例所提出的双轴对接偏差的检测方法,获取两个轴的对接偏差。It should be clear that the dual-axis docking deviation detection system proposed in the embodiment of the present application will not be limited by visual accessibility. Even if the visual accessibility between the two axes is small (even 0), the docking deviation of the two axes can be obtained based on the dual-axis docking deviation detection method proposed in the embodiment of the present application.

介绍完本申请实施例所提出的双轴对接偏差的检测系统,下面介绍本申请实施例所提出的,一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上述中任一项实施例所述的双轴对接偏差的检测方法。After introducing the dual-axis docking deviation detection system proposed in the embodiment of the present application, the following introduces a computer-readable storage medium proposed in the embodiment of the present application, which stores a computer program. When the computer program is executed by a processor, it implements the dual-axis docking deviation detection method as described in any of the above embodiments.

需要清楚的是,本申请中的计算机可读存储介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitorymedia),如调制的数据信号和载波。It should be clear that the computer-readable storage media in this application include permanent and non-permanent, removable and non-removable media that can be used to store information by any method or technology. Information can be computer-readable instructions, data structures, modules of programs or other data. Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, read-only compact disk read-only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media that can be used to store information that can be accessed by a computing device. As defined herein, computer-readable media does not include temporary computer-readable media (transitory media), such as modulated data signals and carrier waves.

在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。In the above embodiments, the description of each embodiment has its own emphasis. For parts that are not described in detail in a certain embodiment, reference can be made to the relevant descriptions of other embodiments.

所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的方法,装置和设备的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and brevity of description, the specific working processes of the methods, devices and equipment described above can refer to the corresponding processes in the aforementioned method embodiments and will not be repeated here.

在本申请实施例所提供的几个实施例中,应该理解到,所揭露的设备,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided in the embodiments of the present application, it should be understood that the disclosed devices, apparatuses and methods can be implemented in other ways. For example, the device embodiments described above are merely schematic. For example, the division of the modules is only a logical function division. There may be other division methods in actual implementation, such as multiple modules or components can be combined or integrated into another system, or some features can be ignored or not executed. Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be an indirect coupling or communication connection through some interfaces, devices or modules, which can be electrical, mechanical or other forms.

所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。The modules described as separate components may or may not be physically separated, and the components shown as modules may or may not be physical modules, that is, they may be located in one place or distributed on multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of this embodiment.

另外,在本申请实施例各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。In addition, each functional module in each embodiment of the present application can be integrated into a processing module, or each module can exist physically separately, or two or more modules can be integrated into one module. The above-mentioned integrated module can be implemented in the form of hardware or in the form of a software functional module. If the integrated module is implemented in the form of a software functional module and sold or used as an independent product, it can be stored in a computer-readable storage medium.

在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。In the above embodiments, all or part of the embodiments may be implemented by software, hardware, firmware or any combination thereof. When implemented by software, all or part of the embodiments may be implemented in the form of a computer program product.

所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘SolidStateDisk(SSD))等。The computer program product includes one or more computer instructions. When the computer program is loaded and executed on a computer, the process or function described in the embodiment of the present application is generated in whole or in part. The computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device. The computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website site, a computer, a server, or a data center to another website site, a computer, a server, or a data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) means. The computer-readable storage medium may be any available medium that a computer can store or a data storage device such as a server or a data center that includes one or more available media integrated. The available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a tape), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a solid-state hard disk Solid State Disk (SSD)), etc.

尽管已经示出和描述了本申请的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本申请的原理的情况下可以对这些实施例进行多种变化、修改、替换和变型。Although the embodiments of the present application have been shown and described, it will be appreciated by those skilled in the art that many changes, modifications, substitutions and variations may be made to the embodiments without departing from the principles of the present application.

Claims (15)

1.一种双轴对接偏差的检测方法,所述双轴包括第一轴(1)和第二轴(2);所述第一轴(1)的第一端面(12)与所述第二轴(2)的第二端面(22)为相对面;其特征在于,所述方法包括:1. A method for detecting a double-shaft butt joint deviation, the double-shaft comprising a first shaft (1) and a second shaft (2); a first end surface (12) of the first shaft (1) and a second end surface (22) of the second shaft (2) being opposite surfaces; the method comprising: 获取能够表征所述第一端面(12)和所述第二端面(22)位于焦平面投影中相对位置的视觉平面图;Acquiring a visual plane image capable of characterizing the relative positions of the first end surface (12) and the second end surface (22) in a focal plane projection; 基于椭圆检测算法由所述视觉平面图,获取表征所述第一端面(12)的第一椭圆轮廓曲线和表征所述第二端面(22)的第二椭圆轮廓曲线;Based on an ellipse detection algorithm, obtaining a first ellipse contour curve representing the first end surface (12) and a second ellipse contour curve representing the second end surface (22) from the visual plane image; 基于所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线,获取对接偏差数据;所述对接偏差数据包括角度偏差数据和/或位置偏差数据;所述角度偏差数据至少用于表征所述第一轴(1)和所述第二轴(2)轴心线的空间夹角;所述位置偏差数据至少用于表征所述第一端面(12)中心点和所述第二端面(22)中心点的空间距离。Based on the first elliptical profile curve and the second elliptical profile curve, docking deviation data is obtained; the docking deviation data includes angle deviation data and/or position deviation data; the angle deviation data is at least used to characterize the spatial angle between the axis lines of the first axis (1) and the second axis (2); the position deviation data is at least used to characterize the spatial distance between the center point of the first end face (12) and the center point of the second end face (22). 2.根据权利要求1所述的双轴对接偏差的检测方法,其特征在于,所述对接偏差数据包括角度偏差数据;所述第一轴(1)的轴心线为第一轴心线(11);所述第二轴(2)的轴心线为第二轴心线(21);所述基于所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线,获取对接偏差数据,包括:2. The method for detecting double-axis docking deviation according to claim 1, characterized in that the docking deviation data comprises angle deviation data; the axis centerline of the first axis (1) is the first axis centerline (11); the axis centerline of the second axis (2) is the second axis centerline (21); the acquiring the docking deviation data based on the first elliptical profile curve and the second elliptical profile curve comprises: 将所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线投影至三维坐标系;所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线位于三维坐标系中x轴和y轴所形成的平面内;Projecting the first elliptical profile curve and the second elliptical profile curve into a three-dimensional coordinate system; the first elliptical profile curve and the second elliptical profile curve are located in a plane formed by an x-axis and a y-axis in the three-dimensional coordinate system; 获取第一夹角和第二夹角;所述第一夹角为所述第一轴心线(11)与z轴形成的夹角;所述第二夹角为所述第一椭圆轮廓曲线的长轴与x轴所形成的夹角;Obtaining a first angle and a second angle; the first angle being the angle formed by the first axis line (11) and the z-axis; and the second angle being the angle formed by the major axis of the first elliptical profile curve and the x-axis; 基于所述第一夹角和所述第二夹角,获取第一单位向量;所述第一单位向量用于表征所述第一轴心线(11)位于所述三维坐标系中的延伸方向;Based on the first angle and the second angle, a first unit vector is obtained; the first unit vector is used to represent the extension direction of the first axis line (11) in the three-dimensional coordinate system; 获取第三夹角和第四夹角;所述第三夹角为所述第二轴心线(21)与z轴形成的夹角;所述第四夹角为所述第二椭圆轮廓曲线的长轴与x轴所形成的夹角;Obtaining a third angle and a fourth angle; the third angle being the angle formed by the second axis line (21) and the z-axis; and the fourth angle being the angle formed by the major axis of the second elliptical profile curve and the x-axis; 基于所述第三夹角和第四夹角,获取第二单位向量;所述第二单位向量用于表征所述第二轴心线(21)位于所述三维坐标系中的延伸方向;Based on the third angle and the fourth angle, a second unit vector is obtained; the second unit vector is used to represent the extension direction of the second axis line (21) in the three-dimensional coordinate system; 基于所述第一单位向量和所述第二单位向量,获取所述角度偏差数据。The angle deviation data is acquired based on the first unit vector and the second unit vector. 3.根据权利要求1所述的双轴对接偏差的检测方法,其特征在于,所述对接偏差数据包括位置偏差数据;所述第一端面(12)的中心点为第一中心点(13);所述第二端面(22)的中心点为第二中心点(23);所述基于所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线,获取对接偏差数据,包括:3. The method for detecting biaxial butt joint deviation according to claim 1, characterized in that the butt joint deviation data comprises position deviation data; the center point of the first end surface (12) is the first center point (13); the center point of the second end surface (22) is the second center point (23); the butt joint deviation data is obtained based on the first elliptical profile curve and the second elliptical profile curve, comprising: 将所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线投影至三维坐标系;所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线位于所述三维坐标系中x轴和y轴所形成的平面内;Projecting the first elliptical profile curve and the second elliptical profile curve into a three-dimensional coordinate system; the first elliptical profile curve and the second elliptical profile curve are located in a plane formed by an x-axis and a y-axis in the three-dimensional coordinate system; 获取所述第一椭圆轮廓曲线的第三中心点和所述第二椭圆轮廓曲线的第四中心点;Acquire a third center point of the first elliptical profile curve and a fourth center point of the second elliptical profile curve; 基于所述第三中心点和所述第四中心点,获取所述位置偏差数据。The position deviation data is acquired based on the third center point and the fourth center point. 4.根据权利要求3所述的双轴对接偏差的检测方法,其特征在于,所述基于所述第三中心点和所述第四中心点,获取所述位置偏差数据的计算公式如下:4. The method for detecting the double-axis docking deviation according to claim 3, characterized in that the calculation formula for obtaining the position deviation data based on the third center point and the fourth center point is as follows: 其中,表示位置偏差数据,δ表示第一轴心线(11)和第二轴心线(21)所形成的空间夹角;表示第一距离;表示第一端面的实际直径;表示第一椭圆轮廓曲线的长轴长度;表示第一椭圆轮廓曲线的短轴长度;表示由第三中心点指向第四中心点的向量;表示第一椭圆轮廓曲线长轴方向上的单位向量;表示第一椭圆轮廓曲线短轴方向上的单位向量。in, represents position deviation data, δ represents the spatial angle formed by the first axis line (11) and the second axis line (21); represents the first distance; represents the actual diameter of the first end surface; represents the length of the major axis of the first ellipse contour curve; represents the length of the minor axis of the first ellipse contour curve; represents the vector from the third center point to the fourth center point; represents the unit vector in the major axis direction of the first elliptical contour curve; Represents the unit vector in the direction of the minor axis of the first ellipse contour curve. 5.根据权利要求3所述的双轴对接偏差的检测方法,其特征在于,所述基于所述第三中心点和所述第四中心点,获取所述位置偏差数据,包括:5. The method for detecting double-axis docking deviation according to claim 3, characterized in that the step of obtaining the position deviation data based on the third center point and the fourth center point comprises: 基于所述第三中心点和所述第四中心点,获取第一距离;所述第一距离表征所述第一中心点(13)和所述第二中心点(23)沿第一方向位于同一平面内投影的距离;所述第一方向平行于所述第一轴(1)的轴心线;Based on the third center point and the fourth center point, a first distance is obtained; the first distance represents the distance between the projections of the first center point (13) and the second center point (23) in the same plane along a first direction; the first direction is parallel to the axis of the first axis (1); 获取所述第一轴(1)和所述第二轴(2)轴心线的空间夹角;Obtaining a spatial angle between the center lines of the first axis (1) and the second axis (2); 基于所述第一距离和所述空间夹角,获取所述位置偏差数据。The position deviation data is acquired based on the first distance and the spatial angle. 6.根据权利要求1至5中任意一项所述的双轴对接偏差的检测方法,其特征在于,所述视觉平面图,包括:6. The method for detecting the deviation of biaxial docking according to any one of claims 1 to 5, characterized in that the visual plane diagram comprises: 第一导引工装(401)和第二端面(22);或者第一端面(12)和第二导引工装(402);或者第一导引工装(401)和第二导引工装(402);每个引导工装至少包括导引圆环;使用时,第一导引工装(401)设置于所述第一轴(1),且所述第一导引工装(401)中的第一导引圆环(421)的轴心线与所述第一轴(1)的轴心线重合,所述第一导引工装(401)用于表征第一端面(12);使用时,第二导引工装(402)设置于所述第二轴(2)设置,且所述第二导引工装(402)中的第二导引圆环(422)的轴心线与所述第二轴(2)的轴心线重合,所述第二导引工装(402)用于表征第二端面(22)。A first guide fixture (401) and a second end face (22); or a first end face (12) and a second guide fixture (402); or a first guide fixture (401) and a second guide fixture (402); each guide fixture comprises at least a guide ring; when in use, the first guide fixture (401) is arranged on the first shaft (1), and the axis center line of the first guide ring (421) in the first guide fixture (401) coincides with the axis center line of the first shaft (1), and the first guide fixture (401) is used to characterize the first end face (12); when in use, the second guide fixture (402) is arranged on the second shaft (2), and the axis center line of the second guide ring (422) in the second guide fixture (402) coincides with the axis center line of the second shaft (2), and the second guide fixture (402) is used to characterize the second end face (22). 7.根据权利要求6所述的双轴对接偏差的检测方法,其特征在于,所述导引工装还包括紧固圆环(41)和多个连接杆(43),所述紧固圆环(41)和所述导引圆环的轴心线重合,且每个连接杆(43)一端均与所述紧固圆环(41)相连接,每个连接杆(43)另一端均与所述导引圆环相连接。7. The method for detecting double-axis docking deviation according to claim 6 is characterized in that the guiding tool further comprises a fastening ring (41) and a plurality of connecting rods (43), the axis lines of the fastening ring (41) and the guiding ring coincide with each other, and one end of each connecting rod (43) is connected to the fastening ring (41), and the other end of each connecting rod (43) is connected to the guiding ring. 8.根据权利要求6所述的双轴对接偏差的检测方法,其特征在于,所述视觉平面图,还包括:8. The method for detecting the deviation of the biaxial docking according to claim 6, characterized in that the visual plane diagram further comprises: 所述第一端面(12)位于第一面内;所述第一导引圆环(421)的重心属于所述第一面,且所述第一导引圆环(421)的轴心线垂直于所述第一面;The first end surface (12) is located inside the first surface; the center of gravity of the first guide ring (421) belongs to the first surface, and the axis of the first guide ring (421) is perpendicular to the first surface; 所述第二端面(22)位于第二面内;所述第二导引圆环(422)的重心属于所述第二面,且所述第二导引圆环(422)的轴心线垂直于所述第二面。The second end surface (22) is located inside the second surface; the center of gravity of the second guide ring (422) belongs to the second surface, and the axis of the second guide ring (422) is perpendicular to the second surface. 9.一种双轴对接偏差的检测系统,所述双轴包括第一轴(1)和第二轴(2);所述第一轴(1)的第一端面(12)与所述第二轴(2)的第二端面(22)为相对面;其特征在于,包括:9. A double-axis butt joint deviation detection system, the double axis comprising a first axis (1) and a second axis (2); a first end surface (12) of the first axis (1) and a second end surface (22) of the second axis (2) are opposite surfaces; characterized in that it comprises: 拍摄装置,用于获取能够表征所述第一端面(12)和所述第二端面(22)位于焦平面投影中相对位置的视觉平面图;A photographing device, used for acquiring a visual plane image capable of representing the relative positions of the first end surface (12) and the second end surface (22) in a focal plane projection; 处理装置,基于椭圆检测算法由所述视觉平面图,获取表征所述第一端面(12)的第一椭圆轮廓曲线和表征所述第二端面(22)的第二椭圆轮廓曲线;所述椭圆检测算法预先获取;A processing device, based on an ellipse detection algorithm, obtains a first ellipse contour curve representing the first end surface (12) and a second ellipse contour curve representing the second end surface (22) from the visual plane image; the ellipse detection algorithm is pre-acquired; 以及,基于所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线,获取对接偏差数据;所述对接偏差数据包括角度偏差数据和/或位置偏差数据;所述角度偏差数据至少用于表征所述第一轴(1)和所述第二轴(2)轴心线的空间夹角;所述位置偏差数据至少用于表征所述第一端面(12)中心点和所述第二端面(22)中心点的空间距离。And, based on the first elliptical profile curve and the second elliptical profile curve, docking deviation data is obtained; the docking deviation data includes angle deviation data and/or position deviation data; the angle deviation data is at least used to characterize the spatial angle between the axis lines of the first axis (1) and the second axis (2); the position deviation data is at least used to characterize the spatial distance between the center point of the first end face (12) and the center point of the second end face (22). 10.根据权利要求9所述的双轴对接偏差的检测系统,其特征在于,所述对接偏差数据包括角度偏差数据;所述第一轴(1)的轴心线为第一轴心线(11);所述第二轴(2)的轴心线为第二轴心线(21);所述处理装置还用于,将所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线投影至三维坐标系;所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线位于三维坐标系中x轴和y轴所形成的平面内;10. The double-axis docking deviation detection system according to claim 9, characterized in that the docking deviation data includes angle deviation data; the axis centerline of the first axis (1) is the first axis centerline (11); the axis centerline of the second axis (2) is the second axis centerline (21); the processing device is further used to project the first elliptical contour curve and the second elliptical contour curve into a three-dimensional coordinate system; the first elliptical contour curve and the second elliptical contour curve are located in a plane formed by an x-axis and a y-axis in the three-dimensional coordinate system; 以及,获取第一夹角和第二夹角;所述第一夹角为所述第一轴心线(11)与z轴形成的夹角;所述第二夹角为所述第一椭圆轮廓曲线的长轴与x轴所形成的夹角;and obtaining a first angle and a second angle; the first angle being the angle formed by the first axis line (11) and the z-axis; and the second angle being the angle formed by the major axis of the first elliptical profile curve and the x-axis; 以及,基于所述第一夹角和所述第二夹角,获取第一单位向量;所述第一单位向量用于表征所述第一轴心线(11)位于所述三维坐标系中的延伸方向;and, based on the first angle and the second angle, obtaining a first unit vector; the first unit vector is used to represent the extension direction of the first axis line (11) in the three-dimensional coordinate system; 以及,获取第三夹角和第四夹角;所述第三夹角为所述第二轴心线(21)与z轴形成的夹角;所述第四夹角为所述第二椭圆轮廓曲线的长轴与x轴所形成的夹角;and obtaining a third angle and a fourth angle; the third angle being the angle formed by the second axis line (21) and the z-axis; and the fourth angle being the angle formed by the major axis of the second elliptical profile curve and the x-axis; 以及,基于所述第三夹角和第四夹角,获取第二单位向量;所述第二单位向量用于表征所述第二轴心线(21)位于所述三维坐标系中的延伸方向;And, based on the third angle and the fourth angle, a second unit vector is obtained; the second unit vector is used to represent the extension direction of the second axis line (21) in the three-dimensional coordinate system; 以及,基于所述第一单位向量和所述第二单位向量,获取所述角度偏差数据。And, based on the first unit vector and the second unit vector, the angle deviation data is acquired. 11.根据权利要求9所述的双轴对接偏差的检测系统,其特征在于,所述对接偏差数据包括位置偏差数据;所述第一端面(12)的中心点为第一中心点(13);所述第二端面(22)的中心点为第二中心点(23);所述处理装置还用于,将所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线投影至三维坐标系;所述第一椭圆轮廓曲线和所述第二椭圆轮廓曲线位于所述三维坐标系中x轴和y轴所形成的平面内;11. The double-axis docking deviation detection system according to claim 9, characterized in that the docking deviation data includes position deviation data; the center point of the first end surface (12) is the first center point (13); the center point of the second end surface (22) is the second center point (23); the processing device is further used to project the first elliptical contour curve and the second elliptical contour curve into a three-dimensional coordinate system; the first elliptical contour curve and the second elliptical contour curve are located in a plane formed by an x-axis and a y-axis in the three-dimensional coordinate system; 以及,获取所述第一椭圆轮廓曲线的第三中心点和所述第二椭圆轮廓曲线的第四中心点;And, obtaining a third center point of the first elliptical profile curve and a fourth center point of the second elliptical profile curve; 以及,基于所述第三中心点和所述第四中心点,获取所述位置偏差数据。And, based on the third center point and the fourth center point, the position deviation data is acquired. 12.根据权利要求11所述的双轴对接偏差的检测系统,其特征在于,所述处理装置还用于,基于所述第三中心点和所述第四中心点,获取第一距离;所述第一距离表征所述第一中心点(13)和所述第二中心点(23)沿第一方向位于同一平面内投影的距离;所述第一方向平行于所述第一轴(1)的轴心线;12. The double-axis docking deviation detection system according to claim 11, characterized in that the processing device is further used to obtain a first distance based on the third center point and the fourth center point; the first distance represents the distance between the projections of the first center point (13) and the second center point (23) in the same plane along a first direction; the first direction is parallel to the axis of the first axis (1); 以及,获取所述第一轴(1)和所述第二轴(2)轴心线的空间夹角;And, obtaining the spatial angle between the center lines of the first axis (1) and the second axis (2); 以及,基于所述第一距离和所述空间夹角,获取所述位置偏差数据。And, based on the first distance and the spatial angle, the position deviation data is acquired. 13.根据权利要求9至12中任意一项所述的双轴对接偏差的检测系统,其特征在于,所述视觉平面图,包括:13. The double-axis docking deviation detection system according to any one of claims 9 to 12, characterized in that the visual plane diagram comprises: 第一导引工装(401)和第二端面(22);或者第一端面(12)和第二导引工装(402);或者第一导引工装(401)和第二导引工装(402);每个引导工装至少包括导引圆环;使用时,第一导引工装(401)设置于所述第一轴(1),且所述第一导引工装(401)中的第一导引圆环(421)的轴心线与所述第一轴(1)的轴心线重合,所述第一导引工装(401)用于表征第一端面(12);使用时,第二导引工装(402)设置于所述第二轴(2)设置,且所述第二导引工装(402)中的第二导引圆环(422)的轴心线与所述第二轴(2)的轴心线重合,所述第二导引工装(402)用于表征第二端面(22)。A first guide fixture (401) and a second end face (22); or a first end face (12) and a second guide fixture (402); or a first guide fixture (401) and a second guide fixture (402); each guide fixture comprises at least a guide ring; when in use, the first guide fixture (401) is arranged on the first shaft (1), and the axis center line of the first guide ring (421) in the first guide fixture (401) coincides with the axis center line of the first shaft (1), and the first guide fixture (401) is used to characterize the first end face (12); when in use, the second guide fixture (402) is arranged on the second shaft (2), and the axis center line of the second guide ring (422) in the second guide fixture (402) coincides with the axis center line of the second shaft (2), and the second guide fixture (402) is used to characterize the second end face (22). 14.根据权利要求13所述的双轴对接偏差的检测系统,其特征在于,所述导引工装还包括紧固圆环(41)和多个连接杆(43),所述紧固圆环(41)和所述导引圆环的轴心线重合,且每个连接杆(43)一端均与所述紧固圆环(41)相连接,每个连接杆(43)另一端均与所述导引圆环相连接。14. The double-axis docking deviation detection system according to claim 13 is characterized in that the guiding tool further comprises a fastening ring (41) and a plurality of connecting rods (43), the axis lines of the fastening ring (41) and the guiding ring coincide with each other, and one end of each connecting rod (43) is connected to the fastening ring (41), and the other end of each connecting rod (43) is connected to the guiding ring. 15.一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至8中任一项所述的双轴对接偏差的检测方法。15. A computer-readable storage medium, characterized in that a computer program is stored thereon, and when the computer program is executed by a processor, the method for detecting a double-axis butt joint deviation according to any one of claims 1 to 8 is implemented.

CN202411313868.7A 2024-09-20 2024-09-20 A method, system and storage medium for detecting double-axis docking deviation Active CN118840369B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202411313868.7A CN118840369B (en) 2024-09-20 2024-09-20 A method, system and storage medium for detecting double-axis docking deviation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202411313868.7A CN118840369B (en) 2024-09-20 2024-09-20 A method, system and storage medium for detecting double-axis docking deviation

Publications (2)

Publication Number Publication Date
CN118840369A true CN118840369A (en) 2024-10-25
CN118840369B CN118840369B (en) 2025-01-21

Family

ID=93139035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202411313868.7A Active CN118840369B (en) 2024-09-20 2024-09-20 A method, system and storage medium for detecting double-axis docking deviation

Country Status (1)

Country Link
CN (1) CN118840369B (en)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033149A (en) * 2012-12-18 2013-04-10 中冶南方(武汉)威仕工业炉有限公司 Muffle tube straightness measurement method based on three dimensional (3D) total station
RU2583480C1 (en) * 2015-03-12 2016-05-10 федеральное государственное автономное образовательное учреждение высшего образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Brush seal and method of making same
CN109470170A (en) * 2018-12-25 2019-03-15 山东大学 High-precision measurement method and system of stereo vision space circular pose based on optimal projection plane
CN110647156A (en) * 2019-09-17 2020-01-03 中国科学院自动化研究所 Target object docking ring-based docking equipment pose adjusting method and system
CN111113018A (en) * 2019-12-25 2020-05-08 厦门理工学院 Precise shaft butt joint equipment and precise shaft butt joint method
CN111322967A (en) * 2020-03-04 2020-06-23 西北工业大学 Centering method for assembly process of stepped shaft and hole
CN114434404A (en) * 2021-12-03 2022-05-06 浙江省送变电工程有限公司 A GIS pipeline docking device and using method thereof
CN114963981A (en) * 2022-05-16 2022-08-30 南京航空航天大学 Monocular vision-based cylindrical part butt joint non-contact measurement method
CN115711593A (en) * 2022-10-19 2023-02-24 北京机械设备研究所 Hole pair detection method and device for part assembly and storage medium
CN115830333A (en) * 2022-10-14 2023-03-21 北京机械设备研究所 Monocular camera-based circular hole edge feature extraction method
CN116147537A (en) * 2023-02-01 2023-05-23 深圳大学 A method and device for underwater laser alignment of immersed tubes
CN116654597A (en) * 2022-02-17 2023-08-29 北京极智嘉科技股份有限公司 Material shaft control method and device
CN117011385A (en) * 2023-08-28 2023-11-07 中国长江三峡集团有限公司 Bolt pose calculation method, device, equipment and storage medium
CN117029732A (en) * 2023-07-21 2023-11-10 成都飞机工业(集团)有限责任公司 Hole making verticality measuring method, system, storage medium and measuring equipment
CN117213370A (en) * 2023-10-19 2023-12-12 成都联星技术股份有限公司 Quick and accurate measuring equipment and measuring method for catheter installation position
CN117804339A (en) * 2023-12-29 2024-04-02 华中科技大学无锡研究院 A measurement system and detection method for shaft-hole docking
CN118015077A (en) * 2023-11-27 2024-05-10 南昌航空大学 Method for detecting and correcting wing body butt-joint assembly deviation of fork-ear type airplane
CN118608483A (en) * 2024-06-11 2024-09-06 国网上海市电力公司 An automatic docking method for socket-and-spigot circular pipes based on binocular vision

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033149A (en) * 2012-12-18 2013-04-10 中冶南方(武汉)威仕工业炉有限公司 Muffle tube straightness measurement method based on three dimensional (3D) total station
RU2583480C1 (en) * 2015-03-12 2016-05-10 федеральное государственное автономное образовательное учреждение высшего образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Brush seal and method of making same
CN109470170A (en) * 2018-12-25 2019-03-15 山东大学 High-precision measurement method and system of stereo vision space circular pose based on optimal projection plane
CN110647156A (en) * 2019-09-17 2020-01-03 中国科学院自动化研究所 Target object docking ring-based docking equipment pose adjusting method and system
CN111113018A (en) * 2019-12-25 2020-05-08 厦门理工学院 Precise shaft butt joint equipment and precise shaft butt joint method
CN111322967A (en) * 2020-03-04 2020-06-23 西北工业大学 Centering method for assembly process of stepped shaft and hole
CN114434404A (en) * 2021-12-03 2022-05-06 浙江省送变电工程有限公司 A GIS pipeline docking device and using method thereof
CN116654597A (en) * 2022-02-17 2023-08-29 北京极智嘉科技股份有限公司 Material shaft control method and device
CN114963981A (en) * 2022-05-16 2022-08-30 南京航空航天大学 Monocular vision-based cylindrical part butt joint non-contact measurement method
CN115830333A (en) * 2022-10-14 2023-03-21 北京机械设备研究所 Monocular camera-based circular hole edge feature extraction method
CN115711593A (en) * 2022-10-19 2023-02-24 北京机械设备研究所 Hole pair detection method and device for part assembly and storage medium
CN116147537A (en) * 2023-02-01 2023-05-23 深圳大学 A method and device for underwater laser alignment of immersed tubes
CN117029732A (en) * 2023-07-21 2023-11-10 成都飞机工业(集团)有限责任公司 Hole making verticality measuring method, system, storage medium and measuring equipment
CN117011385A (en) * 2023-08-28 2023-11-07 中国长江三峡集团有限公司 Bolt pose calculation method, device, equipment and storage medium
CN117213370A (en) * 2023-10-19 2023-12-12 成都联星技术股份有限公司 Quick and accurate measuring equipment and measuring method for catheter installation position
CN118015077A (en) * 2023-11-27 2024-05-10 南昌航空大学 Method for detecting and correcting wing body butt-joint assembly deviation of fork-ear type airplane
CN117804339A (en) * 2023-12-29 2024-04-02 华中科技大学无锡研究院 A measurement system and detection method for shaft-hole docking
CN118608483A (en) * 2024-06-11 2024-09-06 国网上海市电力公司 An automatic docking method for socket-and-spigot circular pipes based on binocular vision

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈坤煌;樊留群;杨永;: "基于图像识别的端拾器吸盘安装的研究及应用", 机械, no. 05, 15 May 2020 (2020-05-15) *

Also Published As

Publication number Publication date
CN118840369B (en) 2025-01-21

Similar Documents

Publication Publication Date Title
CN108734744B (en) 2022-02-18 Long-distance large-view-field binocular calibration method based on total station
CN111121655B (en) 2021-01-19 Visual detection method for pose and aperture of coplanar workpiece with equal large hole patterns
CN103162622B (en) 2016-06-29 The Portable ball target of single camera vision system and use thereof and measuring method thereof
Xia et al. 2019 An accurate and robust method for the measurement of circular holes based on binocular vision
CN109345620A (en) 2019-02-15 Improved ICP point cloud splicing method of object to be measured by fusing fast point feature histogram
CN104848801B (en) 2017-06-13 A kind of line structured light vision sensor calibration method based on parallel bicylindrical target
JP2011506914A (en) 2011-03-03 System and method for multi-frame surface measurement of object shape
CN104111059A (en) 2014-10-22 Distance measuring and locating device and method and terminal
CN112268524B (en) 2023-03-10 A laser three-dimensional measuring instrument and measuring method
US12058468B2 (en) 2024-08-06 Image capturing apparatus, image processing apparatus, image processing method, image capturing apparatus calibration method, robot apparatus, method for manufacturing article using robot apparatus, and recording medium
TWI583920B (en) 2017-05-21 Measuring system of specular object and measuring method thereof
CN113362399B (en) 2022-08-30 Calibration method for positions and postures of focusing mirror and screen in deflection measurement system
CN114638795A (en) 2022-06-17 Multi-structure light measurement unit online measurement method and system
JP7353757B2 (en) 2023-10-02 Methods for measuring artifacts
WO2024138916A1 (en) 2024-07-04 2d area-array camera and line laser 3d sensor joint calibration method and apparatus
Pösch et al. 2017 Rigid and flexible endoscopes for three dimensional measurement of inside machine parts using fringe projection
CN109451298A (en) 2019-03-08 Angle of deviation detection method, device and the equipment of dual camera
Liu et al. 2022 Design and optimization of a quad-directional stereo vision sensor with wide field of view based on single camera
CN108399640A (en) 2018-08-14 A kind of speculum relative pose measurement method based on camera calibration
CN118840369A (en) 2024-10-25 Method, system and storage medium for detecting double-shaft butt joint deviation
CN105758383A (en) 2016-07-13 Precision analysis method for binocular vision measuring system
CN104568214A (en) 2015-04-29 Device and method for measuring three-dimensional temperature field of laser-induced plasma
Zhou et al. 2014 Three-dimensional measurement approach in small FOV and confined space using an electronic endoscope
CN107084990B (en) 2020-06-02 Monocular vision square steel tube concrete column three-surface detection device and detection method
Munaro et al. 2015 Efficient completeness inspection using real-time 3D color reconstruction with a dual-laser triangulation system

Legal Events

Date Code Title Description
2024-10-25 PB01 Publication
2024-10-25 PB01 Publication
2024-11-12 SE01 Entry into force of request for substantive examination
2024-11-12 SE01 Entry into force of request for substantive examination
2025-01-21 GR01 Patent grant
2025-01-21 GR01 Patent grant