CN203310915U - Phase detector based on micro mechanical direct thermoelectric power sensor - Google Patents
- ️Wed Nov 27 2013
CN203310915U - Phase detector based on micro mechanical direct thermoelectric power sensor - Google Patents
Phase detector based on micro mechanical direct thermoelectric power sensor Download PDFInfo
-
Publication number
- CN203310915U CN203310915U CN201320353732XU CN201320353732U CN203310915U CN 203310915 U CN203310915 U CN 203310915U CN 201320353732X U CN201320353732X U CN 201320353732XU CN 201320353732 U CN201320353732 U CN 201320353732U CN 203310915 U CN203310915 U CN 203310915U Authority
- CN
- China Prior art keywords
- mems
- power sensor
- output
- axis
- symmetry Prior art date
- 2013-06-19 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005540 biological transmission Effects 0.000 claims abstract description 38
- 239000000758 substrate Substances 0.000 claims abstract description 21
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 16
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 15
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 15
- 239000004065 semiconductor Substances 0.000 claims description 12
- 238000002955 isolation Methods 0.000 claims description 10
- 239000003990 capacitor Substances 0.000 claims description 5
- 238000005259 measurement Methods 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- 150000004767 nitrides Chemical class 0.000 claims 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 17
- 230000010354 integration Effects 0.000 abstract description 5
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 16
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 14
- 239000010931 gold Substances 0.000 description 14
- 229910052737 gold Inorganic materials 0.000 description 14
- 238000000206 photolithography Methods 0.000 description 14
- 239000004642 Polyimide Substances 0.000 description 12
- 229920001721 polyimide Polymers 0.000 description 12
- 229920002120 photoresistant polymer Polymers 0.000 description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 238000000034 method Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000009713 electroplating Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Landscapes
- Gyroscopes (AREA)
Abstract
本实用新型公开了一种基于微机械直接热电式功率传感器的相位检测器,包括衬底、设置在衬底上的地线、MEMS功合器、共面波导传输线、两组MEMS固支梁结构和MEMS直接热电式微波功率传感器、以及外接的压控振荡器和频率计;MEMS功合器用于将输入的两路信号进行矢量合成,然后由MEMS直接热电式微波功率传感器检测合成后的微波信号的功率,最后输出直流电压。本实用新型提供的基于微机械直接热电式功率传感器的相位检测器不但具有新颖的结构,而且精简了一般相位检测器的组成模块,其直接将鉴相器和低通滤波器两个模块简化为一个由MEMS功合器和MEMS直接热电式微波功率传感器构成的模块,提高了相位检测器的集成度,并且能与GaAs单片微波集成电路兼容。
The utility model discloses a phase detector based on a micromechanical direct thermoelectric power sensor, which comprises a substrate, a ground wire arranged on the substrate, a MEMS power combiner, a coplanar waveguide transmission line, and two sets of MEMS fixed beam structures And MEMS direct thermoelectric microwave power sensor, and external voltage-controlled oscillator and frequency meter; MEMS power combiner is used to vector synthesize the input two-way signal, and then the synthesized microwave signal is detected by MEMS direct thermoelectric microwave power sensor power, and finally output a DC voltage. The phase detector based on the micromechanical direct thermoelectric power sensor provided by the utility model not only has a novel structure, but also simplifies the composition modules of the general phase detector, which directly simplifies the two modules of the phase detector and the low-pass filter into A module composed of a MEMS power combiner and a MEMS direct pyroelectric microwave power sensor improves the integration of a phase detector and is compatible with a GaAs monolithic microwave integrated circuit.
Description
技术领域technical field
本实用新型涉及一种基于微机械直接热电式功率传感器的相位检测器及其制备方法,属于微电子机械(MEMS)技术。The utility model relates to a phase detector based on a micro-mechanical direct thermoelectric power sensor and a preparation method thereof, belonging to the technology of micro-electronic machinery (MEMS).
背景技术Background technique
在微波技术研究中,作为表征信号的三大参数(幅度、频率和相位)之一的微波相位是微波信号的一个重要参数。微波信号相位检测器在相控阵雷达、天线、锁相环、相位测量设备等系统中有着广泛的应用。微波信号相位检测器的原理是将相位差转化为便于测量的电压、电流和频率信号,并由它们反映出相位差。目前实现微波相位检测的方法主要有二极管结构、乘法器结构及矢量运算法,矢量运算法与前面两种方法相比具有低功耗、频带宽、结构简单等优点。MEMS具有体积小、功耗低、成本低等优点,随着MEMS技术的发展以及现如今对于MEMS直接热电式微波功率传感器的深入研究,使利用MEMS技术实现基于微机械直接热电式功率传感器的相位检测器成为可能。In the research of microwave technology, the microwave phase, one of the three parameters (amplitude, frequency and phase) that characterizes the signal, is an important parameter of the microwave signal. Microwave signal phase detectors are widely used in systems such as phased array radars, antennas, phase-locked loops, and phase measurement equipment. The principle of the microwave signal phase detector is to convert the phase difference into voltage, current and frequency signals that are easy to measure, and reflect the phase difference by them. At present, the methods for realizing microwave phase detection mainly include diode structure, multiplier structure and vector algorithm. Compared with the previous two methods, vector algorithm has the advantages of low power consumption, wide frequency bandwidth, and simple structure. MEMS has the advantages of small size, low power consumption, and low cost. With the development of MEMS technology and the in-depth research on MEMS direct thermoelectric microwave power sensors, the phase detectors are possible.
实用新型内容Utility model content
发明目的:为了克服现有技术中存在的不足,本实用新型提供一种基于微机械直接热电式功率传感器的相位检测器及其制备方法,直接将鉴相器和低通滤波器两个模块简化为一个由MEMS功合器和MEMS直接热电式微波功率传感器构成的模块,以提高相位检测器的集成度。Purpose of the invention: In order to overcome the deficiencies in the prior art, the utility model provides a phase detector based on a micromechanical direct thermoelectric power sensor and its preparation method, which directly simplifies the two modules of the phase detector and the low-pass filter It is a module composed of a MEMS power combiner and a MEMS direct pyroelectric microwave power sensor, so as to improve the integration degree of the phase detector.
技术方案:为实现上述目的,本实用新型采用的技术方案为:Technical scheme: in order to achieve the above object, the technical scheme adopted in the utility model is:
基于微机械直接热电式功率传感器的相位检测器,包括衬底、设置在衬底上的地线、MEMS功合器、共面波导(CPW)传输线、两组MEMS固支梁结构和MEMS直接热电式微波功率传感器、以及外接的压控振荡器和频率计,在衬底上定义一条对称轴线;A phase detector based on a micromachined direct thermoelectric power sensor, including a substrate, a ground wire set on the substrate, a MEMS power combiner, a coplanar waveguide (CPW) transmission line, two sets of MEMS fixed beam structures and MEMS direct thermoelectric A microwave power sensor, an external voltage-controlled oscillator and a frequency meter define a symmetrical axis on the substrate;
所述地线形成沿对称轴线对称的结构,包括对称位于对称轴线两侧且不相接触的两段侧边地线、以及对称位于对称轴线上的一段公共地线;The ground line forms a symmetrical structure along the axis of symmetry, including two sections of side ground lines symmetrically located on both sides of the axis of symmetry and not in contact, and a section of common ground line symmetrically located on the axis of symmetry;
所述MEMS功合器形成沿对称轴线对称的结构,包括对称位于对称轴线两侧的两段不对称共面带线(ACPS)和隔离电阻,所述两段不对称共面带线的输入端通过隔离电阻隔离、输出端相连接;The MEMS power combiner forms a symmetrical structure along the axis of symmetry, including two sections of asymmetric coplanar striplines (ACPS) and isolation resistors symmetrically located on both sides of the axis of symmetry, and the input ends of the two sections of asymmetric coplanar striplines Isolate and connect the output terminals through the isolation resistor;
所述共面波导传输线形成沿对称轴线对称的结构,包括位于对称轴线两侧且不相连接的两段输入共面波导传输线、以及对称位于对称轴线上的一段输出共面波导传输线;所述两段输入共面波导传输线分别与两段不对称共面带线的输入端相连接,分别作为第一信号输入端口和第二信号输入端口;所述两段不对称共面带线的输出端相连接后接入输出共面波导传输线,作为信号输出端口;The coplanar waveguide transmission line forms a symmetrical structure along the axis of symmetry, including two sections of input coplanar waveguide transmission line located on both sides of the axis of symmetry and not connected, and a section of output coplanar waveguide transmission line symmetrically located on the axis of symmetry; the two sections One section of input coplanar waveguide transmission line is respectively connected to the input ends of two sections of asymmetric coplanar strip lines, which are respectively used as the first signal input port and the second signal input port; the output ends of the two sections of asymmetric coplanar strip lines are in phase After connection, connect the output coplanar waveguide transmission line as the signal output port;
所述两组MEMS固支梁结构分别设置在对称轴线的两侧且相对对称轴线对称,所述MEMS固支梁结构包括MEMS固支梁和锚区,所述MEMS固支梁跨接在位于同一侧的输入共面波导传输线的上方、两端分别通过锚区固定在位于同一侧的侧边地线和公共地线上;所述MEMS固支梁和位于其下方的输入共面波导传输线构成补偿电容;The two groups of MEMS fixed beam structures are respectively arranged on both sides of the axis of symmetry and are symmetrical to the axis of symmetry. The MEMS fixed beam structure includes a MEMS fixed beam and an anchor area. The top and both ends of the input coplanar waveguide transmission line on the side are respectively fixed on the side ground wire and the common ground wire on the same side through the anchor area; the MEMS fixed support beam and the input coplanar waveguide transmission line below it constitute compensation capacitance;
所述MEMS直接热电式微波功率传感器包括两组氮化钽电阻、半导体热电偶臂和直流输出块,所述信号输出端口分成两路分别通过一组氮化钽电阻和半导体热电偶臂与两段侧边地线相连接,其中一段侧边地线通过一个直流输出块接入压控振荡器,另一段侧边地线通过另一个直流输出块接地;所述两组氮化钽电阻和半导体热电偶臂形成串联结构;The MEMS direct thermoelectric microwave power sensor includes two sets of tantalum nitride resistors, semiconductor thermocouple arms and a DC output block. The side ground wires are connected, one of the side ground wires is connected to the voltage-controlled oscillator through a DC output block, and the other side ground wire is grounded through another DC output block; the two sets of tantalum nitride resistors and semiconductor thermoelectric The even arms form a series structure;
所述压控振荡器的输出信号接入频率计。The output signal of the voltage-controlled oscillator is connected to the frequency meter.
优选的,所述输入共面波导传输线上位于MEMS固支梁下方的部分表面覆盖有氮化硅介质层。Preferably, a part of the surface of the input coplanar waveguide transmission line below the MEMS fixed support beam is covered with a silicon nitride dielectric layer.
优选的,其中一个直流输出块和侧边地线之间的连接线的两层金属之间有氮化硅介质层。Preferably, there is a silicon nitride dielectric layer between the two metal layers of the connecting wire between one of the DC output blocks and the side ground wire.
优选的,所述MEMS直接热电式微波功率传感器基于Seebeck原理对MEMS功合器输出的合成微波信号的功率进行检测,并在直流输出块上以直流电压的形式输出测量结果。Preferably, the MEMS direct thermoelectric microwave power sensor detects the power of the synthesized microwave signal output by the MEMS combiner based on the Seebeck principle, and outputs the measurement result in the form of a DC voltage on the DC output block.
所述衬底为砷化镓衬底。The substrate is a gallium arsenide substrate.
上述相位检测器中,CPW传输线用于实现微波信号的传输。MEMS固支梁和位于其下方的输入共面波导传输线构成补偿电容,该补偿电容的设计可以在实现电路阻抗匹配的同时缩小MEMS功合器的尺寸,使得整个相位检测器的集成度更高。MEMS功合器用于将输入的两路信号(第一信号和第二信号)进行矢量合成,然后由MEMS直接热电式微波功率传感器检测合成后的微波信号的功率,最后输出直流电压;输出的直流电压直接接入到压控振荡器的输入端,由压控振荡器产生输出信号;压控振荡器产生的输出信号接入频率计,然后由所测得的频率可以推算出第一信号和第二信号之间的相位差,从而实现基于微机械直接热电式功率传感器的相位检测器。In the above phase detector, the CPW transmission line is used to realize the transmission of microwave signals. The MEMS fixed support beam and the input coplanar waveguide transmission line below it constitute a compensation capacitor. The design of the compensation capacitor can reduce the size of the MEMS power combiner while achieving circuit impedance matching, making the integration of the entire phase detector higher. The MEMS power combiner is used for vector synthesis of the input two signals (the first signal and the second signal), and then the MEMS direct thermoelectric microwave power sensor detects the power of the synthesized microwave signal, and finally outputs a DC voltage; the output DC The voltage is directly connected to the input terminal of the voltage-controlled oscillator, and the output signal is generated by the voltage-controlled oscillator; the output signal generated by the voltage-controlled oscillator is connected to the frequency meter, and then the first signal and the second signal can be calculated from the measured frequency. The phase difference between the two signals, thereby realizing a phase detector based on a micromachined direct pyroelectric power sensor.
一种基于微机械直接热电式功率传感器的相位检测器的制备方法,包括如下步骤:A method for preparing a phase detector based on a micromechanical direct pyroelectric power sensor, comprising the steps of:
(1)准备砷化镓衬底:选用外延的半绝缘砷化镓衬底,其中外延N+砷化镓的掺杂浓度为1018cm-3,其方块电阻值为100~130Ω/□;(1) Prepare gallium arsenide substrate: choose an epitaxial semi-insulating gallium arsenide substrate, in which the doping concentration of epitaxial N + gallium arsenide is 10 18 cm -3 , and its square resistance value is 100-130Ω/□;
(2)光刻并隔离外延N+砷化镓,形成热电堆的半导体热偶臂的图形;(2) Photolithography and isolation of epitaxial N + gallium arsenide to form the pattern of the semiconductor thermocouple arm of the thermopile;
(3)反刻N+砷化镓,形成掺杂浓度为1017cm-3的热电堆的半导体热偶臂;(3) Reverse etching of N + gallium arsenide to form a semiconductor thermocouple arm of a thermopile with a doping concentration of 10 17 cm -3 ;
(4)光刻:去除将要保留氮化钽地方的光刻胶;(4) Photolithography: remove the photoresist where the tantalum nitride will be kept;
(5)溅射氮化钽,厚度为1μm;(5) Sputtering tantalum nitride with a thickness of 1 μm;
(6)剥离;(6) Stripping;
(7)光刻:去除将要保留第一层金的地方的光刻胶;(7) Photolithography: remove the photoresist where the first layer of gold will be kept;
(8)蒸发第一层金,厚度为0.3μm;(8) Evaporate the first layer of gold with a thickness of 0.3 μm;
(9)剥离,形成共面波导传输线和地线,MEMS固支梁的锚区;(9) Stripping to form coplanar waveguide transmission lines and ground wires, and the anchor area of the MEMS-fixed beam;
(10)反刻氮化钽,形成氮化钽电阻和隔离电阻,其方块电阻为25Ω/□;(10) Anti-etch tantalum nitride to form tantalum nitride resistance and isolation resistance, and its square resistance is 25Ω/□;
(11)淀积氮化硅:用等离子体增强型化学气相淀积法工艺生长
厚的氮化硅介质层;(11) Deposition of silicon nitride: growth by plasma-enhanced chemical vapor deposition Thick silicon nitride dielectric layer;(12)光刻并刻蚀氮化硅介质层:保留在MEMS固支梁下方共面波导传输线上的氮化硅介质层,以及隔离MEMS直接热电式功率传感器输出端和地线连接处的氮化硅介质层;(12) Photolithography and etching of the silicon nitride dielectric layer: retain the silicon nitride dielectric layer on the coplanar waveguide transmission line under the MEMS fixed beam, and isolate the nitrogen at the output end of the MEMS direct thermoelectric power sensor and the ground connection silicon dielectric layer;
(13)淀积并光刻聚酰亚胺牺牲层:在砷化镓衬底上涂覆1.6μm厚的聚酰亚胺牺牲层,要求填满凹坑,通过聚酰亚胺牺牲层的厚度决定MEMS固支梁与其下方氮化硅介质层之间的距离;光刻聚酰亚胺牺牲层,仅保留MEMS固支梁下方的牺牲层;(13) Deposition and photolithography of polyimide sacrificial layer: Coating a 1.6 μm thick polyimide sacrificial layer on a gallium arsenide substrate, it is required to fill the pits, through the thickness of the polyimide sacrificial layer Determine the distance between the MEMS fixed support beam and the silicon nitride dielectric layer below it; photolithography polyimide sacrificial layer, and only keep the sacrificial layer under the MEMS fixed support beam;
(14)蒸发钛/金/钛,厚度为蒸发用于电镀的底金;(14) Evaporated titanium/gold/titanium with a thickness of Evaporation of base gold for electroplating;
(15)光刻:去除要电镀地方的光刻胶;(15) Photolithography: remove the photoresist at the place to be plated;
(16)电镀金,厚度为2μm;(16) Electroplated gold with a thickness of 2 μm;
(17)去除光刻胶:去除不需要电镀地方的光刻胶;(17) Remove photoresist: remove photoresist where electroplating is not required;
(18)反刻钛/金/钛,腐蚀底金,形成共面波导传输线、地线、MEMS固支梁、直流输出块;(18) Anti-engraving titanium/gold/titanium, corroding the bottom gold, forming coplanar waveguide transmission lines, ground wires, MEMS fixed support beams, and DC output blocks;
(19)将该砷化镓衬底背面减薄至100μm;(19) thinning the backside of the gallium arsenide substrate to 100 μm;
(20)释放聚酰亚胺牺牲层:显影液浸泡,去除MEMS固支梁下的聚酰亚胺牺牲层,去离子水稍稍浸泡,无水乙醇脱水,常温下挥发,晾干;(20) Release the polyimide sacrificial layer: soak in the developer, remove the polyimide sacrificial layer under the MEMS immobilized beam, soak in deionized water for a while, dehydrate with absolute ethanol, volatilize at room temperature, and dry in the air;
(21)外接压控振荡器和频率计。(21) External voltage-controlled oscillator and frequency meter.
有益效果:本实用新型提供的基于微机械直接热电式功率传感器的相位检测器不但具有新颖的结构,而且精简了一般相位检测器的组成模块,其直接将鉴相器和低通滤波器两个模块简化为一个由MEMS功合器和MEMS直接热电式微波功率传感器构成的模块,提高了相位检测器的集成度,并且能与GaAs单片微波集成电路兼容。Beneficial effects: the phase detector based on the micromechanical direct thermoelectric power sensor provided by the utility model not only has a novel structure, but also simplifies the composition modules of the general phase detector, which directly combines the phase detector and the low-pass filter into two The module is simplified as a module composed of a MEMS power combiner and a MEMS direct pyroelectric microwave power sensor, which improves the integration of the phase detector and is compatible with GaAs monolithic microwave integrated circuits.
附图说明Description of drawings
图1为本实用新型的俯视结构示意图;Fig. 1 is the top view structural representation of the utility model;
图2为图1的A-A'向剖面图;Fig. 2 is the AA' direction sectional view of Fig. 1;
图3为图1的B-B'向剖面图。FIG. 3 is a sectional view taken along line BB' of FIG. 1 .
具体实施方式Detailed ways
下面结合附图对本实用新型作更进一步的说明。Below in conjunction with accompanying drawing, the utility model is described further.
如图1、图2、图3所示为基于微机械直接热电式功率传感器的相位检测器,包括衬底1、设置在衬底1上的地线2、MEMS功合器、共面波导传输线3、两组MEMS固支梁结构和MEMS直接热电式微波功率传感器、以及外接的压控振荡器和频率计,在衬底1上定义一条对称轴线;下面就各个组成部分加以具体说明。As shown in Figure 1, Figure 2, and Figure 3, the phase detector based on the micromachined direct thermoelectric power sensor includes a substrate 1, a ground wire 2 set on the substrate 1, a MEMS power coupler, and a coplanar waveguide transmission line 3. Two groups of MEMS fixed-support beam structures, MEMS direct thermoelectric microwave power sensors, and external voltage-controlled oscillators and frequency meters define a symmetrical axis on the substrate 1; each component will be described in detail below.
所述地线2形成沿对称轴线对称的结构,包括对称位于对称轴线两侧且不相接触的两段侧边地线、以及对称位于对称轴线上的一段公共地线。The ground wire 2 forms a symmetrical structure along the axis of symmetry, including two sections of side ground wires that are symmetrically located on both sides of the axis of symmetry and do not touch each other, and a section of common ground wire that is symmetrically located on the axis of symmetry.
所述MEMS功合器用于将输入的两路信号(参考信号和反馈信号)进行矢量合成,其形成沿对称轴线对称的结构,包括对称位于对称轴线两侧的两段不对称共面带线4和隔离电阻5,所述两段不对称共面带线4的输入端通过隔离电阻5隔离、输出端相连接。The MEMS power combiner is used for vector synthesis of two input signals (reference signal and feedback signal), which forms a symmetrical structure along the axis of symmetry, including two sections of asymmetric coplanar strip lines symmetrically located on both sides of the axis of symmetry 4 and an isolation resistor 5, the input terminals of the two sections of asymmetric coplanar strip lines 4 are isolated by the isolation resistor 5, and the output terminals are connected.
所述共面波导传输线3用于实现微波信号的传输,其形成沿对称轴线对称的结构,包括位于对称轴线两侧且不相连接的两段输入共面波导传输线、以及对称位于对称轴线上的一段输出共面波导传输线;所述两段输入共面波导传输线分别与两段不对称共面带线4的输入端相连接,分别作为第一信号输入端口和第二信号输入端口;所述两段不对称共面带线4的输出端相连接后接入输出共面波导传输线,作为信号输出端口。The coplanar waveguide transmission line 3 is used to realize the transmission of microwave signals, which forms a symmetrical structure along the axis of symmetry, including two sections of input coplanar waveguide transmission lines that are located on both sides of the axis of symmetry and are not connected, and two segments that are symmetrically located on the axis of symmetry. A section of output coplanar waveguide transmission line; the two sections of input coplanar waveguide transmission line are respectively connected to the input ends of two sections of asymmetric coplanar stripline 4, which are respectively used as the first signal input port and the second signal input port; the two sections The output ends of the segments of asymmetrical coplanar stripline 4 are connected to the output coplanar waveguide transmission line as a signal output port.
所述两组MEMS固支梁结构分别设置在对称轴线的两侧且相对对称轴线对称,所述MEMS固支梁结构包括MEMS固支梁10和锚区11,所述MEMS固支梁10跨接在位于同一侧的输入共面波导传输线的上方、两端分别通过锚区11固定在位于同一侧的侧边地线和公共地线上;所述输入共面波导传输线上位于MEMS固支梁10下方的部分表面覆盖有氮化硅介质层9,所述MEMS固支梁10和位于其下方的输入共面波导传输线构成补偿电容,该补偿电容的设计可以在实现电路阻抗匹配的同时缩小MEMS功分器的尺寸,使得整个相位检测器的集成度更高。The two groups of MEMS fixed beam structures are respectively arranged on both sides of the axis of symmetry and are symmetrical to the axis of symmetry. The MEMS fixed beam structure includes a MEMS fixed beam 10 and an anchor area 11, and the MEMS fixed beam 10 bridges the Above the input coplanar waveguide transmission line on the same side, both ends are respectively fixed on the side ground wire and the common ground wire on the same side through the anchor area 11; the input coplanar waveguide transmission line is located on the MEMS fixed support beam 10 Part of the surface below is covered with a silicon nitride dielectric layer 9, and the MEMS fixed support beam 10 and the input coplanar waveguide transmission line below it form a compensation capacitor. The design of the compensation capacitor can reduce the MEMS power while achieving circuit impedance matching. The size of the divider makes the integration of the whole phase detector higher.
所述MEMS直接热电式微波功率传感器用于对MEMS功合器合成后的微波信号的功率进行检测并输出直流电压,其包括两组氮化钽电阻7、半导体热电偶臂6和直流输出块8,所述信号输出端口分成两路分别通过一组氮化钽电阻7和半导体热电偶臂6与两段侧边地线相连接,其中一段侧边地线通过一个直流输出块8接入压控振荡器,另一段侧边地线通过另一个直流输出块8接地;所述两组氮化钽电阻7和半导体热电偶臂6形成串联结构;其中一个直流输出块8和侧边地线之间的连接线的两层金属之间有氮化硅介质层9。所述MEMS直接热电式微波功率传感器基于Seebeck原理对MEMS功合器输出的合成微波信号的功率进行检测,并在直流输出块8上以直流电压的形式输出测量结果。The MEMS direct thermoelectric microwave power sensor is used to detect the power of the microwave signal synthesized by the MEMS power combiner and output a DC voltage, which includes two sets of tantalum nitride resistors 7, semiconductor thermocouple arms 6 and a DC output block 8 , the signal output port is divided into two paths and respectively connected to two sections of side ground wires through a group of tantalum nitride resistors 7 and semiconductor thermocouple arms 6, wherein one section of side ground wires is connected to the voltage control through a DC output block 8 Oscillator, another section of side ground wire is grounded through another DC output block 8; the two groups of tantalum nitride resistors 7 and semiconductor thermocouple arms 6 form a series structure; one of the DC output blocks 8 and the side ground wire There is a silicon nitride dielectric layer 9 between the two metal layers of the connection line. The MEMS direct thermoelectric microwave power sensor detects the power of the synthesized microwave signal output by the MEMS power combiner based on the Seebeck principle, and outputs the measurement result in the form of a DC voltage on the DC output block 8 .
所述压控振荡器的输出信号接入频率计,然后由所测得的频率可以推算出第一信号和第二信号之间的相位差,从而实现基于微机械直接热电式功率传感器的相位检测器。The output signal of the voltage-controlled oscillator is connected to the frequency meter, and then the phase difference between the first signal and the second signal can be calculated from the measured frequency, so as to realize the phase detection based on the micromechanical direct thermoelectric power sensor device.
一种基于微机械直接热电式功率传感器的相位检测器的制备方法,包括如下步骤:A method for preparing a phase detector based on a micromechanical direct pyroelectric power sensor, comprising the steps of:
(1)准备砷化镓衬底:选用外延的半绝缘砷化镓衬底,其中外延N+砷化镓的掺杂浓度为1018cm-3,其方块电阻值为100~130Ω/□;(1) Prepare gallium arsenide substrate: choose an epitaxial semi-insulating gallium arsenide substrate, in which the doping concentration of epitaxial N + gallium arsenide is 10 18 cm -3 , and its square resistance value is 100-130Ω/□;
(2)光刻并隔离外延N+砷化镓,形成热电堆的半导体热偶臂的图形;(2) Photolithography and isolation of epitaxial N + gallium arsenide to form the pattern of the semiconductor thermocouple arm of the thermopile;
(3)反刻N+砷化镓,形成掺杂浓度为1017cm-3的热电堆的半导体热偶臂;(3) Reverse etching of N + gallium arsenide to form a semiconductor thermocouple arm of a thermopile with a doping concentration of 10 17 cm -3 ;
(4)光刻:去除将要保留氮化钽地方的光刻胶;(4) Photolithography: remove the photoresist where the tantalum nitride will be kept;
(5)溅射氮化钽,厚度为1μm;(5) Sputtering tantalum nitride with a thickness of 1 μm;
(6)剥离;(6) Stripping;
(7)光刻:去除将要保留第一层金的地方的光刻胶;(7) Photolithography: remove the photoresist where the first layer of gold will be kept;
(8)蒸发第一层金,厚度为0.3μm;(8) Evaporate the first layer of gold with a thickness of 0.3 μm;
(9)剥离,形成共面波导传输线和地线,MEMS固支梁的锚区;(9) Stripping to form coplanar waveguide transmission lines and ground wires, and the anchor area of the MEMS-fixed beam;
(10)反刻氮化钽,形成氮化钽电阻和隔离电阻,其方块电阻为25Ω/□;(10) Anti-etch tantalum nitride to form tantalum nitride resistance and isolation resistance, and its square resistance is 25Ω/□;
(11)淀积氮化硅:用等离子体增强型化学气相淀积法工艺生长
厚的氮化硅介质层;(11) Deposition of silicon nitride: growth by plasma-enhanced chemical vapor deposition Thick silicon nitride dielectric layer;(12)光刻并刻蚀氮化硅介质层:保留在MEMS固支梁下方共面波导传输线上的氮化硅介质层,以及隔离MEMS直接热电式功率传感器输出端和地线连接处的氮化硅介质层;(12) Photolithography and etching of the silicon nitride dielectric layer: retain the silicon nitride dielectric layer on the coplanar waveguide transmission line under the MEMS fixed beam, and isolate the nitrogen at the output end of the MEMS direct thermoelectric power sensor and the ground connection silicon dielectric layer;
(13)淀积并光刻聚酰亚胺牺牲层:在砷化镓衬底上涂覆1.6μm厚的聚酰亚胺牺牲层,要求填满凹坑,通过聚酰亚胺牺牲层的厚度决定MEMS固支梁与其下方氮化硅介质层之间的距离;光刻聚酰亚胺牺牲层,仅保留MEMS固支梁下方的牺牲层;(13) Deposition and photolithography of polyimide sacrificial layer: Coating a 1.6 μm thick polyimide sacrificial layer on a gallium arsenide substrate, it is required to fill the pits, through the thickness of the polyimide sacrificial layer Determine the distance between the MEMS fixed support beam and the silicon nitride dielectric layer below it; photolithography polyimide sacrificial layer, and only keep the sacrificial layer under the MEMS fixed support beam;
(14)蒸发钛/金/钛,厚度为
蒸发用于电镀的底金;(14) Evaporated titanium/gold/titanium with a thickness of Evaporation of base gold for electroplating;(15)光刻:去除要电镀地方的光刻胶;(15) Photolithography: remove the photoresist at the place to be plated;
(16)电镀金,厚度为2μm;(16) Electroplated gold with a thickness of 2 μm;
(17)去除光刻胶:去除不需要电镀地方的光刻胶;(17) Remove photoresist: remove photoresist where electroplating is not required;
(18)反刻钛/金/钛,腐蚀底金,形成共面波导传输线、地线、MEMS固支梁、直流输出块;(18) Anti-engraving titanium/gold/titanium, corroding the bottom gold, forming coplanar waveguide transmission lines, ground wires, MEMS fixed support beams, and DC output blocks;
(19)将该砷化镓衬底背面减薄至100μm;(19) thinning the backside of the gallium arsenide substrate to 100 μm;
(20)释放聚酰亚胺牺牲层:显影液浸泡,去除MEMS固支梁下的聚酰亚胺牺牲层,去离子水稍稍浸泡,无水乙醇脱水,常温下挥发,晾干;(20) Release the polyimide sacrificial layer: soak in the developer, remove the polyimide sacrificial layer under the MEMS immobilized beam, soak in deionized water for a while, dehydrate with absolute ethanol, volatilize at room temperature, and dry in the air;
(21)外接压控振荡器和频率计。(21) External voltage-controlled oscillator and frequency meter.
以上所述仅是本实用新型的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本实用新型的保护范围。The above is only a preferred embodiment of the utility model, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the utility model, some improvements and modifications can also be made. Retouching should also be regarded as the scope of protection of the present utility model.
Claims (4)
1.基于微机械直接热电式功率传感器的相位检测器,其特征在于:包括衬底(1)、设置在衬底(1)上的地线(2)、MEMS功合器、共面波导传输线(3)、两组MEMS固支梁结构和MEMS直接热电式微波功率传感器、以及外接的压控振荡器和频率计,在衬底(1)上定义一条对称轴线;1. A phase detector based on a micromechanical direct thermoelectric power sensor, characterized in that it includes a substrate (1), a ground wire (2) arranged on the substrate (1), a MEMS power combiner, and a coplanar waveguide transmission line (3), two sets of MEMS fixed support beam structure and MEMS direct thermoelectric microwave power sensor, as well as external voltage-controlled oscillator and frequency meter, define a symmetrical axis on the substrate (1); 所述地线(2)形成沿对称轴线对称的结构,包括对称位于对称轴线两侧且不相接触的两段侧边地线、以及对称位于对称轴线上的一段公共地线;The ground line (2) forms a symmetrical structure along the axis of symmetry, including two sections of side ground lines that are symmetrically located on both sides of the axis of symmetry and do not touch each other, and a section of common ground line that is symmetrically located on the axis of symmetry; 所述MEMS功合器形成沿对称轴线对称的结构,包括对称位于对称轴线两侧的两段不对称共面带线(4)和隔离电阻(5),所述两段不对称共面带线(4)的输入端通过隔离电阻(5)隔离、输出端相连接;The MEMS power combiner forms a symmetrical structure along the axis of symmetry, including two sections of asymmetric coplanar strip lines (4) and isolation resistors (5) symmetrically located on both sides of the axis of symmetry, and the two sections of asymmetric coplanar strip lines The input terminal of (4) is isolated through the isolation resistor (5), and the output terminal is connected; 所述共面波导传输线(3)形成沿对称轴线对称的结构,包括位于对称轴线两侧且不相连接的两段输入共面波导传输线、以及对称位于对称轴线上的一段输出共面波导传输线;所述两段输入共面波导传输线分别与两段不对称共面带线(4)的输入端相连接,分别作为第一信号输入端口和第二信号输入端口;所述两段不对称共面带线(4)的输出端相连接后接入输出共面波导传输线,作为信号输出端口;The coplanar waveguide transmission line (3) forms a symmetrical structure along the axis of symmetry, including two sections of input coplanar waveguide transmission lines that are not connected and located on both sides of the axis of symmetry, and a section of output coplanar waveguide transmission lines symmetrically located on the axis of symmetry; The two sections of input coplanar waveguide transmission lines are respectively connected to the input ends of the two sections of asymmetric coplanar striplines (4), serving as the first signal input port and the second signal input port respectively; the two sections of asymmetric coplanar The output ends of the strip line (4) are connected to each other and then connected to the output coplanar waveguide transmission line as a signal output port; 所述两组MEMS固支梁结构分别设置在对称轴线的两侧且相对对称轴线对称,所述MEMS固支梁结构包括MEMS固支梁(10)和锚区(11),所述MEMS固支梁(10)跨接在位于同一侧的输入共面波导传输线的上方、两端分别通过锚区(11)固定在位于同一侧的侧边地线和公共地线上;所述MEMS固支梁(10)和位于其下方的输入共面波导传输线构成补偿电容;The two groups of MEMS-supported beam structures are respectively arranged on both sides of the axis of symmetry and are symmetrical to the axis of symmetry. The MEMS-supported beam structure includes a MEMS-supported beam (10) and an anchor area (11). The beam (10) is connected above the input coplanar waveguide transmission line on the same side, and the two ends are respectively fixed on the side ground wire and the common ground wire on the same side through the anchor area (11); the MEMS fixed beam (10) and the input coplanar waveguide transmission line below it constitute a compensation capacitor; 所述MEMS直接热电式微波功率传感器包括两组氮化钽电阻(7)、半导体热电偶臂(6)和直流输出块(8),所述信号输出端口分成两路分别通过一组氮化钽电阻(7)和半导体热电偶臂(6)与两段侧边地线相连接,其中一段侧边地线通过一个直流输出块(8)接入压控振荡器,另一段侧边地线通过另一个直流输出块(8)接地;所述两组氮化钽电阻(7)和半导体热电偶臂(6)形成串联结构;The MEMS direct thermoelectric microwave power sensor includes two sets of tantalum nitride resistors (7), a semiconductor thermocouple arm (6) and a DC output block (8), and the signal output port is divided into two channels through a set of tantalum nitride resistors The resistor (7) and the semiconductor thermocouple arm (6) are connected to two sections of side ground wires, one of which is connected to the voltage controlled oscillator through a DC output block (8), and the other side ground wire is connected to the voltage controlled oscillator through a DC output block (8). Another DC output block (8) is grounded; the two sets of tantalum nitride resistors (7) and semiconductor thermocouple arms (6) form a series structure; 所述压控振荡器的输出信号接入频率计。The output signal of the voltage-controlled oscillator is connected to the frequency meter. 2.根据权利要求1所述的基于微机械直接热电式功率传感器的相位检测器,其特征在于:所述输入共面波导传输线上位于MEMS固支梁(10)下方的部分表面覆盖有氮化硅介质层(9)。2. The phase detector based on micromachined direct thermoelectric power sensor according to claim 1, characterized in that: part of the surface of the input coplanar waveguide transmission line below the MEMS fixed support beam (10) is covered with nitride Silicon dielectric layer (9). 3.根据权利要求1所述的基于微机械直接热电式功率传感器的相位检测器,其特征在于:其中一个直流输出块(8)和侧边地线之间的连接线的两层金属之间有氮化硅介质层(9)。3. The phase detector based on micromechanical direct pyroelectric power sensor according to claim 1, characterized in that: between the two layers of metal of the connection line between one of the DC output blocks (8) and the side ground wire There is a silicon nitride dielectric layer (9). 4.根据权利要求1所述的基于微机械直接热电式功率传感器的相位检测器,其特征在于:所述MEMS直接热电式微波功率传感器基于Seebeck原理对MEMS功合器输出的合成微波信号的功率进行检测,并在直流输出块(8)上以直流电压的形式输出测量结果。4. the phase detector based on micromachine direct thermoelectric power sensor according to claim 1, is characterized in that: described MEMS direct thermoelectric microwave power sensor is based on Seebeck principle to the power of the synthesized microwave signal of MEMS power coupler output The detection is carried out and the measurement result is output as a DC voltage on the DC output block (8).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201320353732XU CN203310915U (en) | 2013-06-19 | 2013-06-19 | Phase detector based on micro mechanical direct thermoelectric power sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201320353732XU CN203310915U (en) | 2013-06-19 | 2013-06-19 | Phase detector based on micro mechanical direct thermoelectric power sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN203310915U true CN203310915U (en) | 2013-11-27 |
Family
ID=49617116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201320353732XU Expired - Lifetime CN203310915U (en) | 2013-06-19 | 2013-06-19 | Phase detector based on micro mechanical direct thermoelectric power sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN203310915U (en) |
Cited By (10)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103344831A (en) * | 2013-06-19 | 2013-10-09 | 东南大学 | Phase detector based on micromechanical direct thermoelectric power sensors and preparation method thereof |
CN106645921A (en) * | 2017-01-24 | 2017-05-10 | 东南大学 | Direct type millimeter wave signal detector for silicon-based gap coupling type T-shaped knot |
CN106771604A (en) * | 2017-01-24 | 2017-05-31 | 东南大学 | Silicon substrate given frequency slot-coupled formula T junction indirect type millimeter wave phase detectors |
CN106771601A (en) * | 2017-01-24 | 2017-05-31 | 东南大学 | Silicon substrate cantilever beam T junction direct-heating type unknown frequency millimeter wave phase detectors |
CN106841783A (en) * | 2017-01-24 | 2017-06-13 | 东南大学 | Silicon substrate cantilever beam T junction indirect heating type unknown frequency millimeter wave phase detectors |
CN106841791A (en) * | 2017-01-24 | 2017-06-13 | 东南大学 | Silicon substrate unknown frequency slot-coupled formula direct-type millimeter wave phase detectors |
CN106841797A (en) * | 2017-01-24 | 2017-06-13 | 东南大学 | Silicon substrate unknown frequency slot-coupled formula T junction direct-type millimeter wave phase detectors |
CN106841802A (en) * | 2017-01-24 | 2017-06-13 | 东南大学 | Based on the silicon substrate online millimeter wave phase detectors of cantilever beam T junction indirectly heat |
CN106841784A (en) * | 2017-01-24 | 2017-06-13 | 东南大学 | Silicon-base micro-mechanical cantilever beam couples the online millimeter wave phase detectors of indirectly heat |
CN106841786A (en) * | 2017-01-24 | 2017-06-13 | 东南大学 | Based on silicon substrate cantilever beam T junction indirect heating type millimeter-wave signal detector |
-
2013
- 2013-06-19 CN CN201320353732XU patent/CN203310915U/en not_active Expired - Lifetime
Cited By (20)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103344831A (en) * | 2013-06-19 | 2013-10-09 | 东南大学 | Phase detector based on micromechanical direct thermoelectric power sensors and preparation method thereof |
CN103344831B (en) * | 2013-06-19 | 2015-04-29 | 东南大学 | Phase detector based on micromechanical direct thermoelectric power sensors and preparation method thereof |
CN106645921A (en) * | 2017-01-24 | 2017-05-10 | 东南大学 | Direct type millimeter wave signal detector for silicon-based gap coupling type T-shaped knot |
CN106771604A (en) * | 2017-01-24 | 2017-05-31 | 东南大学 | Silicon substrate given frequency slot-coupled formula T junction indirect type millimeter wave phase detectors |
CN106771601A (en) * | 2017-01-24 | 2017-05-31 | 东南大学 | Silicon substrate cantilever beam T junction direct-heating type unknown frequency millimeter wave phase detectors |
CN106841783A (en) * | 2017-01-24 | 2017-06-13 | 东南大学 | Silicon substrate cantilever beam T junction indirect heating type unknown frequency millimeter wave phase detectors |
CN106841791A (en) * | 2017-01-24 | 2017-06-13 | 东南大学 | Silicon substrate unknown frequency slot-coupled formula direct-type millimeter wave phase detectors |
CN106841797A (en) * | 2017-01-24 | 2017-06-13 | 东南大学 | Silicon substrate unknown frequency slot-coupled formula T junction direct-type millimeter wave phase detectors |
CN106841802A (en) * | 2017-01-24 | 2017-06-13 | 东南大学 | Based on the silicon substrate online millimeter wave phase detectors of cantilever beam T junction indirectly heat |
CN106841784A (en) * | 2017-01-24 | 2017-06-13 | 东南大学 | Silicon-base micro-mechanical cantilever beam couples the online millimeter wave phase detectors of indirectly heat |
CN106841786A (en) * | 2017-01-24 | 2017-06-13 | 东南大学 | Based on silicon substrate cantilever beam T junction indirect heating type millimeter-wave signal detector |
CN106841797B (en) * | 2017-01-24 | 2019-01-25 | 东南大学 | Silicon-Based Unknown Frequency Slot-Coupled T-Junction Direct Millimeter-Wave Phase Detector |
CN106841783B (en) * | 2017-01-24 | 2019-01-25 | 东南大学 | Silicon-based cantilever T-junction indirect heating unknown frequency millimeter-wave phase detector |
CN106841791B (en) * | 2017-01-24 | 2019-01-25 | 东南大学 | Silicon-based slot-coupled direct millimeter-wave phase detector with unknown frequency |
CN106771604B (en) * | 2017-01-24 | 2019-03-05 | 东南大学 | Silicon substrate given frequency slot-coupled formula T junction indirect type millimeter wave phase detectors |
CN106771601B (en) * | 2017-01-24 | 2019-03-05 | 东南大学 | Silicon substrate cantilever beam T junction direct-heating type unknown frequency millimeter wave phase detectors |
CN106841786B (en) * | 2017-01-24 | 2019-03-05 | 东南大学 | Based on silicon substrate cantilever beam T junction indirect heating type millimeter-wave signal detector |
CN106645921B (en) * | 2017-01-24 | 2019-03-05 | 东南大学 | The direct-type millimeter-wave signal detector of silicon substrate slot-coupled formula T junction |
CN106841784B (en) * | 2017-01-24 | 2019-03-19 | 东南大学 | Silicon-base micro-mechanical cantilever beam couples the online millimeter wave phase detectors of indirect heating |
CN106841802B (en) * | 2017-01-24 | 2019-03-19 | 东南大学 | Based on the online millimeter wave phase detectors of silicon substrate cantilever beam T junction indirect heating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103344831B (en) | 2015-04-29 | Phase detector based on micromechanical direct thermoelectric power sensors and preparation method thereof |
CN203310915U (en) | 2013-11-27 | Phase detector based on micro mechanical direct thermoelectric power sensor |
CN103048540B (en) | 2015-09-30 | Based on online microwave frequency detector and the detection method thereof of semi-girder and direct-type power sensor |
CN103116073B (en) | 2015-06-10 | Cantilever beam and direct-type power sensor based microwave detecting system and detecting method thereof |
CN101788605B (en) | 2012-04-11 | Wireless-receiving system for detecting microelectronic mechanical microwave frequency and preparation method thereof |
CN103105531B (en) | 2015-09-30 | The online microwave frequency detector of microelectron-mechanical and detection method thereof |
CN103048536B (en) | 2015-06-10 | Online microwave frequency detector and detecting method thereof based on clamped beam and direct-type power sensor |
CN103281074B (en) | 2015-07-29 | A kind of phase-locked loop based on micromachine indirect thermoelectric type power sensor and method for making |
CN103116067B (en) | 2015-04-01 | On-line microwave frequency detector and detection method thereof based on clamped beams and indirect-type power sensors |
CN103364636A (en) | 2013-10-23 | Micro-machinery cantilever capacitance type power sensor-based phase detector and manufacturing method of phase detector |
CN103281078B (en) | 2015-08-19 | Based on frequency divider and the preparation method of micromechanics clamped beam condenser type power sensor |
CN103116071B (en) | 2015-06-10 | Micro-electromechanical microwave frequency and power detecting system and detecting method thereof |
CN103116070B (en) | 2015-05-06 | Microwave detection system and detection method thereof based on clamped beams and direct-type power sensors |
CN103346785B (en) | 2015-08-05 | Based on the phase-locked loop and preparation method thereof of micro-mechanical direct thermoelectric type power sensor |
CN203313122U (en) | 2013-11-27 | Frequency multiplier based on micro mechanical direct thermoelectric power sensor |
CN103336175B (en) | 2015-05-13 | Phase detector based on micro-machinery clamped beam capacitance type power sensor and manufacture method thereof |
CN103281075B (en) | 2015-07-29 | Based on frequency multiplier and the preparation method of micromachine cantilever beam condenser type power sensor |
CN103344833B (en) | 2015-07-08 | A phase detector and its manufacturing method based on micromachined indirect thermoelectric power sensor |
CN203310918U (en) | 2013-11-27 | Phase detector based on micromechanical indirect thermoelectric power sensor |
CN103116072B (en) | 2015-06-10 | Microwave detecting system based on clamped beams and indirect power sensors and detecting method of microwave detecting system |
CN203313157U (en) | 2013-11-27 | Phase locked loop based on micro mechanical direct thermoelectric power sensor |
CN203313156U (en) | 2013-11-27 | Phase locked loop based on micromechanical cantilever capacitive power sensor |
CN203313160U (en) | 2013-11-27 | Frequency divider based on micromechanical indirect thermoelectric power sensor |
CN203310916U (en) | 2013-11-27 | Phase detector based on micromechanical cantilever capacitive power sensor |
CN203313158U (en) | 2013-11-27 | Phase locked loop based on micro mechanical indirect thermoelectric power sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
2013-11-27 | C14 | Grant of patent or utility model | |
2013-11-27 | GR01 | Patent grant | |
2015-04-29 | AV01 | Patent right actively abandoned |
Granted publication date: 20131127 Effective date of abandoning: 20150429 |