patents.google.com

EP0270147A1 - Analogous cryptographic device using a dynamic band permutation - Google Patents

  • ️Wed Jun 08 1988

EP0270147A1 - Analogous cryptographic device using a dynamic band permutation - Google Patents

Analogous cryptographic device using a dynamic band permutation Download PDF

Info

Publication number
EP0270147A1
EP0270147A1 EP87202057A EP87202057A EP0270147A1 EP 0270147 A1 EP0270147 A1 EP 0270147A1 EP 87202057 A EP87202057 A EP 87202057A EP 87202057 A EP87202057 A EP 87202057A EP 0270147 A1 EP0270147 A1 EP 0270147A1 Authority
EP
European Patent Office
Prior art keywords
synchronization
signal
permutations
analog
frequency
Prior art date
1986-10-31
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP87202057A
Other languages
German (de)
French (fr)
Inventor
Jaques Société Civile S.P.I.D. Masson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson TRT Defense
Original Assignee
Telecommunications Radioelectriques et Telephoniques SA TRT
Thomson TRT Defense
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
1986-10-31
Filing date
1987-10-27
Publication date
1988-06-08
1987-10-27 Application filed by Telecommunications Radioelectriques et Telephoniques SA TRT, Thomson TRT Defense filed Critical Telecommunications Radioelectriques et Telephoniques SA TRT
1988-06-08 Publication of EP0270147A1 publication Critical patent/EP0270147A1/en
Status Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K1/00Secret communication
    • H04K1/04Secret communication by frequency scrambling, i.e. by transposing or inverting parts of the frequency band or by inverting the whole band

Definitions

  • the invention relates to an analog cryptophony device in which the processing of the speech signal carried out in digital signal processors comprises the following operations: filtering, sampling and digitization by an analog-digital converter, processing by the analysis filter bank transforming the signal sampled at frequency f e into N subband signals sampled at f e / N and transferred in a permuted order to the synthesis filter bank which performs the calculations of the scrambled signal sampled at frequency f e at which is digitally added the synchronization wave sin (2 ⁇ nTf e / 4), T being the duration of the sampling cycle, the scrambled digital signal thus obtained being converted into analog, filtered and transmitted via an analog channel to descrambler where a preprocessing performs the functions of sampling synchronization, compensation of said synchronization wave and equalization of the s scrambled ignal and where the treatments carried out are identical to those carried out at the scrambler except that said permuted order of the N sub-band signals is reversed.
  • Such a device is used to ensure the discretion of communications over the radio.
  • the cryptophonic systems can be classified into two main families: these are the digital cryptophonic and analog cryptophonic systems.
  • the first systems require digitization and coding of the speech signal, the resulting bit rate being encrypted using a pseudo-random sequence.
  • the degree of security obtained is potentially the highest possible, that is to say that the message is unreadable without knowing the key.
  • the problem which arises is the transmission of the signal on a standard radio channel of 3 kHz of bandwidth. Indeed, such a transmission can only be done with the help of modems working at 2400 or 4800 bits / s forcing the speech coding to operate at these rates for which we can only ensure at best that the intelligibility of the message.
  • Such systems which, moreover, are relatively complex to implement, can therefore only be suitable for networks or links where the subscribers are specialized operators (army, police, etc.) who can accept to converse with a very badly degraded signal quality.
  • Analog cryptography systems differ from the previous ones in that the waveform of the transmitted signal comes directly from transformations made on the waveform of the original speech signal.
  • the transformations can be done in the domain of time, frequency or both simultaneously according to the desired degree of discretion. It should be noted, however, that absolute security cannot be achieved with these types of systems. On the other hand, they have the advantage of a simpler implementation and offer a much better restored signal quality than in digital systems.
  • the first analog jammers were based on spectral transformations of the inversion, shifts or permutation of bands type. Due to the use of analog techniques, the interference produced had weaknesses, the greatest of which were relatively high residual intelligibility as well as very average attack robustness. For example, the band permutation technique was limited to 5 sub-bands which did not allow the signal to be scrambled effectively. With the appearance of memories and microprocessors, techniques using temporal transformations have emerged. They are based on the principle of permutations blocks of 10 to 20 ms of signal. Thus the distribution of the signal power as a function of time is different from that of the original speech, whereas in the spectral jammers, this distribution is the same.
  • the waveform of the phonemes permuted in time remains unchanged. This is a weakness in the direct attack of the scrambled signal aimed at reconstructing the order of the permuted speech segments. In addition, to ensure the lowest possible residual intelligibility, the delays involved can become quite significant (several hundred ms) which can cause discomfort in communication.
  • TFD ⁇ 1 (TFD) Identity.
  • the filter bank thus produced is of very poor quality in the sense that, on the one hand, the filtering function is of the type and, on the other hand, the overlaps between filters are very important.
  • monitoring the band of the encrypted signal is difficult and, moreover, the residual intelligibility of the encrypted message suffers from the "softness" of the filters.
  • the "QMF" filter banks are used to divide the signal into 5 sub-bands, 25 consecutive samples of each sub-band constituting a block. The permutation then plays on all 125 samples of the 5 blocks. This permutation is frozen by the choice of the key. Although the system is complex, this fixity is a weakness.
  • Another feature of this system is the use of an equalizer which only compensates for the channel phase by assuming that the module is unitary. This implies that the system can only be used on the telephone line and not on a mobile radio link. In addition, the principle of measuring the impulse response by sending a Dirac impulse would be completely unusable on a radio link.
  • the aim of the invention is to propose a system which always involves dynamic permutations, but obtained from digital processing which makes it possible to easily carry out almost perfect banks of analysis and synthesis filters using "pseudo" filters. -QMF "and sharing the signal into a large number of sub-bands which can be swapped at a very high rate.
  • the analog cryptophony system according to the invention is remarkable in that interference with dynamic permutations over time is obtained by changing the read addresses of a memory containing a set of permutations, these said addresses coming from a generator. of sequence whose clock rate giving the frequency of change of permutations can vary from 0 (fixed permutation) to f e / N (maximum frequency), the system key being a word loaded in the generator, during the sequence d 'initialization.
  • FIGS. 8 and 9 respectively explain the filtering operations to be carried out in the analysis and synthesis programs.
  • FIGS. 2 and 3 The block diagram of a jammer-unscrambler device with dynamic band permutations according to the invention is represented in FIGS. 2 and 3.
  • digital signal processors such as the TMS 32010 from Texas Instruments.
  • COFIDEC TP3057 circuits from National Semi-conductor (8-bit conversion -law A) were used for the analog-digital and digital-analog converters and the filtering. They have the advantage of containing all these functions in a single 16-pin package.
  • the different processing steps are as follows: - Anti-aliasing filtering in 1 of the original signal - Sampling in 2 and digitization by an analog-digital converter 3 - Analysis in 4 using a pseudo-QMF filter bank with 16 sub-bands of the signal sampled at the frequency f e supplied by the oscillator 5 followed by the frequency divider 6.
  • the prototype filter with 80 coefficients and the subband signals are sampled at f e / 16.
  • - Permutation in 7 to 12 of the sub-band signals at the rate of f e / 16 only 12 signals are permuted, the other 4 not being transmitted).
  • the speech signal from a microphone is applied to the input of the analog-digital encoder (circuit COFIDEC) after level adjustment.
  • the sequencing of operations is done as follows: - reading by the processor of a sample; - calculation of the contribution of this sample to the 16 sub-band signals; - output of a sample for each of the 16 sub-band signals every 16 sampling cycles (of duration T).
  • the 16 results are written to an external RAM 10. These samples will then be immediately transferred to the processor performing the synthesis bench but in a permuted order.
  • the permutation plays on the read addresses of the RAM.
  • a set of 256 permutations is saved in a PROM 8.
  • the choice of permutation to be carried out is therefore represented by an 8-bit word. Interference with dynamic permutations over time is obtained by changes to the PROM read addresses. These 8 address bits come from a generator 7 of a PN sequence of maximum length 2 n -1 consisting of 16 flip-flops.
  • the external RAM 10 is addressed in write (E) or in read (L) through the multiplexer 9 by the permutation resulting from the PROM.
  • the multiplexer 9 and the PROM 8 respectively receive from 11 and 12 the write and read addresses.
  • the rhythm of the clock performing the shifts in the sequence is the frequency of the permutations. This can vary from 0 (fixed permutation) to f e / N which is the maximum frequency; indeed, f e / N is the sampling frequency subband signals and therefore two consecutive samples of a subband signal will be swapped differently.
  • the samples of the swapped subband signals are then read by the synthesis processor. This, in addition to the processing carried out in the analysis, forms 16 samples of the scrambled signal sampled at the frequency f e from 16 permuted sub-band samples which are sampled at the frequency f e / N. To this scrambled signal is added in digital the sin synchronization wave (2 ⁇ nTf e / 4). To prevent this signal, whose maximum level is located at -18 dB from the saturation level of the decoder, from being too disturbed by speech, the sub-bands 13 and 14 are put around f e / 4, these sub- bands having been previously zeroed. Likewise, the sub-bands 15 and 16 of the original signal are not transmitted.
  • the digital signal thus obtained is, after compression MIC, transferred to COFIDEC where it is converted into analog signal then filtered.
  • the analog signal is then transmitted and processed by the descrambler.
  • the treatments performed with the descrambler are as follows: - Anti-aliasing filtering in 1 ⁇ of the scrambled signal. - 2 ⁇ sampling synchronization performed by a fully digital phase locked loop and compensation of the synchronization wave. - Digitization by a 3 ⁇ analog-digital converter. - Synchronization of blocks and permutations, and calculation of the equalizer coefficients, during the initialization sequence. - Equalization of the scrambled signal using a transverse filter. All the synchronization and equalization processing is carried out on the signal processor 17. - 4 ⁇ analysis of the scrambled signal. -Inverse 7erm to 12 ⁇ switching of sub-band signals. - 13 ⁇ synthesis of the sub-band signals put back in their place. - Restitution of the unscrambled analog signal using a 14 ⁇ digital-analog converter and a 15 ⁇ smoothing filter.
  • the scrambled speech signal is applied to the analog input of the COFIDEC of the descrambler and is filtered before sampling.
  • the sampling command is produced by the processor 17.
  • the signal once equalized, is transferred to the processor performing the analysis, and the processing that follows is equivalent to that explained in the operation of the jammer.
  • the PROM 8 ⁇ of permutations contains the permutations opposite to those carried out with the jammer.
  • Its read addresses come from a 7 ⁇ generator of a PN sequence with 16 flip-flops.
  • the external RAM 10 ⁇ arranged between the analysis and synthesis processors is addressed in write E or in read L through the multiplexer 9 ⁇ by the reverse permutation resulting from the PROM.
  • the multiplexer 9 ⁇ and the PROM 8 ⁇ respectively receive from 112 ⁇ and 12 ⁇ the write and read addresses.
  • the sub-band signals after analysis of the scrambled signal, must be identical to the signals applied to the jammer synthesis bench. To do this, we must realize: a synchronization of the sampling at the frequency f e of the scrambled signal. - equalization of the channel both in amplitude and in group propagation time. - a synchronization of the blocks making it possible to transmit the information of the sub-sampling phase carried out in the bank of analysis filters. - synchronization of permutations.
  • sampling synchronization subjective tests on the quality of the restored speech have shown that sampling phase deviations of ⁇ 5% of the period T can be tolerated.
  • This loop the block diagram of which is shown in FIG. 4, includes the following constituent elements: a sampler-blocker 18 and an analog-digital converter 19, - two quadrature demodulators (cosine and sine) 20 and 21 and their associated filters 22 and 23, a decision logic making it possible to make the sampling phase correction 24.
  • this correction is carried out around the free frequency value (f e ) by adding or withdrawal of a - certain number of "machine" cycles, which makes it possible to obtain a double speed locking of the loop.
  • the fully digital loop thus produced has the following main characteristics: - rapid acquisition ( ⁇ a hundred sampling periods) - correct monitoring in the presence of disturbances (noise-drift) - a simple implementation on signal processor.
  • the equalizer was produced using a transverse filter with 48 coefficients.
  • an adaptive equalization program on a signal processor makes it possible to find the coefficients of the equalizer filter using the gradient algorithm.
  • the adaptive equalizer works first blind (figure 6) then in local reference (figure 7).
  • the output E of the transmission circuit is obtained by adding modulo 2 of x, message to be transmitted, and of F, loopback signal. If E is applied to the input of the reception circuit, after 16 clock ticks (which corresponds to the maximum degree of the generator polynomial) the output S is equal to x. Indeed, whatever the initial state, it only takes 16 clock times for the flip-flops of identical rank to contain the same information.
  • the output E of the transmission circuit ( Figure 5) being taken as a pseudo-random sequence for adaptive equalization, and if we operate as previously in "blind” ( Figure 6), we try to synchronize the reception circuit on the signal called E ⁇ , result of the decision on the equalized signal.
  • the imposed message x is a sequence of "1"; if the equalizer 25 looped through the adapter 28 has "sufficiently well” converged, that is to say that 32 successive bits decided have the correct value, the output S will take 16 times the value "1".
  • the circuit at the receiver is switched to local transmission allowing the calculation of adaptation of the coefficients in an optimal manner. Indeed, in the presence of noise, decision errors can occur when the equalizer works blind.
  • the equalizer 25 When the equalizer 25 operates with local reference, the synchronizations of block and permutations are done by recognition of a particular state of the flip-flops of the registers PN.
  • the processing operations carried out by the processor (17) during the initializer sequence for the descrambler are, sequentially, the following: . detection of the frequency tone f e / 4 indicating the start of communication and latching of the locking loop allowing synchronization of sampling to be carried out. . blind adaptive equalization. . switching to adaptive equalization with local reference. . freezing of the adaptation of the coefficients and passage of the synchronization of the blocks and that of the permutations which ends the initialization sequence.
  • the processing operations carried out by the processor (17) in "normal" operation are as follows: . phase locked loop. . compensation of the synchronization wave. . signal equalization.
  • the filter bank that we want to make is made up of 16 filters with 80 coefficients each. If the bench filters are obtained by modulation of the same prototype filter, the realization can be done very efficiently. Indeed, we show that in this case we can separate the filtering and modulation operations.
  • the upper table of figure 8 represents the memory of the 80 most recent samples of the signal, orga in 5 lines of 16 elements. The most recent sample is located at the top left, while the oldest sample is located at the bottom right.
  • the lower table represents the memory of the 80 coefficients of the prototype filter also arranged in 5 lines of 16 elements and assigned the signs of the numbers cos (r ⁇ / 2) and sin (r ⁇ / 2) appearing in the above formula.
  • the treatments performed in the synthesis bench are dual to those performed in the analysis bench.
  • the permuted subband signals will first be modulated by the odd cosine transform according to the following formula: where s is the permutation.
  • the signals y ⁇ (m) are then filtered to obtain the scrambled signal as indicated in the two tables in Figure 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

Dispositif de cryptophonie analogique à permutations dynamiques de bandes dans lequel le signal de parole est filtré (1), échantillonné (2) à la fréquence fe, numérisé (3), transformé au moyen d'un banc de filtres d'analyse (4) en N signaux de sous-bandes échantillonnés à fe/N et transférés dans un ordre permuté vers un banc de filtres de synthèse (13) qui effectue les calculs du signal brouillé échantillonné à la fréquence fe. Un ensemble de permutations est sauvegardé dans une mémoire (8) et un brouillage à permutations dynamiques dans le temps est obtenu par changement des adresses de lecture de la mémoire. Le signal brouillé reconverti en analogique (14,15) est transmis par l'intermédiaire d'un canal analogique à un débrouilleur où un prétraitement effectue les fonctions de synchronisation et d'égalisation et où les traitements effectués sont identiques à ceux effectués au brouilleur si ce n'est que l'ordre permuté des N signaux de sous-bande est inversé. Application : télécommunications radio.Analog cryptophony device with dynamic band permutations in which the speech signal is filtered (1), sampled (2) at the frequency fe, digitized (3), transformed by means of an analysis filter bank (4) in N sub-band signals sampled at fe / N and transferred in a permuted order to a bank of synthesis filters (13) which performs the calculations of the scrambled signal sampled at the frequency fe. A set of permutations is saved in a memory (8) and scrambling with dynamic permutations in time is obtained by changing the read addresses of the memory. The scrambled signal converted back to analog (14,15) is transmitted via an analog channel to a descrambler where a preprocessing performs the synchronization and equalization functions and where the treatments carried out are identical to those carried out at the jammer if only the permuted order of the N subband signals is reversed. Application: radio telecommunications.

Description

L'invention concerne un dispositif de cryptophonie analogique dans lequel le traitement du signal de parole ef­fectué dans des processeurs numériques de signal comporte les opérations suivantes : filtrage, échantillonnage et numérisa­tion par un convertisseur analogique-numérique, traitement par le banc de filtres d'analyse transformant le signal échantil­lonné à la fréquence fe en N signaux de sous-bande échantil­lonnés à fe/N et transférés dans un ordre permuté vers le banc de filtres de synthèse qui effectue les calculs du signal brouillé échantillonné à la fréquence fe auquel est ajouté en numérique l'onde de synchronisation sin(2ΠnTfe/4), T étant la durée du cycle d'échantillonnage, le signal numérique brouillé ainsi obtenu étant converti en analogique, filtré et transmis par l'intermédiaire d'un canal analogique au dé­brouilleur où un prétraitement effectue les fonctions de syn­chronisation d'échantillonnage, de compensation de ladite onde de synchronisation et d'égalisation du signal brouillé et où les traitements effectués sont identiques à ceux effectués au brouilleur si ce n'est que ledit ordre permuté des N signaux de sous-bande est inversé.The invention relates to an analog cryptophony device in which the processing of the speech signal carried out in digital signal processors comprises the following operations: filtering, sampling and digitization by an analog-digital converter, processing by the analysis filter bank transforming the signal sampled at frequency f e into N subband signals sampled at f e / N and transferred in a permuted order to the synthesis filter bank which performs the calculations of the scrambled signal sampled at frequency f e at which is digitally added the synchronization wave sin (2ΠnTf e / 4), T being the duration of the sampling cycle, the scrambled digital signal thus obtained being converted into analog, filtered and transmitted via an analog channel to descrambler where a preprocessing performs the functions of sampling synchronization, compensation of said synchronization wave and equalization of the s scrambled ignal and where the treatments carried out are identical to those carried out at the scrambler except that said permuted order of the N sub-band signals is reversed.

Un tel dispositif est utilisé pour assurer la dis­crétion des communications sur voie radio. De façon générale, les systèmes de cryptophonie peuvent être classés en deux grandes familles : ce sont les systèmes à cryptophonie numéri­que et à cryptophonie analogique.Such a device is used to ensure the discretion of communications over the radio. Generally speaking, the cryptophonic systems can be classified into two main families: these are the digital cryptophonic and analog cryptophonic systems.

Les premiers systèmes nécessitent une numérisation et un codage du signal de parole, le débit binaire en résul­tant étant crypté à l'aide d'une séquence pseudo-aléatoire. Le degré de sécurité obtenu est potentiellement le plus élevé possible, c'est-à-dire que le message est indéchiffrable sans la connaissance de la clé. Le problème qui se pose est la transmission du signal sur un canal radio standard de 3 kHz de bande passante. En effet, une telle transmission ne peut se faire qu'avec l'aide de modems travaillant à 2400 ou 4800 bits/s obligeant le codage de la parole à fonctionner à ces débits pour lesquels on ne peut assurer au mieux que l'in­telligibilité du message. De tels systèmes qui, de plus, sont de mise en oeuvre relativement complexe, ne peuvent ainsi con­venir qu'à des réseaux ou des liaisons où les abonnés sont des opérateurs spécialisés (armée, police, ...) pouvant accepter de converser avec une qualité de signal très fortement dégra­dée.The first systems require digitization and coding of the speech signal, the resulting bit rate being encrypted using a pseudo-random sequence. The degree of security obtained is potentially the highest possible, that is to say that the message is unreadable without knowing the key. The problem which arises is the transmission of the signal on a standard radio channel of 3 kHz of bandwidth. Indeed, such a transmission can only be done with the help of modems working at 2400 or 4800 bits / s forcing the speech coding to operate at these rates for which we can only ensure at best that the intelligibility of the message. Such systems which, moreover, are relatively complex to implement, can therefore only be suitable for networks or links where the subscribers are specialized operators (army, police, etc.) who can accept to converse with a very badly degraded signal quality.

Les systèmes à cryptophonie analogique se distin­guent des précédents en ce que la forme d'onde du signal transmis provient directement de transformations effectuées sur la forme d'onde du signal de parole original. Les trans­formations peuvent se faire dans le domaine du temps, de la fréquence ou des deux simultanément selon le degré de discré­tion voulu. Il faut cependant remarquer qu'une sécurité abso­lue ne peut être atteinte avec ce genre de systèmes. Par con­tre, ils possèdent l'avantage d'une réalisation plus simple et offrent une qualité de signal restitué bien meilleure que dans les systèmes numériques.Analog cryptography systems differ from the previous ones in that the waveform of the transmitted signal comes directly from transformations made on the waveform of the original speech signal. The transformations can be done in the domain of time, frequency or both simultaneously according to the desired degree of discretion. It should be noted, however, that absolute security cannot be achieved with these types of systems. On the other hand, they have the advantage of a simpler implementation and offer a much better restored signal quality than in digital systems.

Historiquement, les premiers brouilleurs analogi­ques étaient basés sur des transformations spectrales du type inversion, décalages ou permutation de bandes. Du fait de l'utilisation de techniques analogiques, le brouillage réalisé présentait des faiblesses dont les plus grandes étaient une intelligibilité résiduelle relativement importante ainsi qu'une robustesse à l'attaque très moyenne. Par exemple, la technique de permutations de bandes se limitait à 5 sous-ban­des ce qui ne permettait pas de brouiller efficacement le si­gnal. Avec l'apparition des mémoires et des microprocesseurs, les techniques utilisant des transformations temporelles ont vu le jour. Elles sont basées sur le principe de permutations de blocs de 10 à 20 ms de signal. Ainsi la répartition de la puissance du signal en fonction du temps est différente de celle de la parole originale, alors que dans les brouilleurs spectraux, cette répartition est la même. Par contre, la forme d'onde des phonèmes permutés dans le temps reste inchangée. Cela constitue une faiblesse à l'attaque directe du signal brouillé visant à reconstituer l'ordre des segments de parole permutés. De plus, pour assurer une intelligibilité résiduelle la plus faible possible, les retards mis en jeu peuvent deve­nir assez importants (plusieurs centaines de ms) pouvant occa­sionner une gêne dans la communication.Historically, the first analog jammers were based on spectral transformations of the inversion, shifts or permutation of bands type. Due to the use of analog techniques, the interference produced had weaknesses, the greatest of which were relatively high residual intelligibility as well as very average attack robustness. For example, the band permutation technique was limited to 5 sub-bands which did not allow the signal to be scrambled effectively. With the appearance of memories and microprocessors, techniques using temporal transformations have emerged. They are based on the principle of permutations blocks of 10 to 20 ms of signal. Thus the distribution of the signal power as a function of time is different from that of the original speech, whereas in the spectral jammers, this distribution is the same. On the other hand, the waveform of the phonemes permuted in time remains unchanged. This is a weakness in the direct attack of the scrambled signal aimed at reconstructing the order of the permuted speech segments. In addition, to ensure the lowest possible residual intelligibility, the delays involved can become quite significant (several hundred ms) which can cause discomfort in communication.

On peut, à partir des deux techniques décrites pré­cédemment, concevoir des brouilleurs relativement efficaces en mettant en cascade les transformations temporelles et spectra­les. Néanmoins, avec l'apparition des processeurs numériques de signal, on peut envisager des techniques de brouillage très efficaces s'appuyant en fait sur les concepts des premiers brouilleurs et, notamment, les permutations de bandes de fré­quence. L'emploi de techniques numériques permet de s'affran­chir des problèmes de dérives qui affectent les modulateurs, démodulateurs et filtres utilisés dans un système analogique. Ainsi peut-on envisager de séparer un signal en un grand nom­bre de bandes de fréquence améliorant par là-même la qualité du brouillage. De plus, le fait de disposer de bancs de fil­tres miroir en quadrature pouvant reconstituer le signal ori­ginal de façon presque parfaite, permet d'envisager un système à brouillage spectral très efficace.It is possible, from the two techniques described above, to design relatively effective jammers by cascading the temporal and spectral transformations. However, with the advent of digital signal processors, very effective scrambling techniques can be envisioned based in fact on the concepts of early jammers and, in particular, permutations of frequency bands. The use of digital techniques overcomes the problems of drifts that affect the modulators, demodulators and filters used in an analog system. It is thus possible to envisage separating a signal into a large number of frequency bands thereby improving the quality of the interference. In addition, the fact of having banks of quadrature mirror filters capable of reconstructing the original signal almost perfectly, makes it possible to envisage a very efficient spectral interference system.

On présente maintenant l'état de l'art en ce qui concerne les systèmes de brouillage analogique à traitement numérique utilisant des permutations spectrales et dont le traitement est fait en numérique. Ils peuvent être classés se­lon trois types :
- systèmes à permutations de coefficients de Transformée de Fourier Discrète,
-systèmes à permutations de bandes obtenues par bancs de fil­tres n'assurant pas une reconstitution parfaite de la bande,
- systèmes à permutations de bandes obtenues par bancs de fil­tres dits "QMF" ou "pseudo-QMF".
The state of the art is now presented with respect to analog interference systems with digital processing using spectral permutations and the processing of which is done digitally. They can be classified into three types:
- systems with permutations of Discrete Fourier Transform coefficients,
-systems with permutations of bands obtained by filter banks which do not ensure perfect reconstruction of the band,
- band permutation systems obtained by so-called "QMF" or "pseudo-QMF" filter banks.

Les systèmes du premier type ont la propriété re­marquable que le signal n'est absolument pas modifié quand, sans effectuer de permutations, on met bout à bout transformée et transformée inverse. En effet, on sait que TFD⁻¹(TFD) = Identité. Néanmoins, le banc de filtres ainsi réalisé est de très mauvaise qualité en ce sens où, d'une part, la fonction de filtrage est du type

Figure imgb0001

et, d'autre part, les recouvre­ments entre filtres sont très importants. Ainsi, le contrôle de la bande du signal crypté est mal aisé et, de plus, l'in­telligibilité résiduelle du message crypté souffre de la "mollesse" des filtres.The systems of the first type have the remarkable property that the signal is absolutely not modified when, without carrying out permutations, one puts end-to-end transform and inverse transform. Indeed, we know that TFD⁻¹ (TFD) = Identity. However, the filter bank thus produced is of very poor quality in the sense that, on the one hand, the filtering function is of the type

Figure imgb0001

and, on the other hand, the overlaps between filters are very important. Thus, monitoring the band of the encrypted signal is difficult and, moreover, the residual intelligibility of the encrypted message suffers from the "softness" of the filters.

Ces problèmes ont été résolus à l'aide de bancs de filtres très sélectifs qui permettent de plus de se passer de synchronisation. Cette propriété peut sembler attrayante mais est en fait une faiblesse en ce sens que la totalité du messa­ge transmis est permutée de la même façon. De plus, les fil­tres utilisés n'ont pas la propriété d'avoir la réponse compo­site analyse-synthèse unitaire et ainsi la qualité du signal restitué est médiocre.These problems have been solved with the help of very selective filter banks which moreover do without synchronization. This property may seem attractive, but is actually a weakness in that the entire transmitted message is swapped in the same way. In addition, the filters used do not have the property of having the unitary analysis-synthesis composite response and thus the quality of the restored signal is poor.

Le dernier type de systèmes cumule les avantages des deux premiers dans la mesure où ils emploient des bancs de filtres "QMF" ou "pseudo-QMF" permettant un partage en bandes de fréquence relativement sélectives et ce, de façon quasi parfaite. Le brevet US 4 551 580 concerne un système de cryp­tophonie de ce type et du même genre que celui décrit dans le préambule.The last type of system combines the advantages of the first two insofar as they employ "QMF" or "pseudo-QMF" filter banks allowing sharing in relatively selective frequency bands and this, almost perfectly. US Patent 4,551,580 relates to a cryptophony system of this type and of the same kind as that described in the preamble.

Dans ce système les bancs de filtres "QMF" sont utilisés pour partager le signal en 5 sous-bandes, 25 échan­tillons consécutifs de chaque sous-bande constituant un bloc. La permutation joue alors sur l'ensemble des 125 échantillons des 5 blocs. Cette permutation est figée par le choix de la clé. Bien que le système soit complexe, cette fixité est une faiblesse.In this system the "QMF" filter banks are used to divide the signal into 5 sub-bands, 25 consecutive samples of each sub-band constituting a block. The permutation then plays on all 125 samples of the 5 blocks. This permutation is frozen by the choice of the key. Although the system is complex, this fixity is a weakness.

Une autre caractéristique de ce système est l'em­ploi d'un égaliseur qui compense uniquement la phase du canal en supposant que le module est unitaire. Cela implique que le système n'est exploitable que sur ligne téléphonique et non sur une liaison radiomobile. De plus, le principe de la mesure de la réponse impulsionnelle par envoi d'une impulsion de Dirac serait tout à fait inexploitable sur une liaison radio.Another feature of this system is the use of an equalizer which only compensates for the channel phase by assuming that the module is unitary. This implies that the system can only be used on the telephone line and not on a mobile radio link. In addition, the principle of measuring the impulse response by sending a Dirac impulse would be completely unusable on a radio link.

Des systèmes de cryptophonie basés sur des permuta­tions dynamiques de bandes ont déjà été obtenus par traite­ments analogiques. Le but de l'invention est de proposer un système faisant toujours intervenir des permutations dynami­ques, mais obtenu à partir de traitements numériques que per­mettent de réaliser aisément des bancs de filtres d'analyse et de synthèse quasi parfaits à l'aide de filtres "pseudo-QMF" et un partage du signal en un grand nombre de sous-bandes pouvant être permutées à un rythme très élevé.Cryptophony systems based on dynamic permutations of bands have already been obtained by analog processing. The aim of the invention is to propose a system which always involves dynamic permutations, but obtained from digital processing which makes it possible to easily carry out almost perfect banks of analysis and synthesis filters using "pseudo" filters. -QMF "and sharing the signal into a large number of sub-bands which can be swapped at a very high rate.

Le système de cryptophonie analogique conforme à l'invention est remarquable en ce qu'un brouillage à permuta­tions dynamiques dans le temps est obtenu par changement des adresses de lecture d'une mémoire contenant un ensemble de permutations, ces dites adresses provenant d'un générateur de séquence dont le rythme d'horloge donnant la fréquence de changement des permutations peut varier de 0 (permutation fi­xe) à fe/N (fréquence maximale), la clé du système étant un mot chargé dans le générateur, lors de la séquence d'initiali­sation.The analog cryptophony system according to the invention is remarkable in that interference with dynamic permutations over time is obtained by changing the read addresses of a memory containing a set of permutations, these said addresses coming from a generator. of sequence whose clock rate giving the frequency of change of permutations can vary from 0 (fixed permutation) to f e / N (maximum frequency), the system key being a word loaded in the generator, during the sequence d 'initialization.

La description suivante en regard des dessins anne­xés, le tout donné à titre d'exemple, fera bien comprendre comment l'invention peut être réalisée.

  • La figure 1 donne le schéma de principe du système de brouillage-débrouillage.
  • La figure 2 représente le schéma synoptique du brouilleur conforme à l'invention.
  • La figure 3 représente le schéma synoptique du dé­brouilleur conforme à l'invention.
  • La figure 4 donne le schéma de principe d'une bou­cle à verrouillage de phase entièrement numérique.
  • La figure 5 illustre l'auto-synchronisation d'une séquence PN.
  • Les figures 6 et 7 montrent le principe de la syn­chronisation lente avec l'égalisation travaillant respective­ment en aveugle et avec référence locale.
The following description with reference to the accompanying drawings, all given by way of example, will make it clear how the invention can be implemented.
  • Figure 1 gives the block diagram of the scrambling-unscrambling system.
  • FIG. 2 represents the block diagram of the jammer according to the invention.
  • FIG. 3 represents the block diagram of the descrambler according to the invention.
  • Figure 4 shows the block diagram of a fully digital phase locked loop.
  • FIG. 5 illustrates the auto-synchronization of a PN sequence.
  • Figures 6 and 7 show the principle of slow synchronization with equalization working respectively blind and with local reference.

Les tableaux des figures 8 et 9 explicitent respec­tivement les opérations de filtrage à réaliser dans les pro­grammes d'analyse et de synthèse.The tables of FIGS. 8 and 9 respectively explain the filtering operations to be carried out in the analysis and synthesis programs.

Disposant de filtres réalisant un découpage en sous-bandes et une reconstitution quasi parfaite, on peut réa­liser un système brouilleur-débrouilleur selon le principe suivant (figure 1) :
- analyse du signal
- permutation P des signaux de sous-bandes
- obtention du signal brouillé par synthèse
- analyse du signal brouillé
- permutation inverse P⁻¹ des signaux de sous-bandes
- obtention du signal débrouillé par synthèse.
With filters performing a sub-band cutting and an almost perfect reconstruction, we can make a scrambler-scrambler system according to the following principle (Figure 1):
- signal analysis
- permutation P of the sub-band signals
- obtaining the scrambled signal by synthesis
- analysis of the scrambled signal
- inverse permutation P⁻¹ of the sub-band signals
- obtaining the signal managed by synthesis.

La sécurité du brouillage obtenu par un tel système repose sur la stratégie adoptée pour effectuer les permuta­tions. Dans les systèmes à permutation fixe, le choix s'effec­tue de telle façon que l'intelligibilité résiduelle soit la plus faible possible. Malheureusement ce paramètre dépend for­tement du locuteur et, de plus, l'attaque du système est rela­tivement aisée si on suppose que l'on peut comparer un message de son choix et le cryptogramme associé.The security of the interference obtained by such a system is based on the strategy adopted to carry out the permutations. In systems with fixed permutation, the choice is made in such a way that the residual intelligibility is as low as possible. Unfortunately this parameter strongly depends on the speaker and, moreover, the attack on the system is relatively easy if we suppose that we can compare a message of its choice and the associated cryptogram.

Ces inconvénients peuvent être partiellement élimi­nés si les permutations, au lieu d'être fixes, varient dans le temps. L'attaque de la clé générant les permutations devient alors fastidieuse pour peu que le rythme de changement devien­ne élevé. De même, l'intelligibilité résiduelle peut devenir très faible et devient complètement indépendante du locuteur. La contrepartie est le besoin de synchronisation au débrouil­leur.These disadvantages can be partially eliminated if the permutations, instead of being fixed, vary over time. Attacking the key generating the permutations then becomes tedious as long as the rate of change becomes high. Likewise, residual intelligibility can become very weak and becomes completely independent of the speaker. The counterpart is the need for synchronization with the descrambler.

Le schéma synoptique d'un dispositif brouilleur-dé­brouilleur à permutations dynamiques de bandes conforme à l'invention est représenté sur les figures 2 et 3. Dans ce dispositif les calculs nécessaires aux différents traitements sont effectués par des processeurs numériques de signal tels que le TMS 32010 de Texas Instruments.The block diagram of a jammer-unscrambler device with dynamic band permutations according to the invention is represented in FIGS. 2 and 3. In this device the calculations necessary for the different treatments are carried out by digital signal processors such as the TMS 32010 from Texas Instruments.

Pour les organes de conversion analogique-numérique et numérique-analogique ainsi que les filtrages, on a utilisé les circuits COFIDEC TP3057 de National Semi-conductor (con­version sur 8 bits -loi A). Ils présentent l'avantage de con­tenir toutes ces fonctions dans un seul boîtier de 16 broches.COFIDEC TP3057 circuits from National Semi-conductor (8-bit conversion -law A) were used for the analog-digital and digital-analog converters and the filtering. They have the advantage of containing all these functions in a single 16-pin package.

Dans le brouilleur (figure 2), les différentes éta­pes du traitement sont les suivantes :
- Filtrage anti-repliements en 1 du signal original
- Echantillonnage en 2 et numérisation par un convertisseur analogique-numérique 3
- Analyse en 4 à l'aide d'un banc de filtres pseudo-QMF à 16 sous-bandes du signal échantillonné à la fréquence fe fournie par l'oscillateur 5 suivi du diviseur de fréquence 6. Le filtre prototype à 80 coefficients et les signaux de sous-bandes sont échantillonnés à fe/16.
- Permutation en 7 à 12 des signaux de sous-bande au rythme de fe/16 (seulement 12 signaux sont permutés, les 4 autres n'étant pas transmis).
- Synthèse en 13 des signaux de sous-bande permutés
- Restitution du signal analogique brouillé à l'aide d'un con­vertisseur numérique-analogique 14 et d'un filtre de lissage 15.
- Ajout en numérique d'une onde de synchronisation de fréquen­ce fe/4.
In the jammer (Figure 2), the different processing steps are as follows:
- Anti-aliasing filtering in 1 of the original signal
- Sampling in 2 and digitization by an analog-digital converter 3
- Analysis in 4 using a pseudo-QMF filter bank with 16 sub-bands of the signal sampled at the frequency f e supplied by the oscillator 5 followed by the frequency divider 6. The prototype filter with 80 coefficients and the subband signals are sampled at f e / 16.
- Permutation in 7 to 12 of the sub-band signals at the rate of f e / 16 (only 12 signals are permuted, the other 4 not being transmitted).
- Synthesis in 13 of the permuted sub-band signals
- Restitution of the scrambled analog signal using a digital-analog converter 14 and a smoothing filter 15.
- Addition in digital of a frequency synchronization wave f e / 4.

Le signal de parole provenant d'un microphone est appliqué à l'entrée du codeur analogique-numérique (circuit COFIDEC) après adaptation de niveau. Le signal est filtré avant échantillonnage à la fréquence fe = 7 kHz puis est converti sur 8 bits MIC selon la loi A. L'échantillon est en­suite transféré dans le processeur réalisant, après linéarisa­tion, le traitement par le banc de filtres d'analyse. Celui-ci transforme le signal original échantillonné à la fréquence fe en N signaux de sous-bande échantillonnés à fe/N (ici N = 16). Le séquencement des opérations se fait de la manière suivante :
- lecture par le processeur d'un échantillon ;
- calcul de la contribution de cet échantillon aux 16 si­gnaux de sous-bande ;
- sortie d'un échantillon pour chacun des 16 signaux de sous-bande tous les 16 cycles d'échantillonnage (de durée T).
The speech signal from a microphone is applied to the input of the analog-digital encoder (circuit COFIDEC) after level adjustment. The signal is filtered before sampling at the frequency f e = 7 kHz then is converted to 8 bits MIC according to law A. The sample is then transferred to the processor performing, after linearization, the processing by the analysis filter bank . This transforms the original signal sampled at frequency f e into N sampled subband signals at f e / N (here N = 16). The sequencing of operations is done as follows:
- reading by the processor of a sample;
- calculation of the contribution of this sample to the 16 sub-band signals;
- output of a sample for each of the 16 sub-band signals every 16 sampling cycles (of duration T).

Lors de ce cycle particulier où le calcul final des échantillons de sous-bande est effectué, les 16 résultats sont écrits dans une RAM externe 10. Ces échantillons vont être en­suite immédiatement transférés dans le processeur effectuant le banc de synthèse mais dans un ordre permuté. La permutation joue sur les adresses de lecture de la RAM. Un ensemble de 256 permutations est sauvegardé dans une PROM 8. Le choix de la permutation à effectuer est donc représenté par un mot de 8 bits. Un brouillage à permutations dynamiques dans le temps est obtenu par changements des adresses de lecture de la PROM. Ces 8 bits d'adresse proviennent d'un générateur 7 d'une séquence PN à longueur maximale 2n-1 constitué de 16 bascu­les. La RAM externe 10 est adressée en écriture (E) ou en lec­ture (L) à travers le multiplexeur 9 par la permutation issue de la PROM. Le multiplexeur 9 et la PROM 8 reçoivent respecti­vement de 11 et 12 les adresses d'écriture et de lecture.During this particular cycle where the final calculation of the subband samples is carried out, the 16 results are written to an external RAM 10. These samples will then be immediately transferred to the processor performing the synthesis bench but in a permuted order. The permutation plays on the read addresses of the RAM. A set of 256 permutations is saved in a PROM 8. The choice of permutation to be carried out is therefore represented by an 8-bit word. Interference with dynamic permutations over time is obtained by changes to the PROM read addresses. These 8 address bits come from a generator 7 of a PN sequence of maximum length 2 n -1 consisting of 16 flip-flops. The external RAM 10 is addressed in write (E) or in read (L) through the multiplexer 9 by the permutation resulting from the PROM. The multiplexer 9 and the PROM 8 respectively receive from 11 and 12 the write and read addresses.

Le rythme de l'horloge réalisant les décalages de la séquence est la fréquence des permutations. Celle-ci peut varier de 0 (permutation fixe) à fe/N qui est la fréquence maximale ; en effet, fe/N est la fréquence d'échantillonnage des signaux de sous-bande et donc, deux échantillons consécu­tifs d'un signal de sous-bande seront permutés de façon diffé­rente.The rhythm of the clock performing the shifts in the sequence is the frequency of the permutations. This can vary from 0 (fixed permutation) to f e / N which is the maximum frequency; indeed, f e / N is the sampling frequency subband signals and therefore two consecutive samples of a subband signal will be swapped differently.

Les échantillons des signaux de sous-bande permutés sont ensuite lus par le processeur de synthèse. Celui-ci, de façon duale aux traitements effectués dans l'analyse, forme 16 échantillons du signal brouillé échantillonné à la fréquence fe à partir de 16 échantillons de sous-bande permutés qui sont échantillonnés à la fréquence fe/N. A ce signal brouil­lé est ajouté en numérique l'onde de synchronisation sin(2ΠnTfe/4). Pour éviter que ce signal, dont le niveau ma­ximal est situé à -18 dB du niveau de saturation du décodeur, ne soit trop perturbé par la parole, les sous-bandes 13 et 14 sont mises autour de fe/4, ces sous-bandes ayant été préala­blement mises à zéro. De même, les sous-bandes 15 et 16 du si­gnal original ne sont pas transmises.The samples of the swapped subband signals are then read by the synthesis processor. This, in addition to the processing carried out in the analysis, forms 16 samples of the scrambled signal sampled at the frequency f e from 16 permuted sub-band samples which are sampled at the frequency f e / N. To this scrambled signal is added in digital the sin synchronization wave (2ΠnTf e / 4). To prevent this signal, whose maximum level is located at -18 dB from the saturation level of the decoder, from being too disturbed by speech, the sub-bands 13 and 14 are put around f e / 4, these sub- bands having been previously zeroed. Likewise, the sub-bands 15 and 16 of the original signal are not transmitted.

Le signal numérique ainsi obtenu est, après com­pression MIC, transféré dans le COFIDEC où il est converti en signal analogique puis filtré. Le signal analogique est ensui­te transmis puis traité par le débrouilleur.The digital signal thus obtained is, after compression MIC, transferred to COFIDEC where it is converted into analog signal then filtered. The analog signal is then transmitted and processed by the descrambler.

Les traitements effectués au débrouilleur (figure 4) sont les suivants :
- Filtrage anti-repliements en 1ʹ du signal brouillé.
- Synchronisation d'échantillonnage 2ʹ effectuée par une bou­cle à verrouillage de phase entièrement numérique et compen­sation de l'onde de synchronisation.
- Numérisation par un convertisseur analogique-numérique 3ʹ.
- Synchronisations des blocs et des permutations, et calcul des coefficients de l'égaliseur, lors de la sé­quence d'initialisation.
- Egalisation du signal brouillé à l'aide d'un filtre trans­verse.
L'ensemble des traitements de synchronisations et d'égalisa­tion est réalisé sur le processeur de signal 17.
- Analyse en 4ʹ du signal brouillé.
-Permutation inverse en 7ʹ à 12ʹ des signaux de sous-bande.
- Synthèse en 13ʹ des signaux de sous-bande remis à leur pla­ce.
- Restitution du signal analogique débrouillé à l'aide d'un convertisseur numérique-analogique 14ʹ et d'un filtre de lissage 15ʹ.
The treatments performed with the descrambler (figure 4) are as follows:
- Anti-aliasing filtering in 1ʹ of the scrambled signal.
- 2ʹ sampling synchronization performed by a fully digital phase locked loop and compensation of the synchronization wave.
- Digitization by a 3ʹ analog-digital converter.
- Synchronization of blocks and permutations, and calculation of the equalizer coefficients, during the initialization sequence.
- Equalization of the scrambled signal using a transverse filter.
All the synchronization and equalization processing is carried out on the signal processor 17.
- 4ʹ analysis of the scrambled signal.
-Inverse 7erm to 12ʹ switching of sub-band signals.
- 13ʹ synthesis of the sub-band signals put back in their place.
- Restitution of the unscrambled analog signal using a 14ʹ digital-analog converter and a 15ʹ smoothing filter.

Les traitements énumérés ci-dessus sont, pour le coeur du système, identiques à ceux effectués au brouilleur si ce n'est que les permutations à faire subir aux signaux de sous-bande sont inverses à celles faites au brouilleur.The treatments listed above are, for the heart of the system, identical to those carried out with the jammer except that the permutations to be subjected to the sub-band signals are opposite to those made with the jammer.

Le signal de parole brouillé est appliqué à l'en­trée analogique du COFIDEC du débrouilleur et est filtré avant échantillonnage. La commande d'échantillonnage est élaborée par le processeur 17. La boucle s'accroche sur l'onde de syn­chronisation à fe/4 où fe est la fréquence d'échantillon­nage au brouilleur. On effectue ensuite successivement une compensation de cette onde de synchronisation (neutrodynage), un filtrage du signal par l'égaliseur dont les coefficients ont été obtenus lors de la séquence d'initialisation à l'aide d'un programme d'égalisation adaptative. Le signal, une fois égalisé, est transféré au processeur réalisant l'analyse, et le traitement qui suit est équivalent à celui expliqué dans le fonctionnement du brouilleur. La PROM 8ʹ des permutations con­tient les permutations inverses de celles effectuées au brouilleur. Ses adresses de lecture proviennent d'un généra­teur 7ʹ d'une séquence PN à 16 bascules. La RAM externe 10ʹ disposée entre les processeurs d'analyse et de synthèse est adressée en écriture E ou en lecture L à travers le multiple­xeur 9ʹ par la permutation inverse issue de la PROM. Le multi­plexeur 9ʹ et la PROM 8ʹ reçoivent respectivement de 112ʹ et 12ʹ les adresses d'écriture et de lecture.The scrambled speech signal is applied to the analog input of the COFIDEC of the descrambler and is filtered before sampling. The sampling command is produced by the processor 17. The loop hooks onto the synchronization wave at f e / 4 where f e is the sampling frequency at the scrambler. Compensation is then carried out successively for this synchronization wave (neutralization), filtering of the signal by the equalizer whose coefficients were obtained during the initialization sequence using an adaptive equalization program. The signal, once equalized, is transferred to the processor performing the analysis, and the processing that follows is equivalent to that explained in the operation of the jammer. The PROM 8ʹ of permutations contains the permutations opposite to those carried out with the jammer. Its read addresses come from a 7ʹ generator of a PN sequence with 16 flip-flops. The external RAM 10ʹ arranged between the analysis and synthesis processors is addressed in write E or in read L through the multiplexer 9ʹ by the reverse permutation resulting from the PROM. The multiplexer 9ʹ and the PROM 8ʹ respectively receive from 112ʹ and 12ʹ the write and read addresses.

Pour débrouiller parfaitement le signal, il faut que les signaux de sous-bande, après analyse du signal brouil­lé, soient identiques aux signaux appliqués au banc de synthè­se du brouilleur. Pour ce faire, on doit réaliser :
-une synchronisation de l'échantillonnage à la fréquence fe du signal brouillé.
- une égalisation du canal tant en amplitude qu'en temps de propagation de groupe.
- une synchronisation des blocs permettant de transmettre l'information de la phase de sous-échantillonnage effectuée dans le banc de filtres d'analyse.
- une synchronisation des permutations.
To fully manage the signal, the sub-band signals, after analysis of the scrambled signal, must be identical to the signals applied to the jammer synthesis bench. To do this, we must realize:
a synchronization of the sampling at the frequency f e of the scrambled signal.
- equalization of the channel both in amplitude and in group propagation time.
- a synchronization of the blocks making it possible to transmit the information of the sub-sampling phase carried out in the bank of analysis filters.
- synchronization of permutations.

On analyse maintenant en détail ces différents points.We now analyze these various points in detail.

En ce qui concerne la synchronisation d'échantil­lonnage, des essais subjectifs sur la qualité de la parole restituée ont montré que l'on peut tolérer des écarts de phase d'échantillonnage de ± 5 % de la période T.With regard to sampling synchronization, subjective tests on the quality of the restored speech have shown that sampling phase deviations of ± 5% of the period T can be tolerated.

Pour atteindre cet objectif, une boucle à verrouil­lage de phase entièrement numérique réalisée à l'aide d'un processeur de signal a été étudiée. Cette boucle dont le sché­ma de principe est représenté sur la figure 4, comporte les éléments constitutifs suivants:
- un échantillonneur-bloqueur 18 et un convertisseur analogi­que-numérique 19,
- deux démodulateurs en quadrature (cosinus et sinus) 20 et 21 et leurs filtres associés 22 et 23,
- une logique de décision permettant de faire la correction de phase d'échantillonnage 24. Dans le contexte d'un processeur de signal 8, cette correction s'effectue autour de la valeur de fréquence libre (fe) par l'ajout ou le retrait d'un
- certain nombre de cycles "machine", ce qui permet d'obtenir un verrouillage à double vitesse de la boucle.
To achieve this objective, a fully digital phase locked loop produced using a signal processor was studied. This loop, the block diagram of which is shown in FIG. 4, includes the following constituent elements:
a sampler-blocker 18 and an analog-digital converter 19,
- two quadrature demodulators (cosine and sine) 20 and 21 and their associated filters 22 and 23,
a decision logic making it possible to make the sampling phase correction 24. In the context of a signal processor 8, this correction is carried out around the free frequency value (f e ) by adding or withdrawal of a
- certain number of "machine" cycles, which makes it possible to obtain a double speed locking of the loop.

La boucle entièrement numérique ainsi réalisée pré­sente les caractéristiques principales suivantes :
- une acquisition rapide (≈ une centaine de périodes d'échan­tillonnage)
- un suivi correct en présence de perturbations (bruit-dérive)
- une réalisation simple sur processeur de signal.
The fully digital loop thus produced has the following main characteristics:
- rapid acquisition (≈ a hundred sampling periods)
- correct monitoring in the presence of disturbances (noise-drift)
- a simple implementation on signal processor.

On dispose donc du moyen permettant de retrouver la phase d'échantillonnage du signal brouillé quand, avant trans­mission, et en numérique, on lui ajoute la séquence.We therefore have the means to find the sampling phase of the scrambled signal when, before transmission, and digitally, we add the sequence to it.

Pour compenser les distorsions d'amplitude et de temps de propagation de groupe apportées par le canal, un fil­trage par un égaliseur du signal brouillé est nécessaire.To compensate for the amplitude and group propagation time distortions caused by the channel, filtering by an equalizer of the scrambled signal is necessary.

La fonction d'un égaliseur est de réaliser le fil­tre inverse du canal ; si on appelle h et g les réponses im­pulsionnelles du canal et de l'égaliseur, on doit avoir dans le cas idéal :
    (h

Figure imgb0002

g)(n) = δ(n-n₀) où n₀ représente le retard que subit le signal lors de la transmission dans le canal puis l'égaliseur. L'égaliseur a été réalisé à l'aide d'un filtre transverse à 48 coefficients.The function of an equalizer is to realize the reverse filter of the channel; if we call h and g the impulse responses of the channel and the equalizer, we should have in the ideal case:
(h

Figure imgb0002

g) (n) = δ (n-n₀) where n₀ represents the delay undergone by the signal during transmission in the channel and then the equalizer. The equalizer was produced using a transverse filter with 48 coefficients.

Lors de la séquence d'initialisation, un programme d'égalisation adaptative sur processeur de signal permet de trouver les coefficients du filtre égaliseur à l'aide de l'al­gorithme du gradient. L'égaliseur adaptatif travaille d'abord en aveugle (figure 6) puis en référence local (figure 7). Pour travailler dans ce deuxième mode, on se sert de la propriété d'auto-synchronisation (figure 5) des séquences PN. Cette pro­priété sert également pour transmettre les synchronisations de blocs et des permutations.During the initialization sequence, an adaptive equalization program on a signal processor makes it possible to find the coefficients of the equalizer filter using the gradient algorithm. The adaptive equalizer works first blind (figure 6) then in local reference (figure 7). To work in this second mode, we use the self-synchronization property (Figure 5) of PN sequences. This property is also used to transmit block synchronizations and permutations.

La figure 5 explique cette propriété d'auto-syn­chronisation pour la séquence PN 27 ou 27' générée par le po­lynôme P(x) = x16+x5+x3+x2+1. La sortie E du circuit d'émis­sion est obtenue par addition modulo 2 de x, message à trans­mettre, et de F, signal de rebouclage. Si à l'entrée du cir­cuit réception on applique E, après 16 coups d'horloge (ce qui correspond au degré maximal du polynôme générateur) la sortie S est égale à x. En effet, quel que soit l'état initial, il suffit de 16 temps d'horloge pour que les bascules de rang identique contiennent les mêmes informations. Comme E = x + F, on peut calculer :
S = E

Figure imgb0003

F = (x

Figure imgb0004

F) + F...= x

Figure imgb0005

(F

Figure imgb0006

F) = x

Figure imgb0007

0 = x.Figure 5 explains this self-synchronization property for the PN sequence 27 or 27 'generated by the polynomial P (x) = x16 + x5 + x3 + x2 + 1. The output E of the transmission circuit is obtained by adding modulo 2 of x, message to be transmitted, and of F, loopback signal. If E is applied to the input of the reception circuit, after 16 clock ticks (which corresponds to the maximum degree of the generator polynomial) the output S is equal to x. Indeed, whatever the initial state, it only takes 16 clock times for the flip-flops of identical rank to contain the same information. As E = x + F, we can calculate:
S = E

Figure imgb0003

F = (x

Figure imgb0004

F) + F ... = x

Figure imgb0005

(F

Figure imgb0006

F) = x

Figure imgb0007

0 = x.

La sortie E du circuit émission (figure 5) étant prise comme séquence pseudo-aléatoire pour l'égalisation adap­tative, et si l'on fonctionne comme précédemment en "aveugle" (figure 6), on essaye de synchroniser le circuit réception sur le signal appelé Eʹ, résultat de la décision sur le signal égalisé. Le message imposé x est une suite de "1" ; si l'éga­liseur 25 bouclé à travers l'adaptateur 28 a "suffisamment bien" convergé, c'est-à-dire que 32 bits successifs décidés ont la valeur juste, la sortie S va prendre 16 fois la valeur "1". On peut estimer alors que les deux séquences 27 et 27ʹ sont synchronisées et l'égalisation peut ainsi travailler avec référence locale (figure 7). A ce moment là, le circuit au ré­cepteur est basculé en émission locale permettant le calcul d'adaptation des coefficients de façon optimale. En effet, en présence de bruit, il peut se produire des erreurs de décision quand l'égaliseur travaille en aveugle.The output E of the transmission circuit (Figure 5) being taken as a pseudo-random sequence for adaptive equalization, and if we operate as previously in "blind" (Figure 6), we try to synchronize the reception circuit on the signal called Eʹ, result of the decision on the equalized signal. The imposed message x is a sequence of "1"; if the equalizer 25 looped through the adapter 28 has "sufficiently well" converged, that is to say that 32 successive bits decided have the correct value, the output S will take 16 times the value "1". We can then estimate that the two sequences 27 and 27ʹ are synchronized and the equalization can thus work with local reference (FIG. 7). At this time, the circuit at the receiver is switched to local transmission allowing the calculation of adaptation of the coefficients in an optimal manner. Indeed, in the presence of noise, decision errors can occur when the equalizer works blind.

Lorsque l'égaliseur 25 fonctionne avec référence locale, les synchronisations de bloc et de permutations se font par reconnaissance d'un état particulier des bascules des registres PN.When the equalizer 25 operates with local reference, the synchronizations of block and permutations are done by recognition of a particular state of the flip-flops of the registers PN.

En résumé, les traitements effectués par le proces­seur (17) pendant la séquence d'initialisation au débrouilleur sont, de façon séquentielle, les suivants :
. détection de la tonalité de fréquence fe/4 indiquant le début de communication et accrochage de la boucle à ver­rouillage permettant d'effectuer la synchronisation d'échan­tillonnage.
. égalisation adaptative aveugle.
. commutation en égalisation adaptative avec référence locale.
. gel de l'adaptation des coefficients et passage de la syn­chronisation des blocs et celle des permutations qui termine la séquence d'initialisation.
In summary, the processing operations carried out by the processor (17) during the initializer sequence for the descrambler are, sequentially, the following:
. detection of the frequency tone f e / 4 indicating the start of communication and latching of the locking loop allowing synchronization of sampling to be carried out.
. blind adaptive equalization.
. switching to adaptive equalization with local reference.
. freezing of the adaptation of the coefficients and passage of the synchronization of the blocks and that of the permutations which ends the initialization sequence.

Les traitements qu'effectue le processeur (17) en fonctionnement "normal" (hors séquence d'initialisation) sont les suivants :
. boucle à verrouillage de phase.
. compensation de l'onde de synchronisation.
. égalisation du signal.
The processing operations carried out by the processor (17) in "normal" operation (outside the initialization sequence) are as follows:
. phase locked loop.
. compensation of the synchronization wave.
. signal equalization.

Voici maintenant quelques indications succinctes concernant les programmes de traitement implantés sur les pro­cesseurs.Here are some brief indications concerning the processing programs installed on the processors.

Programme d'analyseAnalysis program

Le banc de filtres que l'on veut réaliser est com­posé de 16 filtres à 80 coefficients chacun. Si les filtres du banc sont obtenus par modulation d'un même filtre prototype, la réalisation peut se faire de façon très efficace. En effet, on montre que l'on peut dans ce cas séparer les opérations de filtrage et de modulation. Les traitements sont effectués de la façon suivante :
Soit Xk(m) le kème signal de sous-bande (k = 0, ..., N-1) échantillonné à la fréquence fe/N. Il s'obtient à partir des signaux de sortie des cellules de filtrage notés p(m) par :

Figure imgb0008

où c(k,ρ) = 2cos((2k+1)(2ρ+1)(2ρ+1)π/4N) est le noyau de la transformée en cosinus impaire.The filter bank that we want to make is made up of 16 filters with 80 coefficients each. If the bench filters are obtained by modulation of the same prototype filter, the realization can be done very efficiently. Indeed, we show that in this case we can separate the filtering and modulation operations. The treatments are carried out as follows:
Let Xk (m) be the k th subband signal (k = 0, ..., N-1) sampled at the frequency f e / N. It is obtained from the output signals of the filter cells denoted p (m) by:

Figure imgb0008

where c (k, ρ) = 2cos ((2k + 1) (2ρ + 1) (2ρ + 1) π / 4N) is the core of the odd cosine transform.

Les tableaux de la figure 8 explicitent les opéra­tions de filtrage à réaliser pour obtenir les signaux pρ(m). Formellement, pρ(m) s'écrit:

Figure imgb0009


   . hρ(r) = h(rN+ρ), h étant la réponse impulsionnelle du filtre prototype,
   . xρ(m) = x(mN-ρ), x étant le signal d'entrée,
   . λ = Nc/N, Nc étant le nombre de coefficients du filtre prototype. Dans le cas présent, Nc = 80 coeffi­cients, N = 16 et donc λ = 5.The tables in Figure 8 explain the filtering operations to be performed to obtain the signals pρ (m). Formally, pρ (m) is written:

Figure imgb0009

or
. hρ (r) = h (rN + ρ), h being the impulse response of the prototype filter,
. xρ (m) = x (mN-ρ), x being the input signal,
. λ = Nc / N, Nc being the number of coefficients of the prototype filter. In the present case, Nc = 80 coefficients, N = 16 and therefore λ = 5.

Le tableau supérieur de la figure 8 représente la mémoire des 80 échantillons les plus récents du signal, orga­ nisés en 5 lignes de 16 éléments. L'échantillon le plus récent est situé en haut à gauche, alors que l'échantillon le plus vieux se trouve en bas à droite. Le tableau inférieur repré­sente la mémoire des 80 coefficients du filtre prototype ran­gés également en 5 lignes de 16 éléments et affectés des si­gnes des nombres cos(rπ/2) et sin(rπ/2) apparaissant dans la formule ci-dessus.The upper table of figure 8 represents the memory of the 80 most recent samples of the signal, orga in 5 lines of 16 elements. The most recent sample is located at the top left, while the oldest sample is located at the bottom right. The lower table represents the memory of the 80 coefficients of the prototype filter also arranged in 5 lines of 16 elements and assigned the signs of the numbers cos (rπ / 2) and sin (rπ / 2) appearing in the above formula.

L'obtention de pρ(m) se fait par le calcul de la somme des 5 produits dont les facteurs sont visualisés par le même signe dans chacun des tableaux. On voit que le calcul de pρ(m) ne nécessite pas la connaissance complète du tableau et qu'il peut s'effectuer en fait dès l'arrivée de xρ(m). Le cal­cul de Xk(m) nécessite, quant à lui, la connaissance de tous les signaux pρ(m). Néanmoins on peut effectuer après chaque calcul de pρ(m) les produits partiels pρ(m), C(k,ρ) par k=0, ..., N-1, c'est-à-dire la contribution de pρ(m) au calcul de chacun des signaux de sous-bande.Obtaining pρ (m) is done by calculating the sum of the 5 products whose factors are visualized by the same sign in each of the tables. We see that the computation of pρ (m) does not require full knowledge of the table and that it can be done in fact upon the arrival of xρ (m). The calculation of Xk (m) requires, for its part, the knowledge of all the signals pρ (m). However, after each calculation of pρ (m), we can perform the partial products pρ (m), C (k, ρ) by k = 0, ..., N-1, i.e. the contribution of pρ (m) calculating each of the subband signals.

Programme de synthèseSynthesis program

Les traitements effectués dans le banc de synthèse sont duaux de ceux effectués dans le banc d'analyse. Les si­gnaux de sous-bandes permutés vont d'abord être modulés par la transformée de cosinus impaire selon la formule suivante :

Figure imgb0010

où s est la permutation.The treatments performed in the synthesis bench are dual to those performed in the analysis bench. The permuted subband signals will first be modulated by the odd cosine transform according to the following formula:

Figure imgb0010

where s is the permutation.

Les signaux yρ(m) sont ensuite filtrés pour obtenir le signal brouillé de la façon indiquée sur les deux tableaux de la figure 9.

Figure imgb0011

The signals yρ (m) are then filtered to obtain the scrambled signal as indicated in the two tables in Figure 9.

Figure imgb0011

Claims (6)

1. Dispositif de cryptophonie analogique dans lequel le traitement du signal de parole effectué dans des proces­seurs numériques de signal comporte les opérations suivantes : filtrage (1), échantillonnage (2) et numérisation dans un con­vertisseur analogique-numérique (3), traitement par un banc de filtres d'analyse (4) transformant le signal échantillonné à la fréquence fe en N signaux de sous-bande échantillonnés à fe/N et transférés dans un ordre permuté vers le banc de filtres de synthèse (13) qui effectue les calculs du signal brouillé échantillonné à la fréquence fe auquel est ajouté en numérique une onde de synchronisation, le signal numérique brouillé ainsi obtenu étant converti en analogique (14), fil­tré (15) et transmis par l'intermédiaire d'un canal analogique au débrouilleur où un prétraitement effectue en (17) les fonc­tions de synchronisation d'échantillonnage, de compensation de ladite onde de synchronisation et d'égalisation du signal brouillé et où les traitements effectués sont identiques à ceux effectués au brouilleur si ce n'est que ledit ordre per­muté des N signaux de sous-bande est inversé, caractérisé en ce que ladite onde de synchronisation étant dans un rapport simple avec la fréquence d'échantillonnage et lesdites fonc­tions de synchronisation d'échantillonnage et de compensation de ladite onde de synchronisation étant effectuées en numéri­que, un brouillage à permutations dynamiques dans le temps est obtenu par changement des adresses de lecture d'une mémoire (8) contenant un ensemble de permutations, ces dites adresses provenant d'un générateur pseudo-aléatoire (7) dont le rythme d'horloge donnant la fréquence de changement des permutations peut varier de 0 (permutation fixe) à fe/N (fréquence maxi­male), la clé du système étant un mot chargé, lors de la sé­quence d'initialisation, dans le générateur pseudo-aléatoire.1. Analog cryptophony device in which the processing of the speech signal carried out in digital signal processors comprises the following operations: filtering (1), sampling (2) and digitization in an analog-digital converter (3), processing by a analysis filter bank (4) transforming the signal sampled at frequency f e into N sub-band signals sampled at f e / N and transferred in a permuted order to the synthesis filter bank (13) which performs the calculations of the scrambled signal sampled at the frequency f e to which a synchronization wave is added in digital form, the scrambled digital signal thus obtained being converted into analog (14), filtered (15) and transmitted via an analog channel to the descrambler where a preprocessing performs in (17) the functions of sampling synchronization, compensation of said synchronization wave and equalization of the scrambled signal and where the processing operations carried out are identical to those carried out with the jammer except that said permuted order of the N sub-band signals is inverted, characterized in that said synchronization wave being in a simple relationship with the sampling frequency and said functions of sampling and compensation synchronization of said synchronization wave being carried out in digital, interference with dynamic permutations over time is obtained by changing the read addresses of a memory (8) containing a set of permutations, these said addresses originating a pseudo-random generator (7) whose clock rate giving the frequency of change of permutations can vary from 0 (fixed permutation) to f e / N (maximum frequency), the system key being a loaded word, during the initialization sequence, in the pseudo-random generator. 2. Dispositif de cryptophonie selon la revendication 1, caractérisé en ce que la synchronisation d'échantillonnage de l'onde de synchronisation est effectuée au débrouilleur au moyen d'une boucle à verrouillage de phase entièrement numéri­que et à double vitesse de verrouillage.2. Cryptophony device according to claim 1, characterized in that the synchronization of sampling of the synchronization wave is carried out at the descrambler at by means of a fully digital phase locked loop and double locking speed. 3. Dispositif de cryptophonie selon la revendication 1, caractérisé en ce que les distorsions d'amplitude et de phase apportées par le canal de transmission au signal brouil­lé sont corrigées au moyen d'un égaliseur.3. Cryptophony device according to claim 1, characterized in that the amplitude and phase distortions brought by the transmission channel to the scrambled signal are corrected by means of an equalizer. 4. Dispositif de cryptophonie selon la revendication 2, caractérisé en ce que ladite boucle à verrouillage de phase est utilisée pour effectuer une prise de synchronisation d'échantillonnage préalable au calcul des coefficients de l'égaliseur à l'aide d'un algorithme d'égalisation adaptative travaillant successivement en mode d'égalisation aveugle et en mode d'égalisation avec référence locale.4. Cryptophony device according to claim 2, characterized in that said phase-locked loop is used to carry out sampling synchronization prior to the calculation of the equalizer coefficients using an algorithm of adaptive equalization working successively in blind equalization mode and in equalization mode with local reference. 5. Dispositif de cryptophonie selon la revendication 4, caractérisé en ce que lesdits coefficients de l'égaliseur sont obtenus à l'aide d'un algorithme d'égalisation adaptative travaillant successivement en mode d'égalisation aveugle et en mode d'égalisation avec référence locale.5. Cryptophony device according to claim 4, characterized in that said equalizer coefficients are obtained using an adaptive equalization algorithm working successively in blind equalization mode and in equalization mode with reference local. 6. Dispositif de cryptophonie selon la revendication 5, caractérisé en ce que le fonctionnement de ladite égalisa­tion adaptative avec référence locale permet la synchronisa­tion des permutations par reconnaissance d'un état particulier du système générant ladite référence locale.6. Cryptophony device according to claim 5, characterized in that the operation of said adaptive equalization with local reference allows synchronization of permutations by recognition of a particular state of the system generating said local reference.

EP87202057A 1986-10-31 1987-10-27 Analogous cryptographic device using a dynamic band permutation Ceased EP0270147A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8615209A FR2606237B1 (en) 1986-10-31 1986-10-31 ANALOG CRYPTOPHONY DEVICE WITH DYNAMIC BAND PERMUTATIONS
FR8615209 1986-10-31

Publications (1)

Publication Number Publication Date
EP0270147A1 true EP0270147A1 (en) 1988-06-08

Family

ID=9340415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87202057A Ceased EP0270147A1 (en) 1986-10-31 1987-10-27 Analogous cryptographic device using a dynamic band permutation

Country Status (5)

Country Link
US (1) US4852166A (en)
EP (1) EP0270147A1 (en)
JP (1) JPS63124638A (en)
AU (1) AU606550B2 (en)
FR (1) FR2606237B1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1288182C (en) * 1987-06-02 1991-08-27 Mitsuhiro Azuma Secret speech equipment
US4984219A (en) * 1989-12-26 1991-01-08 Motorola, Inc. Method and apparatus for decoding of frequency inversion based scramblers
US4972480A (en) * 1990-01-10 1990-11-20 General Dynamics (Space Systems Division) Holographic communications device and method
US5150401A (en) * 1990-12-04 1992-09-22 Chips International, Inc. Retrofittable encryption/decryption apparatus using modified frequency modulation
US5432794A (en) * 1991-01-29 1995-07-11 Canon Kabushiki Kaisha Automatic Equalizer
DE4339464C2 (en) * 1993-11-19 1995-11-16 Litef Gmbh Method for disguising and unveiling speech during voice transmission and device for carrying out the method
US6947474B2 (en) 1996-08-23 2005-09-20 Tensorcomm, Inc. Rake receiver for spread spectrum signal demodulation
US6430216B1 (en) 1997-08-22 2002-08-06 Data Fusion Corporation Rake receiver for spread spectrum signal demodulation
AU9027798A (en) 1997-08-21 1999-03-08 Data Fusion Corporation Method and apparatus for acquiring wide-band pseudorandom noise encoded waveforms
US6049574A (en) * 1998-04-17 2000-04-11 Trustees Of Tufts College Blind adaptive equalization using cost function that measures dissimilarity between the probability distributions of source and equalized signals
US6683955B1 (en) * 1998-12-17 2004-01-27 Intel Corporation Method for receiving a secured transmission of information through a plurality of frequency orthogonal subchannels
US6505299B1 (en) 1999-03-01 2003-01-07 Sharp Laboratories Of America, Inc. Digital image scrambling for image coding systems
US6426977B1 (en) * 1999-06-04 2002-07-30 Atlantic Aerospace Electronics Corporation System and method for applying and removing Gaussian covering functions
US7221761B1 (en) 2000-09-18 2007-05-22 Sharp Laboratories Of America, Inc. Error resilient digital video scrambling
WO2003023444A1 (en) 2001-09-12 2003-03-20 Data Fusion Corporation Gps near-far resistant receiver
US20050084032A1 (en) * 2003-08-04 2005-04-21 Lowell Rosen Wideband holographic communications apparatus and methods
US20050031016A1 (en) * 2003-08-04 2005-02-10 Lowell Rosen Epoch-variant holographic communications apparatus and methods
US20050084033A1 (en) * 2003-08-04 2005-04-21 Lowell Rosen Scalable transform wideband holographic communications apparatus and methods
US20050041756A1 (en) * 2003-08-04 2005-02-24 Lowell Rosen Real domain holographic communications apparatus and methods
US20050100076A1 (en) * 2003-08-04 2005-05-12 Gazdzinski Robert F. Adaptive holographic wideband communications apparatus and methods
US20050031051A1 (en) * 2003-08-04 2005-02-10 Lowell Rosen Multiple access holographic communications apparatus and methods
WO2006093723A2 (en) * 2005-02-25 2006-09-08 Data Fusion Corporation Mitigating interference in a signal
US20100023748A1 (en) * 2007-12-28 2010-01-28 Emulex Design & Manufacturing Corporation Self checking encryption and decryption based on statistical sampling
US8958510B1 (en) * 2010-06-10 2015-02-17 Fredric J. Harris Selectable bandwidth filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3504286A (en) * 1967-06-21 1970-03-31 Ericsson Telefon Ab L M Method of transmitting speech in ciphered form and arrangement for carrying out the method
FR2379947A1 (en) * 1977-02-03 1978-09-01 Secre Scrambling method of data transmission - uses sequential data which is multiplexed and de-multiplexed in new sequence with time delay
US4221931A (en) * 1977-10-17 1980-09-09 Harris Corporation Time division multiplied speech scrambler
EP0156428A1 (en) * 1984-03-13 1985-10-02 Telecommunications Radioelectriques Et Telephoniques T.R.T. Cryptophonic system for narrow-band connections
US4551580A (en) * 1982-11-22 1985-11-05 At&T Bell Laboratories Time-frequency scrambler

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991271A (en) * 1972-09-29 1976-11-09 Datotek, Inc. Voice security method and system
US4068094A (en) * 1973-02-13 1978-01-10 Gretag Aktiengesellschaft Method and apparatus for the scrambled transmission of spoken information via a telephony channel
CH580893A5 (en) * 1973-07-02 1976-10-15 Gretag Ag
DE3120357A1 (en) * 1981-05-22 1982-12-09 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt METHOD FOR EXCHANGING N SUBBANDS
US4663500A (en) * 1982-02-22 1987-05-05 Nec Corporation Cryptographic system
JPS6216639A (en) * 1985-07-16 1987-01-24 Kokusai Denshin Denwa Co Ltd <Kdd> Privacy telephone system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3504286A (en) * 1967-06-21 1970-03-31 Ericsson Telefon Ab L M Method of transmitting speech in ciphered form and arrangement for carrying out the method
FR2379947A1 (en) * 1977-02-03 1978-09-01 Secre Scrambling method of data transmission - uses sequential data which is multiplexed and de-multiplexed in new sequence with time delay
US4221931A (en) * 1977-10-17 1980-09-09 Harris Corporation Time division multiplied speech scrambler
US4551580A (en) * 1982-11-22 1985-11-05 At&T Bell Laboratories Time-frequency scrambler
EP0156428A1 (en) * 1984-03-13 1985-10-02 Telecommunications Radioelectriques Et Telephoniques T.R.T. Cryptophonic system for narrow-band connections

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GLOBECOM '82 - IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, Miami, 29 novembre - 2 décembre 1982, Conference Record, vol. 1/3, pages A6.2.1 - A6.2.5, IEEE, New York, US; R.V. COX et al.: "An analog scrambler for speech based on sequential permutations in time and frequency" *

Also Published As

Publication number Publication date
US4852166A (en) 1989-07-25
FR2606237A1 (en) 1988-05-06
FR2606237B1 (en) 1988-12-09
AU606550B2 (en) 1991-02-07
JPS63124638A (en) 1988-05-28
AU8049087A (en) 1988-05-05

Similar Documents

Publication Publication Date Title
EP0270147A1 (en) 1988-06-08 Analogous cryptographic device using a dynamic band permutation
EP0365431B1 (en) 1994-12-14 Transmitter, transmission method and receiver
FR2602933A1 (en) 1988-02-19 Subscriber unit for wireless digital telephone; modem and diverse devices (frequency synthesizer etc.) for this unit
EP0130263A1 (en) 1985-01-09 Starting-up method for an echo canceller filter, and communication system using this method
JPH09501291A (en) 1997-02-04 Process and apparatus for voice scrambling and unscrambling in voice transmission
FR2935856A1 (en) 2010-03-12 DIGITAL MULTI-CHANNEL SIGNAL TRANSMISSION SYSTEM USING FILTER BENCHES AND MEMORY PRELOADING FOR INITIALIZATION
FR2524742A1 (en) 1983-10-07 METHOD FOR TRANSMITTING DUPLEX DATA ON A SWITCHED TELEPHONE CIRCUIT AND CORRESPONDING MODEM
EP1216557A1 (en) 2002-06-26 Method for transmitting an offset modulated biorthogonal multicarrier signal (bfdm/om)
EP0629059B1 (en) 2001-09-05 Spread spectrum digital transmission system with low frequency pseudorandom coding of the useful information and method for spectrum spreading and compressing used in such a system
CA1224254A (en) 1987-07-14 Adaptive digital filter echo eliminator for transmission systems
JPS621334A (en) 1987-01-07 Expansion part response processing for analog signal ciphering and similar operation
EP0585434B1 (en) 2000-12-27 Filtering method and device for reducing digital audio signal pre-echoes
FR2826208A1 (en) 2002-12-20 System and method for transmitting an audio or phonic signal, by utilizing a digital modem for transmitting analogue signals
FR2638305A1 (en) 1990-04-27 Transmitter and method of transmission
EP0084997A1 (en) 1983-08-03 Modulation device for a single sideband type modulation chain
FR2800954A1 (en) 2001-05-11 MULTI-CARRIER DIGITAL TRANSMISSION SYSTEM USING OQAM TRANSMULTIPLEXER
CA2264247A1 (en) 1999-10-02 Broadband multi-carrier modulator and related programming process
WO2002060140A1 (en) 2002-08-01 Method for transmitting a biorthogonal frequency multiplex signal/synchronous modulation (bfdm/sm) signal
EP1536590B1 (en) 2006-08-30 Method of reception for a telecommunications signal
EP0841758A1 (en) 1998-05-13 Method of echo cancelling for a radio signal with constant envelope and associated devices
FR2638306A1 (en) 1990-04-27 Receiver
FR2723493A1 (en) 1996-02-09 METHOD AND DEVICE FOR ENCODING AND DECODING SOUND BY FREQUENCY COMPRESSION, IN PARTICULAR FOR APPLICATION TO A MEMORY OF SOUND.
FR2472877A1 (en) 1981-07-03 MODULATORS FOR PHASE AND AMPLITUDE MODULATION DIGITAL DATA TRANSMISSION SYSTEM (MAMSK)
FR2749115A1 (en) 1997-11-28 Digital data transmission method for direct sequence spread=spectrum
FR2471090A1 (en) 1981-06-12 Modulation and multiplexing system for telephone signal transmission - converts signals into digital words which are combined by fourier transformation to analogue data for transmission

Legal Events

Date Code Title Description
1988-04-23 PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

1988-06-08 AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT LI NL SE

1989-02-01 17P Request for examination filed

Effective date: 19881206

1991-08-28 17Q First examination report despatched

Effective date: 19910711

1992-08-05 RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON-TRT DEFENSE

1993-06-08 STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

1993-07-28 18R Application refused

Effective date: 19930306

2007-08-08 RIN1 Information on inventor provided before grant (corrected)

Inventor name: MASSON, JAQUESSOCIETE CIVILE S.P.I.D.