EP3915145B1 - Semiconductor device and fabricating method thereof - Google Patents
- ️Wed Mar 13 2024
EP3915145B1 - Semiconductor device and fabricating method thereof - Google Patents
Semiconductor device and fabricating method thereof Download PDFInfo
-
Publication number
- EP3915145B1 EP3915145B1 EP19943801.1A EP19943801A EP3915145B1 EP 3915145 B1 EP3915145 B1 EP 3915145B1 EP 19943801 A EP19943801 A EP 19943801A EP 3915145 B1 EP3915145 B1 EP 3915145B1 Authority
- EP
- European Patent Office Prior art keywords
- substrate
- recess
- layer
- temporary
- semiconductor structure Prior art date
- 2019-08-28 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims description 126
- 238000000034 method Methods 0.000 title claims description 43
- 239000000758 substrate Substances 0.000 claims description 121
- 230000002093 peripheral effect Effects 0.000 claims description 42
- 239000004020 conductor Substances 0.000 claims description 25
- 238000002161 passivation Methods 0.000 claims description 13
- 238000000059 patterning Methods 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 8
- 230000000149 penetrating effect Effects 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 198
- 238000005530 etching Methods 0.000 description 10
- 230000003071 parasitic effect Effects 0.000 description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 8
- 239000010703 silicon Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 239000003989 dielectric material Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 5
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 229910021332 silicide Inorganic materials 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000000231 atomic layer deposition Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/18—Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of the types provided for in two or more different main groups of the same subclass of H10B, H10D, H10F, H10H, H10K or H10N
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/481—Internal lead connections, e.g. via connections, feedthrough structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6835—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76898—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/528—Layout of the interconnection structure
- H01L23/5283—Cross-sectional geometry
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/535—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including internal interconnections, e.g. cross-under constructions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/03—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L24/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/07—Structure, shape, material or disposition of the bonding areas after the connecting process
- H01L24/08—Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/20—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels
- H10B41/23—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
- H10B41/27—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/40—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the peripheral circuit region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/50—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the boundary region between the core region and the peripheral circuit region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/20—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
- H10B43/23—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
- H10B43/27—EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/40—EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B43/00—EEPROM devices comprising charge-trapping gate insulators
- H10B43/50—EEPROM devices comprising charge-trapping gate insulators characterised by the boundary region between the core and peripheral circuit regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D88/00—Three-dimensional [3D] integrated devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68345—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during the manufacture of self supporting substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/6835—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during build up manufacturing of active devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68372—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support a device or wafer when forming electrical connections thereto
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/03001—Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
- H01L2224/03002—Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for supporting the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/034—Manufacturing methods by blanket deposition of the material of the bonding area
- H01L2224/03444—Manufacturing methods by blanket deposition of the material of the bonding area in gaseous form
- H01L2224/0345—Physical vapour deposition [PVD], e.g. evaporation, or sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/034—Manufacturing methods by blanket deposition of the material of the bonding area
- H01L2224/03444—Manufacturing methods by blanket deposition of the material of the bonding area in gaseous form
- H01L2224/03452—Chemical vapour deposition [CVD], e.g. laser CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/036—Manufacturing methods by patterning a pre-deposited material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/03—Manufacturing methods
- H01L2224/039—Methods of manufacturing bonding areas involving a specific sequence of method steps
- H01L2224/0391—Forming a passivation layer after forming the bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0556—Disposition
- H01L2224/05567—Disposition the external layer being at least partially embedded in the surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0556—Disposition
- H01L2224/05569—Disposition the external layer being disposed on a redistribution layer on the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0556—Disposition
- H01L2224/0557—Disposition the external layer being disposed on a via connection of the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0556—Disposition
- H01L2224/05571—Disposition the external layer being disposed in a recess of the surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05617—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
- H01L2224/05624—Aluminium [Al] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05638—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05638—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/05647—Copper [Cu] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05638—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/05657—Cobalt [Co] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05599—Material
- H01L2224/056—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/05663—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
- H01L2224/05684—Tungsten [W] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/07—Structure, shape, material or disposition of the bonding areas after the connecting process
- H01L2224/08—Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
- H01L2224/081—Disposition
- H01L2224/0812—Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
- H01L2224/08135—Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/08145—Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/07—Structure, shape, material or disposition of the bonding areas after the connecting process
- H01L2224/08—Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
- H01L2224/081—Disposition
- H01L2224/0812—Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
- H01L2224/08135—Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
- H01L2224/08145—Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
- H01L2224/08147—Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the bonding area connecting to a bonding area disposed in a recess of the surface of the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/07—Structure, shape, material or disposition of the bonding areas after the connecting process
- H01L2224/09—Structure, shape, material or disposition of the bonding areas after the connecting process of a plurality of bonding areas
- H01L2224/091—Disposition
- H01L2224/0918—Disposition being disposed on at least two different sides of the body, e.g. dual array
- H01L2224/09181—On opposite sides of the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/80001—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
- H01L2224/8036—Bonding interfaces of the semiconductor or solid state body
- H01L2224/80379—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
- H01L2224/92—Specific sequence of method steps
- H01L2224/9202—Forming additional connectors after the connecting process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
- H01L24/92—Specific sequence of method steps
Definitions
- the present invention relates to a semiconductor device and a fabricating method thereof.
- Planar memory cells are scaled to smaller sizes by improving process technology, circuit design, programming algorithm, and fabrication process.
- feature sizes of the memory cells approach a lower limit
- planar process and fabrication techniques become challenging and costly.
- memory density for planar memory cells approaches an upper limit.
- a three-dimensional (3D) memory architecture can address the density limitation in planar memory cells.
- the 3D memory architecture includes a memory array and peripheral devices for controlling signals to and from the memory array device.
- FIG. 1 which illustrates an input/output (I/O) pad structure of a conventional 3D memory device.
- the substrate 12 for forming memory array device 14 may be etched through to form through holes 12h for electrically connecting the memory array device 14 under the substrate 12 to the I/O pad 16 on the substrate 12.
- an insulating layer 18 is further formed on a surface 12a of the substrate 12 opposite to the memory array device 14, so that the I/O pad 16 formed on the insulating layer 18 can be insulated from the substrate 12 that has some elements, such as doped regions, formed therein.
- the through holes 12h is formed through the insulating layer 18 and the substrate 12, and a through silicon contact (TSC) 20 and a liner layer 22 are formed in each through hole 12h, in which the liner layer 22 is located between the TSC 20 and the substrate 12 for electrically insulating them from each other.
- TSC through silicon contact
- the TSC 20 penetrates through the substrate 12 and electrically connects the I/O pad 16 to a through array contact 14c of the memory array device 14 formed on another surface 12b of the substrate 12 opposite the surface 12a.
- a passivation layer 24 is formed on the I/O pad 16 and has an opening 24a exposing the I/O pad 16.
- the thickness of the insulating layer 18 may be increased to reduce the parasitic capacitance, but the parasitic capacitance also exists between the TSC 20 and the substrate 12.
- the thickness of the insulating layer 18 is increased, for example, to be greater than 1.4 microns, the aspect ratio of each through hole 12h penetrating through the insulating layer 18 and the substrate 12 is increased, thereby significantly enlarging process difficulty.
- the cost of the 3D memory device cannot be further lowered.
- the number of layers of a memory stack needs to be increased. In such situation, the space between two of the through array contacts 14c becomes smaller, such that the opening of each through hole 12h will be smaller, and the space between the TSC 20 and the substrate 12 is reduced, thereby increasing the parasitic capacitance and slowing the operating speed of the 3D memory device.
- each through hole 12h is limited by the space between two of the through array contacts 14c, the opening of each through hole 12h is small and limited, such that small deviation of through holes 12h generated from the process error may result in open circuit between the through array contact 14c and the I/O pad 16 or current leakage in the memory array device 14.
- US 2014/0346668 A1 discloses a semiconductor device, which includes a semiconductor substrate, a gate insulating film formed on a surface of the semiconductor substrate, an interlayer insulating film formed on the gate insulating film, a surface electrode including a plurality of wiring lines having a damascene structure selectively embedded in the interlayer insulating film with a predetermined pattern and a between wiring-lines insulating film disposed between the wiring lines adjoining each other by use of a part of the interlayer insulating film, a through electrode penetrating the semiconductor substrate and electrically connected to the surface electrode, and a via insulating film disposed between the through electrode and the semiconductor substrate.
- CN109155320 discloses an embedded pad structures of three-dimensional memory devices and fabrication methods thereof.
- Embodiments of a semiconductor device and a fabricating method thereof are described in the present invention.
- a semiconductor device includes a first semiconductor structure and an input/output pad.
- the first semiconductor structure includes a first substrate and a conductive layer, in which the first substrate has a first surface and a second surface opposite to each other, the conductive layer is disposed on the first surface of the first substrate, and the conductive layer comprises one or more first trace.
- the input/output pad disposed on the one or more first trace.
- a top surface of the input/output pad is lower than the first surface of the first substrate, and an insulating layer and a passivation layer are sequentially disposed on the second surface of the first substrate.
- the first semiconductor structure has a recess penetrating the first substrate and exposing the one or more first trace, and the input/output pad is disposed in the recess.
- the insulating layer has an opening corresponding to the recess, and the passivation layer extends into the recess and is in contact with the input/output pad.
- the semiconductor device further includes a first insulating layer disposed on the second surface of the first substrate, and the first insulating layer has an opening corresponding to the recess.
- the first semiconductor structure further includes a second insulating layer between the first surface of the first substrate and the first conductive layer, in which the recess penetrates through the second insulating layer.
- a thickness of the input/output pad may be less than a thickness of the second insulating layer
- the first semiconductor structure further includes a peripheral device on the first substrate.
- the conductive layer further includes at least two second traces electrically connected to the one or more peripheral device.
- the input/output pad directly contacts the one or more first trace.
- a width of the one or more trace is greater than a width of a bottom of the recess.
- the semiconductor device further includes a second semiconductor structure bonded to the first semiconductor structure.
- the second semiconductor structure includes a second substrate and a plurality of NAND strings, and the NAND strings are disposed between the conductive layer and the second substrate.
- the first semiconductor structure further includes one or more peripheral device on the first substrate, and one of NAND strings is electrically connected to the one or more peripheral device.
- a fabricating method of a semiconductor device includes providing a temporary semiconductor structure, wherein the temporary semiconductor structure comprises a temporary substrate and a conductive layer, the temporary substrate has a first surface, the conductive layer is disposed on the first surface of the temporary substrate, and the conductive layer comprises one or more first trace; forming a recess in the temporary semiconductor structure to form a first semiconductor structure and a first substrate, wherein the recess penetrates through the first substrate and expose the one or more first trace; and forming a input/output pad in the recess and on the one or more first trace, wherein a top surface of the input/output pad is lower than the first surface of the first substrate; and forming an insulating layer having an opening corresponding to the recess and a passivation layer sequentially on a second surface of the first substrate, wherein the passivation layer extends into the recess and is in contact with the input/output pad.
- the fabricating method further includes thinning a surface of the temporary substrate opposite to the first surface to form a second surface between providing the temporary semiconductor structure and forming the recess.
- the fabricating method further includes forming a first insulating layer on the temporary substrate between providing the temporary semiconductor structure and forming the recess, wherein the first insulating layer has an opening exposing the temporary substrate.
- the temporary semiconductor structure further comprises a temporary insulating layer between the first surface of the temporary substrate and the conductive layer, and forming the recess comprises patterning the temporary insulating layer to form a second insulating layer.
- forming the input/output pad includes depositing a conductive material layer on the first insulating layer, a sidewall of the recess, and the one or more first trace, and removing a part of the conductive material layer on the first insulating layer and a sidewall of the recess.
- the input/output pad is directly formed on the one or more first trace.
- providing the first semiconductor structure includes providing the temporary semiconductor structure comprises providing a second semiconductor structure bonded to the temporary semiconductor structure.
- references in the specification to "one embodiment,” “an embodiment,” “an example embodiment,” “some embodiments,” etc. indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases do not necessarily refer to the same embodiment. Further, when a particular feature, structure or characteristic is described in connection with an embodiment, it would be within the knowledge of a person skilled in the pertinent art to effect such feature, structure or characteristic in connection with other embodiments whether or not explicitly described.
- terminology may be understood at least in part from usage in context.
- the term "one or more” as used herein, depending at least in part upon context may be used to describe any feature, structure, or characteristic in a singular sense or may be used to describe combinations of features, structures or characteristics in a plural sense.
- terms, such as “a,” “an,” or “the,” again, may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context.
- the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures.
- the apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
- the word “may” is used in a permissive sense (e.g., meaning having the potential to), rather than the mandatory sense (e.g., meaning must).
- the words “include”, “including”, and “includes” indicate open-ended relationships and therefore mean including, but not limited to.
- the words “have”, “having”, and “has” also indicated open-ended relationships, and thus mean having, but not limited to.
- the terms “first”, “second”, “third,” and so forth as used herein are meant as labels to distinguish among different elements and may not necessarily have an ordinal meaning according to their numerical designation.
- the semiconductor device 1 provided in this embodiment includes a first semiconductor structure 102 and an input/output (I/O) pad 104, in which the first semiconductor structure 102 has a recess 102R for disposing the I/O pad 104 that is electrically connected to external circuits or devices to transfer electrical signals between the semiconductor device 1 and the external circuits or devices.
- I/O pad 104 is illustrated, but the number of the I/O pad 104 of the present invention is not limited to this and may be plural.
- the first semiconductor structure 102 includes a first substrate 110 and one or more conductive layer 112, in which the first substrate 110 has a first surface 110a and the second surface 110b opposite to each other, and the conductive layer 112 is disposed on the first surface 110a of the first substrate 110.
- the conductive layer 112 may include one or more first trace 112T1 exposed by the recess 102R, and the I/O pad 104 is disposed on and electrically connected to the first trace 112T1.
- the first semiconductor structure 102 may for example be a peripheral device structure, so the first semiconductor structure 102 may include the first substrate 110 and a peripheral interconnect layer 108 on the first surface 110a of the first substrate 110, and the conductive layer 112 is included in the peripheral interconnect layer 108.
- the first semiconductor structure 102 may further include a peripheral device 106 on the first surface 110a of the first substrate 110 and between the peripheral interconnect layer 108 and the first substrate 110.
- the first substrate 110 for example can include silicon (e.g., single crystalline silicon), silicon germanium (SiGe), gallium arsenide (GaAs), germanium (Ge), silicon on insulator (SOI), or any other suitable materials.
- the conductive layer 112 may for example include conductor materials including, but not limited to, W, Co, Cu, Al, silicides, or any combination thereof.
- the first substrate 110 includes two lateral surfaces (e.g., the first surface 110a and the second surface 110b) extending laterally in a direction X (the lateral direction or width direction).
- X the lateral direction or width direction
- one component e.g., a layer or a device
- Y the vertical direction or thickness direction
- the first substrate 110 may have a device region DR and a pad region PR.
- the device region DR is for forming the peripheral device 106
- the pad region PR is for forming the recess 102R and the I/O pad 104, such that the peripheral device 106 is not affected or damaged by the formation of the recess 102R and the I/O pad 104.
- the first substrate 110 can be etched through to have an opening 110P corresponding to the recess 102R.
- the peripheral device 106 may include one or more transistor. In the embodiment shown in FIG. 2 , one transistor is illustrated as an example, but not limited thereto.
- the peripheral device 106 may for example include doped regions 106a and a gate structure 106b. The doped regions 106a are disposed in the first substrate 110.
- the gate structure 106b may be disposed between the first substrate 110 and the peripheral interconnect layer 108.
- the peripheral interconnect layer 108 includes the conductive layer 112 and one or more insulating layer, such that the peripheral device 106 may be electrically connected to the I/O pad 104 or other devices, such as following memory array device.
- one conductive layer 112 and two insulating layers 114a, 114b are illustrated as an example, but not limited thereto.
- Each of the insulating layers 114a, 114b can include dielectric materials, such as silicon oxide, silicon nitride, silicon oxynitride, any other suitable dielectric materials, or any combination thereof.
- the conductive layer 112 is disposed on the first surface 110a of the first substrate 110 and between the insulating layers 114a, 114b, and the insulating layer 114a is disposed between the conductive layer 112 and the first substrate 110, such that some parts of the conductive layer 112 may be electrically isolated from the first substrate 110 by the insulating layer 114a.
- the recess 102R further penetrates the insulating layer 114a between the first substrate 110 and the conductive layer 112 and exposes the first trace 112T1, such that the insulating layer 114a has an opening 114P corresponding to the recess 102R.
- the opening110P, the opening 114P, the exposed first trace 112T1 and a part of the insulating layer 114b may form the recess 102R.
- the semiconductor device 1 may further include another insulating layer 118 disposed on the second surface 110b of the first substrate 110, in which the insulating layer 118 has an opening 118P corresponding to the recess 102R.
- the opening 118P exposes the recess 102R.
- the I/O pad 104 can be formed on the conductive layer 112 through the opening 118P and the recess 102R and electrically connected to the exposed first trace 112T1 by being disposed in the recess 102R.
- the I/O pad 104 can directly contact the first trace 112T1.
- the number of the exposed first traces 112T1 spaced apart from each other is plural, and the I/O pad 104 is electrically connected to the plural first traces 112T1, but not limited thereto.
- the number of the exposed first trace 112T1 may be one, and a width of the first trace 112T1 may be the same as or different from a width of a bottom of the recess 102R.
- the width of the first trace 112T1 may be greater than the width of the bottom of the recess 102R, so the first trace 112T1 may serve as an etching stop layer while forming the recess 102R.
- the conductive layer 112 may be one of the conductive layers in the peripheral interconnect layer 108 closest to the first substrate 110, but not limited thereto. In some embodiments, the conductive layer 112 may further include at least two second traces 112T2 electrically connected to the peripheral device 106. In some embodiments, the number of the insulating layers penetrated by the recess 102R may be plural. In some embodiments, the thickness T1 of the conductive layer 112 may be less than the thickness T2 of the insulating layer 114a, such that the space between the conductive layer 112 and the first substrate110 can be increased to lower the parasitic capacitance between them.
- the peripheral interconnect layer 108 may further include at least one contact layer 116 for electrically connecting the peripheral device 106 to the conductive layer 112.
- the contact layer 116 includes contact plugs penetrate through the insulating layer 114a.
- the peripheral interconnect layer 108 may further include contact layer under the conductive layer 112, but not limited thereto.
- the conductive layer 116 may for example include conductor materials including, but not limited to, W, Co, Cu, Al, silicides, or any combination thereof.
- the semiconductor device 1 may further include a passivation layer 120 for protecting the insulating layer 118, the first semiconductor structure 102 and the I/O pad 104.
- the passivation layer 120 has an opening 120P exposing the I/O pad 104, so that the I/O pad 104 can be electrically connected to external circuits or devices through the opening 120P.
- the semiconductor device may for example be a memory device or any other suitable device.
- FIG. 3 schematically illustrates a cross-sectional view of the semiconductor device according to an example of the first embodiment of the present invention.
- the semiconductor device 1 provided in this example is a NAND Flash memory device, but not limited thereto.
- the memory cells in the NAND Flash memory device are provided in the form of a plurality of NAND strings 222 extending vertically under the first substrate 110.
- the semiconductor device 1 may further include a second semiconductor structure 224, and the second semiconductor structure 224 includes a second substrate 226 and a memory array device 228.
- the second substrate 226 is disposed opposite to the first surface 110a of the first substrate 110, and the memory array device 228 is formed on the second substrate 226 and between the first substrate 110 and the second substrate 226.
- the second substrate 226 for example can include silicon (e.g., single crystalline silicon), silicon germanium (SiGe), gallium arsenide (GaAs), germanium (Ge), silicon on insulator (SOI), or any other suitable materials.
- the memory array device 228 can include the NAND strings 222 disposed between the conductive layer 112 and the second substrate 226.
- the NAND strings 222 extend vertically through a plurality of conductor layers 230 and a plurality of dielectric layers 232.
- Each conductor layer 230 and a corresponding one of the dielectric layers 232 may form a pair.
- Each conductor layer 230 can be adjoined by two dielectric layers 232 on both sides, and each dielectric layer 232 can be adjoined by two conductor layers 230 on both sides.
- Conductor layer 230 can include conductor materials, such as tungsten (W), cobalt (Co), copper (Cu), aluminum (Al), doped silicon, silicides, any other suitable conductor materials, or any combination thereof.
- Dielectric layer 232 can include dielectric materials, such as silicon oxide, silicon nitride, silicon oxynitride, any other suitable dielectric materials, or any combination thereof.
- the memory array device 228 may further include a source contact 234, word line contacts 236, and a dielectric layer 238, in which the source contact 234 extends vertically through the conductor layers 230 and the dielectric layers 232, the word line contacts 236 extend vertically within the dielectric layer 238, and each word line contact 236 is in contact with a corresponding conductor layer 230 to individually address a corresponding word line of the memory array device 228. It is noted that the memory array device 228 shown in FIG.
- an isolation region 240 and a doped region 242 may be formed in the second substrate 226.
- the semiconductor device 1 may further include an array interconnect layer 244 for electrically connecting the memory array device 228 to the peripheral device 106 and/or the I/O pad 104.
- an array interconnect layer 244 for electrically connecting the memory array device 228 to the peripheral device 106 and/or the I/O pad 104.
- one of NAND strings 222 is electrically connected to the peripheral device 106 through the array interconnect layer 244 and the peripheral interconnect layer 108.
- the array interconnect layer 244 is disposed on the memory array device 228 and in contact with the peripheral interconnect layer 108.
- the array interconnect layer 244 can include one or more contact layer (e.g. contact layers 246a, 246b), one or more conductive layer (e.g. conductive layers 248a, 248b), and one or more dielectric layer (e.g. dielectric layers 250a, 250b).
- the contact layers 246a, 246b and the conductive layers 248a, 248b may include conductor materials including, but not limited to, W, Co, Cu, Al, silicides, or any combination thereof.
- the dielectric layers 250a, 250b may include dielectric materials including, but not limited to, silicon oxide, silicon nitride, low-k dielectrics, or any combination thereof.
- the peripheral interconnect layer 108 may include plural conductive layers 112 (e.g. conductive layers 112a, 112b), plural contact layers 116 (e.g. contact layers 116a, 116b), and plural dielectric layers (e.g. dielectric layers 114a, 114b, 114c).
- the number of the contact layer 116 and the number of the dielectric layer are not limited to be plural and may be adjusted based on the number of the conductive layer 112.
- a bonding interface 252 may be formed between the dielectric layer 114c of the peripheral interconnect layer 108 and the dielectric layer 250a of the array interconnect layer 244.
- the bonding interface 252 may also be formed between the conductor layer 248a of the array interconnect layer 244 and the conductor layer 112b of the peripheral interconnect layer 108.
- the first semiconductor structure 102 is bonded to the second semiconductor structure 224 at the bonding interface 252.
- the first semiconductor structure 102 may further include isolation regions 154 formed in the first substrate 110 for separating different components.
- the semiconductor device 1 may have the following advantages as compared with the conventional memory device shown in FIG. 1 .
- the parasitic capacitance generated between the I/O pad 104 and the first substrate 110 can be reduced, thereby improving the operating speed of the semiconductor device 1 or the speed for storing or reading data in the semiconductor device 1.
- the thickness of the insulating layer 118 is not required to be increased to reduce the parasitic capacitance, such that the cost for forming the insulating layer 118 can be lowered, and high aspect ratio is not required.
- the formation of the I/O pad 104 is not limited by the high aspect ratio of the through hole penetrating the insulating layer and the substrate, and the process difficulty for forming the I/O pad 104 can be easier when the density of the NAND strings 22 is increased.
- the width of the recess 102R (e.g. in a range from 70 ⁇ m to 80 ⁇ m) is not limited to be similar to or the same as the width of the NAND string 222 or TSC, exposure light used in a photolithography process is not limited to have very small wavelength.
- the photolithographic process for forming the recess 102R may use I-line exposure (e.g.
- FIG. 4 is a flowchart of an exemplary fabricating method of the semiconductor device according to the first embodiment of the present invention.
- FIG. 5 to FIG. 8 and FIG. 2 schematically illustrate exemplary fabrication steps of the semiconductor device, in which for clarity, FIG. 6 to FIG. 8 ignore a part of the first semiconductor structure and the second semiconductor structure, but the present invention is not limited thereto.
- the fabricating method of the semiconductor device 1 provided in this embodiment includes the following steps S12-S20. As shown in FIG. 4 and FIG. 5 , the step S12 is performed to provide a temporary semiconductor structure 302.
- the temporary semiconductor structure 302 includes a temporary substrate 310, a temporary insulating layer 314a and one or more conductive layer 112.
- the temporary semiconductor structure 302 is different from the first semiconductor structure 102 in that the temporary substrate 310 of the semiconductor structure 302 is not thinned and etched through in step S12, so the temporary semiconductor structure 302 doesn't have the recess 102R, and the temporary substrate 310 doesn't have the opening 110P.
- the thickness of the temporary substrate 310 may be greater than that of the first substrate 110 in step S12.
- the temporary substrate 310 has a first surface 110a and a third surface 310b opposite to each other, the temporary peripheral interconnect layer 308 and the peripheral device 106 are formed on the first surface 110a of the temporary substrate 310.
- the temporary peripheral interconnect layer 308 is different from the peripheral interconnect layer 108 mentioned above in that the temporary insulating layer 314a is not etched through, so as not to have the opening 114P.
- the peripheral device 106 is similar to or the same as the mentioned above and will not be detailed redundantly.
- step S12 the second semiconductor structure 224 is also provided and bonded to the temporary semiconductor structure 302. Since the second semiconductor structure 224 is the same as the mentioned above, the second semiconductor structure 224 will not be detailed repeatedly.
- the step S14 is optionally performed to thin the third surface 310b of the temporary substrate 310 to form a second surface 110b.
- thinning the first substrate 310 may include performing a chemical mechanical planarization (CMP) process or any other suitable process.
- CMP chemical mechanical planarization
- the step S16 is performed to form an insulating layer 118 on the second surface 110b of the thinned temporary substrate 310, in which the insulating layer 118 has the opening 118P exposing the second surface 110b of the temporary substrate 310.
- forming the insulating layer 118 may include depositing an insulating material layer and patterning the insulating material layer.
- the deposition of the insulating material layer may for example utilize a chemical vapor deposition (CVD) process, a physical vapor deposition (PVD) process, an atomic layer deposition (ALD) process or any other suitable deposition process.
- the patterning of the insulating material layer may for example utilize a photolithographic process using a photomask (such as I-line mask).
- the step S16 may be performed directly after providing the temporary semiconductor structure 302.
- the step S18 is performed to forming the recess 102R in the pad region PR of the temporary semiconductor structure 302.
- forming the recess 102R may include patterning the exposed temporary substrate 310 to form the opening 110P in the temporary substrate 310, thereby forming the aforementioned first substrate 110 with the opening 110P.
- the patterning of the temporary substrate 310 may for example utilize an etching process using the insulating layer 118 as a mask.
- Forming the recess 102R may further include patterning a part of the temporary insulating layer 314a exposed by the opening 110P to form the opening 114P and expose the first traces 112T1 after forming the opening 110P, thereby forming the aforementioned insulating layer 114a with the opening 114P. Accordingly, the first semiconductor structure 102 mentioned above can be formed, and the peripheral interconnect layer 108 mentioned above can be formed.
- the patterning of the temporary insulating layer 314a may for example utilize an etching process selectively etching the temporary insulating layer 314a relative to the insulating layer 118, the first substrate 110 and the conductive layer 112.
- the peripheral interconnect layer 308 may further include an etching stop layer between the conductive layer 112 and the temporary insulating layer 314a, so that the etching of the temporary insulating layer 314a can be stopped at the etching stop layer, and the insulating layer 114b between the first traces 112T1 can be protected.
- the etching process may have high etching selectivity of the temporary insulating layer 314a relative to the insulating layer 114b.
- the step S20 is performed to form an I/O pad 104 in the recess 102R and on the first trace 112T1.
- forming the I/O pad 104 includes depositing a conductive material layer 104m on the insulating layer 118, a sidewall of the recess 102R, and the first trace 112T1.
- the conductive material layer 104m extend from the top surface of the insulating layer 118 onto sidewalls of the opening 118P, sidewalls of the opening 110P, sidewalls of the opening 114P and the I/O pad 104.
- the deposition of the conductive material layer 104m may use the CVD process, the PVD process, the ALD process or any other suitable deposition process. Subsequently, as shown in FIG. 8 , forming the I/O pad 104 further includes patterning the conductive material layer 104m to remove parts of the conductive material layer 104m on the insulating layer 118 and sidewalls of the recess 102R.
- a passivation layer 120 may be further formed on the insulating layer 118, sidewalls of the opening 110P, sidewalls of the opening 114P and the I/O pad 104, and then, the passivation layer 120 is patterned to have an opening 120P exposing the I/O pad 104. Accordingly, the semiconductor device 1 of this embodiment is formed.
- FIG. 9 schematically illustrates an exemplary semiconductor device according to a second embodiment of the present invention.
- the semiconductor device 2 provided in this embodiment is different from the previous embodiment in that a width W1 of the first trace 112T1 may be the greater a width W2 of a bottom of the recess 102R, so the first trace 112T1 may serve as an etching stop layer while forming the recess 102R.
- the parasitic capacitance generated between the I/O pad and the first substrate can be reduced, thereby improving the operating speed of the memory device or the speed for storing or reading data in the memory device.
- the thickness of the insulating layer on the first substrate is not required to be increased to reduce the parasitic capacitance, such that the cost for forming the insulating layer can be lowered, and high aspect ratio is not required.
- the formation of the I/O pad is not limited by the high aspect ratio, and the process difficulty for forming the I/O pad can be easier when the density of the NAND strings is increased.
- the width of the recess of the first semiconductor structure is not limited to be similar to or the same as the width of the NAND string or TSC, exposure light used in the photolithography process can have larger wavelength. Also, open circuit between the through array contact and the I/O pad or current leakage in the semiconductor device due to the process error will not occur, and more advanced technologies are not required. Furthermore, when the number of conductor layers and the dielectric layers are increased to upgrade memory capacity, different technology generations still can easily use the same architecture.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Geometry (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
- Semiconductor Integrated Circuits (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Description
-
Background of the Invention
Field of the Invention
-
The present invention relates to a semiconductor device and a fabricating method thereof.
Description of the Prior Art
-
Planar memory cells are scaled to smaller sizes by improving process technology, circuit design, programming algorithm, and fabrication process. However, as feature sizes of the memory cells approach a lower limit, planar process and fabrication techniques become challenging and costly. As a result, memory density for planar memory cells approaches an upper limit.
-
A three-dimensional (3D) memory architecture can address the density limitation in planar memory cells. The 3D memory architecture includes a memory array and peripheral devices for controlling signals to and from the memory array device. Refer to
FIG. 1which illustrates an input/output (I/O) pad structure of a conventional 3D memory device. In the I/
O pad structure10 of the conventional 3D memory device, the
substrate12 for forming
memory array device14 may be etched through to form through
holes12h for electrically connecting the
memory array device14 under the
substrate12 to the I/
O pad16 on the
substrate12. In order to form the I/
O pad structure10, an
insulating layer18 is further formed on a
surface12a of the
substrate12 opposite to the
memory array device14, so that the I/
O pad16 formed on the
insulating layer18 can be insulated from the
substrate12 that has some elements, such as doped regions, formed therein. Also, the
through holes12h is formed through the
insulating layer18 and the
substrate12, and a through silicon contact (TSC) 20 and a
liner layer22 are formed in each through
hole12h, in which the
liner layer22 is located between the
TSC20 and the
substrate12 for electrically insulating them from each other. The
TSC20 penetrates through the
substrate12 and electrically connects the I/
O pad16 to a through
array contact14c of the
memory array device14 formed on another
surface12b of the
substrate12 opposite the
surface12a. A
passivation layer24 is formed on the I/
O pad16 and has an opening 24a exposing the I/
O pad16.
-
However, some shortcomings in the following description are still present in the conventional I/
O pad structure10. First, a parasitic capacitance generated between the I/
O pad16 and the
substrate12 will strongly affect the operating speed of the 3D memory device or the speed for storing or reading data in the 3D memory device, and thus, to reduce the affection, the thickness of the
insulating layer18 may be increased to reduce the parasitic capacitance, but the parasitic capacitance also exists between the
TSC20 and the
substrate12. Second, when the thickness of the
insulating layer18 is increased, for example, to be greater than 1.4 microns, the aspect ratio of each through
hole12h penetrating through the
insulating layer18 and the
substrate12 is increased, thereby significantly enlarging process difficulty. Third, because of the increased thickness of the insulating
layer18, more advanced technologies, such as machines for forming the through
holes12h with larger aspect ratios through the
substrate12, for filling tungsten glue into the through
holes12h with larger aspect ratios, for depositing the
liner layer22 in the through
holes12h with larger aspect ratios, and etc., are required. Thus, the cost of the 3D memory device cannot be further lowered. Third, with the advanced technology, the number of layers of a memory stack needs to be increased. In such situation, the space between two of the through
array contacts14c becomes smaller, such that the opening of each through
hole12h will be smaller, and the space between the
TSC20 and the
substrate12 is reduced, thereby increasing the parasitic capacitance and slowing the operating speed of the 3D memory device. For this reason, different technology generations cannot continuously share the same architecture. Fourth, since the opening of each through
hole12h is limited by the space between two of the through
array contacts14c, the opening of each through
hole12h is small and limited, such that small deviation of through
holes12h generated from the process error may result in open circuit between the through
array contact14c and the I/
O pad16 or current leakage in the
memory array device14.
-
Similar shortcomings apply to
US 2014/0346668 A1and
US 2007/0190692 A1.
US 2014/0346668 A1discloses a semiconductor device, which includes a semiconductor substrate, a gate insulating film formed on a surface of the semiconductor substrate, an interlayer insulating film formed on the gate insulating film, a surface electrode including a plurality of wiring lines having a damascene structure selectively embedded in the interlayer insulating film with a predetermined pattern and a between wiring-lines insulating film disposed between the wiring lines adjoining each other by use of a part of the interlayer insulating film, a through electrode penetrating the semiconductor substrate and electrically connected to the surface electrode, and a via insulating film disposed between the through electrode and the semiconductor substrate.
-
In
US 2007/0190692 A1a method of fabricating interconnect structures with reduced inductance and resistance for connecting signals to circuit elements of integrates circuits are disclosed.
- CN109155320
discloses an embedded pad structures of three-dimensional memory devices and fabrication methods thereof.
Summary of the Invention
-
Embodiments of a semiconductor device and a fabricating method thereof are described in the present invention.
-
According to an embodiment of the present invention, a semiconductor device is disclosed. The semiconductor device includes a first semiconductor structure and an input/output pad. The first semiconductor structure includes a first substrate and a conductive layer, in which the first substrate has a first surface and a second surface opposite to each other, the conductive layer is disposed on the first surface of the first substrate, and the conductive layer comprises one or more first trace. The input/output pad disposed on the one or more first trace. A top surface of the input/output pad is lower than the first surface of the first substrate, and an insulating layer and a passivation layer are sequentially disposed on the second surface of the first substrate. The first semiconductor structure has a recess penetrating the first substrate and exposing the one or more first trace, and the input/output pad is disposed in the recess. The insulating layer has an opening corresponding to the recess, and the passivation layer extends into the recess and is in contact with the input/output pad.
-
In some embodiments, the semiconductor device further includes a first insulating layer disposed on the second surface of the first substrate, and the first insulating layer has an opening corresponding to the recess.
-
In some embodiments, the first semiconductor structure further includes a second insulating layer between the first surface of the first substrate and the first conductive layer, in which the recess penetrates through the second insulating layer.
-
In some embodiments, a thickness of the input/output pad may be less than a thickness of the second insulating layer
-
In some embodiments, the first semiconductor structure further includes a peripheral device on the first substrate.
-
In some embodiments, the conductive layer further includes at least two second traces electrically connected to the one or more peripheral device.
-
In some embodiments, the input/output pad directly contacts the one or more first trace.
-
In some embodiments, a width of the one or more trace is greater than a width of a bottom of the recess.
-
In some embodiments, the semiconductor device further includes a second semiconductor structure bonded to the first semiconductor structure.
-
In some embodiments, the second semiconductor structure includes a second substrate and a plurality of NAND strings, and the NAND strings are disposed between the conductive layer and the second substrate.
-
In some embodiments, the first semiconductor structure further includes one or more peripheral device on the first substrate, and one of NAND strings is electrically connected to the one or more peripheral device.
-
According to an embodiment of the present invention, a fabricating method of a semiconductor device is disclosed and includes providing a temporary semiconductor structure, wherein the temporary semiconductor structure comprises a temporary substrate and a conductive layer, the temporary substrate has a first surface, the conductive layer is disposed on the first surface of the temporary substrate, and the conductive layer comprises one or more first trace; forming a recess in the temporary semiconductor structure to form a first semiconductor structure and a first substrate, wherein the recess penetrates through the first substrate and expose the one or more first trace; and forming a input/output pad in the recess and on the one or more first trace, wherein a top surface of the input/output pad is lower than the first surface of the first substrate; and forming an insulating layer having an opening corresponding to the recess and a passivation layer sequentially on a second surface of the first substrate, wherein the passivation layer extends into the recess and is in contact with the input/output pad.
-
In some embodiments, the fabricating method further includes thinning a surface of the temporary substrate opposite to the first surface to form a second surface between providing the temporary semiconductor structure and forming the recess.
-
In some embodiments, the fabricating method further includes forming a first insulating layer on the temporary substrate between providing the temporary semiconductor structure and forming the recess, wherein the first insulating layer has an opening exposing the temporary substrate.
-
In some embodiments, the temporary semiconductor structure further comprises a temporary insulating layer between the first surface of the temporary substrate and the conductive layer, and forming the recess comprises patterning the temporary insulating layer to form a second insulating layer.
-
In some embodiments, forming the input/output pad includes depositing a conductive material layer on the first insulating layer, a sidewall of the recess, and the one or more first trace, and removing a part of the conductive material layer on the first insulating layer and a sidewall of the recess.
-
In some embodiments, the input/output pad is directly formed on the one or more first trace.
-
In some embodiments, providing the first semiconductor structure includes providing the temporary semiconductor structure comprises providing a second semiconductor structure bonded to the temporary semiconductor structure.
-
Other aspects of the present disclosure can be understood by those skilled in the art in light of the description, the claims, and the drawings of the present disclosure.
-
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Brief Description of the Drawings
-
The accompanying drawings, which are incorporated herein and form a part of the specification, illustrate embodiments of the present invention and, together with the description, further serve to explain the principles of the present invention and to enable a person skilled in the pertinent art to make and use the present invention.
- FIG. 1 illustrates an input/output pad structure of a conventional 3D memory device.
- FIG. 2 schematically illustrates a cross-sectional view of an exemplary semiconductor device according to a first embodiment of the present invention.
- FIG. 3 schematically illustrates a cross-sectional view of the semiconductor device according to an example of the first embodiment of the present invention.
- FIG. 4 is a flowchart of an exemplary fabricating method of the semiconductor device according to the first embodiment of the present invention.
- FIG. 5 to FIG. 8 schematically illustrate exemplary fabrication steps of the semiconductor device.
- FIG. 9 schematically illustrates an exemplary semiconductor device according to a second embodiment of the present invention.
-
Although specific configurations and arrangements are discussed, it should be understood that this is done for illustrative purposes only.
-
It will be apparent to a person skilled in the pertinent art that the present invention can also be employed in a variety of other applications.
-
It is noted that references in the specification to "one embodiment," "an embodiment," "an example embodiment," "some embodiments," etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases do not necessarily refer to the same embodiment. Further, when a particular feature, structure or characteristic is described in connection with an embodiment, it would be within the knowledge of a person skilled in the pertinent art to effect such feature, structure or characteristic in connection with other embodiments whether or not explicitly described.
-
In general, terminology may be understood at least in part from usage in context. For example, the term "one or more" as used herein, depending at least in part upon context, may be used to describe any feature, structure, or characteristic in a singular sense or may be used to describe combinations of features, structures or characteristics in a plural sense. Similarly, terms, such as "a," "an," or "the," again, may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context.
-
It should be readily understood that the meaning of "on," "above," and "over" in the present invention should be interpreted in the broadest manner such that "on" not only means "directly on" something but also includes the meaning of "on" something with an intermediate feature or a layer therebetween, and that "above" or "over" not only means the meaning of "above" or "over" something but can also include the meaning it is "above" or "over" something with no intermediate feature or layer therebetween (i.e., directly on something).
-
The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
-
As used throughout this application, the word "may" is used in a permissive sense (e.g., meaning having the potential to), rather than the mandatory sense (e.g., meaning must). The words "include", "including", and "includes" indicate open-ended relationships and therefore mean including, but not limited to. Similarly, the words "have", "having", and "has" also indicated open-ended relationships, and thus mean having, but not limited to. The terms "first", "second", "third," and so forth as used herein are meant as labels to distinguish among different elements and may not necessarily have an ordinal meaning according to their numerical designation.
-
In the present invention, different technical features in different embodiments described in the following description can be combined, replaced, or mixed with one another to constitute another embodiment.
-
Refer to
FIG. 2which schematically illustrates a cross-sectional view of an exemplary semiconductor device according to a first embodiment of the present invention. As shown in
FIG. 2, the semiconductor device 1 provided in this embodiment includes a
first semiconductor structure102 and an input/output (I/O)
pad104, in which the
first semiconductor structure102 has a
recess102R for disposing the I/
O pad104 that is electrically connected to external circuits or devices to transfer electrical signals between the semiconductor device 1 and the external circuits or devices. In
FIG. 2, one I/
O pad104 is illustrated, but the number of the I/
O pad104 of the present invention is not limited to this and may be plural. In this embodiment, the
first semiconductor structure102 includes a
first substrate110 and one or more
conductive layer112, in which the
first substrate110 has a
first surface110a and the
second surface110b opposite to each other, and the
conductive layer112 is disposed on the
first surface110a of the
first substrate110. The
conductive layer112 may include one or more first trace 112T1 exposed by the
recess102R, and the I/
O pad104 is disposed on and electrically connected to the first trace 112T1. By means of disposing the I/
O pad104 in the
recess102R, the parasitic capacitance generated between the I/
O pad104 and the
first substrate110 can be reduced. The
first semiconductor structure102 may for example be a peripheral device structure, so the
first semiconductor structure102 may include the
first substrate110 and a
peripheral interconnect layer108 on the
first surface110a of the
first substrate110, and the
conductive layer112 is included in the
peripheral interconnect layer108. The
first semiconductor structure102 may further include a
peripheral device106 on the
first surface110a of the
first substrate110 and between the
peripheral interconnect layer108 and the
first substrate110. The
first substrate110 for example can include silicon (e.g., single crystalline silicon), silicon germanium (SiGe), gallium arsenide (GaAs), germanium (Ge), silicon on insulator (SOI), or any other suitable materials. The
conductive layer112 may for example include conductor materials including, but not limited to, W, Co, Cu, Al, silicides, or any combination thereof.
-
It is noted that X and Y axes are added in
FIG. 2to further illustrate the spatial relationship of the components in semiconductor device 1. The
first substrate110 includes two lateral surfaces (e.g., the
first surface110a and the
second surface110b) extending laterally in a direction X (the lateral direction or width direction). As used herein, one component (e.g., a layer or a device) is "on", "above", or "under" another component (e.g., a layer or a device) of the semiconductor device is determined relative to the substrate of the semiconductor device (e.g., the first substrate 110) in another direction Y (the vertical direction or thickness direction). The same notion for describing spatial relationship is applied throughout the present disclosure.
-
In this embodiment, the
first substrate110 may have a device region DR and a pad region PR. The device region DR is for forming the
peripheral device106, and the pad region PR is for forming the
recess102R and the I/
O pad104, such that the
peripheral device106 is not affected or damaged by the formation of the
recess102R and the I/
O pad104. Thus, the
first substrate110 can be etched through to have an
opening110P corresponding to the
recess102R.
-
The
peripheral device106 may include one or more transistor. In the embodiment shown in
FIG. 2, one transistor is illustrated as an example, but not limited thereto. The
peripheral device106 may for example include
doped regions106a and a
gate structure106b. The doped
regions106a are disposed in the
first substrate110. The
gate structure106b may be disposed between the
first substrate110 and the
peripheral interconnect layer108.
-
The
peripheral interconnect layer108 includes the
conductive layer112 and one or more insulating layer, such that the
peripheral device106 may be electrically connected to the I/
O pad104 or other devices, such as following memory array device. In the embodiment shown in
FIG. 2, one
conductive layer112 and two insulating
layers114a, 114b are illustrated as an example, but not limited thereto. Each of the insulating
layers114a, 114b can include dielectric materials, such as silicon oxide, silicon nitride, silicon oxynitride, any other suitable dielectric materials, or any combination thereof. The
conductive layer112 is disposed on the
first surface110a of the
first substrate110 and between the insulating
layers114a, 114b, and the insulating
layer114a is disposed between the
conductive layer112 and the
first substrate110, such that some parts of the
conductive layer112 may be electrically isolated from the
first substrate110 by the insulating
layer114a.
-
In this embodiment, the
recess102R further penetrates the insulating
layer114a between the
first substrate110 and the
conductive layer112 and exposes the first trace 112T1, such that the insulating
layer114a has an
opening114P corresponding to the
recess102R. For example, the opening110P, the
opening114P, the exposed first trace 112T1 and a part of the insulating
layer114b may form the
recess102R.
-
Furthermore, the semiconductor device 1 may further include another insulating
layer118 disposed on the
second surface110b of the
first substrate110, in which the insulating
layer118 has an
opening118P corresponding to the
recess102R. In other words, the
opening118P exposes the
recess102R. Thus, the I/
O pad104 can be formed on the
conductive layer112 through the
opening118P and the
recess102R and electrically connected to the exposed first trace 112T1 by being disposed in the
recess102R. For example, the I/
O pad104 can directly contact the first trace 112T1. In the embodiment shown in
FIG. 2, the number of the exposed first traces 112T1 spaced apart from each other is plural, and the I/
O pad104 is electrically connected to the plural first traces 112T1, but not limited thereto. In some embodiments, the number of the exposed first trace 112T1 may be one, and a width of the first trace 112T1 may be the same as or different from a width of a bottom of the
recess102R. Preferably, the width of the first trace 112T1 may be greater than the width of the bottom of the
recess102R, so the first trace 112T1 may serve as an etching stop layer while forming the
recess102R. In some embodiments, the
conductive layer112 may be one of the conductive layers in the
peripheral interconnect layer108 closest to the
first substrate110, but not limited thereto. In some embodiments, the
conductive layer112 may further include at least two second traces 112T2 electrically connected to the
peripheral device106. In some embodiments, the number of the insulating layers penetrated by the
recess102R may be plural. In some embodiments, the thickness T1 of the
conductive layer112 may be less than the thickness T2 of the insulating
layer114a, such that the space between the
conductive layer112 and the first substrate110 can be increased to lower the parasitic capacitance between them.
-
In some embodiments, the
peripheral interconnect layer108 may further include at least one
contact layer116 for electrically connecting the
peripheral device106 to the
conductive layer112. For example, the
contact layer116 includes contact plugs penetrate through the insulating
layer114a. In some embodiments, the
peripheral interconnect layer108 may further include contact layer under the
conductive layer112, but not limited thereto. The
conductive layer116 may for example include conductor materials including, but not limited to, W, Co, Cu, Al, silicides, or any combination thereof.
-
In some embodiments, the semiconductor device 1 may further include a
passivation layer120 for protecting the insulating
layer118, the
first semiconductor structure102 and the I/
O pad104. The
passivation layer120 has an
opening120P exposing the I/
O pad104, so that the I/
O pad104 can be electrically connected to external circuits or devices through the
opening120P.
-
The semiconductor device may for example be a memory device or any other suitable device. Refer to
FIG. 3which schematically illustrates a cross-sectional view of the semiconductor device according to an example of the first embodiment of the present invention. As shown in
FIG. 3, the semiconductor device 1 provided in this example is a NAND Flash memory device, but not limited thereto. The memory cells in the NAND Flash memory device are provided in the form of a plurality of NAND strings 222 extending vertically under the
first substrate110. In this example, the semiconductor device 1 may further include a
second semiconductor structure224, and the
second semiconductor structure224 includes a
second substrate226 and a memory array device 228. The
second substrate226 is disposed opposite to the
first surface110a of the
first substrate110, and the memory array device 228 is formed on the
second substrate226 and between the
first substrate110 and the
second substrate226. The
second substrate226 for example can include silicon (e.g., single crystalline silicon), silicon germanium (SiGe), gallium arsenide (GaAs), germanium (Ge), silicon on insulator (SOI), or any other suitable materials.
-
The memory array device 228 can include the NAND strings 222 disposed between the
conductive layer112 and the
second substrate226. The NAND strings 222 extend vertically through a plurality of conductor layers 230 and a plurality of dielectric layers 232. Each
conductor layer230 and a corresponding one of the dielectric layers 232 may form a pair. Each
conductor layer230 can be adjoined by two dielectric layers 232 on both sides, and each dielectric layer 232 can be adjoined by two
conductor layers230 on both sides.
Conductor layer230 can include conductor materials, such as tungsten (W), cobalt (Co), copper (Cu), aluminum (Al), doped silicon, silicides, any other suitable conductor materials, or any combination thereof. Dielectric layer 232 can include dielectric materials, such as silicon oxide, silicon nitride, silicon oxynitride, any other suitable dielectric materials, or any combination thereof. Also, the memory array device 228 may further include a
source contact234,
word line contacts236, and a
dielectric layer238, in which the
source contact234 extends vertically through the conductor layers 230 and the dielectric layers 232, the
word line contacts236 extend vertically within the
dielectric layer238, and each
word line contact236 is in contact with a corresponding
conductor layer230 to individually address a corresponding word line of the memory array device 228. It is noted that the memory array device 228 shown in
FIG. 2is for an example, and the person skilled in the art knows the memory array device 228 may have other structures, so the structure or its variant of the memory array device 228 will not be detailed herein. In some embodiments, an
isolation region240 and a doped
region242 may be formed in the
second substrate226.
-
As shown in
FIG. 2, the semiconductor device 1 may further include an
array interconnect layer244 for electrically connecting the memory array device 228 to the
peripheral device106 and/or the I/
O pad104. For example, one of NAND strings 222 is electrically connected to the
peripheral device106 through the
array interconnect layer244 and the
peripheral interconnect layer108. The
array interconnect layer244 is disposed on the memory array device 228 and in contact with the
peripheral interconnect layer108. The
array interconnect layer244 can include one or more contact layer (
e.g. contact layers246a, 246b), one or more conductive layer (e.g.
conductive layers248a, 248b), and one or more dielectric layer (e.g.
dielectric layers250a, 250b). The contact layers 246a, 246b and the
conductive layers248a, 248b may include conductor materials including, but not limited to, W, Co, Cu, Al, silicides, or any combination thereof. The
dielectric layers250a, 250b may include dielectric materials including, but not limited to, silicon oxide, silicon nitride, low-k dielectrics, or any combination thereof.
-
In this example, the
peripheral interconnect layer108 may include plural conductive layers 112 (e.g.
conductive layers112a, 112b), plural contact layers 116 (
e.g. contact layers116a, 116b), and plural dielectric layers (e.g.
dielectric layers114a, 114b, 114c). In some embodiments, the number of the
contact layer116 and the number of the dielectric layer are not limited to be plural and may be adjusted based on the number of the
conductive layer112. A bonding interface 252 may be formed between the
dielectric layer114c of the
peripheral interconnect layer108 and the
dielectric layer250a of the
array interconnect layer244. The bonding interface 252 may also be formed between the conductor layer 248a of the
array interconnect layer244 and the conductor layer 112b of the
peripheral interconnect layer108. In other words, the
first semiconductor structure102 is bonded to the
second semiconductor structure224 at the bonding interface 252. In some embodiments, the
first semiconductor structure102 may further include
isolation regions154 formed in the
first substrate110 for separating different components.
-
As mentioned above, the semiconductor device 1 may have the following advantages as compared with the conventional memory device shown in
FIG. 1. First, since the I/
O pad104 is directly disposed in the
recess102R, the I/
O pad104 doesn't exist in the
opening110P of the
first substrate110. Thus, the parasitic capacitance generated between the I/
O pad104 and the
first substrate110 can be reduced, thereby improving the operating speed of the semiconductor device 1 or the speed for storing or reading data in the semiconductor device 1. Second, the thickness of the insulating
layer118 is not required to be increased to reduce the parasitic capacitance, such that the cost for forming the insulating
layer118 can be lowered, and high aspect ratio is not required. Thus, the formation of the I/
O pad104 is not limited by the high aspect ratio of the through hole penetrating the insulating layer and the substrate, and the process difficulty for forming the I/
O pad104 can be easier when the density of the NAND strings 22 is increased. Third, because the
recess102R is formed on the
first semiconductor structure108 including the
peripheral device106, the width of the
recess102R (e.g. in a range from 70µm to 80µm) is not limited to be similar to or the same as the width of the
NAND string222 or TSC, exposure light used in a photolithography process is not limited to have very small wavelength. For example, the photolithographic process for forming the
recess102R may use I-line exposure (e.g. 365nm). Since that, open circuit between the through array contact and the I/O pad or current leakage in the semiconductor device due to the process error will not occur. For this reason, more advanced technologies, such as machines for forming the through holes with larger aspect ratios through the substrate, for filling tungsten glue into the through holes with larger aspect ratios, for depositing the liner layer in the through holes with larger aspect ratios, and etc., are not required. Fourth, when the number of conductor layers 230 and the dielectric layers 232 are increased to upgrade memory capacity, different technology generations still can easily share the same semiconductor device 1.
- FIG. 4
is a flowchart of an exemplary fabricating method of the semiconductor device according to the first embodiment of the present invention.
FIG. 5 to FIG. 8and
FIG. 2schematically illustrate exemplary fabrication steps of the semiconductor device, in which for clarity,
FIG. 6 to FIG. 8ignore a part of the first semiconductor structure and the second semiconductor structure, but the present invention is not limited thereto. It should be noted that the steps shown in
FIG. 4are not exhaustive and that other steps may be performed as well before, after, or between any of the illustrated steps. The fabricating method of the semiconductor device 1 provided in this embodiment includes the following steps S12-S20. As shown in
FIG. 4and
FIG. 5, the step S12 is performed to provide a
temporary semiconductor structure302. The
temporary semiconductor structure302 includes a
temporary substrate310, a temporary
insulating layer314a and one or more
conductive layer112. The
temporary semiconductor structure302 is different from the
first semiconductor structure102 in that the
temporary substrate310 of the
semiconductor structure302 is not thinned and etched through in step S12, so the
temporary semiconductor structure302 doesn't have the
recess102R, and the
temporary substrate310 doesn't have the
opening110P. In some embodiments, the thickness of the
temporary substrate310 may be greater than that of the
first substrate110 in step S12. In this embodiment, the
temporary substrate310 has a
first surface110a and a
third surface310b opposite to each other, the temporary peripheral interconnect layer 308 and the
peripheral device106 are formed on the
first surface110a of the
temporary substrate310. In step S12, the temporary peripheral interconnect layer 308 is different from the
peripheral interconnect layer108 mentioned above in that the temporary insulating
layer314a is not etched through, so as not to have the
opening114P. In this embodiment, the
peripheral device106 is similar to or the same as the mentioned above and will not be detailed redundantly.
-
In step S12, the
second semiconductor structure224 is also provided and bonded to the
temporary semiconductor structure302. Since the
second semiconductor structure224 is the same as the mentioned above, the
second semiconductor structure224 will not be detailed repeatedly.
-
As shown in
FIG. 4,
FIG. 5and
FIG. 6, the step S14 is optionally performed to thin the
third surface310b of the
temporary substrate310 to form a
second surface110b. For example, thinning the
first substrate310 may include performing a chemical mechanical planarization (CMP) process or any other suitable process.
-
After thinning the
temporary substrate310, the step S16 is performed to form an insulating
layer118 on the
second surface110b of the thinned
temporary substrate310, in which the insulating
layer118 has the
opening118P exposing the
second surface110b of the
temporary substrate310. For example, forming the insulating
layer118 may include depositing an insulating material layer and patterning the insulating material layer. The deposition of the insulating material layer may for example utilize a chemical vapor deposition (CVD) process, a physical vapor deposition (PVD) process, an atomic layer deposition (ALD) process or any other suitable deposition process. The patterning of the insulating material layer may for example utilize a photolithographic process using a photomask (such as I-line mask). In some embodiments, the step S16 may be performed directly after providing the
temporary semiconductor structure302.
-
After forming the insulating
layer118, the step S18 is performed to forming the
recess102R in the pad region PR of the
temporary semiconductor structure302. Specifically, forming the
recess102R may include patterning the exposed
temporary substrate310 to form the
opening110P in the
temporary substrate310, thereby forming the aforementioned
first substrate110 with the
opening110P. The patterning of the
temporary substrate310 may for example utilize an etching process using the insulating
layer118 as a mask. Forming the
recess102R may further include patterning a part of the temporary insulating
layer314a exposed by the
opening110P to form the
opening114P and expose the first traces 112T1 after forming the
opening110P, thereby forming the aforementioned insulating
layer114a with the
opening114P. Accordingly, the
first semiconductor structure102 mentioned above can be formed, and the
peripheral interconnect layer108 mentioned above can be formed. The patterning of the temporary insulating
layer314a may for example utilize an etching process selectively etching the temporary insulating
layer314a relative to the insulating
layer118, the
first substrate110 and the
conductive layer112. In some embodiments, the peripheral interconnect layer 308 may further include an etching stop layer between the
conductive layer112 and the temporary insulating
layer314a, so that the etching of the temporary insulating
layer314a can be stopped at the etching stop layer, and the insulating
layer114b between the first traces 112T1 can be protected. In some embodiment, the etching process may have high etching selectivity of the temporary insulating
layer314a relative to the insulating
layer114b.
-
As shown in
FIG. 4and
FIG. 8, the step S20 is performed to form an I/
O pad104 in the
recess102R and on the first trace 112T1. Specifically, as shown in
FIG. 7, forming the I/
O pad104 includes depositing a
conductive material layer104m on the insulating
layer118, a sidewall of the
recess102R, and the first trace 112T1. In other words, the
conductive material layer104m extend from the top surface of the insulating
layer118 onto sidewalls of the
opening118P, sidewalls of the
opening110P, sidewalls of the
opening114P and the I/
O pad104. The deposition of the
conductive material layer104m may use the CVD process, the PVD process, the ALD process or any other suitable deposition process. Subsequently, as shown in
FIG. 8, forming the I/
O pad104 further includes patterning the
conductive material layer104m to remove parts of the
conductive material layer104m on the insulating
layer118 and sidewalls of the
recess102R.
-
As shown in
FIG. 2, after the I/
O pad104 is formed, a
passivation layer120 may be further formed on the insulating
layer118, sidewalls of the
opening110P, sidewalls of the
opening114P and the I/
O pad104, and then, the
passivation layer120 is patterned to have an
opening120P exposing the I/
O pad104. Accordingly, the semiconductor device 1 of this embodiment is formed.
-
The following description will detail the different embodiments of the present disclosure. To simplify the description, identical components in each of the following embodiments are marked with identical symbols. For making it easier to understand the differences between the embodiments, the following description will detail the dissimilarities among different embodiments and the identical features will not be redundantly described.
-
Refer to
FIG. 9which schematically illustrates an exemplary semiconductor device according to a second embodiment of the present invention. As shown in
FIG. 9, the
semiconductor device2 provided in this embodiment is different from the previous embodiment in that a width W1 of the first trace 112T1 may be the greater a width W2 of a bottom of the
recess102R, so the first trace 112T1 may serve as an etching stop layer while forming the
recess102R.
-
By using the disclosed semiconductor device and fabricating method thereof, the parasitic capacitance generated between the I/O pad and the first substrate can be reduced, thereby improving the operating speed of the memory device or the speed for storing or reading data in the memory device. Also, the thickness of the insulating layer on the first substrate is not required to be increased to reduce the parasitic capacitance, such that the cost for forming the insulating layer can be lowered, and high aspect ratio is not required. Thus, the formation of the I/O pad is not limited by the high aspect ratio, and the process difficulty for forming the I/O pad can be easier when the density of the NAND strings is increased. Because the recess is formed on the first semiconductor structure including the peripheral device, the width of the recess of the first semiconductor structure is not limited to be similar to or the same as the width of the NAND string or TSC, exposure light used in the photolithography process can have larger wavelength. Also, open circuit between the through array contact and the I/O pad or current leakage in the semiconductor device due to the process error will not occur, and more advanced technologies are not required. Furthermore, when the number of conductor layers and the dielectric layers are increased to upgrade memory capacity, different technology generations still can easily use the same architecture.
-
The foregoing description of the specific embodiments will so fully reveal the general nature of the present invention that others can, by applying knowledge within the skill of the art, readily modify and/or adapt, for various applications, such specific embodiments, without undue experimentation, and without departing from the general concept of the present invention. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the invention and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the invention and guidance.
Claims (14)
-
A semiconductor device, comprising:
a first semiconductor structure (102), comprising a first substrate (110) and a conductive layer (112), wherein the first substrate (110) has a first surface (110a) and a second surface (110b) opposite to each other, the conductive layer (112) is disposed on the first surface (110a) of the first substrate (110), and the conductive layer (112) comprises one or more first trace (112T1); and
an input/output pad (104) disposed on the one or more first trace (112T1); and a top surface of the input/output pad (104) is lower than the first surface (110a) of the first substrate (110), and an insulating layer (118) and a passivation layer (120) are sequentially disposed on the second surface (110b) of the first substrate (110);
wherein the first semiconductor structure (102) has a recess penetrating the first substrate (110) and exposing the one or more first trace (112T1), and the input/output pad (104) is disposed in the recess, and
wherein the insulating layer (118) has an opening corresponding to the recess, and the passivation layer (120) extends into the recess and is in contact with the input/output pad (104).
-
2. 3rThe semiconductor device according to claim 1, wherein the first semiconductor structure (102) further comprises a second insulating layer (114a) between the first surface (110a) of the first substrate (110) and the first conductive layer (112), wherein the recess (102R) penetrates through the second insulating layer (114b), wherein preferably
a thickness of the input/output pad (104) is less than a thickness of the second insulating layer. -
The semiconductor device according to any one of claims 1 to 2, wherein the first semiconductor structure (102) further comprises a peripheral device (106) on the first substrate (110), wherein preferably the conductive layer (112) further comprises at least two second traces (112T2) electrically connected to the peripheral device (106).
-
The semiconductor device according to any one of claims 1 to 3, wherein the input/output pad (104) directly contacts the one or more first trace (112T1).
-
The semiconductor device according to any one of claims 1 to 4, wherein a width of the one or more trace (112T1) is greater than a width of a bottom of the recess (102R).
-
The semiconductor device according to any one of claims 1 to 5, further comprising a second semiconductor structure (224) bonded to the first semiconductor structure (102).
-
The semiconductor device according to claim 6, wherein the second semiconductor structure (224) comprises a second substrate (226) and a plurality of NAND strings (222), and the NAND strings (222) are disposed between the conductive layer (112) and the second substrate (226), wherein preferably
the first semiconductor structure (102) further comprises a peripheral device (106) on the first substrate (110), and one of NAND strings (222) is electrically connected to the peripheral device (106). -
A fabricating method of a semiconductor device, comprising:
providing a temporary semiconductor structure (302), wherein the temporary semiconductor structure (302) comprises a temporary substrate (310) and a conductive layer (112), the temporary substrate (310) has a first surface (110a), the conductive layer (112) is disposed on the first surface (110a) of the temporary substrate (310), and the conductive layer (112) comprises one or more first trace (112T1);
forming an insulating layer (118) on the second surface (110b) of the temporary substrate (310);
forming a recess in the temporary semiconductor structure (302) to form a first semiconductor structure (102) and a first substrate (110), wherein the recess (102R) penetrates through the first substrate (110) and exposes the one or more first trace (112Tl); and
forming an input/output pad (104) in the recess (102R) and on the one or more first trace (112T1), wherein a top surface of the input/output pad (104) is lower than the first surface (110a) of the first substrate (110), and
wherein the insulating layer (118) has an opening corresponding to the recess (102R) and a passivation layer (120) sequentially on a second surface (110b) of the first substrate (110), wherein the passivation layer (120) extends into the recess (102R) and is in contact with the input/output pad (104).
-
The fabricating method of the semiconductor device according to claim 8, further comprising thinning a surface of the temporary substrate (310) opposite to the first surface (110a) to form a second surface (110b) between providing the temporary semiconductor structure (302) and forming the recess (102R).
-
The fabricating method of the semiconductor device according to claim 8 or 9, wherein the first insulating layer (114a) has an opening exposing the temporary substrate (310) before forming the recess (102R).
-
The fabricating method of the semiconductor device according to claim 10, wherein the temporary semiconductor structure (302) further comprises a temporary insulating layer (314a) between the first surface (110a) of the temporary substrate (310) and the conductive layer (112), and forming the recess (102R) comprises patterning the temporary insulating layer (314a) to form a second insulating layer.
-
The fabricating method of the semiconductor device according to claim 11, wherein a thickness of the input/output pad (104) is less than a thickness of the second insulating layer.
-
The fabricating method of the semiconductor device according to any one of claims 10 to 12, wherein forming the input/output pad (104) comprises:
depositing a conductive material layer on the first insulating layer, a sidewall of the recess (102R), and the one or more first trace; and
removing a part of the conductive material layer on the first insulating layer and a sidewall of the recess (102R), wherein preferably the input/output pad (104) is directly formed on the one or more first trace (112T1).
-
The fabricating method of the semiconductor device according to any one of claims 8 to 13, wherein providing the temporary semiconductor structure (302) comprises providing a second semiconductor structure (224) bonded to the temporary semiconductor structure (302), wherein preferably
the second semiconductor structure (224) comprises a second substrate (226) and a plurality of NAND strings (222), and the NAND strings (222) are disposed between the conductive layer (112) and the second substrate (226).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/103021 WO2021035572A1 (en) | 2019-08-28 | 2019-08-28 | Semiconductor device and fabricating method thereof |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3915145A1 EP3915145A1 (en) | 2021-12-01 |
EP3915145A4 EP3915145A4 (en) | 2022-10-05 |
EP3915145B1 true EP3915145B1 (en) | 2024-03-13 |
Family
ID=69341864
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19943801.1A Active EP3915145B1 (en) | 2019-08-28 | 2019-08-28 | Semiconductor device and fabricating method thereof |
Country Status (7)
Country | Link |
---|---|
US (2) | US11430775B2 (en) |
EP (1) | EP3915145B1 (en) |
JP (1) | JP7612600B2 (en) |
KR (1) | KR102572413B1 (en) |
CN (2) | CN112968011B (en) |
TW (1) | TWI707463B (en) |
WO (1) | WO2021035572A1 (en) |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004064159A1 (en) * | 2003-01-15 | 2004-07-29 | Fujitsu Limited | Semiconductor device, three-dimensional mounting semiconductor apparatus, method for manufacturing semiconductor device |
JP2006093367A (en) * | 2004-09-24 | 2006-04-06 | Sanyo Electric Co Ltd | Manufacturing method of semiconductor device |
US7563714B2 (en) * | 2006-01-13 | 2009-07-21 | International Business Machines Corporation | Low resistance and inductance backside through vias and methods of fabricating same |
JP5439901B2 (en) * | 2009-03-31 | 2014-03-12 | 富士通セミコンダクター株式会社 | Semiconductor device and manufacturing method thereof |
US9673823B2 (en) * | 2011-05-18 | 2017-06-06 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of driving semiconductor device |
US8889532B2 (en) * | 2011-06-27 | 2014-11-18 | Semiconductor Components Industries, Llc | Method of making an insulated gate semiconductor device and structure |
JP5998459B2 (en) * | 2011-11-15 | 2016-09-28 | ローム株式会社 | Semiconductor device, manufacturing method thereof, and electronic component |
JP6012262B2 (en) * | 2012-05-31 | 2016-10-25 | キヤノン株式会社 | Manufacturing method of semiconductor device |
JP2014175348A (en) * | 2013-03-06 | 2014-09-22 | Toshiba Corp | Non-volatile semiconductor memory |
KR102002980B1 (en) * | 2013-04-08 | 2019-07-25 | 에스케이하이닉스 주식회사 | Semiconductor device with air gap and method for fabricating the same |
US9449898B2 (en) * | 2013-07-31 | 2016-09-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device having backside interconnect structure through substrate via and method of forming the same |
EP2838114A3 (en) * | 2013-08-12 | 2015-04-08 | Xintec Inc. | Chip package |
US9117879B2 (en) | 2013-12-30 | 2015-08-25 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor device and manufacturing method thereof |
KR102198857B1 (en) * | 2014-01-24 | 2021-01-05 | 삼성전자 주식회사 | Semiconductor device having landing pad |
US9425150B2 (en) * | 2014-02-13 | 2016-08-23 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multi-via interconnect structure and method of manufacture |
KR102282138B1 (en) * | 2014-12-09 | 2021-07-27 | 삼성전자주식회사 | Semiconductor device |
US10038026B2 (en) * | 2015-06-25 | 2018-07-31 | Taiwan Semiconductor Manufacturing Co., Ltd. | Bond pad structure for bonding improvement |
US9634020B1 (en) * | 2015-10-07 | 2017-04-25 | Silicon Storage Technology, Inc. | Method of making embedded memory device with silicon-on-insulator substrate |
US9923011B2 (en) * | 2016-01-12 | 2018-03-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device structure with stacked semiconductor dies |
US10109666B2 (en) * | 2016-04-13 | 2018-10-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Pad structure for backside illuminated (BSI) image sensors |
KR102597436B1 (en) * | 2016-09-07 | 2023-11-03 | 주식회사 디비하이텍 | Backside illuminated image sensor and method of manufacturing the same |
KR102373616B1 (en) * | 2017-07-06 | 2022-03-11 | 삼성전자주식회사 | Semiconductor device and Method for fabricating thereof |
KR102081086B1 (en) * | 2017-07-07 | 2020-02-25 | 삼성전자주식회사 | Fan-out semiconductor package module |
CN109390373B (en) * | 2017-08-08 | 2020-09-29 | 上海视欧光电科技有限公司 | Packaging structure and packaging method thereof |
CN107658317B (en) * | 2017-09-15 | 2019-01-01 | 长江存储科技有限责任公司 | A kind of semiconductor device and preparation method thereof |
US10283548B1 (en) * | 2017-11-08 | 2019-05-07 | Taiwan Semiconductor Manufacturing Co., Ltd. | CMOS sensors and methods of forming the same |
US10354980B1 (en) * | 2018-03-22 | 2019-07-16 | Sandisk Technologies Llc | Three-dimensional memory device containing bonded chip assembly with through-substrate via structures and method of making the same |
WO2020014976A1 (en) * | 2018-07-20 | 2020-01-23 | Yangtze Memory Technologies Co., Ltd. | Methods for forming three-dimensional memory devices |
CN109155320B (en) | 2018-08-16 | 2019-09-10 | 长江存储科技有限责任公司 | The embedded pad structure and its manufacturing method of three-dimensional storage part |
CN109964313A (en) * | 2019-02-11 | 2019-07-02 | 长江存储科技有限责任公司 | Bonding semiconductor structure and forming method thereof with the bonding contacts made of indiffusion conductive material |
US11069703B2 (en) * | 2019-03-04 | 2021-07-20 | Sandisk Technologies Llc | Three-dimensional device with bonded structures including a support die and methods of making the same |
US10985169B2 (en) * | 2019-03-04 | 2021-04-20 | Sandisk Technologies Llc | Three-dimensional device with bonded structures including a support die and methods of making the same |
US10714497B1 (en) * | 2019-03-04 | 2020-07-14 | Sandisk Technologies Llc | Three-dimensional device with bonded structures including a support die and methods of making the same |
JP2020155487A (en) * | 2019-03-18 | 2020-09-24 | キオクシア株式会社 | Semiconductor storage device and its manufacturing method |
-
2019
- 2019-08-28 WO PCT/CN2019/103021 patent/WO2021035572A1/en unknown
- 2019-08-28 JP JP2021556935A patent/JP7612600B2/en active Active
- 2019-08-28 CN CN202110467208.4A patent/CN112968011B/en active Active
- 2019-08-28 CN CN201980001905.1A patent/CN110770896B/en active Active
- 2019-08-28 EP EP19943801.1A patent/EP3915145B1/en active Active
- 2019-08-28 KR KR1020217029547A patent/KR102572413B1/en active IP Right Grant
- 2019-10-08 US US16/596,725 patent/US11430775B2/en active Active
- 2019-10-08 TW TW108136316A patent/TWI707463B/en active
-
2021
- 2021-09-13 US US17/472,705 patent/US11710730B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
TWI707463B (en) | 2020-10-11 |
CN110770896A (en) | 2020-02-07 |
CN110770896B (en) | 2021-05-14 |
EP3915145A1 (en) | 2021-12-01 |
EP3915145A4 (en) | 2022-10-05 |
TW202109852A (en) | 2021-03-01 |
KR102572413B1 (en) | 2023-08-30 |
CN112968011B (en) | 2024-04-23 |
JP7612600B2 (en) | 2025-01-14 |
US20210407984A1 (en) | 2021-12-30 |
JP2022528330A (en) | 2022-06-10 |
US11710730B2 (en) | 2023-07-25 |
KR20210127734A (en) | 2021-10-22 |
US20210066274A1 (en) | 2021-03-04 |
WO2021035572A1 (en) | 2021-03-04 |
CN112968011A (en) | 2021-06-15 |
US11430775B2 (en) | 2022-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110062958B (en) | 2020-05-26 | Method for forming three-dimensional memory device |
US11081524B2 (en) | 2021-08-03 | Three-dimensional memory devices |
CN111415941B (en) | 2021-07-30 | Multi-layer stacked three-dimensional memory device |
US10580788B2 (en) | 2020-03-03 | Methods for forming three-dimensional memory devices |
US11037945B2 (en) | 2021-06-15 | Bonded three-dimensional memory devices and methods for forming the same |
CN109698166B (en) | 2023-08-22 | Method of forming gate contact structures and cross-coupled contact structures of transistor devices |
US20210134778A1 (en) | 2021-05-06 | Bonded three-dimensional memory devices and methods for forming the same |
US12080697B2 (en) | 2024-09-03 | Method for forming a three-dimensional (3D) memory device having bonded semiconductor structures |
CN110100307B (en) | 2021-08-03 | Three-dimensional memory device and manufacturing method thereof |
WO2022021429A1 (en) | 2022-02-03 | Methods for forming three-dimensional memory devices with supporting structure for staircase region |
TW201806005A (en) | 2018-02-16 | Method of forming substrate via (TSV) and metallization layer after forming a semiconductor device |
US12010834B2 (en) | 2024-06-11 | Three-dimensional memory devices with stabilization structures between memory blocks and methods for forming the same |
US20230171961A1 (en) | 2023-06-01 | Local contacts of three-dimensional memory devices and methods for forming the same |
EP3915145B1 (en) | 2024-03-13 | Semiconductor device and fabricating method thereof |
US20240203882A1 (en) | 2024-06-20 | Semiconductor device and method of forming thereof |
US20250029872A1 (en) | 2025-01-23 | Method for producing an interconnect via |
US20230253322A1 (en) | 2023-08-10 | Nano-tsv landing over buried power rail |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
2021-03-05 | STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
2021-10-29 | PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
2021-10-29 | STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
2021-12-01 | 17P | Request for examination filed |
Effective date: 20210826 |
2021-12-01 | AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
2022-10-05 | A4 | Supplementary search report drawn up and despatched |
Effective date: 20220906 |
2022-10-05 | RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01L 27/11582 20170101ALI20220831BHEP Ipc: H01L 27/11575 20170101ALI20220831BHEP Ipc: H01L 27/11556 20170101ALI20220831BHEP Ipc: H01L 27/11548 20170101ALI20220831BHEP Ipc: H01L 27/06 20060101ALI20220831BHEP Ipc: H01L 23/00 20060101ALI20220831BHEP Ipc: H01L 21/683 20060101ALI20220831BHEP Ipc: H01L 27/115 20170101ALI20220831BHEP Ipc: H01L 21/768 20060101ALI20220831BHEP Ipc: H01L 23/48 20060101ALI20220831BHEP Ipc: H01L 23/535 20060101AFI20220831BHEP |
2022-12-07 | DAV | Request for validation of the european patent (deleted) | |
2022-12-07 | DAX | Request for extension of the european patent (deleted) | |
2023-08-30 | RIC1 | Information provided on ipc code assigned before grant |
Ipc: H10B 43/50 20230101ALI20230721BHEP Ipc: H10B 43/27 20230101ALI20230721BHEP Ipc: H10B 41/50 20230101ALI20230721BHEP Ipc: H10B 41/27 20230101ALI20230721BHEP Ipc: H01L 27/06 20060101ALI20230721BHEP Ipc: H01L 23/00 20060101ALI20230721BHEP Ipc: H01L 21/683 20060101ALI20230721BHEP Ipc: H10B 43/00 20230101ALI20230721BHEP Ipc: H01L 21/768 20060101ALI20230721BHEP Ipc: H01L 23/48 20060101ALI20230721BHEP Ipc: H01L 23/535 20060101AFI20230721BHEP |
2023-10-18 | GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
2023-10-18 | STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
2023-11-15 | INTG | Intention to grant announced |
Effective date: 20231019 |
2024-02-05 | GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
2024-02-09 | GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
2024-02-09 | STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
2024-03-13 | AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
2024-03-13 | RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: YANGTZE MEMORY TECHNOLOGIES CO., LTD. |
2024-03-13 | REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
2024-03-13 | RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: XIAO, LIANG Inventor name: WANG, YONGQING Inventor name: WU, SHU Inventor name: HUA, ZIQUN Inventor name: CHEN, HE |
2024-03-15 | REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
2024-04-03 | P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20240228 |
2024-04-04 | REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019048459 Country of ref document: DE |
2024-04-10 | REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
2024-07-08 | PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240603 Year of fee payment: 6 |
2024-07-09 | PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
2024-07-10 | REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
2024-07-15 | PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240614 |
2024-07-17 | REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240313 |
2024-07-18 | PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240613 |
2024-07-22 | PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
2024-07-31 | PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240613 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240613 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240614 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
2024-07-31 | PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240520 Year of fee payment: 6 |
2024-08-15 | REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1666582 Country of ref document: AT Kind code of ref document: T Effective date: 20240313 |
2024-08-30 | PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
2024-09-03 | PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
2024-09-30 | PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
2024-10-07 | PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240713 |
2024-10-10 | PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240819 Year of fee payment: 6 |
2024-10-14 | PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240715 |
2024-10-23 | PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
2024-10-24 | PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
2024-10-28 | PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
2024-10-29 | PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
2024-10-31 | PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240715 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240713 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
2024-12-04 | PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
2024-12-16 | REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602019048459 Country of ref document: DE |
2024-12-31 | PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
2025-01-15 | PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |
2025-01-17 | PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
2025-01-17 | STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
2025-01-31 | PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240313 |