JP2004169985A - Geothermal exchange system - Google Patents
- ️Thu Jun 17 2004
JP2004169985A - Geothermal exchange system - Google Patents
Geothermal exchange system Download PDFInfo
-
Publication number
- JP2004169985A JP2004169985A JP2002335657A JP2002335657A JP2004169985A JP 2004169985 A JP2004169985 A JP 2004169985A JP 2002335657 A JP2002335657 A JP 2002335657A JP 2002335657 A JP2002335657 A JP 2002335657A JP 2004169985 A JP2004169985 A JP 2004169985A Authority
- JP
- Japan Prior art keywords
- exchange system
- heat
- grout material
- pipe
- ground Prior art date
- 2002-11-19 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
<P>PROBLEM TO BE SOLVED: To provide a geothermal exchange system having improved heat exchanging efficiency and construction property. <P>SOLUTION: The geothermal exchange system has a reciprocating tube embedded in an underground for heat exchange in the reciprocating tube through a heat medium between a ground and the underground. The reciprocating tube is covered with grout, and the grout is formed of a good heat conductive and flowable material incorporating a viscose material in cement together with aggregates. Thus, heat exchanging performance and construction property are improved to actualize wide-range applications for use in heating or cooling with cold or hot air on the ground fed into the underground. The reciprocating tube is embedded in a bored well and the grout with conditioned components is filled therein, permitting easy construction and implementation. <P>COPYRIGHT: (C)2004,JPO
Description
【0001】
【発明の属する技術分野】
本発明は熱交換性能および施工性に優れた地熱交換システムに関する。最近、二酸化炭素発生の抑制や省エネルギーの推進に連動して浅部地中熱の利用が注目されている。地中の浅部は数℃〜数10℃の地熱を有しており、本発明はこの地熱を利用する地熱交換システムである。
【0002】
【従来の技術】
従来、地熱を利用する技術としては、(イ)地中にボーリング等で孔を開け、地下水を採取して、この地下水の熱を利用する方法、(ロ)地下水を汲み上げずに、ボーリング等で開けた孔内にパイプを設置し、このパイプ中に水等を循環して、地中の熱と熱交換を行う方法がある。地下水を利用する方法は、熱効率は良いが地下水の枯渇や地盤沈下などの原因となる場合があるので、最近は地下水を汲み上げない方式が多く採用される傾向にある。地下水を汲み上げないで地中熱を利用するには地中に熱交換システムを構築する必要がある。一般に、この地中の熱交換システムは、地中に孔井を掘削し、この孔内に鋼管やポリエチレン管等の熱媒体循環路を設置し、孔壁と熱媒体循環路の間にグラウト材などを充填して形成されている。
【0003】
【発明が解決しようとする課題】
地中熱交換井の孔内に熱媒体用のパイプを埋設し、孔内とパイプをグラウト材で充填する熱交換構造においては、孔壁とパイプとの間を充填するグラウト材の性状が非常に重要である。グラウト材の性状が適切でないと熱交換性能が低下して実用に適さないものになる。
【0004】
従来、熱交換システムの構造として、建物の基礎として地中に打設された工場生産コンクリート杭の孔内にU字形熱交換パイプを挿入し、パイプと孔内の空間を熱伝達のよい材料で埋め、このパイプに熱媒体を循環させて地熱との間で熱交換を行う例が知られている(特開昭60−8659号公報)。しかし、パイプと孔内の間に充填される材料は通常のセメントや粘土などであり、必ずしも熱交換性能が高くなく、施工性にも問題がある。
【0005】
例えば、熱媒体が流れる往路パイプと復路パイプとを交互に巻回した螺旋状のパイプを用いる熱交換井の構造が知られているが(特開平11−336008号公報)、この螺旋状パイプはコンクリート製ブロックに埋設された状態で熱交換井に設置されており、熱交換パイプと孔井との間を充填しているのは通常のコンクリートである。また、復路配管の一部を縮径して熱交換井内に設置した構造も知られているが(特開2001−289533号公報)、この場合も孔内に充填される材料は通常のセメントや粘土である。このように、従来は熱交換パイプと孔井の間を埋める熱伝達の良い材料として通常のコンクリート等が用いられているのが現状であり、従って、熱交換性能が必ずしも高くなく、また施工性にも問題があった。
【0006】
本発明は、孔井内に熱交換パイプを埋設した構造の熱交換システムについて、従来の上記問題を解消したものであり、成分を限定して熱伝導性および施工性を高めたグラウト材を用いることによって、熱交換性能に優れた地熱交換システムを達成したものである。
【0007】
【課題を解決する手段】
すなわち、本発明は以下の構成からなる地熱交換システムに関する。
(1)地中に埋設された往復管を有し、この往復管に熱媒体を通じて地上と地中の熱交換を行う地熱交換システムであって、往復管がグラウト材によって覆われており、該グラウト材がセメントに骨材と共に粘性材を配合した良熱伝導性および良流動性の材料であることを特徴とする地熱交換システム。
(2)グラウト材が硅砂、水砕スラグなどの良熱伝導性の骨材と共に粘土を含む上記(1)の地熱交換システム。
(3)グラウト材の熱伝導率が2.0W/m・K以上である上記(1)または(2)の地熱交換システム。
(4)グラウト材が硅砂30〜50wt%、粘土1〜3wt%を含むセメント系材料である上記(1)、(2)または(3)の何れかに記載する地熱交換システム。
(5)往復管の地上への出口付近が断熱材によって覆われている上記(1)〜(4)の何れかに記載する地熱交換システム。
(6)往復管がコンクリート基礎杭の孔内に配設され、該孔内をグラウト材で充填したものである上記(1)〜(5)の何れかに記載する地熱交換システム。
(7)往復管が場所打ち基礎杭の孔内に配設され、該孔内をグラウト材で充填したものである上記(1)〜(5)の何れかに記載する地熱交換システム。
【0008】
【発明の実施の形態】
以下、本発明を図面に基づいて具体的に説明する。
図1は本発明の地熱交換システムの概略断面図である。図示するように、本発明の地熱交換システムは、地中に埋設された往復管10を有し、この往復管に熱媒体を通じて地上と地中の熱交換を行う地熱交換システムであって、地中の往復管10がグラウト材20によって覆われており、該グラウト材20がセメントに粘性材と共に配合した骨材を含む良熱伝導性および良流動性の材料であることを特徴とするものである。
【0009】
往復管10はその入口11と出口12が地上に伸びた形状を有する。図示する往復管10はU字型であるが、この形状に限らない。往復管10の材質は限定されない。熱伝導性の良い材料であれば良い。通常の鋼管やポリエチレン管などを用いることができる。往復管10は地中の孔井30に埋設され、この管内に水やオイルなどの熱媒体が流される。
【0010】
往復管10はグラウト材20によって覆われており、図示する構造では、孔井30と往復管10の間にグラウト材20が充填されている。グラウト材20はセメントに粘性材と共に配合した骨材を含む良熱伝導性および良流動性の材料である。具体的には、例えば、グラウト材20は硅砂、水砕スラグなどの良熱伝導性の骨材と共に粘土を含み、熱伝導率が2.0W/m・K以上のものである。
【0011】
グラウト材は、往復管を流れる熱媒体に地熱を効率良く伝達するためのものであり、熱伝導率が良く、ボーリング孔のように細長い孔井内の狭い空間部分を均一に充填し、かつ地下水等に溶出することのない安定な性状を有するものが望ましい。本発明のグラウト材は、セメントをベースにしたスラリーに熱伝導率を高める珪砂等の骨材を加えたものである。さらに、骨材の珪砂等は比重が高いためにセメントスラリーに均一に分散させることが難しく、縦に細長い孔井内に骨材を単独に配合したセメントスラリーを流し込むと、比重の高い骨材が下方に沈積し、珪砂等の骨材が多い部分と少ない部分とが偏在するようになり、地熱交換性能を低下させることになる。そこで本発明のグラウト材は骨材と共に粘土等の粘性材を加えることによって、硅砂等の骨材の沈降を防止してセメントスラリー中に均一に分散できるようにし、珪砂等の偏在による不均一性を解消し、かつ深い孔井内を充填する場合においてもポンピング等の作業性を高めたものである。さらに、粘土などの粘性材を有することによってグラウト材が十分な遮水性を有するようになり、クロスフローによる熱交換損失を防止することができる。
【0012】
グラウト材の成分としては、例えば、硅砂などの骨材を30〜50wt%含有するものが良く、好ましくは35〜45wt%含有するものが良い。骨材の量がこれより少なくと十分な熱伝導率を有するグラウト材を得ることができない。また、骨材の量がこれより多いと空隙が増すのでグラウト材の熱伝導率が低下する。骨材と共に配合される粘土など粘性材の配合量は1〜3wt%が適当であり、1.5〜2.0wt%が好ましい。粘性材の量がこれより少ないと骨材が偏在しやすくなる。一方、粘性材の量がこれより多いと空隙が増加するので好ましくない。
【0013】
硅砂や水砕スラグなどの良熱伝導性の骨材を30〜50wt%含有し、この骨材と共にベントナイトなどの粘性材を1〜3wt%含有することによって、熱伝導率2.0W/m・K以上のグラウト材を得ることができる。さらに、グラウト材は施工性の点から、そのスラリーが適度な比重とフロー値を有するものが好ましい。本発明のグラウト材は硅砂などの骨材と粘土などの粘性材を上記配合量含むことによって、スラリー比重約1.8、スランプ値2〜12cmの施工性に優れたグラウト材を得ることができる。
【0014】
図示する地熱交換システムは、往復管10の地上への出口付近が断熱材40によって覆われている。往復管10の入口11から孔底を経て出口12に向かう部分は往復管10を流れる熱媒体と地中との間で熱交換を行う部分であるので、この部分に充填されるグラウト材20は熱伝導性の良いものが求められるが、往復管10の出口付近は熱交換を行った熱媒体を外部に導く部分であり、熱媒体の熱損失を防ぐように断熱環境下であることが好ましい。図示する地熱交換システムは往復管10の出口付近を断熱材40によって覆うことによって熱媒体の熱損失を防止することができる。
【0015】
本発明の熱交換システムは工場製造されるコンクリート基礎杭を利用して形成することができる。建築物の建設方法として、あらかじめ製造したコンクリート杭を現場に打設して基礎杭を形成することが知られている。このコンクリート基礎杭の孔内に往復管を配設し、該孔内をグラウト材で充填することによって本発明の熱交換システムを形成することができる。この構築方法によれば独自に熱交換井を掘る必要がないので実施しやすく、工事期間が短い。また建設コストを低減することができる。
【0016】
本発明の熱交換システムは場所打ち基礎杭を利用して形成しても良い。往復管を場所打ち基礎杭の孔内に配設し、該孔内をグラウト材で充填することによって本発明の熱交換システムを形成することができる。この構築方法は、鋼製ケーシングを回転しながら地中に打ち込み、孔内の土を取り除き、円筒状に組み立てた鉄筋をケーシング内に配設し、ケーシングを引抜きながらコンクリートを流し込んで基礎杭を形成する。この鉄筋と共に往復管を一緒にケーシング内に挿入して孔内に設置することにより、基礎杭の形成と同時に熱交換システムを形成することができる。
【0017】
【実施例】
〔実施例および比較例〕
地中の孔井にU型の往復管(孔径3.3cm、往管と復管の間隔5m、ポリエチレン製)を埋設し、往復管と孔井の間に本発明のグラウト材(熱伝導率2.09W/m・K)を充填した熱交換システムA、往復管と孔井の間に硅砂モルタルを充填した熱交換システムB、往復管と孔井の間に骨材を含まないセメントペースト(熱伝導率1.07W/m・K)を充填した熱交換システムCをおのおの形成し、初期地層温度12℃、地層熱伝導率1.8W/m・K、坑井深度50m、熱媒体水の流入温度0℃、期間5日の条件下における熱交換の結果を図2に示した。
【0018】
本発明の熱交換システムAは5日間を通じて概ね2000W以上の高い熱交換率を示すが、セメントペーストを用いた熱交換システムCの熱交換率は1500W以下であり、骨材を単独に配合した熱交換システムBでも熱交換率は1700W付近である。
【0019】
【発明の効果】
本発明の熱交換システムは熱交換性能および施工性に優れており、地熱を効率よく取り出して地上の暖房などに利用し、あるいは地上の熱気を温度が安定な地中に送り込んで冷却し、冷気を取り出して地上の冷房に利用するなど幅広い利用が可能である。また、本発明の地熱交換システムは、地中の孔井に往復管を埋設し、成分を整えたグラウト材を充填して形成するので施工が容易であり、実施しやすい。
【図面の簡単な説明】
【図1】本発明に係る地熱交換システムを示す模式断面図
【図2】実施例および比較例の結果を示すグラフ
【符号の説明】
10−往復管、11−入口、12−出口、20−グラウト材、30−断熱材。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a geothermal exchange system excellent in heat exchange performance and workability. In recent years, attention has been paid to the use of shallow underground heat in conjunction with the suppression of carbon dioxide emissions and the promotion of energy conservation. The shallow part of the ground has geothermal energy of several degrees Celsius to several tens degrees Celsius, and the present invention is a geothermal exchange system using this geothermal energy.
[0002]
[Prior art]
Conventionally, technologies using geothermal include (a) drilling holes in the ground to collect groundwater and using the heat of this groundwater. (B) boring without pumping groundwater. There is a method in which a pipe is installed in an opened hole, and water or the like is circulated through the pipe to exchange heat with underground heat. Methods that use groundwater have good thermal efficiency, but may cause groundwater depletion or land subsidence, and so recently, methods that do not pump groundwater tend to be adopted in many cases. In order to utilize geothermal heat without pumping groundwater, it is necessary to construct a heat exchange system underground. Generally, this underground heat exchange system excavates a well in the ground, installs a heat medium circulation path such as a steel pipe or polyethylene pipe in this hole, and grouts the grout material between the hole wall and the heat medium circulation path. And the like.
[0003]
[Problems to be solved by the invention]
In a heat exchange structure in which a pipe for a heat medium is buried in the hole of an underground heat exchange well and the inside of the hole and the pipe are filled with grout material, the properties of the grout material that fills the space between the hole wall and the pipe are extremely poor. Is important. If the properties of the grout material are not appropriate, the heat exchange performance will be reduced, making it unsuitable for practical use.
[0004]
Conventionally, as a structure of a heat exchange system, a U-shaped heat exchange pipe is inserted into a hole of a factory-produced concrete pile that is cast into the ground as the foundation of a building, and the space inside the pipe and the hole is made of a material having good heat transfer. An example is known in which a heat medium is circulated through this pipe to exchange heat with geothermal heat (Japanese Patent Application Laid-Open No. 60-8659). However, the material to be filled between the pipe and the inside of the hole is ordinary cement, clay, or the like, which does not always have high heat exchange performance, and has a problem in workability.
[0005]
For example, a structure of a heat exchange well using a spiral pipe in which a forward pipe and a return pipe through which a heat medium flows alternately is known (JP-A-11-336008). It is installed in the heat exchange well while being buried in the concrete block, and the space between the heat exchange pipe and the well is filled with ordinary concrete. Further, a structure in which a part of the return pipe is reduced in diameter and installed in a heat exchange well is also known (Japanese Patent Application Laid-Open No. 2001-289533). It is clay. As described above, at present, ordinary concrete or the like is conventionally used as a material having a good heat transfer to fill the space between the heat exchange pipe and the well, and therefore, the heat exchange performance is not always high, and the workability is low. Had problems.
[0006]
The present invention is a heat exchange system having a structure in which a heat exchange pipe is buried in a borehole, which solves the above-mentioned conventional problems, and uses a grout material whose component is limited to improve heat conductivity and workability. Thus, a geothermal exchange system having excellent heat exchange performance has been achieved.
[0007]
[Means to solve the problem]
That is, the present invention relates to a geothermal exchange system having the following configuration.
(1) A geothermal exchange system having a reciprocating pipe buried in the ground and performing heat exchange between the ground and the ground through a heat medium in the reciprocating pipe, wherein the reciprocating pipe is covered with a grout material. A geothermal exchange system characterized in that the grout material is a material having good thermal conductivity and good fluidity in which a viscous material is mixed together with an aggregate in cement.
(2) The geothermal exchange system according to the above (1), wherein the grout material includes clay together with good heat conductive aggregate such as silica sand and granulated slag.
(3) The geothermal exchange system according to the above (1) or (2), wherein the grout material has a thermal conductivity of 2.0 W / m · K or more.
(4) The geothermal exchange system according to any one of (1), (2) and (3), wherein the grout material is a cement-based material containing 30 to 50 wt% of silica sand and 1 to 3 wt% of clay.
(5) The geothermal exchange system according to any one of the above (1) to (4), wherein the vicinity of the outlet of the reciprocating pipe to the ground is covered with a heat insulating material.
(6) The geothermal exchange system according to any one of (1) to (5), wherein the reciprocating pipe is provided in a hole of the concrete foundation pile, and the hole is filled with a grout material.
(7) The geothermal exchange system according to any one of (1) to (5), wherein the reciprocating pipe is disposed in a hole of the cast-in-place foundation pile, and the inside of the hole is filled with a grout material.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be specifically described with reference to the drawings.
FIG. 1 is a schematic sectional view of the geothermal exchange system of the present invention. As shown in the figure, the geothermal exchange system of the present invention is a geothermal exchange system having a reciprocating pipe 10 buried in the ground and performing heat exchange between the ground and the ground through a heat medium in the reciprocating pipe. The inner reciprocating pipe 10 is covered with a grout material 20, and the grout material 20 is a material having good heat conductivity and good fluidity including an aggregate mixed with a viscous material in cement. is there.
[0009]
The reciprocating pipe 10 has a shape in which an inlet 11 and an outlet 12 extend to the ground. Although the illustrated reciprocating pipe 10 is U-shaped, it is not limited to this shape. The material of the reciprocating tube 10 is not limited. Any material having good thermal conductivity may be used. An ordinary steel pipe or polyethylene pipe can be used. The reciprocating pipe 10 is buried in a well 30 underground, and a heat medium such as water or oil flows through the pipe.
[0010]
The reciprocating pipe 10 is covered with a grout material 20, and in the illustrated structure, the grout material 20 is filled between the well 30 and the reciprocating pipe 10. The grout material 20 is a material having good heat conductivity and good fluidity including an aggregate mixed with a viscous material in cement. More specifically, for example, the grout material 20 contains clay together with a good heat conductive aggregate such as silica sand and granulated slag, and has a thermal conductivity of 2.0 W / m · K or more.
[0011]
The grout material is for efficiently transmitting geothermal heat to the heat medium flowing through the reciprocating pipe, has a good thermal conductivity, uniformly fills a narrow space portion in a long and narrow well like a borehole, and has a groundwater or the like. It is desirable to use those having stable properties that do not elute into the water. The grout material of the present invention is obtained by adding an aggregate such as silica sand for improving thermal conductivity to a slurry based on cement. Furthermore, it is difficult to uniformly disperse silica sand, etc., as aggregate in cement slurry due to its high specific gravity.If a cement slurry containing aggregate alone is poured into a vertically elongated well, the aggregate with high specific gravity will fall downward. And a portion having a large amount of aggregate such as silica sand and a portion having a small amount of aggregate are unevenly distributed, thereby deteriorating the geothermal exchange performance. Therefore, the grout material of the present invention prevents the sedimentation of the aggregate such as silica sand by adding a viscous material such as clay together with the aggregate so that the aggregate can be uniformly dispersed in the cement slurry. And improved workability such as pumping even when filling deep boreholes. Further, by having a viscous material such as clay, the grout material has a sufficient water-shielding property, and heat exchange loss due to cross flow can be prevented.
[0012]
As a component of the grout material, for example, a material containing 30 to 50% by weight of an aggregate such as silica sand is preferable, and a material containing 35 to 45% by weight is preferable. If the amount of the aggregate is less than this, a grout having sufficient thermal conductivity cannot be obtained. On the other hand, if the amount of the aggregate is larger than this, the voids increase, so that the thermal conductivity of the grout decreases. The amount of the viscous material such as clay mixed with the aggregate is suitably 1 to 3% by weight, and preferably 1.5 to 2.0% by weight. If the amount of the viscous material is smaller than this, the aggregate is likely to be unevenly distributed. On the other hand, if the amount of the viscous material is larger than this, the voids increase, which is not preferable.
[0013]
By containing 30 to 50% by weight of a thermally conductive aggregate such as silica sand or granulated slag and 1 to 3% by weight of a viscous material such as bentonite together with this aggregate, the thermal conductivity is 2.0 W / m. A grout material of K or more can be obtained. Further, from the viewpoint of workability, the grout material preferably has a slurry having an appropriate specific gravity and a flow value. Since the grout material of the present invention contains the above-mentioned amounts of the aggregate such as silica sand and the viscous material such as clay, the grout material having a slurry specific gravity of about 1.8 and a slump value of 2 to 12 cm and having excellent workability can be obtained. .
[0014]
In the illustrated geothermal exchange system, the vicinity of an outlet of the reciprocating pipe 10 to the ground is covered with a heat insulating material 40. Since the portion of the reciprocating pipe 10 from the inlet 11 to the outlet 12 via the bottom of the hole is a part that exchanges heat between the heat medium flowing through the reciprocating pipe 10 and the ground, the grout material 20 filled in this portion is Good heat conductivity is required, but the vicinity of the outlet of the reciprocating tube 10 is a portion for guiding the heat medium that has exchanged heat to the outside, and is preferably in an adiabatic environment so as to prevent heat loss of the heat medium. . The illustrated geothermal exchange system can prevent heat loss of the heat medium by covering the vicinity of the outlet of the reciprocating pipe 10 with the heat insulating material 40.
[0015]
The heat exchange system of the present invention can be formed by using a concrete foundation pile manufactured in a factory. As a construction method of a building, it is known to cast a pre-manufactured concrete pile at a site to form a foundation pile. A heat exchange system of the present invention can be formed by disposing a reciprocating pipe in the hole of the concrete foundation pile and filling the hole with a grout material. According to this construction method, since it is not necessary to dig a heat exchange well, it is easy to carry out and the construction period is short. In addition, construction costs can be reduced.
[0016]
The heat exchange system of the present invention may be formed using a cast-in-place foundation pile. The heat exchange system of the present invention can be formed by arranging the reciprocating pipe in the hole of the cast-in-place foundation pile and filling the inside of the hole with the grout material. In this construction method, the steel casing is driven into the ground while rotating, the soil in the hole is removed, the cylindrical reinforcing steel is placed in the casing, concrete is poured while the casing is pulled out, and the foundation pile is formed I do. By inserting the reciprocating pipe together with the rebar into the casing and installing it in the hole, the heat exchange system can be formed simultaneously with the formation of the foundation pile.
[0017]
【Example】
[Examples and Comparative Examples]
A U-shaped reciprocating pipe (pore diameter 3.3 cm, interval between outgoing pipe and return pipe 5 m, made of polyethylene) is buried in the underground well, and the grout material of the present invention (thermal conductivity) is interposed between the reciprocating pipe and the well. 2.09 W / m · K), heat exchange system B filled with silica sand mortar between the reciprocating pipe and the well, cement paste containing no aggregate between the reciprocating pipe and the well ( A heat exchange system C filled with a thermal conductivity of 1.07 W / m · K) was formed, each having an initial formation temperature of 12 ° C., a formation thermal conductivity of 1.8 W / m · K, a well depth of 50 m, and a heat medium water. FIG. 2 shows the results of heat exchange under the conditions of an inflow temperature of 0 ° C. and a period of 5 days.
[0018]
The heat exchange system A of the present invention shows a high heat exchange rate of about 2,000 W or more throughout the five days, but the heat exchange rate of the heat exchange system C using the cement paste is 1500 W or less, and the heat exchange rate of the aggregate alone is reduced. Also in the exchange system B, the heat exchange rate is around 1700W.
[0019]
【The invention's effect】
The heat exchange system of the present invention is excellent in heat exchange performance and workability, and efficiently extracts geothermal heat and uses it for ground heating or the like, or sends hot ground air into the ground where the temperature is stable and cools it. It can be used for a wide range of applications, such as taking out and using it for cooling on the ground. In addition, the geothermal exchange system of the present invention is easy to implement because the reciprocating pipe is buried in the underground borehole and filled with a grout material having an adjusted component.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a geothermal exchange system according to the present invention. FIG. 2 is a graph showing results of examples and comparative examples.
10-reciprocating pipe, 11-inlet, 12-outlet, 20-grout material, 30-insulation material.
Claims (7)
地中に埋設された往復管を有し、この往復管に熱媒体を通じて地上と地中の熱交換を行う地熱交換システムであって、往復管がグラウト材によって覆われており、該グラウト材がセメントに骨材と共に粘性材を配合した良熱伝導性および良流動性の材料であることを特徴とする地熱交換システム。A geothermal exchange system having a reciprocating pipe buried in the ground and performing heat exchange between the ground and the ground through a heat medium in the reciprocating pipe, wherein the reciprocating pipe is covered with a grout material, and the grout material is A geothermal exchange system characterized by being a material having good thermal conductivity and good fluidity in which a viscous material is mixed together with an aggregate in cement. グラウト材が硅砂、水砕スラグなどの良熱伝導性の骨材と共に粘土を含む請求項1の地熱交換システム。The geothermal exchange system according to claim 1, wherein the grout material includes clay together with a good heat conductive aggregate such as silica sand or granulated slag. グラウト材の熱伝導率が2.0W/m・K以上である請求項1または2の地熱交換システム。The geothermal exchange system according to claim 1, wherein the thermal conductivity of the grout material is 2.0 W / m · K or more. グラウト材が硅砂30〜50wt%、粘土1〜3wt%を含むセメント系材料である請求項1、2または3の何れかに記載する地熱交換システム。4. The geothermal exchange system according to claim 1, wherein the grout material is a cementitious material containing 30 to 50 wt% of silica sand and 1 to 3 wt% of clay. 往復管の地上への出口付近が断熱材によって覆われている請求項1〜4の何れかに記載する地熱交換システム。The geothermal exchange system according to any one of claims 1 to 4, wherein the vicinity of the outlet of the reciprocating pipe to the ground is covered with a heat insulating material. 往復管がコンクリート基礎杭の孔内に配設され、該孔内をグラウト材で充填したものである請求項1〜5の何れかに記載する地熱交換システム。The geothermal exchange system according to any one of claims 1 to 5, wherein the reciprocating pipe is provided in a hole of the concrete foundation pile, and the inside of the hole is filled with a grout material. 往復管が場所打ち基礎杭の孔内に配設され、該孔内をグラウト材で充填したものである請求項1〜5の何れかに記載する地熱交換システム。The geothermal exchange system according to any one of claims 1 to 5, wherein the reciprocating pipe is provided in a hole of the cast-in-place foundation pile, and the inside of the hole is filled with a grout material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002335657A JP2004169985A (en) | 2002-11-19 | 2002-11-19 | Geothermal exchange system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002335657A JP2004169985A (en) | 2002-11-19 | 2002-11-19 | Geothermal exchange system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004169985A true JP2004169985A (en) | 2004-06-17 |
Family
ID=32699733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002335657A Pending JP2004169985A (en) | 2002-11-19 | 2002-11-19 | Geothermal exchange system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004169985A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004316828A (en) * | 2003-04-18 | 2004-11-11 | Taiheiyo Cement Corp | Underground buried pipe |
JP2006038256A (en) * | 2004-07-22 | 2006-02-09 | Toko Kogyo:Kk | Underground heat exchanger |
JP2008256329A (en) * | 2007-04-09 | 2008-10-23 | Ohbayashi Corp | Underground heat exchanger |
JP2010255982A (en) * | 2009-04-28 | 2010-11-11 | Atom Kankyo Kogaku:Kk | Heat utilization system and heat utilization method |
WO2010144073A1 (en) * | 2008-08-05 | 2010-12-16 | Parrella Michael J | System and method of maximizing heat transfer at the bottom of a well using heat conductive components and a predictive model |
JP2011007446A (en) * | 2009-06-26 | 2011-01-13 | Ohbayashi Corp | Underground heat exchanger |
US8534069B2 (en) | 2008-08-05 | 2013-09-17 | Michael J. Parrella | Control system to manage and optimize a geothermal electric generation system from one or more wells that individually produce heat |
JP2013217581A (en) * | 2012-04-09 | 2013-10-24 | Norimasa Sasaki | Device for utilizing geothermal heat |
JP2013231560A (en) * | 2012-04-30 | 2013-11-14 | Norimasa Sasaki | Geothermal energy utilization device |
JP2013250040A (en) * | 2012-06-04 | 2013-12-12 | Jfe Steel Corp | Geothermal heat exchanger |
US8616000B2 (en) | 2008-06-13 | 2013-12-31 | Michael J. Parrella | System and method of capturing geothermal heat from within a drilled well to generate electricity |
JP2014047932A (en) * | 2012-08-29 | 2014-03-17 | Takeo Nasu | Underground heat storage method and system |
US9423158B2 (en) | 2008-08-05 | 2016-08-23 | Michael J. Parrella | System and method of maximizing heat transfer at the bottom of a well using heat conductive components and a predictive model |
JP2016194411A (en) * | 2016-08-25 | 2016-11-17 | Jfeスチール株式会社 | Underground heat exchanger |
JP2020024087A (en) * | 2013-06-26 | 2020-02-13 | 楊 泰和 | Heat dissipation device |
KR20220149116A (en) * | 2021-04-30 | 2022-11-08 | 전남대학교산학협력단 | Filler and ground-source heat pump system using the same |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11182943A (en) * | 1997-12-22 | 1999-07-06 | Kubota Corp | Underground heat exchanger |
JP2002054850A (en) * | 2000-08-08 | 2002-02-20 | Nippon Steel Corp | Underground heat exchange method |
-
2002
- 2002-11-19 JP JP2002335657A patent/JP2004169985A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11182943A (en) * | 1997-12-22 | 1999-07-06 | Kubota Corp | Underground heat exchanger |
JP2002054850A (en) * | 2000-08-08 | 2002-02-20 | Nippon Steel Corp | Underground heat exchange method |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004316828A (en) * | 2003-04-18 | 2004-11-11 | Taiheiyo Cement Corp | Underground buried pipe |
JP2006038256A (en) * | 2004-07-22 | 2006-02-09 | Toko Kogyo:Kk | Underground heat exchanger |
JP2008256329A (en) * | 2007-04-09 | 2008-10-23 | Ohbayashi Corp | Underground heat exchanger |
US8616000B2 (en) | 2008-06-13 | 2013-12-31 | Michael J. Parrella | System and method of capturing geothermal heat from within a drilled well to generate electricity |
US9404480B2 (en) | 2008-06-13 | 2016-08-02 | Pardev, Llc | System and method of capturing geothermal heat from within a drilled well to generate electricity |
WO2010144073A1 (en) * | 2008-08-05 | 2010-12-16 | Parrella Michael J | System and method of maximizing heat transfer at the bottom of a well using heat conductive components and a predictive model |
US8534069B2 (en) | 2008-08-05 | 2013-09-17 | Michael J. Parrella | Control system to manage and optimize a geothermal electric generation system from one or more wells that individually produce heat |
US9423158B2 (en) | 2008-08-05 | 2016-08-23 | Michael J. Parrella | System and method of maximizing heat transfer at the bottom of a well using heat conductive components and a predictive model |
JP2010255982A (en) * | 2009-04-28 | 2010-11-11 | Atom Kankyo Kogaku:Kk | Heat utilization system and heat utilization method |
JP2011007446A (en) * | 2009-06-26 | 2011-01-13 | Ohbayashi Corp | Underground heat exchanger |
JP2013217581A (en) * | 2012-04-09 | 2013-10-24 | Norimasa Sasaki | Device for utilizing geothermal heat |
JP2013231560A (en) * | 2012-04-30 | 2013-11-14 | Norimasa Sasaki | Geothermal energy utilization device |
JP2013250040A (en) * | 2012-06-04 | 2013-12-12 | Jfe Steel Corp | Geothermal heat exchanger |
JP2014047932A (en) * | 2012-08-29 | 2014-03-17 | Takeo Nasu | Underground heat storage method and system |
JP2020024087A (en) * | 2013-06-26 | 2020-02-13 | 楊 泰和 | Heat dissipation device |
JP7218917B2 (en) | 2013-06-26 | 2023-02-07 | 泰和 楊 | Heat dissipation device |
JP2016194411A (en) * | 2016-08-25 | 2016-11-17 | Jfeスチール株式会社 | Underground heat exchanger |
KR20220149116A (en) * | 2021-04-30 | 2022-11-08 | 전남대학교산학협력단 | Filler and ground-source heat pump system using the same |
KR102755481B1 (en) | 2021-04-30 | 2025-01-14 | 전남대학교산학협력단 | Filler and ground-source heat pump system using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7938904B1 (en) | 2011-05-10 | Cementitious grout and methods of using same |
JP2004169985A (en) | 2004-06-17 | Geothermal exchange system |
US8002502B2 (en) | 2011-08-23 | Method and system for installing cast-in-place concrete piles with a sonic drill |
US8118115B2 (en) | 2012-02-21 | Method and system for installing geothermal heat exchangers, micropiles, and anchors using a sonic drill and a removable or retrievable drill bit |
US8136611B2 (en) | 2012-03-20 | Method and system for installing micropiles with a sonic drill |
CN103889918B (en) | 2017-11-07 | The foamed cement composition comprising metal silicide in missile silo operation can be used in |
US10527319B2 (en) | 2020-01-07 | Geothermal heat exchange system and construction method thereof |
US7891440B2 (en) | 2011-02-22 | Method and system for installing geothermal transfer apparatuses with a sonic drill and a removable or retrievable drill bit |
JP2002054850A (en) | 2002-02-20 | Underground heat exchange method |
JP5621218B2 (en) | 2014-11-12 | Underground heat exchanger and filler |
CN104876480A (en) | 2015-09-02 | Special anti-cracking bentonite-based composite drill hole backfill material for ground source heat pump |
JP2004271129A (en) | 2004-09-30 | Underground heat exchange system |
CN110453676A (en) | 2019-11-15 | A kind of prefabricated energy pile tectonic sieving and construction method |
KR100654151B1 (en) | 2006-12-05 | Geothermal exchanger using hollow of pile and method of construction thereof |
US8210281B2 (en) | 2012-07-03 | Method and system for installing geothermal transfer apparatuses with a sonic drill |
KR20150032677A (en) | 2015-03-27 | Method of grouting rockpowder to natural water level for upgrading geothermal trance |
KR101303575B1 (en) | 2013-09-09 | Combined type geothermal system and construction method using large aperture punchung |
CN108316884B (en) | 2021-07-16 | Well cementation method for enhancing heat exchange quantity of middle-deep stratum |
JP2007178071A (en) | 2007-07-12 | Underground thermal storage system and its construction method |
CA2599019C (en) | 2011-01-04 | A method and system for installing geothermal transfer apparatuses with a sonic drill |
KR20080092726A (en) | 2008-10-16 | Geothermal heat exchanger for geothermal air conditioning and its construction method. |
JP3645311B2 (en) | 2005-05-11 | Ground improvement method |
CN114893929A (en) | 2022-08-12 | A system and method for enhancing heat transfer of buried pipes based on composite backfilling |
JP2012255633A (en) | 2012-12-27 | Heat transfer filling material, underground heat exchange device, and filling method of heat transfer filling material |
KR20100128380A (en) | 2010-12-08 | Underground heat exchange system using main heat insulation wall and order wall |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
2005-11-18 | A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051117 |
2006-11-16 | A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061116 |
2006-12-19 | A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061219 |
2007-02-14 | A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070211 |
2007-04-24 | A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070424 |