JP2007088389A - Apparatus and method for measuring internal quantum efficiency of semiconductor light emitting device - Google Patents
- ️Thu Apr 05 2007
Info
-
Publication number
- JP2007088389A JP2007088389A JP2005278641A JP2005278641A JP2007088389A JP 2007088389 A JP2007088389 A JP 2007088389A JP 2005278641 A JP2005278641 A JP 2005278641A JP 2005278641 A JP2005278641 A JP 2005278641A JP 2007088389 A JP2007088389 A JP 2007088389A Authority
- JP
- Japan Prior art keywords
- light
- light emitting
- excitation
- semiconductor
- quantum efficiency Prior art date
- 2005-09-26 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 91
- 238000000034 method Methods 0.000 title claims abstract description 33
- 230000005284 excitation Effects 0.000 claims abstract description 104
- 238000001514 detection method Methods 0.000 claims abstract description 14
- 230000001678 irradiating effect Effects 0.000 claims description 7
- 238000000691 measurement method Methods 0.000 claims description 6
- 238000005259 measurement Methods 0.000 abstract description 18
- 238000005424 photoluminescence Methods 0.000 description 9
- 238000005253 cladding Methods 0.000 description 7
- 229910002704 AlGaN Inorganic materials 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- 238000000295 emission spectrum Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
Images
Landscapes
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Led Devices (AREA)
Abstract
【課題】 内部量子効率の測定精度を向上させることを課題とする。
【解決手段】 第1半導体層と第2半導体層とを有する半導体発光素子100の内部量子効率を測定する方法であって、光源制御部601は、前記第1半導体層の禁制帯幅と前記第2半導体層の禁制帯幅との間のエネルギーに相当する波長を持つ励起光108を放出する励起光源602を設定する。励起光源602は、光源制御部601により設定された各励起パワー密度で励起光108を半導体発光素子100に照射する。検出部607は、励起光源602から照射された光108により半導体発光素子100から放出される光を検出する。制御部610は、検出部607で検出した光の各励起パワー密度における積分発光強度をその励起パワー密度で除算した値に基づいて半導体発光素子100の内部量子効率を演算する。
【選択図】 図6PROBLEM TO BE SOLVED: To improve measurement accuracy of internal quantum efficiency.
A method of measuring an internal quantum efficiency of a semiconductor light emitting device having a first semiconductor layer and a second semiconductor layer, wherein a light source controller 601 includes a forbidden band width of the first semiconductor layer and the first semiconductor layer. The excitation light source 602 that emits the excitation light 108 having a wavelength corresponding to the energy between the forbidden band widths of the two semiconductor layers is set. The excitation light source 602 irradiates the semiconductor light emitting element 100 with the excitation light 108 at each excitation power density set by the light source control unit 601. The detection unit 607 detects light emitted from the semiconductor light emitting device 100 by the light 108 emitted from the excitation light source 602. The control unit 610 calculates the internal quantum efficiency of the semiconductor light emitting device 100 based on a value obtained by dividing the integrated emission intensity at each excitation power density of the light detected by the detection unit 607 by the excitation power density.
[Selection] Figure 6
Description
本発明は、半導体発光素子の内部量子効率を測定する装置及びその方法に関し、特に、第1半導体層と第2半導体層とを有する半導体発光素子の内部量子効率を測定する装置及びその方法に関する。 The present invention relates to an apparatus and method for measuring the internal quantum efficiency of a semiconductor light emitting device, and more particularly to an apparatus and method for measuring the internal quantum efficiency of a semiconductor light emitting device having a first semiconductor layer and a second semiconductor layer.
近年、窒化物系半導体発光デバイスの高効率化と高出力化が急速に進み、InGaN系青色、紫色、近紫外LEDの外部量子効率は40%を超える。外部量子効率を更に向上させるためには、内部量子効率と光の取り出し効率の双方を向上させなければならないが、そのためには各々の効率をより正確に測定する必要がある。 In recent years, high efficiency and high output of nitride-based semiconductor light-emitting devices have rapidly advanced, and the external quantum efficiency of InGaN-based blue, purple, and near-ultraviolet LEDs exceeds 40%. In order to further improve the external quantum efficiency, it is necessary to improve both the internal quantum efficiency and the light extraction efficiency. For this purpose, it is necessary to measure each efficiency more accurately.
LED等の半導体発光素子の外部量子効率は、
外部量子効率=内部量子効率×光の取り出し効率 … 式(1)
式(1)で表される(例えば、特許文献1、2及び非特許文献1参照)。外部量子効率は、注入した電子・正孔対の数と外部に放出された光子の数の比で与えられる。そのため、実験により測定が可能である。外部量子効率は、式(1)に示すように内部量子効率と光の取り出し効率との積で表される。従って、内部量子効率を及び光の取り出し効率のいずれか一方を測定すれば、他方が求められる。しかしながら、従来、内部量子効率及び光の取り出し効率のいずれをも直接的に測定することは困難であった。
The external quantum efficiency of semiconductor light emitting devices such as LEDs is
External quantum efficiency = internal quantum efficiency × light extraction efficiency Equation (1)
It is represented by Formula (1) (for example, refer patent document 1, 2 and nonpatent literature 1). The external quantum efficiency is given by the ratio between the number of injected electron / hole pairs and the number of photons emitted to the outside. Therefore, it can be measured by experiment. The external quantum efficiency is represented by the product of the internal quantum efficiency and the light extraction efficiency as shown in Equation (1). Therefore, if one of the internal quantum efficiency and the light extraction efficiency is measured, the other is obtained. However, conventionally, it has been difficult to directly measure both the internal quantum efficiency and the light extraction efficiency.
内部量子効率を求めるためには、一般的に、フォトルミネッセンス法(以下「PL法」という。)が使用される。PL法では、半導体の禁制帯幅以上のエネルギーを持つ光を半導体発光素子に照射して過剰の電子・正孔対を半導体発光素子内に生成し、これらの再結合過程で放出されたフォトルミネッセンス光を分光して発光スペクトルを得る。従来の方法では、ある任意の励起パワー密度の低温での内部量子効率が100%であると仮定し、室温とのPL発光強度比が内部量子効率に相当するとして内部量子効率を算出していた。 In order to obtain the internal quantum efficiency, a photoluminescence method (hereinafter referred to as “PL method”) is generally used. In the PL method, photoluminescence emitted from the recombination process is generated by irradiating the semiconductor light emitting device with light having energy greater than the forbidden band width of the semiconductor to generate excess electron-hole pairs in the semiconductor light emitting device. An emission spectrum is obtained by dispersing light. In the conventional method, assuming that the internal quantum efficiency at a low temperature of an arbitrary excitation power density is 100%, the internal quantum efficiency was calculated assuming that the PL emission intensity ratio to room temperature corresponds to the internal quantum efficiency. .
しかしながら、内部量子効率は励起パワー密度依存性を有するという問題がある。図8は、フォトルミネッセンス光の発光強度の励起パワー密度依存性を示す図である。測定温度は5Kであり、励起パワー密度を0.097、0.031、1.7、3.9、19、39、100(kW/cm2)としたときのPL発光強度をそれぞれプロットしている。図8に示すように、励起パワー密度が増大するにつれて、発光スペクトルの半値全幅が次第に広がり、発光ピーク位置が短波長側にシフトしていることが分かる。このように、発光スペクトルは励起パワー密度に強く依存する。しかしながら、従来の方法では、PL発光強度の励起パワー密度依存性が考慮されていなかった。そのため、内部量子効率が正確に算出されず、特に、別の半導体発光素子の内部量子効率と定量的な比較を正確に行うことが困難であった。 However, there is a problem that the internal quantum efficiency is dependent on the excitation power density. FIG. 8 is a diagram showing the excitation power density dependence of the emission intensity of photoluminescence light. The measurement temperature is 5K, and the PL emission intensity when the excitation power density is 0.097, 0.031, 1.7, 3.9, 19, 39, 100 (kW / cm 2 ) is plotted. Yes. As shown in FIG. 8, it can be seen that as the excitation power density increases, the full width at half maximum of the emission spectrum gradually increases, and the emission peak position shifts to the short wavelength side. Thus, the emission spectrum strongly depends on the excitation power density. However, in the conventional method, the dependence of the PL emission intensity on the excitation power density has not been considered. For this reason, the internal quantum efficiency is not accurately calculated, and in particular, it is difficult to accurately make a quantitative comparison with the internal quantum efficiency of another semiconductor light emitting device.
これに対し、PL法で求めた内部量子効率をエレクトロルミネッセンス法(以下「EL」法という。)で求めた注入電流と比較することにより、PL法で求めた内部量子効率の励起パワー密度を推定する方法がある。この方法では、PL法を用いて内部量子効率を求めたサンプルを室温でPL法の場合と同様に配置して、EL発光強度の注入電流依存性の測定を行う。PL法における室温でのPL発光強度と同じEL発光強度を与える電流値から、PL法における励起パワー密度を推定することができる。また、PL法による発光スペクトルの励起パワー密度依存性を利用して、同じEL発光波長を与える電流値からPL法における内部量子効率の励起パワー密度を推測することもできる。
特開2004−253747号公報
特開2005−071986号公報
奥野保男著、「発光ダイオード」、産業図書株式会社、p123
In contrast, by comparing the internal quantum efficiency obtained by the PL method with the injection current obtained by the electroluminescence method (hereinafter referred to as “EL” method), the excitation power density of the internal quantum efficiency obtained by the PL method is estimated. There is a way to do it. In this method, a sample whose internal quantum efficiency has been obtained using the PL method is placed at room temperature in the same manner as in the PL method, and the dependence of the EL emission intensity on the injection current is measured. The excitation power density in the PL method can be estimated from the current value that gives the same EL emission intensity as the PL emission intensity at room temperature in the PL method. Further, the excitation power density of the internal quantum efficiency in the PL method can be estimated from the current value that gives the same EL emission wavelength by using the excitation power density dependency of the emission spectrum by the PL method.
JP 2004-253747 A Japanese Patent Laid-Open No. 2005-071986 Okuno Yasuo, "Light Emitting Diode", Sangyo Tosho Co., Ltd., p123
しかしながら、従来のようにEL法を用いてPL法で求めた内部量子効率の励起パワー密度を推測したとしても、EL法により電流が注入される領域とPL励起光が励起される領域とは厳密には等しくないため、測定の精度に問題がある。 However, even if the excitation power density of the internal quantum efficiency obtained by the PL method is estimated using the EL method as in the past, the region where current is injected by the EL method and the region where PL excitation light is excited are strictly There is a problem with the accuracy of the measurement.
また、従来の方法では、PL法で測定した内部量子効率の励起パワー密度を推測できたとしても、励起パワー密度が異なる別の半導体発光素子との比較は困難である。更に、従来の方法では、測定系に強く影響されるため、異なる測定系で測定した半導体発光素子の内部量子効率との比較も困難である。 Further, in the conventional method, even if the excitation power density of the internal quantum efficiency measured by the PL method can be estimated, it is difficult to compare with another semiconductor light emitting element having a different excitation power density. Furthermore, in the conventional method, since it is strongly influenced by the measurement system, it is difficult to compare with the internal quantum efficiency of the semiconductor light emitting device measured by a different measurement system.
また、従来の方法で求められた半導体発光素子の内部量子効率は、クラッド層の転位等の欠陥や不純物により低下するため、発光層のみを選択的に評価することができないという問題もある。 In addition, since the internal quantum efficiency of the semiconductor light emitting device obtained by the conventional method is lowered due to defects such as dislocations in the cladding layer and impurities, there is also a problem that only the light emitting layer cannot be selectively evaluated.
このように、内部量子効率を簡便に測定可能であり、注入電流(PL法の場合には励起パワー密度)や測定系によらず一般的に別の半導体発光素子との比較が可能であり、かつ、発光層のみを選択的に評価して他の影響を排除した測定技術が求められている。 Thus, it is possible to easily measure the internal quantum efficiency, and it is generally possible to compare with another semiconductor light emitting device regardless of the injection current (excitation power density in the case of the PL method) and the measurement system, In addition, there is a need for a measurement technique that selectively evaluates only the light emitting layer and eliminates other effects.
本発明は、上記の課題に鑑みてなされたものであり、内部量子効率の測定精度を向上させることを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to improve the measurement accuracy of internal quantum efficiency.
本発明の第1の側面は、第1半導体層と第2半導体層とを有する半導体発光素子の内部量子効率を測定する方法に係り、前記第1半導体層の禁制帯幅と前記第2半導体層の禁制帯幅との間のエネルギーに相当する波長を持つ励起光を選択する選択工程と、前記選択工程で選択された励起光の励起パワー密度を設定する設定工程と、前記設定された各励起パワー密度で前記励起光を前記半導体発光素子に照射する照射工程と、前記照射工程で照射された励起光により前記半導体発光素子から放出される光を検出する検出工程と、前記検出工程で検出した光の各励起パワー密度における積分発光強度をその励起パワー密度で除算した値に基づいて前記半導体発光素子の内部量子効率を演算する演算工程と、を含むことを特徴とする。 A first aspect of the present invention relates to a method for measuring an internal quantum efficiency of a semiconductor light emitting device having a first semiconductor layer and a second semiconductor layer, the forbidden band width of the first semiconductor layer and the second semiconductor layer. A selection step of selecting excitation light having a wavelength corresponding to the energy between the forbidden band width, a setting step of setting the excitation power density of the excitation light selected in the selection step, and each of the set excitations An irradiation step of irradiating the semiconductor light emitting device with the excitation light at a power density, a detection step of detecting light emitted from the semiconductor light emitting device by the excitation light irradiated in the irradiation step, and detection in the detection step A calculation step of calculating the internal quantum efficiency of the semiconductor light emitting element based on a value obtained by dividing the integrated emission intensity at each excitation power density of light by the excitation power density.
本発明の第2の側面は、第1半導体層と第2半導体層とを有する半導体発光素子の内部量子効率を測定する測定装置であって、複数の光源と、前記第1半導体層の禁制帯幅と前記第2半導体層の禁制帯幅との間のエネルギーに相当する波長を持つ励起光を放出する光源を前記複数の光源から選択する選択部と、前記選択部で選択された光源から放出される励起光の励起パワー密度を設定する光源制御部と、前記設定された各励起パワー密度で前記選択された光源から照射された励起光により前記半導体発光素子から放出される光を検出する検出部と、前記検出部で検出した光の各励起パワー密度における積分発光強度をその励起パワー密度で除算した値に基づいて前記半導体発光素子の内部量子効率の演算を実行する制御部と、を備えることを特徴とする。 According to a second aspect of the present invention, there is provided a measuring apparatus for measuring an internal quantum efficiency of a semiconductor light emitting device having a first semiconductor layer and a second semiconductor layer, a plurality of light sources, and a forbidden band of the first semiconductor layer. A selection unit that selects, from the plurality of light sources, a light source that emits excitation light having a wavelength corresponding to energy between a width and a forbidden band width of the second semiconductor layer, and emission from the light source selected by the selection unit A light source controller for setting an excitation power density of the excitation light to be detected, and a detection for detecting light emitted from the semiconductor light emitting element by the excitation light emitted from the selected light source at each of the set excitation power densities And a control unit that performs calculation of the internal quantum efficiency of the semiconductor light emitting element based on a value obtained by dividing the integrated emission intensity at each excitation power density of the light detected by the detection unit by the excitation power density. thing And features.
本発明によれば、内部量子効率の測定精度を向上させることができる。 According to the present invention, measurement accuracy of internal quantum efficiency can be improved.
以下、本発明の好適な実施の形態について図面を参照して説明するが、本発明は以下に示す実施の形態に限定されない。
(第1の実施形態)
図1は、本発明の好適な実施の形態に係る半導体発光素子の断面図である。半導体発光素子100は、表面に凹凸部を有する基板101の上に形成されたバッファ層102、n型半導体層103、n型クラッド層104、発光層105、p型クラッド層106及びp型半導体層107を順に積層して形成される。半導体発光素子100の表面には励起光108が照射され、発光層105でこの光が吸収される。発光層105で吸収された光は、光励起により半導体発光素子100の表面からフォトルミネッセンス光として放出される。励起パワー密度を変化させて、放出されたフォトルミネッセンス光をそれぞれ測定することによって、図8に示すような発光強度の励起パワー密度依存性を得ることができる。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the embodiments described below.
(First embodiment)
FIG. 1 is a cross-sectional view of a semiconductor light emitting device according to a preferred embodiment of the present invention. The semiconductor light emitting device 100 includes a buffer layer 102, an n-type semiconductor layer 103, an n-type cladding layer 104, a light-emitting layer 105, a p-type cladding layer 106, and a p-type semiconductor layer formed on a substrate 101 having an uneven portion on the surface. 107 are sequentially laminated. The surface of the semiconductor light emitting device 100 is irradiated with excitation light 108, and this light is absorbed by the light emitting layer 105. The light absorbed by the light emitting layer 105 is emitted as photoluminescence light from the surface of the semiconductor light emitting element 100 by photoexcitation. By measuring the emitted photoluminescence light while changing the excitation power density, the dependence of the emission intensity on the excitation power density as shown in FIG. 8 can be obtained.
図6は、本発明の好適な実施の形態に係る半導体発光素子の内部量子効率の測定装置の構造を概略的に示す図である。光源制御部601は、励起光源602から放射される励起光108の励起パワー密度等の出力を制御する。励起光源602としては、半導体発光素子100の発光層105の禁制帯幅と、半導体発光素子100のクラッド層104及び106の禁制帯幅との間のエネルギーを持つ励起光108を放出する光源を用いる。クラッド層104及び106の禁制帯幅はいずれも、発光層105の禁制帯幅よりも広いため、クラッド層104及び106の禁制帯幅が互いに異なる場合には、両者の禁制帯幅のうち小さい方の禁制帯幅と、発光層105の禁制帯幅との間のエネルギーを持つ励起光108を放出する光源を用いればよい。このように光源を選択することによって、発光層105を選択的に励起し、後述の手法により発光層105のみの内部量子効率を得ることができる。このような光源としては、例えば、高圧水銀ランプ、ガスレーザ及びダイ・レーザ等の波長可変レーザなどを用いることができる。 FIG. 6 is a diagram schematically showing the structure of an internal quantum efficiency measuring device for a semiconductor light emitting device according to a preferred embodiment of the present invention. The light source control unit 601 controls output such as excitation power density of the excitation light 108 emitted from the excitation light source 602. As the excitation light source 602, a light source that emits excitation light 108 having energy between the forbidden band width of the light emitting layer 105 of the semiconductor light emitting element 100 and the forbidden band widths of the cladding layers 104 and 106 of the semiconductor light emitting element 100 is used. . Since the forbidden band widths of the clad layers 104 and 106 are both wider than the forbidden band width of the light emitting layer 105, when the forbidden band widths of the clad layers 104 and 106 are different from each other, the smaller one of the forbidden band widths of both the clad layers 104 and 106 A light source that emits excitation light 108 having energy between the forbidden band width and the forbidden band width of the light-emitting layer 105 may be used. By selecting the light source in this manner, the light emitting layer 105 can be selectively excited, and the internal quantum efficiency of only the light emitting layer 105 can be obtained by a method described later. As such a light source, for example, a tunable laser such as a high-pressure mercury lamp, a gas laser, and a die laser can be used.
励起光源602から放射された励起光108は、ミラー603で反射され、保持部604に保持された半導体発光素子100に照射される。次いで、半導体発光素子100から光励起により放出されたフォトルミネッセンス光は、レンズ605で集束され、フォトルミネッセンス光以外の光を除去する光学フィルタ606を通して、検出器607に入射される。検出器607は、シングルモノクロメータ等の分光器及び光検出器を備える。検出器607に入射した光は、上記の光検出器から出力され、増幅器608で増幅されて、表示部609にその発光強度が表示される。制御部610は、記憶部612に格納されたプログラム等に従って、検出器607、増幅器608及び表示部609等の構成要素を制御するとともに各種演算を実行する。制御部610はまた、入力部611に接続され、入力部611から入力された情報に基づいて、各構成要素を制御することができる。保持部604は、ヘリウムクライオスタット等を用いて、試料としての半導体発光素子100の温度が可変であるように構成されることが望ましい。この場合、制御部610により保持部604の温度制御がなされうる。 The excitation light 108 emitted from the excitation light source 602 is reflected by the mirror 603 and is applied to the semiconductor light emitting device 100 held by the holding unit 604. Next, the photoluminescence light emitted from the semiconductor light emitting device 100 by light excitation is focused by the lens 605 and is incident on the detector 607 through the optical filter 606 that removes light other than the photoluminescence light. The detector 607 includes a spectroscope such as a single monochromator and a photodetector. The light incident on the detector 607 is output from the above-described photodetector, amplified by the amplifier 608, and the light emission intensity is displayed on the display unit 609. The control unit 610 controls components such as the detector 607, the amplifier 608, the display unit 609, and executes various calculations according to a program stored in the storage unit 612. The control unit 610 is also connected to the input unit 611 and can control each component based on information input from the input unit 611. The holding unit 604 is preferably configured such that the temperature of the semiconductor light emitting element 100 as a sample is variable using a helium cryostat or the like. In this case, the temperature of the holding unit 604 can be controlled by the control unit 610.
本実施形態では、図8に示すような発光強度の励起パワー密度依存性を第1温度(低温)及び第2温度(室温)で測定し、制御部610により各励起パワー密度における積分発光強度を各励起パワー密度で除算する演算を実行することによって、式(2)で定義される発光効率が求められる。 In this embodiment, the excitation power density dependence of the emission intensity as shown in FIG. 8 is measured at the first temperature (low temperature) and the second temperature (room temperature), and the integrated emission intensity at each excitation power density is calculated by the control unit 610. By performing the operation of dividing by each excitation power density, the light emission efficiency defined by the equation (2) is obtained.
発光効率=積分発光強度/励起パワー強度 … 式(2)
図4は、制御部610により式(2)に従って演算された発光効率を各励起パワー密度に対してプロットした図である。なお、図4では、8K及び室温における発光効率を測定しているが、本実施形態はこれらの測定温度に限定されない。しかしながら、測定精度を高めるためには、基準温度としての第1温度(低温)は、50K以下であることが望ましく、20K以下であることがより望ましく、10K以下であることが更に望ましい。第2温度は、半導体発光素子100が実際に使用される環境下の温度であることが望ましく、典型的には室温であるが、本実施形態はこれに限定されず、第1の温度よりも高い所望の温度に適宜設定されうる。
Luminous efficiency = integrated emission intensity / excitation power intensity Equation (2)
FIG. 4 is a diagram in which the luminous efficiency calculated by the control unit 610 according to the equation (2) is plotted with respect to each excitation power density. In FIG. 4, the light emission efficiency at 8 K and room temperature is measured, but the present embodiment is not limited to these measurement temperatures. However, in order to increase the measurement accuracy, the first temperature (low temperature) as the reference temperature is desirably 50K or less, more desirably 20K or less, and further desirably 10K or less. The second temperature is desirably a temperature under an environment where the semiconductor light emitting device 100 is actually used, and is typically room temperature. However, the present embodiment is not limited to this, and the second temperature is higher than the first temperature. It can be appropriately set to a high desired temperature.
本実施形態では、制御部610により第1温度及び第2温度において式(2)に従って演算された発光効率に基づいて、半導体発光素子の内部量子効率を求める。具体的には、図4に示すように、制御部610は、第1温度(低温)における発光効率の最大値に対する第2温度(室温)における発光効率の最大値の百分率を「内部量子効率」として演算する(式(3)を参照)。発光効率の最大値を用いるのは、最も良く光っている場合には外乱が入りにくいことによる。従って、許容される精度の範囲内では最大値近傍の値を用いてもよい。 In the present embodiment, the internal quantum efficiency of the semiconductor light emitting element is obtained based on the light emission efficiency calculated by the control unit 610 according to the equation (2) at the first temperature and the second temperature. Specifically, as illustrated in FIG. 4, the control unit 610 sets the percentage of the maximum value of the luminous efficiency at the second temperature (room temperature) to the maximum value of the luminous efficiency at the first temperature (low temperature) as “internal quantum efficiency”. (See equation (3)). The maximum value of the luminous efficiency is used because disturbance is less likely to occur when the light is shining best. Therefore, a value near the maximum value may be used within the allowable accuracy range.
内部量子効率=(第2温度(室温)における発光効率の最大値/第1温度(低温)における発光効率の最大値)×100(%) … 式(3)
これにより、制御部610は、フォトルミネッセンス光の励起パワー密度に影響されることなく、半導体発光素子の内部量子効率を演算することができる。
Internal quantum efficiency = (maximum value of luminous efficiency at the second temperature (room temperature) / maximum value of luminous efficiency at the first temperature (low temperature)) × 100 (%) (3)
Thereby, the control part 610 can calculate the internal quantum efficiency of a semiconductor light-emitting device, without being influenced by the excitation power density of photoluminescence light.
以上のように、本実施形態によれば、簡便かつ一般的に別の半導体発光素子と比較可能な内部量子効率を求めることができる。また、発光層のみの内部量子効率を求めることが可能であり、本実施形態により演算された内部量子効率を用いることによって半導体発光素子の内部量子効率を正確に演算することができる。 As described above, according to the present embodiment, it is possible to obtain an internal quantum efficiency that can be simply and generally compared with another semiconductor light emitting device. In addition, the internal quantum efficiency of only the light emitting layer can be obtained, and the internal quantum efficiency of the semiconductor light emitting device can be accurately calculated by using the internal quantum efficiency calculated according to the present embodiment.
(第2の実施形態)
第1の実施形態では、被測定対象である半導体発光素子100を図1に示すような電極形成前の状態で測定したが、半導体発光素子100を電極形成後の状態で測定してもよい。図2は、半導体発光素子100の表面に電極201を形成し、ダイシングによりチップ状にされた半導体発光素子(チップ)100を不図示の他の電極とワイヤーボンディング202で接続した状態を示す図である。図1と同様の構成要素には、同じ符号を付している。ワイヤーボンディング202が施された電極付きのチップ100を測定する場合には、発光面の電極以外の部分(図2の斜線部分)に励起光108を照射することによって測定を行うことができる。測定装置及びその方法については、第1の実施形態と同様にして実施することができる。
(Second Embodiment)
In the first embodiment, the semiconductor light emitting element 100 as the measurement target is measured in a state before the electrode is formed as shown in FIG. 1, but the semiconductor light emitting element 100 may be measured in a state after the electrode is formed. FIG. 2 is a diagram showing a state in which an electrode 201 is formed on the surface of the semiconductor light emitting device 100 and the semiconductor light emitting device (chip) 100 formed into a chip shape by dicing is connected to another electrode (not shown) by wire bonding 202. is there. Constituent elements similar to those in FIG. When measuring the chip 100 with an electrode to which the wire bonding 202 is applied, the measurement can be performed by irradiating the excitation light 108 to a portion other than the electrode on the light emitting surface (shaded portion in FIG. 2). The measuring device and the method thereof can be implemented in the same manner as in the first embodiment.
(第3の実施形態)
第3の実施形態は、第2の実施形態と同様にして、半導体発光素子100を電極形成後の状態で測定するものである。第3の実施形態では、フリップチップ型の半導体発光素子を用いて測定を行う。図3は、このフリップチップ型の半導体発光素子100’を概略的に示す図である。図1、図2と同様の構成要素には、同じ符号を付している。101及び102は、図1と同様である。103’〜107’は、図1の103〜107をそれぞれパターニングして、n電極用の領域が形成されたものである。p型電極201aはp型半導体層107’の上に形成されバンプ301aを介して他の基板303の電極302に接続される。一方、n型電極201bはn型半導体層103’の上に形成され、バンプ301bを介して他の基板303の電極302に接続される。フリップチップ型の電極付きチップ100’を測定する場合には、電極が付いていない基板101側から励起光108を照射することによって測定を行うことができる。
(Third embodiment)
In the third embodiment, the semiconductor light emitting device 100 is measured in a state after the electrodes are formed in the same manner as the second embodiment. In the third embodiment, measurement is performed using a flip-chip type semiconductor light emitting element. FIG. 3 is a diagram schematically showing the flip-chip type semiconductor light emitting device 100 ′. Components similar to those in FIGS. 1 and 2 are denoted by the same reference numerals. Reference numerals 101 and 102 are the same as those in FIG. 103 ′ to 107 ′ are obtained by patterning 103 to 107 in FIG. 1 to form regions for n electrodes. The p-type electrode 201a is formed on the p-type semiconductor layer 107 ′ and connected to the electrode 302 of the other substrate 303 via the bump 301a. On the other hand, the n-type electrode 201b is formed on the n-type semiconductor layer 103 ′, and is connected to the electrode 302 of another substrate 303 via the bump 301b. In the case of measuring the flip-chip type chip 100 ′ with electrodes, the measurement can be performed by irradiating the excitation light 108 from the substrate 101 side without electrodes.
(第4の実施形態)
本実施形態の好適な第1の実施の形態では、図6に示すように、半導体発光素子の内部量子効率の測定装置が1つの励起光源を備える場合を示したが、第4の実施形態では、図7に示すように半導体発光素子の内部量子効率の測定装置が複数の励起光源702a、702b…を含む光源602’を備える。図6と同様の構成要素には、同じ符号を付している。本実施形態に係る測定装置は、図7に示すように、光源602’に含まれる複数の励起光源702a、702b…のうち、所定条件を満たす励起光源を選択する選択部701を備える。光源制御部601は、複数の励起光源702a、702b…が所定条件を満たすか否かを判断し、条件を満たす励起光源を選択するように選択部701を制御する。光源制御部601はまた、選択部602で選択された光源の励起パワー密度等の出力を設定する。上記所定条件とは、発光層105の禁制帯幅と、クラッド層104及び106の禁制帯幅との間のエネルギーを持つ励起光108を放出する光源であることをいう。選択部701は、ユーザにより入力部611から入力された測定条件(例えば、半導体発光素子100に用いられる材料名、特に、発光層105及びクラッド層104、106の材料名、或いは、これらの禁制帯幅の値など)に基づいて、上記の所定条件を満たす光源を自動的に選択することができる。選択部701が所定条件を満たす光源を見つけられない場合には、制御部601は、適切な光源が見つからないことを示す警告等を表示部609に表示させてもよい。
(Fourth embodiment)
In the preferred first embodiment of the present embodiment, as shown in FIG. 6, the case where the device for measuring the internal quantum efficiency of a semiconductor light emitting device includes one excitation light source is shown, but in the fourth embodiment, As shown in FIG. 7, the internal quantum efficiency measuring device for a semiconductor light emitting device includes a light source 602 ′ including a plurality of excitation light sources 702a, 702b,. Constituent elements similar to those in FIG. As shown in FIG. 7, the measurement apparatus according to the present embodiment includes a selection unit 701 that selects an excitation light source that satisfies a predetermined condition among a plurality of excitation light sources 702a, 702b. The light source control unit 601 determines whether or not a plurality of excitation light sources 702a, 702b,... Satisfy a predetermined condition, and controls the selection unit 701 to select an excitation light source that satisfies the condition. The light source control unit 601 also sets an output such as the excitation power density of the light source selected by the selection unit 602. The predetermined condition refers to a light source that emits excitation light 108 having energy between the forbidden band width of the light emitting layer 105 and the forbidden band widths of the cladding layers 104 and 106. The selection unit 701 is a measurement condition input from the input unit 611 by the user (for example, a material name used for the semiconductor light emitting element 100, in particular, a material name of the light emitting layer 105 and the cladding layers 104 and 106, or their forbidden bands). The light source that satisfies the predetermined condition can be automatically selected based on the width value or the like. When the selection unit 701 cannot find a light source that satisfies the predetermined condition, the control unit 601 may cause the display unit 609 to display a warning indicating that an appropriate light source cannot be found.
次に、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されない。 EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.
図1は、実施例1に係るInGaN系紫色LED(発光ピーク波長405nm)の断面図である。本実施例では、幅3μm、深さ1.5μmの凹凸部(LEPS)を表面に有するサファイア基板(Al2O3)101の上に、GaNバッファ層102、n型GaN層103、n型AlGaN層104、InGaN/GaNの多重量子井戸105、p型AlGaN層106及びp型GaN層107を順に積層して、InGaN系紫色LED100を形成した。励起パワー密度は、光源制御部601により100〜105(kW/cm2)に設定した。n型AlGaN層104及びp型AlGaN層106の禁制帯幅は、300Kで3.39+1.81x+bx2(bは約1.0、xはアルミニウム組成(比))と表される。本実施例では、x=0.1のAlxGa1−xN層を用いた。この場合、禁制帯幅は約3.58(eV)であり、約346nmの波長の光に相当する。一方、InyGa1−yN/GaN(yはインジウム組成(比))の多重量子井戸の実効的な禁制帯幅は、y≒0.1のとき300Kで約3.06(eV)であり、約405nmの波長の光に相当する。従って、本実施例では、選択部701は、約3.06(eV)と約3.58(eV)の間のエネルギーを持つ、すなわち約346nm〜約405nmの間の波長を持つダイ・レーザを励起光源602として選択した。なお、低温8Kにおいては、上記禁制帯幅は変化するため、低温8Kの測定の際には室温300Kの場合と異なる波長を持つダイ・レーザを選択すればよい。この場合、低温8Kと室温300Kの両方で使用可能な波長を持つダイ・レーザを選択するのがより望ましい。 1 is a cross-sectional view of an InGaN-based purple LED (emission peak wavelength 405 nm) according to Example 1. FIG. In this embodiment, a GaN buffer layer 102, an n-type GaN layer 103, and an n-type AlGaN are formed on a sapphire substrate (Al 2 O 3 ) 101 having a concavo-convex portion (LEPS) having a width of 3 μm and a depth of 1.5 μm on the surface. A layer 104, an InGaN / GaN multiple quantum well 105, a p-type AlGaN layer 106, and a p-type GaN layer 107 were sequentially stacked to form an InGaN-based purple LED 100. The excitation power density was set to 10 0 to 10 5 (kW / cm 2 ) by the light source control unit 601. The forbidden band width of the n-type AlGaN layer 104 and the p-type AlGaN layer 106 is expressed as 3.39 + 1.81x + bx 2 (b is about 1.0, x is an aluminum composition (ratio)) at 300K. In this example, an Al x Ga 1-x N layer with x = 0.1 was used. In this case, the forbidden bandwidth is about 3.58 (eV), which corresponds to light having a wavelength of about 346 nm. On the other hand, the effective forbidden band width of the multiple quantum well of In y Ga 1-y N / GaN (y is the indium composition (ratio)) is about 3.06 (eV) at 300 K when y≈0.1. Yes, it corresponds to light having a wavelength of about 405 nm. Therefore, in this embodiment, the selector 701 selects a die laser having an energy between about 3.06 (eV) and about 3.58 (eV), that is, a wavelength between about 346 nm and about 405 nm. The excitation light source 602 was selected. Note that since the forbidden band width changes at a low temperature of 8K, a die laser having a wavelength different from that at a room temperature of 300K may be selected when measuring the low temperature of 8K. In this case, it is more desirable to select a die laser having a wavelength that can be used at both low temperature 8K and room temperature 300K.
本実施例では、図6の測定装置を用いて、低温8Kと室温300KにおけるPL法での発光スペクトルの励起パワー依存性を測定した。制御部610は、測定した各励起パワー密度における積分発光強度をその励起パワー密度で除することにより発光効率を演算した。図4は、低温(○印)と室温(●印)における発光効率の励起パワー依存性を示す図である。低温、高温ともに、発光効率は励起パワー密度の上昇とともに増大し、ある励起パワー密度で最大となり、それ以上では逆に減少する傾向を示した。このとき、制御部610は、低温における発光効率の最大値を100%と仮定し、室温における発光効率の最大値を算出し64%という値を得た。このようにして、実施例1では、制御部610によりInGaN系紫色LED100の内部量子効率64%を求めることができた。 In this example, the dependence of the emission spectrum on the excitation power in the PL method at a low temperature of 8K and a room temperature of 300K was measured using the measurement apparatus of FIG. The control unit 610 calculates the light emission efficiency by dividing the integrated light emission intensity at each measured excitation power density by the excitation power density. FIG. 4 is a graph showing the excitation power dependence of the luminous efficiency at low temperature (◯ mark) and room temperature (● mark). At both low and high temperatures, the luminous efficiency increased with increasing excitation power density, reached a maximum at a certain excitation power density, and decreased at higher temperatures. At this time, the controller 610 assumed that the maximum value of luminous efficiency at low temperature was 100%, and calculated the maximum value of luminous efficiency at room temperature to obtain a value of 64%. In this way, in Example 1, the control unit 610 was able to obtain the internal quantum efficiency of 64% of the InGaN-based purple LED 100.
本実施例では、図7の測定装置を用いて、制御部610によりInGaN系紫外LED(波長ピーク380nm)100の内部量子効率を演算した。図5は、室温における発光効率の励起パワー依存性を示す図である。図5において、○印は励起光源602としてダイ・レーザ(発振波長365nm)を用いた場合を示し、●印は励起光源602としてXe−Clエキシマレーザ(発振波長308nm)を用いた場合を示す。内部量子効率はそれぞれ54%と35%であった。ダイ・レーザの発振波長は、InGaN系紫外LED100のクラッド層であるn型AlGaN層104及びp型AlGaN層106では吸収されず、発光層105のみを選択的に励起するため、クラッド層104、106の影響を受けなかった。そのため、ダイ・レーザを励起光源602として制御部610により演算した内部量子効率は、Xe−Clエキシマレーザを励起光源602として制御部610により演算した内部量子効率の1.5倍となった。このように、PL法における励起光源602の発振波長を適切に選択することにより、発光層105の光学的品質を正しく評価することができた。 In this example, the internal quantum efficiency of the InGaN-based ultraviolet LED (wavelength peak 380 nm) 100 was calculated by the control unit 610 using the measurement apparatus of FIG. FIG. 5 is a diagram showing the excitation power dependence of the luminous efficiency at room temperature. In FIG. 5, ◯ indicates the case where a die laser (oscillation wavelength 365 nm) is used as the excitation light source 602, and ● indicates the case where a Xe-Cl excimer laser (oscillation wavelength 308 nm) is used as the excitation light source 602. The internal quantum efficiencies were 54% and 35%, respectively. The oscillation wavelength of the die laser is not absorbed by the n-type AlGaN layer 104 and the p-type AlGaN layer 106, which are the cladding layers of the InGaN-based ultraviolet LED 100, and only the light emitting layer 105 is selectively excited. Was not affected. Therefore, the internal quantum efficiency calculated by the control unit 610 using the die laser as the excitation light source 602 is 1.5 times the internal quantum efficiency calculated by the control unit 610 using the Xe-Cl excimer laser as the excitation light source 602. As described above, the optical quality of the light-emitting layer 105 can be correctly evaluated by appropriately selecting the oscillation wavelength of the excitation light source 602 in the PL method.
LED電極形成前の構造に関して、励起光源にダイ・レーザを用いて、発光層のみを選択励起する方法を説明する図である。It is a figure explaining the method to selectively excite only a light emitting layer using a die laser as an excitation light source regarding the structure before LED electrode formation. ワイヤーボンディングを施した電極付きのLEDに関して、ダイ・レーザを電極以外の部分に照射し、発光層を励起する方法を説明する図である。It is a figure explaining the method of irradiating parts other than an electrode and exciting a light emitting layer regarding LED with the electrode which gave wire bonding. フリップチップ型の電極付きLEDに関して、ダイ・レーザを電極が付いていない基板側から照射し、発光層を励起する方法を説明する図である。It is a figure explaining the method of irradiating a die laser from the board | substrate side which does not have an electrode, and exciting a light emitting layer regarding flip chip type LED with an electrode. 低温と室温におけるLEDの発光効率の励起パワー密度依存性を示す図である。It is a figure which shows the excitation power density dependence of the luminous efficiency of LED in low temperature and room temperature. 励起光源をダイ・レーザとXe−Clレーザとした場合の室温におけるLEDの発光効率の励起パワー密度依存性を示す図である。It is a figure which shows the excitation power density dependence of the luminous efficiency of LED in the room temperature at the time of using a die laser and a Xe-Cl laser as an excitation light source. 半導体発光素子の内部量子効率の測定装置の構造を概略的に示す図である。It is a figure which shows roughly the structure of the measuring apparatus of the internal quantum efficiency of a semiconductor light-emitting device. 半導体発光素子の内部量子効率の測定装置の他の構造を概略的に示す図である。It is a figure which shows roughly the other structure of the measuring apparatus of the internal quantum efficiency of a semiconductor light-emitting device. フォトルミネッセンス光の発光強度の励起パワー密度依存性を示す図である。It is a figure which shows the excitation power density dependence of the emitted light intensity of a photo-luminescence light.
符号の説明Explanation of symbols
100 半導体発光素子
108 励起光
601 光源制御部
602 励起光源
603 ミラー
604 保持部
605 レンズ
606 光学フィルタ
607 検出部
608 増幅器
609 表示部
610 制御部
611 入力部
612 記憶部
DESCRIPTION OF SYMBOLS 100 Semiconductor light-emitting device 108 Excitation light 601 Light source control part 602 Excitation light source 603 Mirror 604 Holding part 605 Lens 606 Optical filter 607 Detection part 608 Amplifier 609 Display part 610 Control part 611 Input part 612 Storage part
Claims (6)
第1半導体層と第2半導体層とを有する半導体発光素子の内部量子効率を測定する方法であって、
前記第1半導体層の禁制帯幅と前記第2半導体層の禁制帯幅との間のエネルギーに相当する波長を持つ励起光を選択する選択工程と、
前記選択工程で選択された励起光の励起パワー密度を設定する設定工程と、
前記設定された各励起パワー密度で前記励起光を前記半導体発光素子に照射する照射工程と、
前記照射工程で照射された励起光により前記半導体発光素子から放出される光を検出する検出工程と、
前記検出工程で検出した光の各励起パワー密度における積分発光強度をその励起パワー密度で除算した値に基づいて前記半導体発光素子の内部量子効率を演算する演算工程と、
を含むことを特徴とする測定方法。
A method for measuring an internal quantum efficiency of a semiconductor light emitting device having a first semiconductor layer and a second semiconductor layer,
A selection step of selecting excitation light having a wavelength corresponding to energy between the forbidden band width of the first semiconductor layer and the forbidden band width of the second semiconductor layer;
A setting step for setting the excitation power density of the excitation light selected in the selection step;
An irradiation step of irradiating the semiconductor light emitting element with the excitation light at each of the set excitation power densities;
A detection step of detecting light emitted from the semiconductor light emitting device by the excitation light irradiated in the irradiation step;
A calculation step of calculating the internal quantum efficiency of the semiconductor light-emitting element based on a value obtained by dividing the integrated emission intensity at each excitation power density of the light detected in the detection step by the excitation power density;
A measurement method comprising:
前記演算工程では、
第1温度において、前記照射工程、前記検出工程及び前記演算工程を実施し、この演算工程で得られた値のうち最大の値を第1の最大値とし、
前記第1の温度よりも高い第2温度において、前記照射工程、前記検出工程及び前記演算工程を実施し、この演算工程で得られた値のうち最大の値を第2の最大値とし、
前記第1の最大値に対する前記第2の最大値の百分率を前記内部量子効率として演算することを特徴とする請求項1に記載の測定方法。
In the calculation step,
At the first temperature, the irradiation step, the detection step and the calculation step are performed, and the maximum value among the values obtained in the calculation step is set as the first maximum value,
At the second temperature higher than the first temperature, the irradiation step, the detection step and the calculation step are performed, and the maximum value among the values obtained in the calculation step is set as the second maximum value,
The measurement method according to claim 1, wherein a percentage of the second maximum value with respect to the first maximum value is calculated as the internal quantum efficiency.
前記選択工程では、
前記第1半導体層の禁制帯幅と前記第2半導体層の禁制帯幅との間のエネルギーに相当する波長を持つ励起光を放出する光源を複数の光源から選択することを特徴とする請求項1又は請求項2に記載の測定方法。
In the selection step,
The light source that emits excitation light having a wavelength corresponding to the energy between the forbidden band width of the first semiconductor layer and the forbidden band width of the second semiconductor layer is selected from a plurality of light sources. The measurement method according to claim 1 or 2.
前記半導体発光素子として、電極が形成された半導体発光素子の内部量子効率を演算することを特徴とする請求項1乃至請求項3のいずれか1項に記載の測定方法。
4. The measurement method according to claim 1, wherein an internal quantum efficiency of a semiconductor light emitting device having an electrode formed thereon is calculated as the semiconductor light emitting device. 5.
前記照射工程では、
前記半導体発光素子のうち前記電極が形成された部分以外に光を照射することを特徴とする請求項4に記載の測定方法。
In the irradiation step,
The measurement method according to claim 4, wherein light is irradiated to a portion other than the portion where the electrode is formed in the semiconductor light emitting device.
第1半導体層と第2半導体層とを有する半導体発光素子の内部量子効率を測定する測定装置であって、
複数の光源と、
前記第1半導体層の禁制帯幅と前記第2半導体層の禁制帯幅との間のエネルギーに相当する波長を持つ励起光を放出する光源を前記複数の光源から選択する選択部と、
前記選択部で選択された光源から放出される励起光の励起パワー密度を設定する光源制御部と、
前記設定された各励起パワー密度で前記選択された光源から照射された励起光により前記半導体発光素子から放出される光を検出する検出部と、
前記検出部で検出した光の各励起パワー密度における積分発光強度をその励起パワー密度で除算した値に基づいて前記半導体発光素子の内部量子効率の演算を実行する制御部と、
を備えることを特徴とする測定装置。
A measuring apparatus for measuring the internal quantum efficiency of a semiconductor light emitting device having a first semiconductor layer and a second semiconductor layer,
Multiple light sources;
A selection unit that selects a light source that emits excitation light having a wavelength corresponding to energy between the forbidden band width of the first semiconductor layer and the forbidden band width of the second semiconductor layer from the plurality of light sources;
A light source control unit for setting an excitation power density of excitation light emitted from the light source selected by the selection unit;
A detection unit for detecting light emitted from the semiconductor light emitting element by excitation light emitted from the selected light source at each set excitation power density;
A control unit that performs calculation of the internal quantum efficiency of the semiconductor light emitting element based on a value obtained by dividing the integrated emission intensity at each excitation power density of the light detected by the detection unit by the excitation power density;
A measuring apparatus comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005278641A JP2007088389A (en) | 2005-09-26 | 2005-09-26 | Apparatus and method for measuring internal quantum efficiency of semiconductor light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005278641A JP2007088389A (en) | 2005-09-26 | 2005-09-26 | Apparatus and method for measuring internal quantum efficiency of semiconductor light emitting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007088389A true JP2007088389A (en) | 2007-04-05 |
Family
ID=37975038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005278641A Pending JP2007088389A (en) | 2005-09-26 | 2005-09-26 | Apparatus and method for measuring internal quantum efficiency of semiconductor light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007088389A (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007088420A (en) * | 2005-08-25 | 2007-04-05 | Sharp Corp | Manufacturing method of semiconductor light emitting device |
JP2010109156A (en) * | 2008-10-30 | 2010-05-13 | Oki Electric Ind Co Ltd | Method and device for inspecting semiconductor device |
CN102252829A (en) * | 2011-04-25 | 2011-11-23 | 北京大学 | Method for measuring internal quantum efficiency and light extraction efficiency of LED |
KR101116840B1 (en) | 2010-01-15 | 2012-03-07 | 한양대학교 산학협력단 | Method and Apparatus for Measuring Internal Quantum Well Efficiency of LED |
KR101194349B1 (en) | 2011-01-12 | 2012-10-25 | 한국과학기술원 | Method for extracting internal quantum efficiency and recombination rates of optical device |
JP2013038313A (en) * | 2011-08-10 | 2013-02-21 | Showa Denko Kk | Inspection method of light-emitting element and manufacturing method of light-emitting element |
JP2013536436A (en) * | 2010-08-24 | 2013-09-19 | ケーエルエー−テンカー コーポレイション | Defect inspection and photoluminescence measurement system |
WO2014021623A1 (en) * | 2012-07-31 | 2014-02-06 | 주식회사 에타맥스 | Method and device for measuring internal quantum efficiency of an optical element |
US20150323463A1 (en) * | 2012-07-31 | 2015-11-12 | Etamax.Co., Ltd | Method and device for measuring internal quantum efficiency of an optical element |
KR101569422B1 (en) * | 2009-06-25 | 2015-11-17 | 주식회사 에타맥스 | Method and Apparatus for Measuring Internal Quantum Wall Efficiency of LED Based on TRPLTime-resolved Photoluminescence Analysis |
JP2016029726A (en) * | 2007-11-21 | 2016-03-03 | 三菱化学株式会社 | Nitride semiconductor |
TWI641851B (en) * | 2013-09-14 | 2018-11-21 | 美商克萊譚克公司 | Method and apparatus for non-contact measurement of internal quantum efficiency in light emitting diode structures |
KR102038862B1 (en) * | 2018-05-04 | 2019-10-31 | 한국표준과학연구원 | Quantum effciency measuring instrument and method for photovoltaic detectors on individual laser pulses |
JP2021129120A (en) * | 2020-01-17 | 2021-09-02 | 浜松ホトニクス株式会社 | Inspection device and inspection method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6292487A (en) * | 1985-10-18 | 1987-04-27 | Fujitsu Ltd | Photoluminescence evaluation device |
JPH0864652A (en) * | 1994-08-26 | 1996-03-08 | Hitachi Cable Ltd | Inspection method for epitaxial wafer |
JP2002286640A (en) * | 2001-03-28 | 2002-10-03 | Japan Science & Technology Corp | Method for measuring level in forbidden band by two- wavelength excitation photo-luminescence and device therefor |
JP2005210053A (en) * | 2003-08-26 | 2005-08-04 | Sumitomo Electric Ind Ltd | Light emitting device |
-
2005
- 2005-09-26 JP JP2005278641A patent/JP2007088389A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6292487A (en) * | 1985-10-18 | 1987-04-27 | Fujitsu Ltd | Photoluminescence evaluation device |
JPH0864652A (en) * | 1994-08-26 | 1996-03-08 | Hitachi Cable Ltd | Inspection method for epitaxial wafer |
JP2002286640A (en) * | 2001-03-28 | 2002-10-03 | Japan Science & Technology Corp | Method for measuring level in forbidden band by two- wavelength excitation photo-luminescence and device therefor |
JP2005210053A (en) * | 2003-08-26 | 2005-08-04 | Sumitomo Electric Ind Ltd | Light emitting device |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007088420A (en) * | 2005-08-25 | 2007-04-05 | Sharp Corp | Manufacturing method of semiconductor light emitting device |
JP2016029726A (en) * | 2007-11-21 | 2016-03-03 | 三菱化学株式会社 | Nitride semiconductor |
JP2010109156A (en) * | 2008-10-30 | 2010-05-13 | Oki Electric Ind Co Ltd | Method and device for inspecting semiconductor device |
KR101569422B1 (en) * | 2009-06-25 | 2015-11-17 | 주식회사 에타맥스 | Method and Apparatus for Measuring Internal Quantum Wall Efficiency of LED Based on TRPLTime-resolved Photoluminescence Analysis |
US8600705B2 (en) | 2010-01-15 | 2013-12-03 | Industry-University Cooperation Foundation Hanyang University | Method and apparatus for measuring internal quantum well efficiency of LED |
KR101116840B1 (en) | 2010-01-15 | 2012-03-07 | 한양대학교 산학협력단 | Method and Apparatus for Measuring Internal Quantum Well Efficiency of LED |
JP2013536436A (en) * | 2010-08-24 | 2013-09-19 | ケーエルエー−テンカー コーポレイション | Defect inspection and photoluminescence measurement system |
KR101194349B1 (en) | 2011-01-12 | 2012-10-25 | 한국과학기술원 | Method for extracting internal quantum efficiency and recombination rates of optical device |
CN102252829B (en) * | 2011-04-25 | 2013-03-06 | 北京大学 | Method for measuring internal quantum efficiency and light extraction efficiency of LED |
CN102252829A (en) * | 2011-04-25 | 2011-11-23 | 北京大学 | Method for measuring internal quantum efficiency and light extraction efficiency of LED |
JP2013038313A (en) * | 2011-08-10 | 2013-02-21 | Showa Denko Kk | Inspection method of light-emitting element and manufacturing method of light-emitting element |
WO2014021623A1 (en) * | 2012-07-31 | 2014-02-06 | 주식회사 에타맥스 | Method and device for measuring internal quantum efficiency of an optical element |
US20150323463A1 (en) * | 2012-07-31 | 2015-11-12 | Etamax.Co., Ltd | Method and device for measuring internal quantum efficiency of an optical element |
US9945898B2 (en) | 2012-07-31 | 2018-04-17 | Etamax.Co., Ltd | Method and device for measuring internal quantum efficiency of an optical element |
TWI641851B (en) * | 2013-09-14 | 2018-11-21 | 美商克萊譚克公司 | Method and apparatus for non-contact measurement of internal quantum efficiency in light emitting diode structures |
KR102038862B1 (en) * | 2018-05-04 | 2019-10-31 | 한국표준과학연구원 | Quantum effciency measuring instrument and method for photovoltaic detectors on individual laser pulses |
JP2021129120A (en) * | 2020-01-17 | 2021-09-02 | 浜松ホトニクス株式会社 | Inspection device and inspection method |
JP7432558B2 (en) | 2020-01-17 | 2024-02-16 | 浜松ホトニクス株式会社 | Inspection equipment and inspection method |
US12013349B2 (en) | 2020-01-17 | 2024-06-18 | Hamamatsu Photonics K.K. | Inspection apparatus and inspection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Choi et al. | 2003 | Mechanism of enhanced light output efficiency in InGaN-based microlight emitting diodes |
JP2007088389A (en) | 2007-04-05 | Apparatus and method for measuring internal quantum efficiency of semiconductor light emitting device |
JP5951993B2 (en) | 2016-07-13 | Method for manufacturing an optoelectronic semiconductor chip |
JP5289448B2 (en) | 2013-09-11 | Semiconductor body for radiation emission |
JP2009530803A (en) | 2009-08-27 | Monolithic white light emitting diode |
US20160270187A1 (en) | 2016-09-15 | Light-emitting device, device and method for adjusting the light emission of a light-emitting diode comprising phosphorus |
JP2012530373A (en) | 2012-11-29 | Light emitting diode |
US20070086496A1 (en) | 2007-04-19 | Semiconductor light emitting device |
US20150021549A1 (en) | 2015-01-22 | Light emitting diodes with quantum dot phosphors |
JP2009224397A (en) | 2009-10-01 | Light emitting device and lighting apparatus using the same, and display apparatus |
Han et al. | 2020 | Thermodynamic analysis of GaInN-based light-emitting diodes operated by quasi-resonant optical excitation |
KR101116840B1 (en) | 2012-03-07 | Method and Apparatus for Measuring Internal Quantum Well Efficiency of LED |
JP2005522885A5 (en) | 2006-05-25 | |
US20070171953A1 (en) | 2007-07-26 | Led-based optical pumping for laser light generation |
US7358659B2 (en) | 2008-04-15 | Monolithic white light emitting device having nitride cladding layers and passive layer |
Lutsenko et al. | 2013 | Optically pumped quantum-dot Cd (Zn) Se/ZnSe laser and microchip converter for yellow–green spectral region |
US7554100B2 (en) | 2009-06-30 | Fabricating method of semiconductor light-emitting device |
KR101720165B1 (en) | 2017-04-03 | Apparatus and method for analyzing state density of light emitting diode |
JP2010098194A (en) | 2010-04-30 | Phosphor, light-emitting element, light-emitting device, and method for producing phosphor |
JP2013175679A (en) | 2013-09-05 | Light-emitting device |
JP5521242B1 (en) | 2014-06-11 | SiC material manufacturing method and SiC material laminate |
Shim | 2017 | Internal quantum efficiency |
Meneghini et al. | 2017 | Electrical properties, reliability issues, and ESD robustness of InGaN-based LEDs |
JP4536534B2 (en) | 2010-09-01 | Manufacturing method of semiconductor light emitting device |
JP2005317823A (en) | 2005-11-10 | Gallium nitride system light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
2008-06-03 | A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080602 |
2008-08-13 | A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080715 |
2011-03-07 | A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110304 |
2011-06-28 | A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110627 |