JP2011080096A - Method for manufacturing rolling-slide member - Google Patents
- ️Thu Apr 21 2011
JP2011080096A - Method for manufacturing rolling-slide member - Google Patents
Method for manufacturing rolling-slide member Download PDFInfo
-
Publication number
- JP2011080096A JP2011080096A JP2009230600A JP2009230600A JP2011080096A JP 2011080096 A JP2011080096 A JP 2011080096A JP 2009230600 A JP2009230600 A JP 2009230600A JP 2009230600 A JP2009230600 A JP 2009230600A JP 2011080096 A JP2011080096 A JP 2011080096A Authority
- JP
- Japan Prior art keywords
- mass
- rolling
- vanadium
- range
- sliding member Prior art date
- 2009-10-02 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Rolling Contact Bearings (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a rolling-slide member by which the rolling-slide member exhibiting the surface hardness sufficient for securing good rolling-fatigue service life can be obtained inexpensively in the wide temmperature range upto the high temperature of about 300°C. <P>SOLUTION: Ashape blank obtained from a steel material containing 3.2-5.0 mass% Cr and 0.05 to <0.5 mass% V is subjected to a carbo-nitriding treatment, a tempering-treatment at the temperature of >250°C and ≤300°C and a finish-processing. In this way, it is controlled so that a Vickers hardness at a position from the surface to 50 μm depth. is ≥740, a carbon content on the surface layer in the range from the surface to 10 μm depth is 1.1-1.6 mass%, a nitrogen content on the surface layer in the range of the surface to 10 μm depth is 0.1-1.0 mass%, grains having 0.2-2 μm granular diameter composed of vanadium-nitride and/or 0.2-2 μm granular diameter composed of vanadium-carbo-nitride, are existed, and the area ratio of the grains on the surface layer in the range from the surface to 10 μm is made to be 1-10%, is obtained. <P>COPYRIGHT: (C)2011,JPO&INPIT
Description
本発明は、転がり摺動部材の製造方法に関する。 The present invention relates to a method for manufacturing a rolling sliding member.
近年、自動車や産業機械の動力伝達機構等の高能率化や小型化のために、これらの機構に用いられている転がり軸受は、高速条件、高面圧条件等の過酷な環境下で使用されることが多くなっている。なかでも、使用環境の高速化や高面圧化に伴って、転がり軸受の使用温度が高温となるため、転がり軸受は、高温条件(例えば、300℃程度)においても、長い転動疲労寿命を有することが求められている。 In recent years, rolling bearings used in power transmission mechanisms for automobiles and industrial machinery have been used in harsh environments such as high speed conditions and high surface pressure conditions. There are many things to do. In particular, as the operating temperature of rolling bearings increases and the surface pressure of rolling bearings increases, rolling bearings have a long rolling fatigue life even under high temperature conditions (for example, about 300 ° C). It is required to have.
そこで、転がり摺動部材に用いられる鋼材として、ケイ素の含有量が0.5〜2.0質量%であり、モリブデンの含有量が0.3〜2.5質量%である鋼材を用いることにより、150〜250℃の温度域における転動疲労寿命を確保することが提案されている(特許文献1)。 Therefore, by using a steel material having a silicon content of 0.5 to 2.0 mass% and a molybdenum content of 0.3 to 2.5 mass% as a steel material used for the rolling sliding member. It has been proposed to secure a rolling fatigue life in a temperature range of 150 to 250 ° C. (Patent Document 1).
特開2003−306743号公報JP 2003-306743 A
しかしながら、前記特許文献1に記載の鋼材を用いた場合、加工しにくく、コストが増大するという欠点がある。
一方、300℃程度の高温下においても長い転動疲労寿命を確保するため、ビッカース硬さ740以上の表面硬さを有する転がり摺動部材が求められている。
However, when the steel material described in Patent Document 1 is used, there is a drawback that it is difficult to process and the cost increases.
On the other hand, in order to ensure a long rolling fatigue life even at a high temperature of about 300 ° C., a rolling sliding member having a surface hardness of Vickers hardness of 740 or more is required.
本発明は、このような事情に鑑みてなされたものであり、300℃程度の高温までの広い温度範囲において、良好な転動疲労寿命を確保するのに十分な表面硬さを示す転がり摺動部材を低コストで得ることができる、転がり摺動部材の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and in a wide temperature range up to a high temperature of about 300 ° C., the rolling sliding exhibiting sufficient surface hardness to ensure a good rolling fatigue life. It aims at providing the manufacturing method of a rolling sliding member which can obtain a member at low cost.
本発明の転がり摺動部材の製造方法は、相手部材との間で相対的に転がり接触もしくは滑り接触または両接触を含む接触をする転がり摺動部材の製造方法であって、
3.2〜5.0質量%のクロムと、0.05質量%以上0.5質量%未満のバナジウムとを含有する鋼材を、所定の形状に加工して、素形材を得る前加工工程、
前記素形材に対して、カーボンポテンシャル0.9〜1.3%で、アンモニアガス濃度が2〜5体積%の浸炭窒化雰囲気において、当該素形材を850〜900℃で加熱し、急冷する浸炭窒化処理を施し、中間素材を得る浸炭窒化処理工程、
前記浸炭窒化処理後の中間素材に対して、250℃を超え、300℃以下の温度で当該中間素材を加熱する焼もどし処理を施す焼もどし処理工程、および
前記焼もどし処理後の中間素材に、仕上げ加工を施すことにより、表面から50μmの深さの位置のビッカース硬さが740(ロックウェルC硬さが62)以上であり、表面から10μmまでの範囲の表面層における炭素の含有量が1.1〜1.6質量%であり、表面から10μmまでの範囲の表面層における窒素の含有量が0.1〜1.0質量%であり、表面から10μmまでの範囲の表面層には、バナジウム窒化物からなる粒径0.2〜2μmの粒子および/またはバナジウム炭窒化物からなる粒径0.2〜2μmの粒子を有しており、かつ表面から10μmまでの範囲の表面層における前記粒子の面積率が1〜10%である転がり摺動部材を得る仕上げ加工工程
を含むことを特徴としている。
The method of manufacturing a rolling sliding member of the present invention is a method of manufacturing a rolling sliding member that makes contact, including rolling contact or sliding contact, or both contacts, relative to a counterpart member,
A pre-processing step of obtaining a base material by processing a steel material containing 3.2 to 5.0% by mass of chromium and 0.05% by mass or more and less than 0.5% by mass of vanadium into a predetermined shape ,
In the carbonitriding atmosphere with a carbon potential of 0.9 to 1.3% and an ammonia gas concentration of 2 to 5% by volume, the material is heated at 850 to 900 ° C. and rapidly cooled. Carbonitriding process to obtain an intermediate material by performing carbonitriding
For the intermediate material after the carbonitriding process, a tempering process for performing a tempering process in which the intermediate material is heated at a temperature of more than 250 ° C. and 300 ° C. or less, and the intermediate material after the tempering process, By performing the finishing process, the Vickers hardness at a depth of 50 μm from the surface is 740 (Rockwell C hardness is 62) or more, and the carbon content in the surface layer in the range from the surface to 10 μm is 1 0.1 to 1.6% by mass, the nitrogen content in the surface layer in the range from the surface to 10 μm is 0.1 to 1.0% by mass, and in the surface layer in the range from the surface to 10 μm, In a surface layer having particles having a particle size of 0.2 to 2 μm made of vanadium nitride and / or particles having a particle size of 0.2 to 2 μm made of vanadium carbonitride, and in the range from the surface to 10 μm Area ratio of the serial particles are characterized in that it comprises a finishing step to obtain a sliding member rolling is 1-10%.
本発明の転がり摺動部材の製造方法では、3.2〜5.0質量%のクロムと、0.05質量%以上0.5質量%未満のバナジウムを含有する鋼材から得られた素形材を、カーボンポテンシャル0.9〜1.3%で、アンモニアガス濃度が2〜5体積%の浸炭窒化雰囲気において、850〜900℃で加熱して、急冷し(浸炭窒化処理)、かつ浸炭窒化処理後の中間素材を、250℃を超え、300℃以下の温度に加熱する(焼もどし処理)。
これにより、得られる転がり摺動部材の表面から10μmまでの範囲の表面層における炭素の含有量を1.1〜1.6質量%、表面から50μmの深さの位置でのビッカース硬さが740〜900(ロックウェルC硬さが62〜67)、表面から10μmまでの範囲の表面層における窒素の含有量を0.1〜1.0質量%、表面から10μmまでの範囲の表面層に、バナジウム窒化物からなる粒径0.2〜2μmの粒子および/またはバナジウム炭窒化物からなる粒径0.2〜2μmの粒子を存在させ、表面から10μmまでの範囲の表面層における前記粒子の面積率を1〜10%とすることができる。
このように、本発明の転がり摺動部材の製造方法では、得られる転がり摺動部材の表面から50μmの深さの位置でのビッカース硬さが740〜900(ロックウェルC硬さが62〜67)とすることができるので、300℃の高温条件下で使用した場合であっても、良好な転動疲労寿命を確保するのに十分な表面硬さを確保することができる。
したがって、本発明の転がり摺動部材の製造方法によれば、300℃程度の高温までの広い温度範囲においても、良好な転動疲労寿命を確保するのに十分な表面硬さを示す転がり摺動部材を得ることができる。
しかも、本発明の転がり摺動部材の製造方法では、3.2〜5.0質量%のクロムと、0.05質量%以上0.5質量%未満のバナジウムを含有する鋼材が用いられているので、例えば、高温用軸受鋼のSKH4やM50(バナジウム、マグネシウムおよびタングステンを含む軸受鋼)に比べて、加工がしやすく、低コストで、転がり摺動部材を製造することができる。
In the method for producing a rolling sliding member of the present invention, a shaped material obtained from a steel material containing 3.2 to 5.0% by mass of chromium and 0.05% by mass or more and less than 0.5% by mass of vanadium. Is heated at 850 to 900 ° C. in a carbonitriding atmosphere with a carbon potential of 0.9 to 1.3% and an ammonia gas concentration of 2 to 5% by volume (carbonitriding), and carbonitriding The subsequent intermediate material is heated to a temperature exceeding 250 ° C. and not more than 300 ° C. (tempering treatment).
As a result, the carbon content in the surface layer in the range from the surface of the obtained rolling sliding member to 10 μm is 1.1 to 1.6% by mass, and the Vickers hardness is 740 at a depth of 50 μm from the surface. To 900 (Rockwell C hardness 62 to 67), 0.1 to 1.0% by mass of nitrogen content in the surface layer in the range from the surface to 10 μm, to the surface layer in the range from the surface to 10 μm, The area of the particles in the surface layer in the range from the surface to 10 μm in the presence of particles having a particle size of 0.2 to 2 μm made of vanadium nitride and / or particles having a particle size of 0.2 to 2 μm made of vanadium carbonitride The rate can be 1-10%.
Thus, in the manufacturing method of the rolling sliding member of this invention, the Vickers hardness in the position of 50 micrometers deep from the surface of the obtained rolling sliding member is 740-900 (Rockwell C hardness is 62-67. Therefore, even when used under a high temperature condition of 300 ° C., sufficient surface hardness can be ensured to ensure a good rolling fatigue life.
Therefore, according to the manufacturing method of the rolling sliding member of the present invention, the rolling sliding that exhibits a sufficient surface hardness to ensure a good rolling fatigue life even in a wide temperature range up to about 300 ° C. A member can be obtained.
And in the manufacturing method of the rolling sliding member of this invention, the steel materials containing 3.2-5.0 mass% chromium and 0.05 mass% or more and less than 0.5 mass% vanadium are used. Therefore, for example, compared with SKH4 and M50 (bearing steel containing vanadium, magnesium and tungsten), which are high-temperature bearing steels, it is easy to process and a rolling sliding member can be manufactured at low cost.
本発明の転がり摺動部材の製造方法では、前記鋼材が、0.7〜0.9質量%の炭素と、0.05〜0.70質量%のケイ素と、0.05〜0.7質量%のマンガンと、3.2〜5.0質量%のクロムと、0.1〜1.0質量%のモリブデンと、0.05質量%以上0.5質量%未満のバナジウムとを含有し、かつ残部が鉄および不可避不純物である鋼材であることが好ましい。
この場合、転がり摺動部材における製鋼時に析出する粗大な共晶炭化物の量が少なくなり、転がり軸受での疲労破壊が抑制されるとともに、焼入れ後や、浸炭窒化および焼もどし後において、十分な硬さが確保される。
In the manufacturing method of the rolling sliding member of this invention, the said steel materials are 0.7-0.9 mass% carbon, 0.05-0.70 mass% silicon, 0.05-0.7 mass. % Manganese, 3.2-5.0 mass% chromium, 0.1-1.0 mass% molybdenum, 0.05 mass% or more and less than 0.5 mass% vanadium, And it is preferable that it is steel materials with the remainder being iron and inevitable impurities.
In this case, the amount of coarse eutectic carbides precipitated during steelmaking in the rolling sliding member is reduced, fatigue fatigue in the rolling bearing is suppressed, and sufficient hardness after quenching and after carbonitriding and tempering. Is secured.
また、本発明の転がり摺動部材の製造方法では、前記焼もどし処理後の中間素材に対して、−50〜−100℃で当該中間素材を冷却するサブゼロ処理を施すサブゼロ処理工程をさらに含んでもよい。
前記焼もどし処理後の中間素材に対して、サブゼロ処理を施すことにより、残留オーステナイトをマルテンサイトに変化させて、得られる転がり摺動部材における寸法安定性および耐磨耗性を向上させることができる。
Moreover, in the manufacturing method of the rolling sliding member of this invention, it may further include the subzero treatment process which performs the subzero process which cools the said intermediate material at -50--100 degreeC with respect to the intermediate material after the said tempering process. Good.
By applying sub-zero treatment to the intermediate material after the tempering treatment, the retained austenite can be changed to martensite, and the dimensional stability and wear resistance of the obtained rolling sliding member can be improved. .
本発明の転がり摺動部材の製造方法によれば、300℃程度の高温までの広い温度範囲において、良好な転動疲労寿命を確保するのに十分な表面硬さを示す転がり摺動部材を低コストで得ることができるという優れた効果が奏される。 According to the method of manufacturing a rolling sliding member of the present invention, a rolling sliding member having a surface hardness sufficient to ensure a good rolling fatigue life in a wide temperature range up to a high temperature of about 300 ° C. is reduced. There is an excellent effect that it can be obtained at a low cost.
本発明の一実施形態にかかる製造方法により製造された転がり摺動部材(外内輪および転動体)を備えた転がり軸受としての玉軸受の構造を示す概略説明図である。It is a schematic explanatory drawing which shows the structure of the ball bearing as a rolling bearing provided with the rolling sliding member (an outer ring | wheel and a rolling element) manufactured by the manufacturing method concerning one Embodiment of this invention. 本発明の一実施形態に係る転がり摺動部材(外輪)の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the rolling sliding member (outer ring) which concerns on one Embodiment of this invention. 本発明の一実施形態に係る転がり摺動部材(内輪)の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the rolling sliding member (inner ring) which concerns on one Embodiment of this invention. 本発明の変形例に係る転がり摺動部材(内輪)の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the rolling sliding member (inner ring) which concerns on the modification of this invention. 実施例1における熱処理条件を示す線図である。3 is a diagram showing heat treatment conditions in Example 1. FIG. 実施例2における熱処理条件を示す線図である。It is a diagram which shows the heat processing conditions in Example 2. FIG. 実施例3における熱処理条件を示す線図である。6 is a diagram showing heat treatment conditions in Example 3. FIG. 実施例4における熱処理条件を示す線図である。It is a diagram which shows the heat processing conditions in Example 4. FIG. 比較例1における熱処理条件を示す線図である。It is a diagram which shows the heat processing conditions in the comparative example 1. 比較例2における熱処理条件を示す線図である。It is a diagram which shows the heat processing conditions in the comparative example 2. 比較例3における熱処理条件を示す線図である。It is a diagram which shows the heat processing conditions in the comparative example 3. 比較例4における熱処理条件を示す線図である。It is a diagram which shows the heat processing conditions in the comparative example 4. 比較例5における熱処理条件を示す線図である。It is a diagram which shows the heat processing conditions in the comparative example 5. 比較例6における熱処理条件を示す線図である。It is a diagram which shows the heat processing conditions in the comparative example 6. 比較例7における熱処理条件を示す線図である。It is a diagram which shows the heat processing conditions in the comparative example 7.
以下、添付の図面により本発明の一実施形態に係る転がり摺動部材の製造方法を説明する。図1は、本発明の一実施形態にかかる製造方法により製造された転がり摺動部材(外内輪および転動体)を備えた転がり軸受としての玉軸受の構造を示す概略説明図である。 Hereinafter, a method for manufacturing a rolling sliding member according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic explanatory view showing the structure of a ball bearing as a rolling bearing provided with a rolling sliding member (outer inner ring and rolling element) manufactured by a manufacturing method according to an embodiment of the present invention.
玉軸受10は、内周面に軌道部1aを有する外輪1と、外周面に軌道部2aを有する内輪2と、外内輪1,2の両軌道部1a,2a間に配置された複数個の転動体としての玉3と、複数個の玉3を周方向に所定間隔毎に保持する保持器4とを備えている。 The ball bearing 10 includes a plurality of outer rings 1 having a raceway portion 1a on an inner peripheral surface, an inner ring 2 having a raceway portion 2a on an outer peripheral surface, and a plurality of raceway portions 1a and 2a of the outer inner rings 1 and 2a. A ball 3 as a rolling element and a cage 4 that holds a plurality of balls 3 at predetermined intervals in the circumferential direction are provided.
玉軸受10では、250℃を超え、300℃以下の温度での焼もどし処理後における外内輪1,2の軌道部1a,2aおよび玉3それぞれの表面から50μmの深さの位置でのビッカース硬さが740〜900(ロックウェルC硬さが62〜67)となっている。これにより、300℃程度の高温までの広い温度範囲において、当該玉軸受10を良好な状態で使用することができる。また、玉軸受10によれば、表面から50μmの深さの位置でのビッカース硬さが740(ロックウェルC硬さが62)以上となっていることから、異物が混入した潤滑油中で玉軸受10を使用した際に前記異物を噛みこんだときに生成される圧痕の寸法を小さくすることができる。さらに、玉軸受10によれば、表面から50μmの深さの位置でのビッカース硬さが900(ロックウェルC硬さが67)以下となっていることから、脆化を防止することができる。なお、前記ビッカース硬さは、前記内輪を表面から深さ方向に切断した後、前記表面から50μmの深さの位置にビッカース圧子をあてて測定した値である。また、ロックウェルC硬さは、測定されたビッカース硬さを変換することにより求めた値である。 In the ball bearing 10, Vickers hardness at a position of a depth of 50 μm from the surfaces of the raceways 1 a and 2 a of the outer inner rings 1 and 2 and the balls 3 after tempering treatment at a temperature exceeding 250 ° C. and not more than 300 ° C. Is 740 to 900 (Rockwell C hardness is 62 to 67). Thereby, the said ball bearing 10 can be used in a favorable state in the wide temperature range to about 300 degreeC high temperature. Further, according to the ball bearing 10, since the Vickers hardness at a position of a depth of 50 μm from the surface is 740 (Rockwell C hardness is 62) or more, the ball in the lubricating oil mixed with foreign matters. When the bearing 10 is used, the size of the indentation generated when the foreign matter is caught can be reduced. Furthermore, according to the ball bearing 10, since the Vickers hardness at a depth of 50 μm from the surface is 900 (Rockwell C hardness is 67) or less, embrittlement can be prevented. The Vickers hardness is a value measured by applying a Vickers indenter to a position at a depth of 50 μm from the surface after cutting the inner ring in the depth direction from the surface. The Rockwell C hardness is a value obtained by converting the measured Vickers hardness.
外内輪1,2の軌道部1a,2aおよび玉3それぞれの表面から10μmまでの範囲の表面層には、バナジウム窒化物からなる粒子および/またはバナジウム炭窒化物からなる粒子が存在している。前記粒子の粒径は、オロワン機構による分散強化により降伏応力を向上させる観点から、好ましくは0.2μm以上であり、オストワルド成長により粒子の粗大化を誘発させる観点から、好ましくは2μm以下である。
また、外内輪1,2の軌道部1a,2aおよび玉3それぞれの表面には、セメンタイトおよびM7C3型炭化物およびM23C6型炭化物が析出している。
Particles made of vanadium nitride and / or particles made of vanadium carbonitride are present in the surface layer in the range of 10 μm from the surfaces of the raceways 1a, 2a and balls 3 of the outer inner rings 1, 2. The particle size is preferably 0.2 μm or more from the viewpoint of improving the yield stress by dispersion strengthening by the Orowan mechanism, and preferably 2 μm or less from the viewpoint of inducing coarsening of the particles by Ostwald growth.
Further, cementite, M 7 C 3 type carbide and M 23 C 6 type carbide are deposited on the surfaces of the raceway portions 1a, 2a and the balls 3 of the outer inner rings 1, 2.
外内輪1,2の軌道部1a,2aおよび玉3それぞれの表面から10μmまでの範囲の表面層における前記粒子の面積率は、オロワン機構による分散強化により降伏応力を向上させて、十分な静的負荷容量を確保する観点から、1%以上であり、鋼材中への過剰な窒素の浸入を抑制し、所要の炭素量を確保することで前記表面から50μmの深さの位置でのビッカース硬さ740〜900(ロックウェルC硬さ62〜67)を確保し、十分な静的負荷容量を確保する観点から、10%以下である。なお、本明細書において、前記粒子の面積率とは、表面から10μmまでの範囲の表面層におけるバナジウム窒化物からなる粒径0.2〜2μmの粒子とバナジウム炭窒化物からなる粒径0.2〜2μmの粒子とを併せたものの面積率をいう。 The area ratio of the particles in the surface layer in the range of 10 μm from the surfaces of the raceway portions 1a, 2a and the balls 3 of the outer inner rings 1, 2 improves the yield stress by dispersion strengthening by the Orowan mechanism, and is sufficiently static From the viewpoint of securing the load capacity, it is 1% or more, Vickers hardness at a depth of 50 μm from the surface by suppressing excessive nitrogen penetration into the steel material and securing the required amount of carbon. From the viewpoint of securing 740 to 900 (Rockwell C hardness 62 to 67) and securing a sufficient static load capacity, it is 10% or less. In the present specification, the area ratio of the particles means the particle size of 0.2 to 2 μm composed of vanadium nitride and vanadium carbonitride in the surface layer in the range from the surface to 10 μm. The area ratio of the particles combined with 2 to 2 μm particles.
外内輪1,2の軌道部1a,2aおよび玉3それぞれの表面から10μmまでの範囲の表面層における炭素の含有量は、圧痕などの表面損傷部への応力集中の緩和効果のある残留オーステナイト量を確保し、かつ高い表面硬さにする観点から、1.1質量%以上であり、前記表面層における炭化物の粗大析出物(例えば、粒径が10μmを超える析出物)の存在量を少なくすることにより、寿命を一層向上させる観点から、1.6質量%以下である。 The carbon content in the surface layer in the range from the surface of each of the raceway portions 1a, 2a and the balls 3 of the outer inner rings 1, 2 to the ball 3 to 10 μm is the amount of retained austenite that has a relaxing effect on stress concentration on the surface damage portion such as indentations. In view of securing a high surface hardness and 1.1% by mass or more, the amount of coarse precipitates of carbides (for example, precipitates having a particle size exceeding 10 μm) in the surface layer is reduced. From the viewpoint of further improving the life, the content is 1.6% by mass or less.
外内輪1,2の軌道部1a,2aおよび玉3それぞれの表面から10μmまでの範囲の表面層における窒素の含有量は、オロワン機構による分散強化により降伏応力を向上させて、十分な静的負荷容量を確保する観点から、0.1質量%以上であり、鋼材中への過剰な窒素の浸入を抑制し、所要の炭素量を確保することで転がり摺動部材としての表面ビッカース硬さ(表面から50μmの深さの位置でのビッカース硬さ)740〜900(ロックウェルC硬さ62〜67)を得、長寿命化を図るとともに、十分な静的負荷容量を確保する観点から、1.0質量%以下である。 The nitrogen content in the surface layer in the range from the surface of each of the raceway portions 1a, 2a and the balls 3 of the outer inner rings 1, 2 to the ball 3 to 10 μm improves the yield stress by dispersion strengthening by the Orowan mechanism, and the sufficient static load From the viewpoint of securing the capacity, it is 0.1% by mass or more, suppresses the intrusion of excessive nitrogen into the steel material, and secures the required amount of carbon to ensure the surface Vickers hardness (surface) From the viewpoint of obtaining a Vickers hardness at a depth of 50 μm to 740 to 900 (Rockwell C hardness 62 to 67), extending the life and securing a sufficient static load capacity. 0% by mass or less.
つぎに、かかる転がり摺動部材の製造方法の例として、前記外輪および内輪の製造方法を説明する。図2は、本発明の一実施形態に係る外輪の製造方法の工程図である。また、図3は、本発明の一実施形態に係る内輪の製造方法の工程図である。 Next, as an example of a method for manufacturing the rolling sliding member, a method for manufacturing the outer ring and the inner ring will be described. FIG. 2 is a process diagram of an outer ring manufacturing method according to an embodiment of the present invention. FIG. 3 is a process diagram of an inner ring manufacturing method according to an embodiment of the present invention.
まず、3.2〜5.0質量%のクロムと、0.05質量%以上0.5質量%未満のバナジウムとを含有する鋼材からなる外輪の環状素材13〔図2(a)参照〕を製造し、得られた環状素材13に切削加工などを施して、軌道面11a、端面11b、内周面11cおよび外周面11dをそれぞれ所定形状に加工して、外輪の素形材14を得る〔「前加工工程」、図2(b)参照〕。
一方、前記外輪の環状素材13と同じ鋼材からなる内輪の環状素材23〔図3(a)参照〕に切削加工等を施して、軌道面21a、端面21b、内周面21cおよび外周面21dをそれぞれ所定形状に加工して、内輪の素形材24を得る〔図3(b)参照〕。
First, an annular material 13 of an outer ring made of a steel material containing 3.2 to 5.0% by mass of chromium and 0.05% by mass or more and less than 0.5% by mass of vanadium [see FIG. 2 (a)]. The annular material 13 produced and cut is subjected to cutting and the like, and the raceway surface 11a, the end surface 11b, the inner peripheral surface 11c, and the outer peripheral surface 11d are each processed into a predetermined shape to obtain the outer ring shaped material 14 [ [Refer to “Pre-processing step”, FIG. 2 (b)].
On the other hand, the ring material 23 of the inner ring made of the same steel material as the ring material 13 of the outer ring (see FIG. 3A) is subjected to cutting or the like to form the raceway surface 21a, end surface 21b, inner peripheral surface 21c and outer peripheral surface 21d. Each is processed into a predetermined shape to obtain an inner ring shaped member 24 (see FIG. 3B).
前記鋼材としては、0.7〜0.9質量%の炭素と、0.05〜0.70質量%のケイ素と、0.05〜0.7質量%のマンガンと、3.2〜5.0質量%のクロムと、0.1〜1.0質量%のモリブデンと、0.05質量%以上0.5質量%未満のバナジウムとを含有し、残部が鉄および不可避不純物である鋼材を用いることができる。
かかる鋼材によれば、外内輪1,2それぞれの表面における製鋼時に析出する粗大な共晶炭化物の量が少なくなり、転がり軸受での疲労破壊を抑制することができるとともに、焼入れ後や、浸炭窒化および焼もどし後において、十分な硬さを確保することができる。
As said steel materials, 0.7-0.9 mass% carbon, 0.05-0.70 mass% silicon, 0.05-0.7 mass% manganese, 3.2-5. A steel material containing 0% by mass of chromium, 0.1-1.0% by mass of molybdenum, 0.05% by mass or more and less than 0.5% by mass of vanadium, with the balance being iron and inevitable impurities is used. be able to.
According to such a steel material, the amount of coarse eutectic carbides precipitated at the time of steelmaking on the surfaces of the outer inner rings 1 and 2 can be reduced, and fatigue failure in the rolling bearing can be suppressed, and after quenching and carbonitriding. And sufficient hardness can be secured after tempering.
前記鋼材において、炭素は、次工程の浸炭窒化処理工程を行なう際に鋼材の硬さを上昇させ、強度確保のための内部硬さを得るための元素である。また、炭素は、後述する浸炭窒化処理前において、鋼材中に未固溶の炭化物を多量に残存させ、これを浸炭窒化処理後にも微細かつ多量に残存した状態とすることにより、転がり疲れ寿命を向上させることを可能にするための元素である。
前記鋼材中に含まれる炭素の含有量は、鋼材中に未固溶の炭化物を十分に残存させる観点から、0.7質量%以上であり、浸炭窒化処理前の加工性を十分に得るとともに、鋼材製造時に疲労破壊の起点となり易い粗大な共晶炭化物の生成を抑制する観点から、0.9質量%以下である。
In the steel material, carbon is an element for increasing the hardness of the steel material and obtaining the internal hardness for securing the strength when performing the carbonitriding process of the next step. In addition, before carbonitriding, which will be described later, carbon is left in a large amount of undissolved carbides in the steel material, and after it is carbonitrided, it remains in a fine and large amount, thereby reducing the rolling fatigue life. It is an element that makes it possible to improve.
The content of carbon contained in the steel material is 0.7% by mass or more from the viewpoint of sufficiently leaving undissolved carbides in the steel material, and sufficient workability before carbonitriding is obtained. From the viewpoint of suppressing the formation of coarse eutectic carbides that are likely to be the starting point of fatigue failure during steel production, the content is 0.9% by mass or less.
また、前記鋼材において、クロムは、浸炭窒化処理前の段階において、浸炭窒化処理時に析出核として作用する多量の未固溶の炭化物を生成させ、浸炭窒化後の表面浸炭窒化層に微細炭化物(M7C3型炭化物、M23C6型炭化物)、微細炭窒化物〔M7(C,N)3型炭窒化物、M23(C,N)6型炭窒化物〕および微細窒化物(CrN、VN)を析出させることにより、転がり摺動部材の転がり疲れ寿命を向上させるとともに、後述の焼もどし処理工程による焼もどし軟化に対する抵抗性を向上させるための元素である。また、クロムは、鋼材中における炭窒化物および窒化物の生成促進による鋼材の最表面層における窒化反応の促進を行うとともに、浸炭反応の抑制(過剰浸炭組織の発生の抑制)を行う。
前記効果を得るために観点から、鋼材中に含まれるクロムの含有量は、3.2質量%以上であり、疲労破壊の起点となる共晶炭化物の生成の抑制を容易に行う観点およびコストを低減させる観点から、5.0質量%以下である。
Further, in the steel material, chromium generates a large amount of undissolved carbides that act as precipitation nuclei during the carbonitriding process before the carbonitriding process, and fine carbides (M 7 C 3 type carbide, M 23 C 6 type carbide), fine carbonitride [M 7 (C, N) 3 type carbonitride, M 23 (C, N) 6 type carbonitride] and fine nitride ( CrN, VN) is an element for improving the rolling fatigue life of the rolling sliding member and improving the resistance to tempering softening in the tempering process described later. Chromium promotes the nitriding reaction in the outermost surface layer of the steel material by promoting the formation of carbonitrides and nitrides in the steel material, and suppresses the carburizing reaction (suppresses the occurrence of excessive carburized structure).
From the viewpoint of obtaining the above effect, the content of chromium contained in the steel material is 3.2% by mass or more, and the viewpoint and cost of easily suppressing the formation of eutectic carbide that becomes the starting point of fatigue fracture. From a viewpoint of reducing, it is 5.0 mass% or less.
前記鋼材において、バナジウムは、炭素との親和力が非常に強い元素であり、炭化物を形成する元素である。また、炭素とバナジウムとから生成される炭化バナジウムは、炭化モリブデンに比べて、固溶温度が高いため、本発明の転がり摺動部材の製造に際する浸炭窒化処理の温度範囲では、浸炭窒化処理前に存在していた炭化バナジウムの多くは、固溶せず、未固溶の炭化バナジウムとして鋼材中に存在することになる。かかる未固溶の炭化バナジウムは、浸炭窒化処理時における炭化物(VC)、炭窒化物〔V(C,N)〕および窒化物〔(Cr,V)N〕などの析出核として働くとともに、前記炭化物、炭窒化物、窒化物などの析出物の微細化に寄与し、鋼材の硬さや転がり疲れ寿命を向上させることができる。あわせて、バナジウムは、鋼材中のクロム以上に、炭窒化物および窒化物の生成促進による鋼材の最表面層における窒化反応の促進および浸炭反応の抑制(過剰浸炭組織の発生の抑制)を行うことができる。また、バナジウムは、後述の焼もどし処理工程による焼もどし軟化に対する抵抗性を向上させるための元素として働く。前記効果を得るために観点から、鋼材中に含まれるバナジウムの含有量は、0.05質量%以上であり、炭化バナジウムの生成を抑制することにより、固溶炭素量を十分に確保し、残留オーステナイト量を十分に確保する観点から、0.5質量%未満である。 In the steel material, vanadium is an element that has a very strong affinity for carbon, and is an element that forms carbide. In addition, since vanadium carbide produced from carbon and vanadium has a higher solid solution temperature than molybdenum carbide, the carbonitriding treatment is performed in the temperature range of the carbonitriding treatment in the production of the rolling sliding member of the present invention. Most of the vanadium carbide that existed before does not dissolve, but exists in the steel as undissolved vanadium carbide. Such insoluble vanadium carbide serves as a precipitation nucleus for carbide (VC), carbonitride [V (C, N)], nitride [(Cr, V) N], etc. during carbonitriding, This contributes to the refinement of precipitates such as carbides, carbonitrides and nitrides, and can improve the hardness and rolling fatigue life of steel materials. In addition, vanadium should promote the nitriding reaction in the outermost surface layer of the steel material and promote the carburization reaction (suppression of excessive carburization structure) by promoting the formation of carbonitrides and nitrides more than chromium in the steel material. Can do. Vanadium functions as an element for improving resistance to temper softening in the tempering process described later. From the viewpoint of obtaining the above effect, the content of vanadium contained in the steel material is 0.05% by mass or more, and by suppressing the production of vanadium carbide, a sufficient amount of solute carbon is secured, and the residual From the viewpoint of sufficiently securing the amount of austenite, it is less than 0.5% by mass.
前記鋼材において、ケイ素は、鋼の精錬時の脱酸のために必要な元素である。また、ケイ素は、炭化物に固溶しにくい性質を有するため、炭化物の粗大成長を抑制する効果を有する元素である。
前記効果を得る観点から、鋼材中に含まれるケイ素の含有量は、0.05質量%以上であり、浸炭窒化処理前において、十分な加工性を確保するとともに、鋼材および加工等に要するコストを低減させる観点から、0.70質量%以下である。
In the steel material, silicon is an element necessary for deoxidation during refining of steel. In addition, silicon is an element having an effect of suppressing coarse growth of carbide because it has a property of being hardly dissolved in carbide.
From the viewpoint of obtaining the effect, the content of silicon contained in the steel material is 0.05% by mass or more, and before the carbonitriding process, sufficient workability is ensured, and the cost required for the steel material and processing is reduced. From the viewpoint of reducing, the content is 0.70% by mass or less.
前記鋼材において、マンガンは、鋼材中のオーステナイトを安定化させる元素である。また、マンガンは、鋼材中に含まれる量を増やすことによって、容易に残留オーステナイト量を増加させることができる元素である。
前記効果を得る観点から、鋼材中に含まれるマンガンの含有量は、0.05質量%以上であり、鋼材中における未固溶の炭化物の量を増加させ、炭化物を析出させて、鋼材の硬さを向上させるとともに、転がり疲れ寿命を向上させる観点ならびに十分な熱間加工性および機械加工性を得る観点から、0.7質量%以下であり、好ましくは0.50質量%以下である。
In the steel material, manganese is an element that stabilizes austenite in the steel material. Manganese is an element that can easily increase the amount of retained austenite by increasing the amount contained in the steel material.
From the viewpoint of obtaining the above effects, the manganese content in the steel material is 0.05% by mass or more, increasing the amount of undissolved carbide in the steel material, precipitating the carbide, and hardening the steel material. From the viewpoints of improving the rolling fatigue life and obtaining sufficient hot workability and machinability, the content is 0.7% by mass or less, and preferably 0.50% by mass or less.
前記鋼材において、モリブデンは、クロムより炭素との親和力の強い元素であり、炭化物および炭窒化物の生成に関与する元素である。また、モリブデンは、本発明の転がり摺動部材を製造する際の浸炭窒化処理の温度における炭化物および炭窒化物の固溶温度を上昇させ、未固溶の炭化物および炭窒化物を増加させる元素である。したがって、モリブデンは、浸炭窒化処理後の表面浸炭窒化層中における微細炭化物量および炭窒化物量を増加させ、鋼材の硬さを上昇させるための重要な元素である。また、モリブデンは、鋼材の焼入れ性を向上させるとともに、鋼材における残留オーステナイト量を増加させる。さらに、モリブデンは、炭化物(M23C6型炭化物)および炭窒化物〔M23(C、N)6型炭窒化物〕を効率よく析出させる元素である。
前記効果を得る観点から、鋼材中に含まれるモリブデンの含有量は、0.10質量%以上であり、コストを低減させる観点および疲労破壊の起点となる粗大な共晶炭化物の生成を抑制する観点から、1.0質量%以下である。
In the steel material, molybdenum is an element having a stronger affinity for carbon than chromium, and is an element involved in the formation of carbides and carbonitrides. Molybdenum is an element that increases the solid solution temperature of carbides and carbonitrides at the temperature of carbonitriding when producing the rolling sliding member of the present invention, and increases undissolved carbides and carbonitrides. is there. Therefore, molybdenum is an important element for increasing the amount of fine carbides and carbonitrides in the surface carbonitriding layer after carbonitriding and increasing the hardness of the steel material. Molybdenum improves the hardenability of the steel material and increases the amount of retained austenite in the steel material. Furthermore, molybdenum is an element that efficiently precipitates carbide (M 23 C 6 type carbide) and carbonitride [M 23 (C, N) 6 type carbonitride].
From the viewpoint of obtaining the above effect, the content of molybdenum contained in the steel material is 0.10% by mass or more, and the viewpoint of reducing cost and the viewpoint of suppressing the generation of coarse eutectic carbide that becomes the starting point of fatigue fracture. To 1.0% by mass or less.
つぎに、得られた外輪の素形材14(中間素材)および内輪の素形材24(中間素材)を、カーボンポテンシャル0.9〜1.3%で、アンモニアガス濃度が2〜5体積%の浸炭窒化雰囲気において、850〜900℃で所定時間加熱保持し、その後、所定温度に急冷する〔「浸炭窒化処理工程」、図2(c)および図3(c)参照〕。 Next, the outer ring shaped material 14 (intermediate material) and the inner ring shaped material 24 (intermediate material) thus obtained had a carbon potential of 0.9 to 1.3% and an ammonia gas concentration of 2 to 5% by volume. In a carbonitriding atmosphere, heat-maintain at a temperature of 850 to 900 ° C. for a predetermined time, and then rapidly cool to a predetermined temperature (see “carbonitriding process”, FIG. 2 (c) and FIG. 3 (c)).
浸炭窒化雰囲気におけるカーボンポテンシャルは、外内輪1,2の表面における硬さを十分な硬さとする観点から、0.9%以上であり、外内輪1,2における前記バナジウム窒化物またはバナジウム炭窒化物を含む析出物の面積率を前述の範囲とするとともに、過剰浸炭組織の発生を抑制する観点から、1.3%以下である。 The carbon potential in the carbonitriding atmosphere is 0.9% or more from the viewpoint of making the surface of the outer inner rings 1 and 2 sufficiently hard, and the vanadium nitride or vanadium carbonitride in the outer inner rings 1 and 2 is used. From the viewpoint of suppressing the occurrence of excessive carburized structure, the area ratio of the precipitates containing is made 1.3% or less.
また、浸炭窒化雰囲気におけるアンモニアガス濃度は、過剰浸炭組織の発生を抑制するとともに、次工程の焼もどし処理工程による焼もどし軟化に対する抵抗性を向上させる観点から、2体積%以上であり、過剰窒化による脆化を防止する観点から、5体積%以下である。 In addition, the ammonia gas concentration in the carbonitriding atmosphere is 2% by volume or more from the viewpoint of suppressing the occurrence of excessive carburized structure and improving resistance to tempering and softening in the tempering process of the next process. From the viewpoint of preventing embrittlement due to, the content is 5% by volume or less.
浸炭窒化雰囲気における加熱保持温度は、十分な硬化層を形成させる観点から、850℃以上であり、転がり摺動部材中への過剰な炭素の侵入を抑制して、過剰浸炭組織の発生を抑制するとともに、粗大炭化物の析出を抑制する観点から、900℃以下である。
また、加熱保持時間は、表面層の強化に十分な浸炭深さを得る観点から、4時間以上である。
The heating and holding temperature in the carbonitriding atmosphere is 850 ° C. or higher from the viewpoint of forming a sufficient hardened layer, and the excessive carbon intrusion into the rolling sliding member is suppressed to suppress the occurrence of excessive carburized structure. At the same time, it is 900 ° C. or less from the viewpoint of suppressing the precipitation of coarse carbides.
The heating and holding time is 4 hours or more from the viewpoint of obtaining a carburized depth sufficient for strengthening the surface layer.
急冷は、冷却油の油浴中における油冷により行われる。冷却油の油浴温度は、通常、60〜180℃であればよい。 The rapid cooling is performed by oil cooling in an oil bath of cooling oil. The oil bath temperature of the cooling oil may usually be 60 to 180 ° C.
つぎに、前記浸炭窒化処理後の外輪の素形材14(中間素材)および内輪の素形材24(中間素材)を、250℃を超え、かつ300℃以下の温度で加熱保持する焼もどし処理を行う〔「焼もどし処理工程」、図2(d)および図3(d)参照〕。
焼もどし処理における加熱保持温度は、300℃程度の高温条件での使用に十分な寸法安定性を確保し、十分な耐熱性を確保する観点から、250℃を超える温度であり、残留オーステナイトの過剰な分解を抑制するとともに、製造コストを低減させる観点から、300℃以下である。
また、焼もどし処理における加熱保持時間は、300℃程度の高温条件での使用に十分な寸法安定性を確保し、十分な耐熱性を確保する観点から、0.5時間以上である。
Next, the tempering process in which the outer ring shaped material 14 (intermediate material) and the inner ring shaped material 24 (intermediate material) after the carbonitriding process are heated and held at a temperature exceeding 250 ° C. and 300 ° C. or less. [Refer to “tempering process”, FIG. 2 (d) and FIG. 3 (d)].
The heat holding temperature in the tempering treatment is a temperature exceeding 250 ° C. from the viewpoint of ensuring sufficient dimensional stability for use under a high temperature condition of about 300 ° C. and ensuring sufficient heat resistance, and excessive residual austenite. The temperature is 300 ° C. or less from the viewpoint of suppressing the decomposition and reducing the manufacturing cost.
In addition, the heating and holding time in the tempering treatment is 0.5 hours or more from the viewpoint of ensuring sufficient dimensional stability for use under a high temperature condition of about 300 ° C. and ensuring sufficient heat resistance.
その後、焼もどし処理工程後の外輪の素形材14(中間素材)の軌道面11a、端面11b、外周面11dに対して、研磨仕上げ加工や超仕上げ加工を施して、所定精度に仕上げる〔図2(e)参照、「仕上げ加工工程」〕。このようにして、目的の外輪11を得ることができる。
一方、焼もどし処理工程後の内輪の素形材24(中間素材)の軌道面21a、端面21b、内周面21dに対して研磨仕上げ加工や超仕上げ加工を施して、所定精度に仕上げる〔図3(e)参照〕。このようにして、目的の内輪21を得ることができる。
Thereafter, the raceway surface 11a, the end surface 11b, and the outer peripheral surface 11d of the outer ring shaped member 14 (intermediate material) after the tempering process are subjected to a polishing finishing process or a superfinishing process to finish with a predetermined accuracy [FIG. 2 (e), “finishing process”]. In this way, the target outer ring 11 can be obtained.
On the other hand, the raceway surface 21a, the end surface 21b, and the inner peripheral surface 21d of the inner ring shaped member 24 (intermediate material) after the tempering process are subjected to a polishing finishing process or a superfinishing process to finish with a predetermined accuracy [FIG. 3 (e)]. Thus, the target inner ring 21 can be obtained.
なお、本発明の転がり摺動部材の製造方法においては、図4に示されるように、浸炭窒化処理工程〔図4(c)参照〕後に、浸炭窒化処理後の中間素材に対して、−100〜−50℃で当該中間素材を冷却するサブゼロ処理を施すサブゼロ処理工程〔図4(d)参照〕を行なってもよい。この場合、サブゼロ処理工程後に、焼もどし処理工程〔図4(e)参照〕を行なえばよい。なお、図4には、この変形例にかかる製造方法として、内輪の製造方法を示しているが、前記変形例にかかる製造方法は、外輪の製造にも採用することができる。
サブゼロ処理における冷却温度は、コストを低減する観点から、好ましくは−100℃以上であり、耐摩耗性を向上させる観点から、好ましくは−50℃以上である。
また、サブゼロ処理における冷却時間は、残留オーステナイトをマルテンサイトに変化させる観点から、好ましくは1時間以上である。
このようにサブゼロ処理を行なうことにより、残留オーステナイトをマルテンサイトに変化させることにより、得られる転がり摺動部材の経時的な寸法変化を抑制して、寸法安定性を向上させ、かつ耐磨耗性を向上させることができる。
In addition, in the manufacturing method of the rolling sliding member of this invention, as FIG. 4 shows, after the carbonitriding process (refer FIG.4 (c)), it is -100 with respect to the intermediate material after a carbonitriding process. You may perform the subzero process process (refer FIG.4 (d)) which performs the subzero process which cools the said intermediate raw material at -50 degreeC. In this case, a tempering process step [see FIG. 4 (e)] may be performed after the sub-zero process step. FIG. 4 shows an inner ring manufacturing method as a manufacturing method according to this modified example, but the manufacturing method according to the modified example can also be used for manufacturing an outer ring.
The cooling temperature in the sub-zero treatment is preferably −100 ° C. or higher from the viewpoint of reducing costs, and preferably −50 ° C. or higher from the viewpoint of improving wear resistance.
Further, the cooling time in the sub-zero treatment is preferably 1 hour or more from the viewpoint of changing the retained austenite to martensite.
By performing sub-zero treatment in this way, residual austenite is changed to martensite, thereby suppressing dimensional changes over time of the resulting rolling sliding member, improving dimensional stability, and wear resistance. Can be improved.
以下、実施例により本発明をさらに詳しく説明するが、本発明は、かかる実施例のみに限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited only to this Example.
〔実施例1〜4および比較例1〜7〕
表1に示す組成を有する2種類の鋼材AおよびBそれぞれを用いて、型番6206の玉軸受の外輪、内輪および転動体を製造するための素形材それぞれを製造した。表1の鋼材Bは、軸受綱であるJIS SUJ2である。なお、転動体の直径は、9.525mmとした。
[Examples 1 to 4 and Comparative Examples 1 to 7]
Each of the two types of steel materials A and B having the composition shown in Table 1 was used to manufacture each of the shaped members for manufacturing the outer ring, inner ring, and rolling element of the ball bearing of model number 6206. Steel material B of Table 1 is JIS SUJ2 which is a bearing rope. The diameter of the rolling element was 9.525 mm.
つぎに、得られた素形材に、図5〜図15に示す熱処理条件で熱処理を施して、実施例1〜4および比較例1〜7の内輪を製造した。 Next, the obtained shaped material was subjected to heat treatment under the heat treatment conditions shown in FIGS. 5 to 15 to produce inner rings of Examples 1 to 4 and Comparative Examples 1 to 7.
図5に示される熱処理条件は、素形材を、カーボンポテンシャルが1.1%、アンモニアガス濃度が2体積%の浸炭窒化雰囲気中において860℃で7時間加熱した後、80℃に油冷し、その後、300℃で2時間加熱〔焼もどし処理〕するものである(実施例1)。
図6に示される熱処理条件は、素形材を、カーボンポテンシャルが1.2%、アンモニアガス濃度が5体積%の浸炭窒化雰囲気中において860℃で7時間加熱した後、80℃に油冷し、その後、300℃で2時間加熱〔焼もどし処理〕するものである(実施例2)。
図7に示される熱処理条件は、素形材を、カーボンポテンシャルが1.0%、アンモニアガス濃度が2体積%の浸炭窒化雰囲気中において860℃で7時間加熱した後、80℃に油冷し、その後、300℃で2時間加熱〔焼もどし処理〕するものである(実施例3)。
図8に示される熱処理条件は、素形材を、カーボンポテンシャルが1.1%、アンモニアガス濃度が2体積%の浸炭窒化雰囲気中において860℃で7時間加熱した後、−55℃で1時間冷却〔サブゼロ処理〕し、その後、300℃で2時間加熱〔焼もどし処理〕するものである(実施例4)。
図9に示される熱処理条件は、素形材を、カーボンポテンシャルが0.8%の雰囲気中において830℃で0.5時間加熱して、ズブ焼入れを行った後、80℃に油冷し、その後、300℃で2時間加熱〔焼もどし処理〕するものである(比較例1)。
図10に示される熱処理条件は、素形材を、カーボンポテンシャルが1.2%の浸炭雰囲気中において850℃で5時間加熱した後、80℃に油冷し、その後、300℃で2時間加熱〔焼もどし処理〕するものである(比較例2)。
図11に示される熱処理条件は、素形材を、カーボンポテンシャルが1.2%、アンモニアガス濃度が2体積%の浸炭窒化雰囲気中において850℃で4時間加熱した後、80℃に油冷し、その後、300℃で2時間加熱〔焼もどし処理〕するものである(比較例3)。
図12に示される熱処理条件は、素形材を、カーボンポテンシャルが0.8%の雰囲気中において900℃で0.5時間加熱して、ズブ焼入れを行った後、80℃に油冷し、その後、300℃で2時間加熱〔焼もどし処理〕するものである(比較例4)。
図13に示される熱処理条件は、素形材を、カーボンポテンシャルが1.2%の浸炭雰囲気中において900℃で7時間加熱した後、80℃に油冷し、その後、300℃で2時間加熱〔焼もどし処理〕するものである(比較例5)。
図14に示される熱処理条件は、素形材を、カーボンポテンシャルが1.2%、アンモニアガス濃度が1体積%の浸炭窒化雰囲気中において860℃で7時間加熱した後、80℃に油冷し、その後、300℃で2時間加熱〔焼もどし処理〕するものである(比較例6)。
図15に示される熱処理条件は、素形材を、カーボンポテンシャルが1.2%、アンモニアガス濃度が15体積%の浸炭窒化雰囲気中において860℃で7時間加熱した後、80℃に油冷し、その後、300℃で2時間加熱〔焼もどし処理〕するものである(比較例7)。
The heat treatment condition shown in FIG. 5 is that the raw material was heated at 860 ° C. for 7 hours in a carbonitriding atmosphere having a carbon potential of 1.1% and an ammonia gas concentration of 2% by volume, and then cooled to 80 ° C. Thereafter, heating (tempering treatment) is performed at 300 ° C. for 2 hours (Example 1).
The heat treatment conditions shown in FIG. 6 are as follows. The raw material was heated at 860 ° C. for 7 hours in a carbonitriding atmosphere having a carbon potential of 1.2% and an ammonia gas concentration of 5% by volume, and then cooled to 80 ° C. Then, heating (tempering treatment) is performed at 300 ° C. for 2 hours (Example 2).
The heat treatment condition shown in FIG. 7 is that the raw material was heated at 860 ° C. for 7 hours in a carbonitriding atmosphere having a carbon potential of 1.0% and an ammonia gas concentration of 2% by volume, and then cooled to 80 ° C. Then, heating (tempering treatment) is performed at 300 ° C. for 2 hours (Example 3).
The heat treatment conditions shown in FIG. 8 are as follows: the raw material was heated at 860 ° C. for 7 hours in a carbonitriding atmosphere having a carbon potential of 1.1% and an ammonia gas concentration of 2% by volume, and then at −55 ° C. for 1 hour. It is cooled [sub-zero treatment] and then heated at 300 ° C. for 2 hours (tempering treatment) (Example 4).
The heat treatment conditions shown in FIG. 9 are as follows: the raw material was heated in an atmosphere having a carbon potential of 0.8% at 830 ° C. for 0.5 hours, quenched, then oil cooled to 80 ° C., Thereafter, heating (tempering treatment) is performed at 300 ° C. for 2 hours (Comparative Example 1).
The heat treatment conditions shown in FIG. 10 are as follows. The raw material was heated at 850 ° C. for 5 hours in a carburizing atmosphere having a carbon potential of 1.2%, then cooled to 80 ° C., and then heated at 300 ° C. for 2 hours. [Tempering treatment] (Comparative Example 2).
The heat treatment condition shown in FIG. 11 is that the shaped material is heated at 850 ° C. for 4 hours in a carbonitriding atmosphere having a carbon potential of 1.2% and an ammonia gas concentration of 2% by volume, and then cooled to 80 ° C. with oil. Thereafter, heating (tempering treatment) is performed at 300 ° C. for 2 hours (Comparative Example 3).
The heat treatment conditions shown in FIG. 12 are as follows: the raw material was heated in an atmosphere having a carbon potential of 0.8% at 900 ° C. for 0.5 hours, quenched, and then oil-cooled to 80 ° C. Thereafter, heating (tempering treatment) is performed at 300 ° C. for 2 hours (Comparative Example 4).
The heat treatment condition shown in FIG. 13 is that the shaped material is heated in a carburizing atmosphere with a carbon potential of 1.2% at 900 ° C. for 7 hours, then cooled to 80 ° C., and then heated at 300 ° C. for 2 hours. [Tempering treatment] (Comparative Example 5).
The heat treatment condition shown in FIG. 14 is that the shaped material was heated at 860 ° C. for 7 hours in a carbonitriding atmosphere having a carbon potential of 1.2% and an ammonia gas concentration of 1% by volume, and then cooled to 80 ° C. Thereafter, heating (tempering treatment) is performed at 300 ° C. for 2 hours (Comparative Example 6).
The heat treatment conditions shown in FIG. 15 are that the shaped material was heated at 860 ° C. for 7 hours in a carbonitriding atmosphere having a carbon potential of 1.2% and an ammonia gas concentration of 15% by volume, and then cooled to 80 ° C. Thereafter, heating is performed at 300 ° C. for 2 hours (tempering treatment) (Comparative Example 7).
〔試験例1〕
実施例1〜4、比較例1〜7の内輪について、焼もどし処理(300℃)後における表面から50μmの深さの位置でのビッカース硬さ(またはロックウェルC硬さ)、表面から10μmまでの範囲の表面層における炭素含有量、表面から10μmまでの範囲の表面層における窒素含有量、析出物形態、およびバナジウム系析出物(バナジウム炭窒化物からなる粒径0.2〜2μmの粒子およびバナジウム窒化物からなる粒径0.2〜2μmの粒子)の面積率を調べた。
[Test Example 1]
For the inner rings of Examples 1 to 4 and Comparative Examples 1 to 7, Vickers hardness (or Rockwell C hardness) at a depth of 50 μm from the surface after tempering (300 ° C.), up to 10 μm from the surface The carbon content in the surface layer in the range, the nitrogen content in the surface layer in the range from the surface to 10 μm, the precipitate form, and the vanadium-based precipitate (the particles having a particle diameter of 0.2 to 2 μm made of vanadium carbonitride and The area ratio of particles having a particle diameter of 0.2 to 2 μm made of vanadium nitride was examined.
実質的な表面層の硬さを測定するため、表面から50μmの深さの位置でのビッカース硬さは、前記内輪を表面から深さ方向に切断した後、前記表面から50μmの深さの位置にビッカース圧子をあてて測定した。また、ロックウェルC硬さは、測定されたビッカース硬さより換算して求めた。表面から10μmまでの範囲における炭素含有量および表面から10μmまでの範囲における窒素含有量は、それぞれ、前記内輪を表面から深さ方向に切断した後、前記表面から10μmまでの範囲における各含有量を測定することにより求めた。 In order to measure the hardness of the substantial surface layer, the Vickers hardness at a depth of 50 μm from the surface is determined by cutting the inner ring in the depth direction from the surface and then at a depth of 50 μm from the surface. The measurement was performed using a Vickers indenter. Further, the Rockwell C hardness was obtained by conversion from the measured Vickers hardness. The carbon content in the range from the surface to 10 μm and the nitrogen content in the range from the surface to 10 μm are the respective contents in the range from the surface to 10 μm after cutting the inner ring in the depth direction from the surface. Obtained by measuring.
前記析出物形態は、前記内輪を表面から深さ方向に切断した後、前記表面から10μmまでの範囲を観察することにより評価した。バナジウム系析出物(バナジウム炭窒化物からなる粒子およびバナジウム窒化物からなる粒子)の面積率は、前記内輪を表面から深さ方向に切断した後、前記表面から10μmまでの範囲で測定した。なお、前記析出物形態およびバナジウム系析出物(バナジウム炭窒化物およびバナジウム窒化物)の面積率は、800μm2の測定視野において、加速電圧:15.0kV、照射電流:2.016×10-7Aおよびスキャン倍率:3000倍の条件で、電解放出型電子プローブマイクロアナライザを用いて、炭素、窒素およびバナジウムをマッピングし、画像処理装置で面積率を算出した。 The precipitate form was evaluated by observing a range from the surface to 10 μm after cutting the inner ring in the depth direction from the surface. The area ratio of vanadium-based precipitates (particles made of vanadium carbonitride and particles made of vanadium nitride) was measured in a range from the surface to 10 μm after cutting the inner ring in the depth direction from the surface. In addition, the area ratio of the precipitate form and vanadium-based precipitates (vanadium carbonitride and vanadium nitride) was as follows: acceleration voltage: 15.0 kV, irradiation current: 2.016 × 10 −7 in a measuring field of 800 μm 2. Carbon, nitrogen, and vanadium were mapped using a field emission electron probe microanalyzer under the conditions of A and a scan magnification of 3000 times, and the area ratio was calculated with an image processing apparatus.
また、実施例1〜4、比較例1〜7の内輪について、焼もどし処理(300℃)後におけるビッカース硬さ(またはロックウェルC硬さ)に基づき、合否を判定した。合否の判定基準は、以下のとおりである。
○:焼もどし処理(300℃)後におけるビッカース硬さが740(ロックウェルC硬さが62)以上であり、300℃程度の高温までの広い範囲の温度条件での使用に適している
×:焼もどし処理(300℃)後におけるビッカース硬さが740(ロックウェルC硬さが62)未満であり、300℃程度の高温までの広い範囲の温度条件での使用に不適である
これらの結果を表2に示す。表2中、「ビッカース硬さ(ロックウェルC硬さ)」は、焼もどし処理(300℃)後における表面から50μmの深さの位置でのビッカース硬さ(またはロックウェルC硬さ)、「炭素含有量」は、表面から10μmまでの範囲の表面層における炭素含有量、「窒素含有量」は、表面から10μmまでの範囲の表面層における窒素含有量、「バナジウム系析出物の面積率」は、バナジウム炭窒化物からなる粒子およびバナジウム窒化物からなる粒子の面積率をそれぞれ示す。
Moreover, about the inner ring | wheel of Examples 1-4 and Comparative Examples 1-7, the pass / fail was determined based on the Vickers hardness (or Rockwell C hardness) after tempering process (300 degreeC). The acceptance criteria are as follows.
○: Vickers hardness after tempering treatment (300 ° C.) is 740 (Rockwell C hardness is 62) or more, and suitable for use in a wide range of temperature conditions up to a high temperature of about 300 ° C. x: These results indicate that the Vickers hardness after tempering (300 ° C.) is less than 740 (Rockwell C hardness is 62) and are unsuitable for use in a wide range of temperature conditions up to a high temperature of about 300 ° C. It shows in Table 2. In Table 2, “Vickers hardness (Rockwell C hardness)” means “Vickers hardness (or Rockwell C hardness) at a depth of 50 μm from the surface after tempering (300 ° C.)” “Carbon content” is the carbon content in the surface layer in the range from the surface to 10 μm, “Nitrogen content” is the nitrogen content in the surface layer in the range from the surface to 10 μm, “the area ratio of vanadium-based precipitates” Indicates the area ratio of particles made of vanadium carbonitride and particles made of vanadium nitride, respectively.
表2に示された結果から、実施例1〜4の内輪では、焼もどし処理(300℃)後におけるビッカース硬さが740(ロックウェルC硬さが62)以上となっており、300℃程度の高温までの広い範囲の温度条件での使用に適していることがわかる。一方、比較例1〜7の内輪では、焼もどし処理(300℃)後におけるビッカース硬さが740(ロックウェルC硬さが62)未満であり、300℃程度の高温までの広い範囲の温度条件での使用に不適であることがわかる。
したがって、これらの結果から、鋼材Aからなる素形材を、カーボンポテンシャル0.9〜1.3%で、アンモニアガス濃度が2〜5体積%の浸炭窒化雰囲気において850〜900℃で加熱し、その後、急冷し(浸炭窒化処理)、浸炭窒化処理後の中間素材に対して、250℃を超え、300℃以下の温度で当該中間素材を加熱し(焼もどし処理)、焼もどし処理後の中間素材に、仕上げ加工を施すことにより、300℃程度の高温までの広い範囲の温度条件での使用に適した硬さを有する転がり摺動部材を得ることができることがわかる。
From the results shown in Table 2, in the inner rings of Examples 1 to 4, the Vickers hardness after tempering (300 ° C.) is 740 (Rockwell C hardness is 62) or more, and is about 300 ° C. It can be seen that it is suitable for use in a wide range of temperature conditions up to high temperatures. On the other hand, in the inner rings of Comparative Examples 1 to 7, the Vickers hardness after tempering (300 ° C.) is less than 740 (Rockwell C hardness is 62), and a wide range of temperature conditions up to a high temperature of about 300 ° C. It turns out that it is unsuitable for use in.
Therefore, from these results, the shaped material made of steel A is heated at 850 to 900 ° C. in a carbonitriding atmosphere with a carbon potential of 0.9 to 1.3% and an ammonia gas concentration of 2 to 5% by volume, After that, it is rapidly cooled (carbonitriding), and the intermediate material after carbonitriding is heated at a temperature exceeding 250 ° C. and not more than 300 ° C. (tempering treatment), and the intermediate material after tempering treatment. It can be seen that a rolling sliding member having a hardness suitable for use in a wide range of temperature conditions up to a high temperature of about 300 ° C. can be obtained by finishing the material.
1 外輪、1a 軌道部、2 内輪、2a 軌道部、4 保持器、10 玉軸受、
11 外輪
1 outer ring, 1a raceway part, 2 inner ring, 2a raceway part, 4 cage, 10 ball bearing,
11 Outer ring
Claims (3)
相手部材との間で相対的に転がり接触もしくは滑り接触または両接触を含む接触をする転がり摺動部材の製造方法であって、
3.2〜5.0質量%のクロムと、0.05質量%以上0.5質量%未満のバナジウムとを含有する鋼材を、所定の形状に加工して、素形材を得る前加工工程、
前記素形材に対して、カーボンポテンシャル0.9〜1.3%で、アンモニアガス濃度が2〜5体積%の浸炭窒化雰囲気において、当該素形材を850〜900℃で加熱し、急冷する浸炭窒化処理を施し、中間素材を得る浸炭窒化処理工程、
前記浸炭窒化処理後の中間素材に対して、250℃を超え、300℃以下の温度で当該中間素材を加熱する焼もどし処理を施す焼もどし処理工程、および
前記焼もどし処理後の中間素材に、仕上げ加工を施すことにより、表面から50μmの深さの位置でのビッカース硬さが740以上であり、表面から10μmまでの範囲の表面層における炭素の含有量が1.1〜1.6質量%であり、表面から10μmまでの範囲の表面層における窒素の含有量が0.1〜1.0質量%であり、表面から10μmまでの範囲の表面層には、バナジウム窒化物からなる粒径0.2〜2μmの粒子および/またはバナジウム炭窒化物からなる粒径0.2〜2μmの粒子を有しており、かつ表面から10μmまでの範囲の表面層における前記粒子の面積率が1〜10%である転がり摺動部材を得る仕上げ加工工程
を含むことを特徴とする転がり摺動部材の製造方法。
A method of manufacturing a rolling sliding member that makes a rolling contact or a sliding contact or a contact including both contacts relative to a counterpart member,
A pre-processing step of obtaining a base material by processing a steel material containing 3.2 to 5.0% by mass of chromium and 0.05% by mass or more and less than 0.5% by mass of vanadium into a predetermined shape ,
In the carbonitriding atmosphere with a carbon potential of 0.9 to 1.3% and an ammonia gas concentration of 2 to 5% by volume, the material is heated at 850 to 900 ° C. and rapidly cooled. Carbonitriding process to obtain an intermediate material by performing carbonitriding
For the intermediate material after the carbonitriding process, a tempering process for performing a tempering process in which the intermediate material is heated at a temperature of more than 250 ° C. and 300 ° C. or less, and the intermediate material after the tempering process, By performing the finishing process, the Vickers hardness at a depth of 50 μm from the surface is 740 or more, and the carbon content in the surface layer in the range from the surface to 10 μm is 1.1 to 1.6 mass%. The content of nitrogen in the surface layer in the range from the surface to 10 μm is 0.1 to 1.0% by mass, and the surface layer in the range from the surface to 10 μm has a particle size of 0 made of vanadium nitride. .2 to 2 .mu.m particles and / or vanadium carbonitride particles having a particle size of 0.2 to 2 .mu.m, and the area ratio of the particles in the surface layer in the range from the surface to 10 .mu.m is 1 to 10. Method of manufacturing a rolling sliding member, characterized in that it comprises a finishing step to obtain a sliding member rolling is.
前記鋼材が、0.7〜0.9質量%の炭素と、0.05〜0.70質量%のケイ素と、0.05〜0.7質量%のマンガンと、3.2〜5.0質量%のクロムと、0.1〜1.0質量%のモリブデンと、0.05質量%以上0.5質量%未満のバナジウムとを含有し、かつ残部が鉄および不可避不純物である鋼材である請求項1に記載の転がり摺動部材の製造方法。
The steel material is 0.7 to 0.9% by mass of carbon, 0.05 to 0.70% by mass of silicon, 0.05 to 0.7% by mass of manganese, and 3.2 to 5.0. It is a steel material containing 0.1% by mass of chromium, 0.1% to 1.0% by mass of molybdenum, and 0.05% by mass or more and less than 0.5% by mass of vanadium, with the balance being iron and inevitable impurities. The manufacturing method of the rolling sliding member of Claim 1.
前記焼もどし処理後の中間素材に対して、−50〜−100℃で当該中間素材を冷却するサブゼロ処理を施すサブゼロ処理工程をさらに含む請求項1または2に記載の転がり摺動部材の製造方法。
The manufacturing method of the rolling sliding member of Claim 1 or 2 which further includes the subzero process process which performs the subzero process which cools the said intermediate material at -50--100 degreeC with respect to the intermediate material after the said tempering process. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009230600A JP5668283B2 (en) | 2009-10-02 | 2009-10-02 | Manufacturing method of rolling sliding member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009230600A JP5668283B2 (en) | 2009-10-02 | 2009-10-02 | Manufacturing method of rolling sliding member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011080096A true JP2011080096A (en) | 2011-04-21 |
JP5668283B2 JP5668283B2 (en) | 2015-02-12 |
Family
ID=44074430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009230600A Expired - Fee Related JP5668283B2 (en) | 2009-10-02 | 2009-10-02 | Manufacturing method of rolling sliding member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5668283B2 (en) |
Cited By (3)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103074478A (en) * | 2013-01-16 | 2013-05-01 | 江西樟树市福铃内燃机配件有限公司 | 'Two-time temperature control and one-time time control quenching' heat treatment process for cast alloy valve seat rings |
JP2013108145A (en) * | 2011-11-22 | 2013-06-06 | Jtekt Corp | Sliding member, clutch plate and methods for manufacturing the same |
CN110257727A (en) * | 2019-07-30 | 2019-09-20 | 马鞍山钢铁股份有限公司 | A kind of preparation method of middle carbon high rigidity heavy-duty wheel steel and its heat treatment method and heavy-duty wheel |
Citations (5)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005207453A (en) * | 2004-01-20 | 2005-08-04 | Nsk Ltd | Rolling bearing and belt type continuously variable transmission using it |
JP2005282854A (en) * | 2004-03-03 | 2005-10-13 | Nsk Ltd | Rolling bearing |
JP2006176863A (en) * | 2004-12-24 | 2006-07-06 | Aichi Steel Works Ltd | Steel for rolling bearing |
JP2008285722A (en) * | 2007-05-17 | 2008-11-27 | Ntn Corp | Rolling member, rolling bearing, and method for manufacturing rolling member |
JP2008308743A (en) * | 2007-06-15 | 2008-12-25 | Ntn Corp | Rolling member for machine tool, and rolling bearing for machine tool |
-
2009
- 2009-10-02 JP JP2009230600A patent/JP5668283B2/en not_active Expired - Fee Related
Patent Citations (5)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005207453A (en) * | 2004-01-20 | 2005-08-04 | Nsk Ltd | Rolling bearing and belt type continuously variable transmission using it |
JP2005282854A (en) * | 2004-03-03 | 2005-10-13 | Nsk Ltd | Rolling bearing |
JP2006176863A (en) * | 2004-12-24 | 2006-07-06 | Aichi Steel Works Ltd | Steel for rolling bearing |
JP2008285722A (en) * | 2007-05-17 | 2008-11-27 | Ntn Corp | Rolling member, rolling bearing, and method for manufacturing rolling member |
JP2008308743A (en) * | 2007-06-15 | 2008-12-25 | Ntn Corp | Rolling member for machine tool, and rolling bearing for machine tool |
Cited By (3)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013108145A (en) * | 2011-11-22 | 2013-06-06 | Jtekt Corp | Sliding member, clutch plate and methods for manufacturing the same |
CN103074478A (en) * | 2013-01-16 | 2013-05-01 | 江西樟树市福铃内燃机配件有限公司 | 'Two-time temperature control and one-time time control quenching' heat treatment process for cast alloy valve seat rings |
CN110257727A (en) * | 2019-07-30 | 2019-09-20 | 马鞍山钢铁股份有限公司 | A kind of preparation method of middle carbon high rigidity heavy-duty wheel steel and its heat treatment method and heavy-duty wheel |
Also Published As
Publication number | Publication date |
---|---|
JP5668283B2 (en) | 2015-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8596875B2 (en) | 2013-12-03 | Bearing constituent member and process for producing the same, and rolling bearing having bearing constituent member |
JP5202043B2 (en) | 2013-06-05 | Rolling parts and manufacturing method thereof |
JP2014074212A (en) | 2014-04-24 | Rolling and sliding member, manufacturing method thereof, and rolling bearing |
JP2008001943A (en) | 2008-01-10 | Rolling and/or sliding parts and manufacturing method thereof |
JP6725235B2 (en) | 2020-07-15 | Rolling sliding member, manufacturing method thereof, and rolling bearing |
JP4998054B2 (en) | 2012-08-15 | Rolling bearing |
JP6055397B2 (en) | 2016-12-27 | Bearing parts having excellent wear resistance and manufacturing method thereof |
JP5668283B2 (en) | 2015-02-12 | Manufacturing method of rolling sliding member |
JP2019039044A (en) | 2019-03-14 | Rolling slide member and rolling bearing |
JP5597976B2 (en) | 2014-10-01 | Bearing constituent member, method for manufacturing the same, and rolling bearing provided with the bearing constituent member |
JP2011190921A (en) | 2011-09-29 | Thrust roller bearing |
JP2008232212A (en) | 2008-10-02 | Rolling device |
JP7642433B2 (en) | 2025-03-10 | Steel |
JP2007100126A (en) | 2007-04-19 | Rolling member and ball bearing |
JP2022148544A (en) | 2022-10-06 | bearing ring and shaft |
JP2008266683A (en) | 2008-11-06 | Method for producing rolling bearing constituting member, and rolling bearing |
JP2007191744A (en) | 2007-08-02 | Rolling member for fuel cell, rolling bearing for fuel cell and method for producing the same |
JP2011140993A (en) | 2011-07-21 | Rolling sliding member and method of manufacturing the same |
JP2019039046A (en) | 2019-03-14 | Rolling slide member and method for manufacturing the same, and rolling bearing comprising the rolling slide member |
JP2009092161A (en) | 2009-04-30 | Rolling bearing |
JP5597977B2 (en) | 2014-10-01 | Bearing component, method for manufacturing the same, and rolling bearing |
JP2019056141A (en) | 2019-04-11 | Steel material for carbonitriding and carbonitrided bearing part |
JP6658143B2 (en) | 2020-03-04 | Rolling sliding member and rolling bearing |
JP2009235445A (en) | 2009-10-15 | Method for applying heat-treatment for steel, method for manufacturing machine part, machine part, and rolling bearing |
JP2008088482A (en) | 2008-04-17 | Roller or ball in bearing having excellent rolling fatigue property and crushing strength, and bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
2012-09-25 | A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120924 |
2013-12-19 | A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131219 |
2014-01-22 | A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140121 |
2014-03-06 | A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140305 |
2014-09-17 | A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140916 |
2014-10-10 | A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141009 |
2014-11-11 | TRDD | Decision of grant or rejection written | |
2014-11-19 | A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20141118 |
2014-12-22 | A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20141201 |
2014-12-26 | R150 | Certificate of patent or registration of utility model |
Ref document number: 5668283 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
2020-12-26 | LAPS | Cancellation because of no payment of annual fees |