JP2023090959A - Method for producing stem cell, and method of reducing risk of transforming into cancer cell - Google Patents
- ️Thu Jun 29 2023
Info
-
Publication number
- JP2023090959A JP2023090959A JP2023078341A JP2023078341A JP2023090959A JP 2023090959 A JP2023090959 A JP 2023090959A JP 2023078341 A JP2023078341 A JP 2023078341A JP 2023078341 A JP2023078341 A JP 2023078341A JP 2023090959 A JP2023090959 A JP 2023090959A Authority
- JP
- Japan Prior art keywords
- cells
- cell
- stem cells
- stem
- culture Prior art date
- 2019-01-24 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000004027 cell Anatomy 0.000 title claims abstract description 303
- 210000000130 stem cell Anatomy 0.000 title claims abstract description 154
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 62
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 59
- 201000011510 cancer Diseases 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 46
- 230000001131 transforming effect Effects 0.000 title 1
- 101000975509 Homo sapiens Jun dimerization protein 2 Proteins 0.000 claims abstract description 36
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 claims abstract description 31
- 230000009368 gene silencing by RNA Effects 0.000 claims abstract description 31
- 238000012258 culturing Methods 0.000 claims abstract description 25
- 210000001082 somatic cell Anatomy 0.000 claims abstract description 20
- 229940121372 histone deacetylase inhibitor Drugs 0.000 claims abstract description 13
- 239000003276 histone deacetylase inhibitor Substances 0.000 claims abstract description 13
- 101000819074 Homo sapiens Transcription factor GATA-4 Proteins 0.000 claims description 21
- 102100021380 Transcription factor GATA-4 Human genes 0.000 claims description 21
- 108010017324 STAT3 Transcription Factor Proteins 0.000 claims description 20
- 101001139134 Homo sapiens Krueppel-like factor 4 Proteins 0.000 claims description 17
- 102100020677 Krueppel-like factor 4 Human genes 0.000 claims description 17
- 101000687905 Homo sapiens Transcription factor SOX-2 Proteins 0.000 claims description 15
- 102100024270 Transcription factor SOX-2 Human genes 0.000 claims description 15
- NIJJYAXOARWZEE-UHFFFAOYSA-N Valproic acid Chemical compound CCCC(C(O)=O)CCC NIJJYAXOARWZEE-UHFFFAOYSA-N 0.000 claims description 14
- 239000002771 cell marker Substances 0.000 claims description 14
- 239000013598 vector Substances 0.000 claims description 11
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 claims description 10
- IDQPVOFTURLJPT-UHFFFAOYSA-N N,N'-dihydroxyoctanediamide Chemical group ONC(=O)CCCCCCC(=O)NO IDQPVOFTURLJPT-UHFFFAOYSA-N 0.000 claims description 10
- 230000010307 cell transformation Effects 0.000 claims description 10
- RTKIYFITIVXBLE-UHFFFAOYSA-N Trichostatin A Natural products ONC(=O)C=CC(C)=CC(C)C(=O)C1=CC=C(N(C)C)C=C1 RTKIYFITIVXBLE-UHFFFAOYSA-N 0.000 claims description 8
- RTKIYFITIVXBLE-QEQCGCAPSA-N trichostatin A Chemical compound ONC(=O)/C=C/C(/C)=C/[C@@H](C)C(=O)C1=CC=C(N(C)C)C=C1 RTKIYFITIVXBLE-QEQCGCAPSA-N 0.000 claims description 8
- JWOGUUIOCYMBPV-GMFLJSBRSA-N (3S,6S,9S,12R)-3-[(2S)-Butan-2-yl]-6-[(1-methoxyindol-3-yl)methyl]-9-(6-oxooctyl)-1,4,7,10-tetrazabicyclo[10.4.0]hexadecane-2,5,8,11-tetrone Chemical compound N1C(=O)[C@H](CCCCCC(=O)CC)NC(=O)[C@H]2CCCCN2C(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]1CC1=CN(OC)C2=CC=CC=C12 JWOGUUIOCYMBPV-GMFLJSBRSA-N 0.000 claims description 7
- QRPSQQUYPMFERG-LFYBBSHMSA-N (e)-5-[3-(benzenesulfonamido)phenyl]-n-hydroxypent-2-en-4-ynamide Chemical compound ONC(=O)\C=C\C#CC1=CC=CC(NS(=O)(=O)C=2C=CC=CC=2)=C1 QRPSQQUYPMFERG-LFYBBSHMSA-N 0.000 claims description 7
- JWOGUUIOCYMBPV-UHFFFAOYSA-N OT-Key 11219 Natural products N1C(=O)C(CCCCCC(=O)CC)NC(=O)C2CCCCN2C(=O)C(C(C)CC)NC(=O)C1CC1=CN(OC)C2=CC=CC=C12 JWOGUUIOCYMBPV-UHFFFAOYSA-N 0.000 claims description 7
- 229930186608 apicidin Natural products 0.000 claims description 7
- 108010082820 apicidin Proteins 0.000 claims description 7
- 229960000604 valproic acid Drugs 0.000 claims description 7
- ISFPDBUKMJDAJH-UHFFFAOYSA-N splitomicin Chemical compound C1=CC2=CC=CC=C2C2=C1OC(=O)CC2 ISFPDBUKMJDAJH-UHFFFAOYSA-N 0.000 claims description 6
- 108020004999 messenger RNA Proteins 0.000 claims description 5
- 230000000295 complement effect Effects 0.000 claims description 4
- 108091032955 Bacterial small RNA Proteins 0.000 claims description 3
- 102000004495 STAT3 Transcription Factor Human genes 0.000 claims 2
- 108090000623 proteins and genes Proteins 0.000 abstract description 15
- 239000001963 growth medium Substances 0.000 abstract description 2
- 230000002401 inhibitory effect Effects 0.000 abstract 1
- 239000002609 medium Substances 0.000 description 49
- 210000001519 tissue Anatomy 0.000 description 25
- 206010043276 Teratoma Diseases 0.000 description 21
- 241001465754 Metazoa Species 0.000 description 18
- 102100024040 Signal transducer and activator of transcription 3 Human genes 0.000 description 18
- 241000699666 Mus <mouse, genus> Species 0.000 description 17
- 210000001691 amnion Anatomy 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 17
- 230000000638 stimulation Effects 0.000 description 17
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 15
- 210000002950 fibroblast Anatomy 0.000 description 15
- 210000001550 testis Anatomy 0.000 description 14
- 238000011282 treatment Methods 0.000 description 14
- -1 c-MYC Proteins 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 230000004069 differentiation Effects 0.000 description 12
- 239000003814 drug Substances 0.000 description 12
- 238000004520 electroporation Methods 0.000 description 12
- 230000006698 induction Effects 0.000 description 11
- NEAQRZUHTPSBBM-UHFFFAOYSA-N 2-hydroxy-3,3-dimethyl-7-nitro-4h-isoquinolin-1-one Chemical compound C1=C([N+]([O-])=O)C=C2C(=O)N(O)C(C)(C)CC2=C1 NEAQRZUHTPSBBM-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 238000000338 in vitro Methods 0.000 description 10
- 238000004114 suspension culture Methods 0.000 description 10
- 238000002054 transplantation Methods 0.000 description 10
- 238000001000 micrograph Methods 0.000 description 9
- 230000008672 reprogramming Effects 0.000 description 9
- 102100023976 Jun dimerization protein 2 Human genes 0.000 description 8
- 230000014509 gene expression Effects 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 238000005119 centrifugation Methods 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 210000002242 embryoid body Anatomy 0.000 description 7
- 210000001654 germ layer Anatomy 0.000 description 7
- 230000001172 regenerating effect Effects 0.000 description 7
- 102000003964 Histone deacetylase Human genes 0.000 description 6
- 108090000353 Histone deacetylase Proteins 0.000 description 6
- 102000004058 Leukemia inhibitory factor Human genes 0.000 description 6
- 108090000581 Leukemia inhibitory factor Proteins 0.000 description 6
- 241000699670 Mus sp. Species 0.000 description 6
- 210000001776 amniocyte Anatomy 0.000 description 6
- 210000001900 endoderm Anatomy 0.000 description 6
- 239000012091 fetal bovine serum Substances 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 210000003716 mesoderm Anatomy 0.000 description 6
- 241000282412 Homo Species 0.000 description 5
- 238000010306 acid treatment Methods 0.000 description 5
- 230000000692 anti-sense effect Effects 0.000 description 5
- 210000000601 blood cell Anatomy 0.000 description 5
- 210000002919 epithelial cell Anatomy 0.000 description 5
- 230000000977 initiatory effect Effects 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 4
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 102100035423 POU domain, class 5, transcription factor 1 Human genes 0.000 description 4
- 238000011579 SCID mouse model Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 102000013529 alpha-Fetoproteins Human genes 0.000 description 4
- 108010026331 alpha-Fetoproteins Proteins 0.000 description 4
- 230000036952 cancer formation Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 4
- 210000001178 neural stem cell Anatomy 0.000 description 4
- 210000002569 neuron Anatomy 0.000 description 4
- 150000007523 nucleic acids Chemical group 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 239000004055 small Interfering RNA Substances 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 3
- 235000005956 Cosmos caudatus Nutrition 0.000 description 3
- 102100035290 Fibroblast growth factor 13 Human genes 0.000 description 3
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 description 3
- 102100039289 Glial fibrillary acidic protein Human genes 0.000 description 3
- 101710193519 Glial fibrillary acidic protein Proteins 0.000 description 3
- 101001050288 Homo sapiens Transcription factor Jun Proteins 0.000 description 3
- 108700011259 MicroRNAs Proteins 0.000 description 3
- 102000008730 Nestin Human genes 0.000 description 3
- 108010088225 Nestin Proteins 0.000 description 3
- 241000288906 Primates Species 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 238000004115 adherent culture Methods 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- 239000002246 antineoplastic agent Substances 0.000 description 3
- 239000012888 bovine serum Substances 0.000 description 3
- 238000003501 co-culture Methods 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 3
- 230000000093 cytochemical effect Effects 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 210000003981 ectoderm Anatomy 0.000 description 3
- 210000002257 embryonic structure Anatomy 0.000 description 3
- 210000001339 epidermal cell Anatomy 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- 210000005046 glial fibrillary acidic protein Anatomy 0.000 description 3
- 238000001727 in vivo Methods 0.000 description 3
- 201000007270 liver cancer Diseases 0.000 description 3
- 208000014018 liver neoplasm Diseases 0.000 description 3
- 239000002679 microRNA Substances 0.000 description 3
- 210000005055 nestin Anatomy 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000023895 stem cell maintenance Effects 0.000 description 3
- 108091023037 Aptamer Proteins 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 description 2
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 241001466804 Carnivora Species 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 102100028072 Fibroblast growth factor 4 Human genes 0.000 description 2
- 101001060274 Homo sapiens Fibroblast growth factor 4 Proteins 0.000 description 2
- 101000738771 Homo sapiens Receptor-type tyrosine-protein phosphatase C Proteins 0.000 description 2
- 102000004877 Insulin Human genes 0.000 description 2
- 108090001061 Insulin Proteins 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 108091028043 Nucleic acid sequence Proteins 0.000 description 2
- 108010068425 Octamer Transcription Factor-3 Proteins 0.000 description 2
- 241000282579 Pan Species 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 102100037422 Receptor-type tyrosine-protein phosphatase C Human genes 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- 108091027967 Small hairpin RNA Proteins 0.000 description 2
- 108020004459 Small interfering RNA Proteins 0.000 description 2
- 241001493546 Suina Species 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 210000000577 adipose tissue Anatomy 0.000 description 2
- 210000001130 astrocyte Anatomy 0.000 description 2
- 229940112869 bone morphogenetic protein Drugs 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 238000005138 cryopreservation Methods 0.000 description 2
- 235000021186 dishes Nutrition 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 102000028718 growth factor binding proteins Human genes 0.000 description 2
- 108091009353 growth factor binding proteins Proteins 0.000 description 2
- 210000004263 induced pluripotent stem cell Anatomy 0.000 description 2
- 238000011419 induction treatment Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 229940125396 insulin Drugs 0.000 description 2
- 210000002510 keratinocyte Anatomy 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 2
- 210000002894 multi-fate stem cell Anatomy 0.000 description 2
- 210000001778 pluripotent stem cell Anatomy 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 210000001988 somatic stem cell Anatomy 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000010257 thawing Methods 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 239000012096 transfection reagent Substances 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 101710196692 Actin A Proteins 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 101100257359 Caenorhabditis elegans sox-2 gene Proteins 0.000 description 1
- 208000005623 Carcinogenesis Diseases 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 206010061825 Duodenal neoplasm Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- 102100037665 Fibroblast growth factor 9 Human genes 0.000 description 1
- 208000022072 Gallbladder Neoplasms Diseases 0.000 description 1
- 229940122498 Gene expression inhibitor Drugs 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 102100027875 Homeobox protein Nkx-2.5 Human genes 0.000 description 1
- 108010048671 Homeodomain Proteins Proteins 0.000 description 1
- 102000009331 Homeodomain Proteins Human genes 0.000 description 1
- 101001027380 Homo sapiens Fibroblast growth factor 9 Proteins 0.000 description 1
- 101000632197 Homo sapiens Homeobox protein Nkx-2.5 Proteins 0.000 description 1
- 101000629029 Homo sapiens Myosin regulatory light chain 2, ventricular/cardiac muscle isoform Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 206010064912 Malignant transformation Diseases 0.000 description 1
- 102000016397 Methyltransferase Human genes 0.000 description 1
- 108060004795 Methyltransferase Proteins 0.000 description 1
- 101100257363 Mus musculus Sox2 gene Proteins 0.000 description 1
- 102100026925 Myosin regulatory light chain 2, ventricular/cardiac muscle isoform Human genes 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 102000043276 Oncogene Human genes 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 206010061535 Ovarian neoplasm Diseases 0.000 description 1
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 238000010240 RT-PCR analysis Methods 0.000 description 1
- 101100247004 Rattus norvegicus Qsox1 gene Proteins 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 206010041067 Small cell lung cancer Diseases 0.000 description 1
- 206010054184 Small intestine carcinoma Diseases 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 208000024770 Thyroid neoplasm Diseases 0.000 description 1
- 108010048992 Transcription Factor 4 Proteins 0.000 description 1
- 102100023489 Transcription factor 4 Human genes 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 108091007916 Zinc finger transcription factors Proteins 0.000 description 1
- 102000038627 Zinc finger transcription factors Human genes 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000000735 allogeneic effect Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- PASOAYSIZAJOCT-UHFFFAOYSA-N butanoic acid Chemical compound CCCC(O)=O.CCCC(O)=O PASOAYSIZAJOCT-UHFFFAOYSA-N 0.000 description 1
- 230000000711 cancerogenic effect Effects 0.000 description 1
- 231100000504 carcinogenesis Toxicity 0.000 description 1
- 231100000315 carcinogenic Toxicity 0.000 description 1
- 210000004413 cardiac myocyte Anatomy 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000032823 cell division Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 230000001332 colony forming effect Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 210000004292 cytoskeleton Anatomy 0.000 description 1
- 230000032459 dedifferentiation Effects 0.000 description 1
- 210000001968 dental pulp cell Anatomy 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 201000000312 duodenum cancer Diseases 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 230000004049 epigenetic modification Effects 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 239000000686 essence Substances 0.000 description 1
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 1
- 201000010175 gallbladder cancer Diseases 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 210000001648 gingival epithelial cell Anatomy 0.000 description 1
- 210000003780 hair follicle Anatomy 0.000 description 1
- 210000003958 hematopoietic stem cell Anatomy 0.000 description 1
- 210000003897 hepatic stem cell Anatomy 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 238000010562 histological examination Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 210000004966 intestinal stem cell Anatomy 0.000 description 1
- 210000001596 intra-abdominal fat Anatomy 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 230000036212 malign transformation Effects 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 210000001161 mammalian embryo Anatomy 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 210000002752 melanocyte Anatomy 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 108700025694 p53 Genes Proteins 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 208000000587 small cell lung carcinoma Diseases 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 206010041823 squamous cell carcinoma Diseases 0.000 description 1
- 208000017572 squamous cell neoplasm Diseases 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 210000004003 subcutaneous fat Anatomy 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 201000002510 thyroid cancer Diseases 0.000 description 1
- 230000037426 transcriptional repression Effects 0.000 description 1
- 238000003151 transfection method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 210000004881 tumor cell Anatomy 0.000 description 1
- 206010046885 vaginal cancer Diseases 0.000 description 1
- 208000013139 vaginal neoplasm Diseases 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 210000000636 white adipocyte Anatomy 0.000 description 1
Images
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
To provide a method for producing a stem cell conveniently without gene introduction.SOLUTION: A method for producing a stem cell includes a step of culturing a somatic cell in a culture medium containing a histone deacetylase inhibitor, wherein the method may include a step of inhibiting JDP2 gene of a cancer cell by RNA interference.SELECTED DRAWING: None
Description
本発明は、幹細胞の製造方法、及び癌細胞化のリスク低減方法に関する。本発明によれば、幹細胞を容易に作製することができる。また、幹細胞が癌を形成するリスクを低減することが可能である。 TECHNICAL FIELD The present invention relates to a method for producing stem cells and a method for reducing the risk of cancer cell transformation. According to the present invention, stem cells can be easily produced. It is also possible to reduce the risk of stem cells forming cancer.
近年、生体外での培養により、細胞を所望の組織や器官を分化させ、そして治療に利用する再生医療が注目されつつある。しかしながら、ヒトにおいては、受精胚を破壊して作製される胚性幹細胞(embryonic stem cell:ES細胞)は、倫理面で問題がある。また、他家ES細胞を移植医療に用いる場合、移植後の免疫性拒絶反応が起きることがある。
一方、人工多能性幹細胞(induced pluripotent stem cell:iPS細胞)は、4因子(OCT-3/4、SOX2、KLF4、c-MYC)を、体細胞に導入することにより誘導される細胞であり、ES細胞に似た形質及び遺伝子発現様式を有する。iPS細胞は、マウスやヒトの線維芽細胞に、レトロウイルスベクター(特許文献1、非特許文献1、2)、又はプラスミド(非特許文献3)を用いて、4因子を細胞に導入することによって得られる。
iPS細胞は、ES細胞が有する倫理面の問題及び免疫性拒絶反応の問題を解決できる。しかしながら、ES細胞及びiPS細胞ともに、その細胞生物学的特徴として、癌細胞に特異的な癌遺伝子(c-MYC等)が発現し、テラトーマ形成能力を有している。更に、c-MYCを強制発現させた場合、ヒト上皮様細胞が初期化されて、容易に発癌性の高い幹細胞様細胞に誘導されるとの報告がある(非特許文献4)。従って、ES細胞やiPS細胞を再生医療に応用する場合には、これらの細胞の癌化を抑制することが必須となる。
In recent years, attention has been focused on regenerative medicine in which cells are cultured in vitro to differentiate into desired tissues or organs and used for treatment. However, in humans, embryonic stem cells (ES cells) produced by destroying fertilized embryos have ethical problems. In addition, when allogeneic ES cells are used in transplantation medicine, immune rejection may occur after transplantation.
On the other hand, induced pluripotent stem cells (induced pluripotent stem cells: iPS cells) are 4 factors (OCT-3/4, SOX2, KLF4, c-MYC), cells induced by introducing into somatic cells , have traits and gene expression patterns similar to ES cells. iPS cells are mouse or human fibroblasts, retroviral vectors (Patent Document 1, Non-Patent Documents 1, 2), or plasmids (Non-Patent Document 3) are used to introduce four factors into cells. can get.
iPS cells can solve the ethical and immune rejection problems of ES cells. However, both ES cells and iPS cells express cancer cell-specific oncogenes (c-MYC, etc.) and have the ability to form teratoma, as their cell biological characteristics. Furthermore, there is a report that when c-MYC is forcibly expressed, human epithelial-like cells are reprogrammed and easily induced into highly carcinogenic stem cell-like cells (Non-Patent Document 4). Therefore, when applying ES cells and iPS cells to regenerative medicine, it is essential to suppress canceration of these cells.
一方、iPS細胞作製時に、上記4因子と共に、p53遺伝子の抑制剤を併用することにより作製効率を上げる試みが行われている(非特許文献5)。また、発癌遺伝子c-Junは、体細胞の初期化を妨げるとの報告(非特許文献6)が有る。 On the other hand, at the time of iPS cell production, attempts have been made to increase production efficiency by using a p53 gene inhibitor in combination with the above four factors (Non-Patent Document 5). There is also a report that the oncogene c-Jun interferes with reprogramming of somatic cells (Non-Patent Document 6).
本発明者らは、上記iPS細胞の報告がなされる以前に、羊膜由来ヒト幹細胞の樹立方法について報告している(特許文献2、非特許文献7~9)。当該方法により樹立されたヒト幹細胞は、生体内培養系又は生体外培養系における分化転換制御メカニズムの解明、並びに分子生物学及び発生学の研究材料として有用であり、更には臓器移植用の臓器作製用細胞材料としても有用である。また、本発明者らは、iPS細胞樹立法を簡便化して、OCT-4プラスミドベクターの単独導入による、ウシiPS細胞の作製に成功している(非特許文献10)。
更に多能性幹(PS)細胞を、遺伝物質を用いず、分子量の小さな蛋白質を使用して化学的に初期化する方法により作製する試みが行われている(非特許文献11)。そこでは、細胞の生命活動上後成的な修飾が行われる際に重要な役割を果たす、ヒストン脱アセチル化酵素(HDAC)や、DNAメチル基転移酵素(DNMT)に対する低分子インヒビターがiPS細胞への初期化誘導剤として使われている(非特許文献12)。
The present inventors reported on a method for establishing amnion-derived human stem cells before the iPS cells were reported (Patent Document 2, Non-Patent Documents 7 to 9). Human stem cells established by this method are useful as research materials for the elucidation of transdifferentiation control mechanisms in in vivo or in vitro culture systems, molecular biology and embryology, and furthermore, organ preparation for organ transplantation. It is also useful as a cell material for use. In addition, the present inventors have simplified the iPS cell establishment method and succeeded in producing bovine iPS cells by introducing an OCT-4 plasmid vector alone (Non-Patent Document 10).
Furthermore, attempts have been made to prepare pluripotent stem (PS) cells by chemically reprogramming them using proteins with small molecular weights without using genetic material (Non-Patent Document 11). There, low-molecular-weight inhibitors against histone deacetylase (HDAC) and DNA methyltransferase (DNMT), which play an important role in epigenetic modification of cell vitality, are transferred to iPS cells. (Non-Patent Document 12).
特許第5098028号公報Japanese Patent No. 5098028 特開2005-151907号公報JP-A-2005-151907
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676 (2006).Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676 (2006). Takahashi K, et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872 (2007).Takahashi K, et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861-872 (2007). Okita K, et al., Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949-953 (2008).Okita K, et al., Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949-953 (2008). Poli V, et al., MYC-driven epigenetic reprogramming favours the onset of tumorigenesis by inducing a stem-like state. Nature communications 9, 1024(2018).Poli V, et al., MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem-like state. Nature communications 9, 1024(2018). Krizhanovsky V, Lowe SW. Stem cells: the promises and perils of p53. Nature 460, 1085-1086 (2009).Krizhanovsky V, Lowe SW. Stem cells: the promises and perils of p53. Nature 460, 1085-1086 (2009). Lin J, et al., The oncogene c-Jun impedes somatic cell reprogramming. Nat Cell Biol 17, 856-867 (2015).Lin J, et al., The oncogene c-Jun impedes somatic cell reprogramming. Nat Cell Biol 17, 856-867 (2015). Saito S, et al., Derivation and induction of the differentiation of animal ES cells as well as human pluripotent stem cells derived from fetal membrane. Hum Cell 18,135-141 (2005).Saito S, et al., Derivation and induction of the differentiation of animal ES cells as well as human pluripotent stem cells derived from fetal membrane. Hum Cell 18, 135-141 (2005). Saito S, et al., Human amnion-derived cells as a reliable source of stem cells. Curr Mol Med 12, 1340-1349 (2012).Saito S, et al., Human amnion-derived cells as a reliable source of stem cells. Curr Mol Med 12, 1340-1349 (2012). Lin YC, et al., Role of tumor suppressor genes in the cancer-associated reprogramming of human induced pluripotent stem cells. Stem Cell Research & Therapy 5, 58-66 (2014).Lin YC, et al., Role of tumor suppressor genes in the cancer-associated reprogramming of human induced pluripotent stem cells. Stem Cell Research & Therapy 5, 58-66 (2014). Wang SW, et al., Androgen receptor-mediated apoptosis in bovine testicular induced pluripotent stem cells in response to phthalate esters. Cell Death & Disease 4, e907 (2013).Wang SW, et al., Androgen receptor-mediated apoptosis in bovine testicular induced pluripotent stem cells in response to phthalate esters. Cell Death & Disease 4, e907 (2013). Hou PP, et al., Pluripotent stem cell induced from mouse somaticcells by small-molecule compounds. Science 341, 651-654 (2013).Hou PP, et al., Pluripotent stem cell induced from mouse somatic cells by small-molecule compounds. Science 341, 651-654 (2013). Lu JY, et al., Application of eigenome-modifying small moleculesin induced pluripotent stem cells. Med Res Rev 33, 790-822 (2013).Lu JY, et al., Application of eigenome-modifying small moleculesin induced pluripotent stem cells. Med Res Rev 33, 790-822 (2013).
従来のiPS細胞の作製においては、遺伝子を核酸断片として細胞に導入する。従って、対象細胞において、前記核酸断片がランダムにゲノムに挿入されるリスク、又は特異的なインテグレーションのリスクが存在する。すなわち、iPS細胞は、癌細胞化する可能性があり、再生医療への応用を阻む要因となっていた。
本発明の目的は、遺伝子導入を伴うことなく、簡便に幹細胞を製造する方法を提供することである。また、本発明の目的は、幹細胞の癌細胞化のリスクを低減する方法を提供することである。
In conventional iPS cell production, genes are introduced into cells as nucleic acid fragments. Therefore, there is a risk of the nucleic acid fragment being randomly inserted into the genome or of specific integration in the subject cell. In other words, iPS cells have the potential to become cancerous cells, which has been a factor preventing their application to regenerative medicine.
An object of the present invention is to provide a method for easily producing stem cells without gene transfer. Another object of the present invention is to provide a method for reducing the risk of stem cells becoming cancer cells.
本発明者は、簡便な幹細胞の製造方法、及び幹細胞の癌細胞化のリスクを低減する方法ついて、鋭意研究した結果、驚くべきことに、ヒストン脱アセチル化酵素阻害剤を用いること、又はJDP2遺伝子のRNA干渉により、幹細胞を製造できること、及び幹細胞の癌細胞化のリスクを低減できることを見出した。
具体的には、ヒドロキサム酸を添加した培地中で細胞を浮遊培養又は接着培養を7日~14日間続けると、高率で幹細胞に誘導できた。幹細胞はSTAT3及びGATA4を発現していた。また誘導された幹細胞の癌細胞化が抑制されていた。更に、JDP2遺伝子のmRNA相補的低分子RNAベクターを含む溶液に細胞を分散させ、前記細胞分散液を入れた電極容器に直流パルスを通電することにより、細胞の初期化が起こった。その後、浮遊培養又は接着培養を10日~14日間続けると、数%の割合で多能性幹細胞に誘導できた。それらの幹細胞はSTAT3、及びGATA4を発現していた。
本発明は、こうした知見に基づくものである。
従って、本発明は、
[1]体細胞を、ヒストン脱アセチル化酵素阻害剤を含む培地で培養する工程を含む、幹細胞の製造方法、
[2]前記ヒストン脱アセチル化酵素阻害剤が、スベロイルビスヒドロキサム酸、トリコスタチンA、酪酸、バルプロ酸、アピシジン、オキサムフラチン(Oxamflatin)、又はスプリトマイシン(Splitomicin)である、[1]に記載の幹細胞の製造方法、
[3]前記幹細胞が、OCT4、SOX2、c-MYC、KLF4、STAT3、及びGATA4からなる群から選択される少なくとも1つの幹細胞マーカーを発現する、[1]又は[2]に記載の幹細胞の製造方法、
[4][1]~[3]のいずれかの製造方法による癌細胞化のリスク低減方法、
[5]癌細胞のJDP2遺伝子をRNA干渉による抑制する工程を含む、幹細胞の製造方法、
[6]前記RNA干渉が、癌細胞にJDP2遺伝子のmRNAの相補的低分子RNAベクターを導入することによって実施される、[5]に記載の幹細胞の製造方法、
[7]前記幹細胞が、OCT4、SOX2、c-MYC、KLF4、STAT3、及びGATA4からなる群から選択される少なくとも1つの幹細胞マーカーを発現する、[5]又は[6]に記載の幹細胞の製造方法、及び
[8][1]~[3]及び[5]~[7]のいずれかに記載の製造方法によって得られる幹細胞、
に関する。
As a result of intensive research on a simple method for producing stem cells and a method for reducing the risk of cancer cell transformation of stem cells, the present inventor surprisingly found that a histone deacetylase inhibitor or a JDP2 gene RNA interference can produce stem cells and reduce the risk of stem cells becoming cancer cells.
Specifically, cells were induced into stem cells at a high rate when suspension culture or adhesion culture was continued for 7 to 14 days in a medium supplemented with hydroxamic acid. Stem cells expressed STAT3 and GATA4. In addition, cancer cell transformation of the induced stem cells was suppressed. Furthermore, cells were reprogrammed by dispersing the cells in a solution containing a low-molecular-weight RNA vector complementary to the mRNA of the JDP2 gene, and applying a DC pulse to the electrode container containing the cell dispersion. Subsequently, when suspension culture or adhesion culture was continued for 10 to 14 days, pluripotent stem cells could be induced at a rate of several percent. Those stem cells expressed STAT3 and GATA4.
The present invention is based on these findings.
Accordingly, the present invention provides
[1] A method for producing stem cells, comprising the step of culturing somatic cells in a medium containing a histone deacetylase inhibitor,
[2] The histone deacetylase inhibitor according to [1], wherein the histone deacetylase inhibitor is suberoylbishydroxamic acid, trichostatin A, butyric acid, valproic acid, apicidin, oxamflatin, or splitomicin. a method for producing stem cells,
[3] Production of stem cells according to [1] or [2], wherein the stem cells express at least one stem cell marker selected from the group consisting of OCT4, SOX2, c-MYC, KLF4, STAT3, and GATA4. Method,
[4] A method for reducing the risk of cancer cell transformation by the production method of any one of [1] to [3],
[5] A method for producing stem cells, comprising a step of suppressing the JDP2 gene of cancer cells by RNA interference;
[6] The method for producing stem cells according to [5], wherein the RNA interference is performed by introducing a small RNA vector complementary to the mRNA of the JDP2 gene into cancer cells.
[7] Production of stem cells according to [5] or [6], wherein the stem cells express at least one stem cell marker selected from the group consisting of OCT4, SOX2, c-MYC, KLF4, STAT3, and GATA4. and [8] Stem cells obtained by the production method according to any one of [1] to [3] and [5] to [7],
Regarding.
本発明の幹細胞の製造方法によれば、遺伝子導入を伴うこと無く、体細胞又は癌細胞から幹細胞を誘導することができる。また、本発明の癌細胞化のリスク低減方法によれば、細胞が癌細胞化することを抑制することができる。 According to the method for producing stem cells of the present invention, stem cells can be induced from somatic cells or cancer cells without gene transfer. Moreover, according to the method for reducing the risk of cancer cell transformation of the present invention, cancer cell transformation can be suppressed.
ヒト肝癌細胞HepG2のJDP2遺伝子の電気刺激処置を伴うmRNA転写抑制による幹細胞様コロニーの顕微鏡写真(倍率100倍)である。Fig. 10 is a photomicrograph (100x magnification) of stem cell-like colonies due to mRNA transcriptional repression associated with electrical stimulation treatment of the JDP2 gene of human hepatoma cell HepG2. HepG2細胞のJDP2遺伝子転写抑制により誘導された幹細胞様細胞において、幹細胞マーカー(OCT4、SOX2、c-MYC、KLF4、STAT3、GATA4)に対する抗体を反応させた結果を示す顕微鏡写真(倍率100倍)である。Micrographs (100x magnification) showing the results of reacting stem cell-like cells induced by JDP2 gene transcription suppression in HepG2 cells with antibodies against stem cell markers (OCT4, SOX2, c-MYC, KLF4, STAT3, GATA4). be. HepG2細胞由来幹細胞様細胞を免疫不全マウスに移植して形成されたテラトーマ組織標本の顕微鏡写真である。(A)は外胚葉由来組織の顕微鏡写真(倍率400倍)、(B)は中胚葉由来組織の顕微鏡写真(倍率200倍)、(C)は内胚葉由来組織の顕微鏡写真(倍率200倍)をそれぞれ示す。1 is a micrograph of a teratoma tissue specimen formed by transplanting HepG2 cell-derived stem cell-like cells into an immunodeficient mouse. (A) is a micrograph of ectoderm-derived tissue (400x magnification), (B) is a micrograph of mesoderm-derived tissue (200x magnification), and (C) is a micrograph of endoderm-derived tissue (200x magnification). respectively. HepG2細胞の実施例1におけるグループ(1)及び(2)の細胞を免疫不全マウスに移植後、形成された4頭中2頭のテラトーマの写真である。FIG. 2 shows photographs of teratomas formed in two out of four immunodeficient mice after the cells of groups (1) and (2) in Example 1 of HepG2 cells were transplanted. ヒト繊維芽細胞NHDFのヒドロキサム酸処理後、誘導された幹細胞様コロニーの顕微鏡写真(倍率100倍)である。(A)は処理前の細胞、(B)は幹細胞様形態を示す。Photomicrograph (100x magnification) of stem cell-like colonies induced after hydroxamic acid treatment of human fibroblast NHDF. (A) shows cells before treatment, (B) shows stem cell-like morphology. NHDF細胞をヒドロキサム酸処理することにより誘導された幹細胞様細胞において幹細胞マーカー(OCT4、SOX2、c-MYC、KLF4、STAT3、GATA4)に対する抗体を反応させた結果を示す顕微鏡写真(倍率100倍)であるMicrographs (100x magnification) showing the results of reaction of stem cell-like cells induced by hydroxamic acid treatment of NHDF cells with antibodies against stem cell markers (OCT4, SOX2, c-MYC, KLF4, STAT3, GATA4). be ヒトNHDF細胞由来幹細胞様細胞を免疫不全マウス睾丸に移植し、30日後に摘出した睾丸の写真である(A)。対象としてマウスES細胞を同免疫不全マウスに移植後、摘出したテラトーマを形成した睾丸の写真である(B)。(A) is a photograph of a testicle excised 30 days after transplantation of human NHDF cell-derived stem cell-like cells into an immunodeficient mouse testicle. (B) is a photograph of a testis with teratoma, which was excised after transplantation of mouse ES cells into the same immunodeficient mouse as a subject. ヒトNHDF細胞由来幹細胞様細胞から体外培養により分化させた胚葉体組織標本の顕微鏡写真(倍率400倍)である。(A)は外胚葉組織(神経膠様)、(B)は中胚葉組織(消化管内皮様)、(C)は内胚葉組織(肝細胞様)、(D)は胚葉体(倍率100倍)写真をそれぞれ示す。It is a micrograph (400x magnification) of an embryoid body tissue sample differentiated from human NHDF cell-derived stem cell-like cells by in vitro culture. (A) Ectodermal tissue (glia-like), (B) Mesoderm tissue (gut endothelium-like), (C) Endoderm tissue (hepatocyte-like), (D) Embryoid body (100x magnification) ) show the pictures respectively. ヒト羊膜細胞のヒドロキサム酸処理により誘導された幹細胞様コロニーの顕微鏡写真である(倍率100倍)。Photomicrograph of stem cell-like colonies induced by hydroxamic acid treatment of human amniotic cells (100x magnification). ヒト羊膜細胞由来幹細胞様細胞において、幹細胞マーカー(OCT4、SOX2、KLF4、c-MYC、STAT3、GATA4)の発現をRT-PCR解析により確認した電気泳動写真である。Fig. 3 is an electrophoresis photograph showing expression of stem cell markers (OCT4, SOX2, KLF4, c-MYC, STAT3, GATA4) in human amniocyte-derived stem-like cells confirmed by RT-PCR analysis. ヒト羊膜細胞由来幹細胞様細胞のアルカリフォスファターゼ染色を示す顕微鏡写真(倍率40倍)である。Fig. 3 is a micrograph (40x magnification) showing alkaline phosphatase staining of human amniocyte-derived stem cell-like cells. ヒト羊膜細胞由来幹細胞様細胞から分化させた外胚葉組織(神経様細胞)、中胚葉組織(血球前駆細胞)及び内胚葉組織(肝細胞様細胞)、に対して各種マーカー蛋白質に対する抗体を反応させた結果を示す顕微鏡写真(倍率200倍)である。(A)~(C)は、神経様細胞に対して、ネスチン抗体(A)、GFAP抗体(B)、又はTuji1抗体(C)を反応させた結果を示す。(D)は、血球前駆細胞に対してCD45抗体を反応させた結果を示し、(E)は、幹細胞様細胞に対して、α-フェトプロテイン抗体を反応させた結果を示す。Ectodermal tissue (nerve-like cells), mesoderm tissue (blood cell progenitor cells) and endoderm tissue (hepatocyte-like cells) differentiated from human amniocyte-derived stem cell-like cells are reacted with antibodies against various marker proteins. It is a micrograph (magnification of 200 times) which shows the result. (A) to (C) show the results of reaction of neural-like cells with nestin antibody (A), GFAP antibody (B), or Tuji1 antibody (C). (D) shows the results of reacting blood progenitor cells with CD45 antibody, and (E) shows the results of reacting stem cell-like cells with α-fetoprotein antibody. ヒト羊膜細胞由来幹細胞様細胞を免疫不全マウス睾丸に移植し、35日後に摘出した睾丸の写真である(A)。対照としてマウスES細胞を同免疫不全マウスに移植後、摘出したテラトーマを形成した睾丸の写真である(B)。(A) is a photograph of a testicle excised 35 days after transplantation of human amniocyte-derived stem cell-like cells into an immunodeficient mouse testicle. (B) is a photograph of a testis with teratoma, which was excised after transplantation of mouse ES cells into the same immunodeficient mouse as a control.
《幹細胞の製造方法:実施態様1》
本発明の幹細胞の製造方法は、体細胞を、ヒストン脱アセチル化酵素阻害剤を含む培地で培養する工程を含む。
<<Method for Producing Stem Cells: Embodiment 1>>
The method for producing stem cells of the present invention includes a step of culturing somatic cells in a medium containing a histone deacetylase inhibitor.
(体細胞)
本発明の幹細胞の製造方法に用いる体細胞は、動物の体細胞である限りにおいて、特に限定されるものではなく、例えば外胚葉由来組織の体細胞、中胚葉由来組織の体細胞、又は内胚葉由来組織の体細胞が挙げられる。具体的には、線維芽細胞、上皮細胞(皮膚表皮細胞、口腔粘膜上皮細胞、気道粘膜上皮細胞、又は腸管粘膜上皮細胞)、表皮細胞、歯肉細胞(歯肉線維芽細胞、又は歯肉上皮細胞)、歯髄細胞、白色脂肪細胞、皮下脂肪、内臓脂肪、筋肉、血液細胞又は羊膜由来細胞などが挙げられ、好ましくは線維芽細胞、表皮細胞(ケラチノサイト)、羊膜由来細胞などが挙げられる。また、間葉系幹細胞、造血幹細胞、脂肪組織由来間質細胞、脂肪組織由来間質幹細胞、神経幹細胞、精子幹細胞などの組織幹細胞(体性幹細胞)を体細胞として用いてもよく、又はそれらから分化誘導された組織前駆細胞、繊維芽細胞、上皮細胞、リンパ球、又は筋肉細胞を体細胞として用いてもよい。更に、間葉系幹細胞、神経幹細胞、肝幹細胞、腸幹細胞、皮膚幹細胞、毛包幹細胞、色素細胞幹細胞などの体性幹細胞から分化誘導し、あるいは脱分化させ、あるいはリプログラミングさせて作成した体細胞を用いてもよい。
(somatic cells)
The somatic cells used in the method for producing stem cells of the present invention are not particularly limited as long as they are animal somatic cells. Somatic cells of the tissue of origin are included. Specifically, fibroblasts, epithelial cells (skin epidermal cells, oral mucosal epithelial cells, airway mucosal epithelial cells, or intestinal mucosal epithelial cells), epidermal cells, gingival cells (gingival fibroblasts, or gingival epithelial cells), Examples include dental pulp cells, white adipocytes, subcutaneous fat, visceral fat, muscle, blood cells, and amnion-derived cells, preferably fibroblasts, epidermal cells (keratinocytes), and amnion-derived cells. In addition, tissue stem cells (somatic stem cells) such as mesenchymal stem cells, hematopoietic stem cells, adipose tissue-derived stromal cells, adipose tissue-derived stromal stem cells, neural stem cells, and spermatogonial stem cells may be used as somatic cells. Differentiation-induced tissue progenitor cells, fibroblasts, epithelial cells, lymphocytes, or muscle cells may be used as somatic cells. Furthermore, somatic cells prepared by differentiation induction, dedifferentiation, or reprogramming from somatic stem cells such as mesenchymal stem cells, neural stem cells, hepatic stem cells, intestinal stem cells, skin stem cells, hair follicle stem cells, melanocyte stem cells, etc. may be used.
体細胞が由来する動物は、特に限定されず、目的に応じて適宜選択することができる。体細胞が由来する動物としては、例えばヒト又はヒト以外の動物(例えば、哺乳類)が挙げられる。ヒト以外の動物としては、例えばマウス若しくはラットなどの齧歯類、ウシ若しくはヒツジなどの偶蹄類、ウマなどの奇蹄類、イヌ若しくはネコなどの食肉類等、又はサル若しくはチンパンジーなどの霊長類;等の任意の哺乳類が挙げられるが、好ましくはヒト又はヒト以外の霊長類である。 Animals from which somatic cells are derived are not particularly limited, and can be appropriately selected depending on the purpose. Animals from which somatic cells are derived include, for example, humans and non-human animals (eg, mammals). Non-human animals include, for example, rodents such as mice or rats, artiodactyls such as cows or sheep, peri-hoofed animals such as horses, carnivores such as dogs or cats, or primates such as monkeys or chimpanzees; etc., preferably humans or non-human primates.
前記繊維芽細胞は、公知の方法により、動物個体から採取して培養したものであってよい。例えば、培養繊維芽細胞は、Manipulating the Mouse Embryo A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory press (1994)等に記載の方法により作製することができる。また、繊維芽細胞は、既存の細胞株であってもよい。繊維芽細胞の細胞株は、例えば、理化学研究所細胞バンク等から入手してもよく、市販のものを用いてもよい。 The fibroblasts may be those collected from an individual animal and cultured by a known method. For example, cultured fibroblasts can be prepared by the method described in Manipulating the Mouse Embryo A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory press (1994). Fibroblasts may also be existing cell lines. Fibroblast cell lines may be obtained from, for example, RIKEN Cell Bank, etc., or commercially available ones may be used.
本明細書において「羊膜由来細胞」とは、羊膜から採取した細胞である。羊膜由来細胞は、羊膜から採取した細胞を、初代培養した繊維芽細胞であってもよい(特許文献2、非特許文献4~6参照)。羊膜由来細胞は、液体窒素保管器中で凍結保存されたものであってもよい。羊膜由来細胞は、好ましくは霊長類由来の細胞である。 As used herein, the term "amniotic membrane-derived cells" refers to cells collected from the amniotic membrane. The amniotic membrane-derived cells may be fibroblasts obtained by primary culture of cells collected from the amniotic membrane (see Patent Document 2 and Non-Patent Documents 4 to 6). The amnion-derived cells may be cryopreserved in a liquid nitrogen storage device. The amnion-derived cells are preferably primate-derived cells.
(ヒストン脱アセチル化酵素阻害剤)
本発明の幹細胞の製造方法においては、ヒストン脱アセチル化酵素阻害剤の存在下で、体細胞を培養する。ヒストン脱アセチル化酵素阻害剤は、特に限定されるものではないが、スベロイルビスヒドロキサム酸、トリコスタチンA、酪酸、バルプロ酸、アピシジン、オキサムフラチン(Oxamflatin)、又はスプリトマイシン(Splitomicin)が挙げられる。
(histone deacetylase inhibitor)
In the method for producing stem cells of the present invention, somatic cells are cultured in the presence of a histone deacetylase inhibitor. Histone deacetylase inhibitors include, but are not limited to, suberoylbishydroxamic acid, trichostatin A, butyric acid, valproic acid, apicidin, oxamflatin, or splitomicin.
(スベロイルビスヒドロキサム酸)
スベロイルビスヒドロキサム酸は、分子量204.2の下記式(1)
Suberoyl bishydroxamic acid has the following formula (1) with a molecular weight of 204.2
It is a compound represented by ( C8H16N2O4 ) . The concentration of suberoylbishydroxamic acid during culture in the production method of the present invention is not particularly limited as long as the effects of the present invention are obtained, but is, for example, 5 μM to 50 μM, preferably 50 μM to 1 mM. be. Also, the concentration of suberoylbishydroxamic acid is, for example, 1 μg/mL to 10 μg/mL, preferably 10 μg/mL to 200 μg/mL.
(トリコスタチンA)
トリコスタチンAは、下記式(2)
Trichostatin A has the following formula (2)
It is a compound represented by The concentration of trichostatin A during culture in the production method of the present invention is not particularly limited as long as the effects of the present invention are obtained, but is, for example, 5 μM to 50 μM, preferably 5 μM to 50 μM. Also, the concentration of trichostatin A is, for example, 1 μg/mL to 10 μg/mL, preferably 10 μg/mL to 200 μg/mL. Trichostatin A selectively inhibits enzymes belonging to the class I and II mammalian histone deacetylase (HDAC) family.
(酪酸)
酪酸は、下記式(3)
Butyric acid is represented by the following formula (3)
It is a compound represented by The concentration of butyric acid during culturing in the production method of the present invention is not particularly limited as long as the effects of the present invention can be obtained, but is, for example, 5 μM to 50 μM, preferably 5 μM to 50 μM. Also, the concentration of butyric acid is, for example, 1 μg/mL to 10 μg/mL, preferably 10 μg/mL to 200 μg/mL.
(バルプロ酸)
バルプロ酸は、下記式(4)
Valproic acid is represented by the following formula (4)
It is a compound represented by The concentration of valproic acid during culture in the production method of the present invention is not particularly limited as long as the effects of the present invention are obtained, but is, for example, 5 μM to 50 μM, preferably 5 μM to 50 μM. Also, the concentration of valproic acid is, for example, 1 μg/mL to 10 μg/mL, preferably 10 μg/mL to 200 μg/mL.
(アピシジン)
アピシジンは、下記式(5)
Apicidin is represented by the following formula (5)
It is a compound represented by The concentration of apicidin during culture in the production method of the present invention is not particularly limited as long as the effects of the present invention are obtained, but is, for example, 5 μM to 50 μM, preferably 5 μM to 50 μM. Also, the concentration of apicidin is, for example, 1 μg/mL to 10 μg/mL, preferably 10 μg/mL to 200 μg/mL.
(スプリトマイシン)
スプリトマイシンは、下記式(6)
Splitomycin is represented by the following formula (6)
It is a compound represented by The concentration of splitomycin during culture in the production method of the present invention is not particularly limited as long as the effects of the present invention are obtained, but is, for example, 5 μM to 50 μM, preferably 5 μM to 50 μM. Also, the concentration of splitomycin is, for example, 1 μg/mL to 10 μg/mL, preferably 10 μg/mL to 200 μg/mL.
(オキサムフラチン)
オキサムフラチンは、下記式(7)
Oxamflatin has the following formula (7)
It is a compound represented by The concentration of oxamflatin during culture in the production method of the present invention is not particularly limited as long as the effects of the present invention are obtained, but is, for example, 5 μM to 50 μM, preferably 5 μM to 50 μM. Also, the concentration of oxamflatin is, for example, 1 μg/mL to 10 μg/mL, preferably 10 μg/mL to 200 μg/mL.
本発明の製造方法における体細胞の培養方法は、幹細胞の培養方法として通常実施されているものであれば、特に限定されるものではない。培地としては、幹細胞の培養に用いられているものを、限定せずに使用することができるが、例えばDMEM培地、又はMEM-α培地を用いることができる。更に、牛胎児血清(FCSまたはFBS)、牛新生児血清(NBCS)、ヒト血清、血清代替物、白血病阻害因子(LIF)、骨形成蛋白因子4(BMP4)、及びインスリン成長因子結合タンパク質3(IGFBP3)からなる群より選択される少なくとも1種を含んでもよい。すなわち、MEM-α培地又はDMEM培地等の公知の培地に、前記成分を添加した培地を好適に用いることができる。培地中の前記各成分の濃度は、幹細胞の培養に通常用いられる濃度とすればよく、例えばFCS、FBS、NBCS、ヒト血清、血清代替物の濃度としては5~10%(V/V)、LIF、BMP4、IGFBP3の濃度としては5~20ng/mLが挙げられる。
培養期間は、幹細胞が製造できる限りにおいて、特に限定されるものではないが、例えば、3~30日であり、好ましくは7~20日であり、更に好ましくは10~14日である。細胞の増殖に応じて2~6日おきに、適宜、継代、又は培地交換を行ってもよい。
培養温度も、特に限定されるものではないが、例えば35~38℃であり、好ましくは36.5~37.5℃であり、より好ましくは約37℃である。また、CO2濃度条件としては、例えば4~6%であり、好ましくは約5%である。
The method for culturing somatic cells in the production method of the present invention is not particularly limited as long as it is a method commonly practiced as a method for culturing stem cells. As the medium, those used for culturing stem cells can be used without limitation, and for example, DMEM medium or MEM-α medium can be used. In addition, fetal bovine serum (FCS or FBS), neonatal bovine serum (NBCS), human serum, serum substitutes, leukemia inhibitory factor (LIF), bone morphogenetic protein factor 4 (BMP4), and insulin growth factor binding protein 3 (IGFBP3) ) may include at least one selected from the group consisting of That is, a known medium such as MEM-α medium or DMEM medium supplemented with the above components can be suitably used. The concentration of each component in the medium may be the concentration normally used for culturing stem cells. Concentrations of LIF, BMP4, and IGFBP3 include 5-20 ng/mL.
The culture period is not particularly limited as long as stem cells can be produced, but is, for example, 3 to 30 days, preferably 7 to 20 days, more preferably 10 to 14 days. Depending on the growth of the cells, passage or medium exchange may be performed every 2 to 6 days as appropriate.
The culture temperature is also not particularly limited, but is, for example, 35 to 38°C, preferably 36.5 to 37.5°C, more preferably about 37°C. Also, the CO 2 concentration condition is, for example, 4 to 6%, preferably about 5%.
培養の形態も、特に限定されるものではないが、浮遊培養が挙げられる。例えば、公知の方法であるポリ2-ヒドロキシエチルメタクリレート(ポリHEMA)を培養皿に塗布することで、細胞を接着させずに培養することが可能である(Kuroda et al., PNAS USA 107, 8639-8643, 2010)。具体的には、エチルアルコール40mL中に60mgのポリHEMAを溶解したものを、直径3.5cm培養皿に800μL宛注入し、クリーンベンチの中で一晩乾燥させた後、細胞浮遊用培養皿として用いることができる。
また、本発明の製造方法における培養は、接着培養によって行うこともできる。
The form of culture is also not particularly limited, but suspension culture can be mentioned. For example, cells can be cultured without adhering by applying poly-2-hydroxyethyl methacrylate (poly-HEMA), which is a known method, to a culture dish (Kuroda et al., PNAS USA 107, 8639). -8643, 2010). Specifically, 800 μL of 60 mg of poly-HEMA dissolved in 40 mL of ethyl alcohol was injected into a culture dish with a diameter of 3.5 cm, dried overnight on a clean bench, and then used as a culture dish for cell suspension. can be used.
Cultivation in the production method of the present invention can also be performed by adherent culture.
ヒストン脱アセチル化酵素阻害剤を用いる幹細胞の培養方法の具体例を以下に記載する。体細胞を、細胞接着性を阻害するためにポリHEMAを塗布した培養容器(例えば直径3.5cm培養皿等)に播種する。培地として、スベロイルビスヒドロキサム酸を100μg/mLの濃度で添加した幹細胞用培地等を用い培養する。細胞は培養皿に接着すること無く、浮遊状態のまま増殖し、3~4日後には細胞数が10個以上の細胞塊を形成する。適時培地交換を行い(例えば1~2日に1度)、更に培養を継続する。細胞塊の直径が、数100μmまで拡大し、ES細胞由来の胚葉体の様に中心部分の細胞が黒色化する前に、接着性を有する通常の培養容器に移し替える。以降は培養を継続して、ES様細胞コロニーが多数出現した時点で、トリプシン処理により、細胞を培養皿から剥離させ、遠心分離により細胞を回収する。回収した細胞は再び浮遊培養を続けてもよく、接着培養を継続してもよい。培養を繰り返すことにより、ES様細胞の形態を有するコロニーが多数出現する。これらのES細胞様細胞は、幹細胞の特徴を有し、多分化能を有する幹細胞である。 A specific example of a method for culturing stem cells using a histone deacetylase inhibitor is described below. Somatic cells are seeded in culture vessels (eg, 3.5 cm diameter culture dishes, etc.) coated with poly-HEMA to inhibit cell adhesion. As a medium, a medium for stem cells or the like supplemented with suberoyl bishydroxamic acid at a concentration of 100 μg/mL is used for culturing. The cells proliferate in a floating state without adhering to the culture dish, and after 3 to 4 days form cell clusters with 10 or more cells. The medium is replaced at appropriate times (for example, once every 1 to 2 days), and the culture is continued. Before the diameter of the cell mass expands to several 100 μm and the cells in the central portion turn black like ES cell-derived embryoid bodies, the cells are transferred to a normal culture vessel having adhesiveness. Thereafter, the culture is continued, and when a large number of ES-like cell colonies appear, the cells are detached from the culture dish by trypsinization, and the cells are recovered by centrifugation. The collected cells may be again subjected to suspension culture or adhesion culture. By repeating the culture, many colonies having ES-like cell morphology appear. These ES cell-like cells have stem cell characteristics and are multipotent stem cells.
(幹細胞マーカー)
本発明の製造方法によって得られた幹細胞は、OCT4、SOX2、c-MYC、KLF4、STAT3、及びGATA4からなる群から選択される少なくとも1つの幹細胞マーカーを発現する。
OCT4(Octamer-binding transcription factor 4)は、POU5F1(POU domain, class 5, transcription factor 1)とも呼ばれるヒトのタンパク質である。Oct-4はPOU(Pit-Oct-Unc)ドメインをもつPOUファミリーのホメオドメイン転写因子であり、未分化肺性幹細胞の自己複製に関与し、多能性の維持に関与していると考えられている。
Sox2はSoxB1ファミリーに属する転写因子であり、ES細胞やTS細胞、更には神経幹細胞などで幹細胞性の維持に機能していることが知られている。
c-MYCは、山中らがiPS細胞を誘導するために用いた因子の一つであり、ある種の遺伝子の転写を抑制する。また、c-MYCは細胞増殖や細胞の成長の促進に不可欠な役割を示す。
KLF4は、ジンク・フィンガー転写因子であり、ヒト及びマウスの多能性幹細胞の作成のための因子として用いられる。
STAT3は、自己再生および幹細胞の生存及び増殖に関与していることが知られている。
GATA4は、骨格筋幹細胞の分化及び増殖を制御すると考えられている。
本発明の製造方法によって得られた幹細胞は、前記の少なくとも1つの幹細胞マーカーを発現しており、多分化能を有する幹細胞であると考えられる。
(stem cell marker)
Stem cells obtained by the production method of the present invention express at least one stem cell marker selected from the group consisting of OCT4, SOX2, c-MYC, KLF4, STAT3, and GATA4.
OCT4 (Octamer-binding transcription factor 4) is a human protein also called POU5F1 (POU domain, class 5, transcription factor 1). Oct-4 is a POU family homeodomain transcription factor having a POU (Pit-Oct-Unc) domain, and is thought to be involved in self-renewal of undifferentiated pulmonary stem cells and maintenance of pluripotency. ing.
Sox2 is a transcription factor belonging to the SoxB1 family, and is known to function in maintaining stemness in ES cells, TS cells, neural stem cells, and the like.
c-MYC is one of the factors used by Yamanaka et al. to induce iPS cells, and suppresses the transcription of certain genes. c-MYC also plays an essential role in promoting cell proliferation and cell growth.
KLF4 is a zinc finger transcription factor and is used as a factor for the generation of human and mouse pluripotent stem cells.
STAT3 is known to be involved in self-renewal and stem cell survival and proliferation.
GATA4 is believed to regulate skeletal muscle stem cell differentiation and proliferation.
The stem cells obtained by the production method of the present invention express at least one stem cell marker described above and are considered to be multipotent stem cells.
(分化誘導)
本発明の製造方法によって得られた幹細胞は、所望の細胞に分化誘導することができる。幹細胞を分化誘導する方法は、分化を示す細胞に応じて、適宜公知の方法を選択することができる。
例えば、浮遊培養法により幹細胞に胚葉体様細胞塊を形成させた後、FGF2及びEGF等を含むDMEM培地等で接着培養することにより、アストロサイト細胞マーカー及び神経細胞マーカーであるGFAP又はネスチンに対する抗体に陽性反応を示す神経細胞に分化させることができる。
また、同様に幹細胞に胚葉体様細胞塊を形成させた後、FCS及び/又はアスコルビン酸等を含むDMEM培地等で接着培養することにより、心筋マーカーであるMYL2、GATA4、NKX2.5等に対する各抗体に陽性反応を示す心筋細胞に分化させることができる。
また、幹細胞に胚葉体様細胞塊を形成させた後、FBS、Actin-A等を含むDMEM培地等で接着培養することにより、α-フェトプロテイン抗体又はHNF-4α等に対する抗体に陽性反応を示す肝細胞に分化させることができる。
(differentiation induction)
Stem cells obtained by the production method of the present invention can be induced to differentiate into desired cells. As a method for inducing differentiation of stem cells, a known method can be appropriately selected according to cells exhibiting differentiation.
For example, stem cells are allowed to form embryoid body-like cell clusters by a suspension culture method, followed by adherent culture in a DMEM medium containing FGF2, EGF, etc. to obtain an antibody against GFAP or nestin, which is an astrocyte cell marker and neuronal cell marker. can be differentiated into neurons that positively react to
Similarly, stem cells are allowed to form embryoid body-like cell clusters, and then adherently cultured in a DMEM medium containing FCS and/or ascorbic acid, etc., to obtain the results for myocardial markers such as MYL2, GATA4, and NKX2.5. They can be differentiated into cardiomyocytes that positively react with antibodies.
In addition, after allowing the stem cells to form embryoid body-like cell clusters, by adhering and culturing them in DMEM medium containing FBS, Actin-A, etc., a liver that exhibits a positive reaction to α-fetoprotein antibodies or antibodies to HNF-4α, etc. It can be differentiated into cells.
(癌細胞化のリスク低減方法)
本発明の幹細胞の製造方法によって、癌細胞化のリスクを低減することができる。
本発明の癌細胞化のリスク低減方法によって得られた癌細胞化リスク低減化幹細胞は、(a)正常2倍体の核型を有する。(b)未分化状態で30回以上、好ましくは40回以上の継代が可能である。(c)アルカリフォスファターゼ活性を有し、OCT4、SOX2、KLF4、c-MYC、STAT3、GATA4及びSSEA-3の、少なくとも1種、好ましくは2種以上、より好ましくは3種以上を発現する。(d)異種動物胚に細胞を移植すると作成されたキメラ胚の一部の組織・器官に発達する能力を有する。(e)体外培養条件下で、少なくとも2胚葉由来、好ましくは3胚葉由来の細胞群を形成する。(f)免疫不全マウスへの移植によって、テラトーマを形成しない傾向が強い。
前記(a)~(f)の性質を有するか否かは、後述の公知の方法により確認可能である。
本発明の製造方法によれば、細胞の癌細胞化リスクを抑制することができる。そのため、本発明により癌細胞化が抑制された細胞は、再生医療用の材料細胞として、好適に用いることができる。更に、抗癌剤の新薬開発において重要な課題の一つであるヒストンの化学的修飾機構の解析に資することが可能である。更に、例えば損傷した軟骨再生のための基質細胞として、また美容液基材としての活用も期待できる。
(Method for reducing the risk of cancer cells)
The risk of cancer cell transformation can be reduced by the method for producing stem cells of the present invention.
Stem cells with reduced risk of canceration obtained by the method of reducing the risk of canceration of the present invention (a) have a normal diploid karyotype. (b) It is possible to subculture 30 times or more, preferably 40 times or more in an undifferentiated state. (c) having alkaline phosphatase activity and expressing at least one, preferably two or more, more preferably three or more of OCT4, SOX2, KLF4, c-MYC, STAT3, GATA4 and SSEA-3; (d) have the ability to develop into some tissues/organs of chimeric embryos produced by transplanting cells into heterologous animal embryos; (e) forming a population of cells from at least two germ layers, preferably from three germ layers under in vitro culture conditions; (f) There is a strong tendency not to form teratomas upon transplantation into immunodeficient mice.
Whether or not the material has the properties (a) to (f) can be confirmed by a known method described later.
According to the production method of the present invention, the risk of cells becoming cancer cells can be suppressed. Therefore, cells whose cancerous transformation has been suppressed by the present invention can be suitably used as material cells for regenerative medicine. Furthermore, it is possible to contribute to the analysis of the histone chemical modification mechanism, which is one of the important issues in the development of new anticancer agents. Furthermore, it can be expected to be used as matrix cells for regeneration of damaged cartilage, and as a base for beauty essences.
本発明の製造方法及び癌細胞化のリスク低減方法によれば、一般的iPS細胞の作製法とは異なり、細胞への遺伝子導入処置を伴わないため、特別な施設を必要としない利点がある。また遺伝子導入処理を伴わないために、誘導した幹細胞における癌細胞化リスクが低減化され、安全な幹細胞を製造することが可能である。本発明による幹細胞は、STAT3、及び/又はGATA4幹細胞マーカーを発現している。そこで事前に繊維芽細胞等からSTAT3、GATA4抗体陽性の細胞をFACS Sorter等を用いて選別し、それら選別細胞を用いて本実施形態による幹細胞への誘導を行えば、より一層効率的な幹細胞を製造する方法となり得る。また、本発明によれば、癌細胞化のリスクが低減化された幹細胞株を樹立出来る為、所望の、種々の遺伝子の発現を抑制された幹細胞株や、その逆に、所望の遺伝子を導入することによる遺伝子導入された幹細胞株を製造することも可能である。 The production method and the method for reducing the risk of cancer cell transformation of the present invention have the advantage of not requiring special facilities because they do not involve gene transfer to cells, unlike general iPS cell production methods. In addition, since no gene introduction treatment is involved, the risk of cancer cell transformation in the induced stem cells is reduced, and safe stem cells can be produced. Stem cells according to the invention express STAT3 and/or GATA4 stem cell markers. Therefore, if STAT3 and GATA4 antibody-positive cells are sorted from fibroblasts or the like in advance using a FACS sorter or the like, and the sorted cells are used to induce stem cells according to the present embodiment, more efficient stem cells can be obtained. It can be a method of manufacturing. In addition, according to the present invention, stem cell lines with reduced risk of becoming cancer cells can be established. It is also possible to produce a transgenic stem cell line by doing.
《幹細胞の製造方法:実施態様2》
本発明の幹細胞の製造方法は、癌細胞のJDP2遺伝子をRNA干渉による抑制する工程を含む。
<<Method for Producing Stem Cells: Embodiment 2>>
The method for producing stem cells of the present invention includes a step of suppressing the JDP2 gene of cancer cells by RNA interference.
(癌細胞)
本発明の幹細胞の製造方法に用いる癌細胞は、動物の癌細胞である限りにおいて、特に限定されるものではなく、例えば膀胱癌細胞、乳癌細胞、大腸癌細胞、直腸癌細胞、腎臓癌細胞、肝臓癌細胞、肺癌細胞、小細胞肺癌細胞、食道癌細胞、胆嚢癌細胞、卵巣癌細胞、膵臓癌細胞、胃癌細胞、子宮頸部癌細胞、甲状腺癌細胞、前立腺癌細胞、扁平上皮癌細胞、皮膚癌細胞、十二指腸癌細胞、腟癌細胞、又は脳腫瘍細胞が挙げられる。
また、癌細胞は各組織由来の癌細胞を、個人から採取し培養したものであってよく、既存の樹立された細胞株でもよい。癌細胞の細胞株は、例えば、理化学研究所細胞バンク等から入手してもよく、市販のものを用いてもよい。
(cancer cells)
Cancer cells used in the method for producing stem cells of the present invention are not particularly limited as long as they are animal cancer cells. liver cancer cells, lung cancer cells, small cell lung cancer cells, esophageal cancer cells, gallbladder cancer cells, ovarian cancer cells, pancreatic cancer cells, gastric cancer cells, cervical cancer cells, thyroid cancer cells, prostate cancer cells, squamous cell cancer cells, Skin cancer cells, duodenal cancer cells, vaginal cancer cells, or brain tumor cells.
In addition, cancer cells may be those obtained by collecting and culturing cancer cells derived from each tissue from an individual, or may be existing established cell lines. Cell lines of cancer cells may be obtained, for example, from the RIKEN Cell Bank or the like, or commercially available ones may be used.
癌細胞が由来する動物は、特に限定されず、例えばヒト又はヒト以外の動物(例えば、哺乳類)が挙げられる。ヒト以外の動物としては、例えばマウス若しくはラットなどの齧歯類、ウシ若しくはヒツジなどの偶蹄類、ウマなどの奇蹄類、イヌ若しくはネコなどの食肉類等、又はサル若しくはチンパンジーなどの霊長類;等の任意の哺乳類が挙げられるが、好ましくはヒト又はヒト以外の霊長類である。 Animals from which cancer cells are derived are not particularly limited, and include, for example, humans and non-human animals (eg, mammals). Non-human animals include, for example, rodents such as mice or rats, artiodactyls such as cows or sheep, peri-hoofed animals such as horses, carnivores such as dogs or cats, or primates such as monkeys or chimpanzees; etc., preferably humans or non-human primates.
(JDP2遺伝子)
本発明の幹細胞の製造方法によって、干渉される癌細胞のJDP2遺伝子は、c-Jun遺伝子のファミリー遺伝子であり、JDP2タンパク質をコードする核酸である。JDP2遺伝子から転写されるmRNAから翻訳されるJDP2タンパク質の合成を抑制することによって、癌細胞から幹細胞を誘導することができる。
干渉されるJDP2遺伝子は動物によって異なる。JDP2遺伝子及び蛋白質配列情報は、GenBank等の公知のデータベースから得ることができる。例えば、ヒトのJDP2遺伝子のヌクレオチド配列は、GenBankにおいてアクセッション番号NM-001135047.1として登録されている。ヒトのJDP2遺伝子配列を配列番号1に示す。それぞれの動物のJDP2遺伝子の発現が、RNA干渉によって抑制され、癌細胞から幹細胞が誘導される。
(JDP2 gene)
The JDP2 gene of cancer cells that is interfered with by the method for producing stem cells of the present invention is a gene of the c-Jun gene family and is a nucleic acid that encodes the JDP2 protein. Stem cells can be induced from cancer cells by suppressing the synthesis of the JDP2 protein translated from the mRNA transcribed from the JDP2 gene.
The JDP2 gene that is interfered with varies from animal to animal. JDP2 gene and protein sequence information can be obtained from publicly known databases such as GenBank. For example, the nucleotide sequence of the human JDP2 gene is deposited in GenBank under accession number NM-001135047.1. The human JDP2 gene sequence is shown in SEQ ID NO:1. Expression of the JDP2 gene in each animal is suppressed by RNA interference, and stem cells are induced from cancer cells.
(RNA干渉)
本発明の幹細胞の製造方法におけるRNA干渉は、癌細胞から幹細胞を製造できる限りにおいて、特に限定されるものではないが、例えば低分子干渉RNA(siRNA)、低分子ヘアピン型RNA(shRNA)、マイクロRNA(miRNA)、アンチセンスヌクレオチド、又はアプタマー(以下、これらを纏めて「RNA干渉用分子」と称することがある)を含む。
これらのRNA干渉用分子により、JDP2遺伝子の発現が抑制される。抑制されるJDP2遺伝子は、前記の通り動物ごとに異なっている。従って、RNA干渉用分子は、それぞれの動物由来のJDP2遺伝子の配列に従って、設計されることが好ましい。すなわち、癌細胞がヒト由来である場合、ヒトのJDP2遺伝子のRNA配列から設計されることが好ましい。用いるRNA干渉用分子は、1種類でもよいが、2種類以上、又は3種類以上のRNA干渉用分子を混合して用いることによって、幹細胞の製造の効率を向上させることができる。
(RNA interference)
RNA interference in the method for producing stem cells of the present invention is not particularly limited as long as stem cells can be produced from cancer cells. It includes RNA (miRNA), antisense nucleotides, or aptamers (hereinafter collectively referred to as "RNA interference molecules").
These RNA interference molecules suppress the expression of the JDP2 gene. The repressed JDP2 gene differs from animal to animal, as described above. Therefore, RNA interference molecules are preferably designed according to the sequence of the JDP2 gene derived from each animal. That is, when cancer cells are of human origin, they are preferably designed from the RNA sequence of the human JDP2 gene. Although one type of RNA interference molecule may be used, the efficiency of stem cell production can be improved by using a mixture of two or more types of RNA interference molecules, or three or more types of RNA interference molecules.
(RNA干渉用分子の癌細胞への導入)
RNA干渉用分子の癌細胞への導入は、公知のトランスフェクションによって実施することができる。例えば、トランスフェクション試薬によって導入してもよく、エレクトロポレーションによって導入してもよい。トランスフェクション試薬としては、例えばLipofectamineを用いることができる。
(Introduction of RNA interference molecule into cancer cells)
Introduction of RNA interference molecules into cancer cells can be performed by known transfection methods. For example, it may be introduced by a transfection reagent or by electroporation. Lipofectamine, for example, can be used as a transfection reagent.
(RNA干渉分子用ベクター)
RNA干渉分子用ベクター(例えば、相補的低分子RNAベクター)は、RNAの核酸配列を決定すれば、本発明の属する技術分野で公知の方法によって調製することができる。得られたRNA干渉分子用ベクターを癌細胞内に導入することによって、癌細胞内で、低分子干渉RNA(siRNA)、低分子ヘアピン型RNA(shRNA)、マイクロRNA(miRNA)、アンチセンスヌクレオチド、又はアプタマーなどを発現させ、JDP2遺伝子の発現を抑制することができる。
(Vector for RNA interference molecule)
Vectors for RNA interference molecules (eg, complementary small RNA vectors) can be prepared by methods known in the technical field to which the present invention belongs, once the nucleic acid sequence of the RNA is determined. By introducing the obtained RNA interference molecule vector into cancer cells, small interfering RNA (siRNA), short hairpin RNA (shRNA), microRNA (miRNA), antisense nucleotide, Alternatively, an aptamer or the like can be expressed to suppress the expression of the JDP2 gene.
(エレクトロポレーション)
以下に、RNA干渉用分子の癌細胞への導入方法の1つであるエレクトロポレーションについて説明するが、導入方法はエレクトロポレーションに限定されるものではない。
エレクトロポレーションにより、RNA干渉用分子を細胞に導入するが、同時に癌細胞に電気刺激を付与することができる。電気刺激を与えることにより、効率的に幹細胞を製造することができる。エレクトロポレーション装置は、例えば、in vitro遺伝子導入用に市販されているものを用いてもよく、自ら製作したものを用いてもよい。その規格は特に限定されないが、例えば短矩パルス方式で1ボルト刻みの電圧設定が可能なものが好ましい。また、エレクトロポレーション装置は、パルス幅、パルス間隔、パルス回数を、それぞれ0.1~999ミリ秒、0.1~999ミリ秒、1~99回に設定可能なものが好ましい。
(electroporation)
Electroporation, which is one method for introducing RNA interference molecules into cancer cells, will be described below, but the introduction method is not limited to electroporation.
Electroporation introduces molecules for RNA interference into cells, while simultaneously providing electrical stimulation to cancer cells. Stem cells can be efficiently produced by applying electrical stimulation. As an electroporation apparatus, for example, a commercially available one for in vitro gene transfer may be used, or an apparatus manufactured by oneself may be used. Although the standard is not particularly limited, for example, a short rectangular pulse system capable of setting the voltage in increments of 1 volt is preferable. Further, the electroporation apparatus preferably has a pulse width, a pulse interval, and a pulse frequency that can be set to 0.1 to 999 milliseconds, 0.1 to 999 milliseconds, and 1 to 99 times, respectively.
本発明の製造方法においては、癌細胞に電気刺激を与えることにより、癌細胞における細胞骨格形成が一時的に阻害され、細胞初期化を誘導すると考えられる。以下に具体的なエレクトロポレーションの操作を記載する。 In the production method of the present invention, the application of electrical stimulation to cancer cells is thought to temporarily inhibit cytoskeleton formation in cancer cells and induce cell reprogramming. A specific electroporation operation is described below.
例えば、癌細胞を1~5×105細胞/mL濃度で、電気刺激用溶液200~400μLに分散し、RNA干渉用分子(例えば、JDP2遺伝子RNA干渉ベクター)を含む溶液(例えば、1μg/μL濃度)を5~20μL添加した後、キュベット電極容器に移し替える。キュベット電極容器をエレクトロポレーション装置に接続し、パルス幅0.1~100ミリ秒、パルス間隔1~100ミリ秒、パルス回数1~20回で、1~200ボルトの電圧を印加する。また、前記の電気刺激処置は、1回に限定されず、例えば2~5回程度、好ましくは3回程度繰り返してもよい。電気刺激処置を繰り返す場合、電気刺激処置間の間隔としては、例えば、1~15分間隔が挙げられ、5~10分間が好ましい。 For example, cancer cells are dispersed at a concentration of 1 to 5×10 5 cells/mL in 200 to 400 μL of an electrical stimulation solution, and a solution (eg, 1 μg/μL) containing an RNA interference molecule (eg, JDP2 gene RNA interference vector) is used. concentration), and then transferred to a cuvette electrode container. The cuvette electrode container is connected to an electroporation apparatus, and a voltage of 1 to 200 volts is applied with a pulse width of 0.1 to 100 ms, a pulse interval of 1 to 100 ms, and a pulse frequency of 1 to 20 times. Moreover, the above electrical stimulation treatment is not limited to one time, and may be repeated, for example, about 2 to 5 times, preferably about 3 times. When the electrical stimulation treatment is repeated, the interval between electrical stimulation treatments may be, for example, 1 to 15 minute intervals, preferably 5 to 10 minutes.
JDP2遺伝子のRNA干渉、及び細胞幹細胞誘導のための電気刺激処置の具体例としては、後述の実施例で用いられたもの等が挙げられる。例えば細胞分散液とJDP2遺伝子RNA干渉ベクター溶液の入ったキュベット電極容器をエレクトロポレーション装置に接続し、直流電流を電圧20ボルト、パルス幅50ミリ秒、パルス間隔50ミリ秒、パルス回数10回の設定で、キュベット電極に印加する。その後、10~15分間隔で3~5回、同様の電気刺激を反復することが例示される。このよう処理により癌細胞の幹細胞化及び後述の癌細胞化のリスクの低減を同時に行うことができる。 Specific examples of the electrical stimulation treatment for RNA interference of the JDP2 gene and induction of cell stem cells include those used in Examples described later. For example, a cuvette electrode container containing a cell dispersion and a JDP2 gene RNA interference vector solution is connected to an electroporation device, and a direct current is applied at a voltage of 20 volts, a pulse width of 50 ms, a pulse interval of 50 ms, and a pulse number of 10 times. Apply to the cuvette electrodes at the setting. After that, repeating the same electrical stimulation three to five times at intervals of 10 to 15 minutes is exemplified. By such treatment, it is possible to simultaneously convert cancer cells into stem cells and reduce the risk of cancer cell formation, which will be described later.
前記エレクトロポレーションにより、癌細胞にRNA干渉及び幹細胞誘導の電気刺激を与えた後は、通常用いられる幹細胞の培養条件等を用いて、癌細胞を培養すればよい。これにより、癌細胞由来幹細胞を得ることができる。 After applying electrical stimulation for RNA interference and stem cell induction to the cancer cells by the electroporation, the cancer cells may be cultured under commonly used culture conditions for stem cells. Thereby, cancer cell-derived stem cells can be obtained.
培養に用いる培地は、幹細胞の培養に用いられているものを、限定せずに使用することができるが、例えばDMEM培地、又はMEM-α培地を用いることができる。更に、牛胎児血清(FCSまたはFBS)、牛新生児血清(NBCS)、ヒト血清、血清代替物、白血病阻害因子(LIF)、骨形成蛋白因子4(BMP4)、及びインスリン成長因子結合タンパク質3(IGFBP3)からなる群より選択される少なくとも1種を含んでもよい。すなわち、MEM-α培地又はDMEM培地等の公知の培地に、前記成分を添加した培地を好適に用いることができる。培地中の前記各成分の濃度は、幹細胞の培養に通常用いられる濃度とすればよく、例えばFCS、FBS、NBCS、ヒト血清、血清代替物の濃度としては5~10%(V/V)、LIF、BMP4、IGFBP3の濃度としては5~20ng/mLが挙げられる。
培養期間は、幹細胞が製造できる限りにおいて、特に限定されるものではないが、例えば、3~30日であり、好ましくは7~20日であり、更に好ましくは10~14日である。細胞の増殖に応じて2~6日おきに、適宜、継代、又は培地交換を行ってもよい。
培養温度も、特に限定されるものではないが、例えば35~38℃であり、好ましくは36.5~37.5℃であり、より好ましくは約37℃である。また、CO2濃度条件としては、例えば4~6%であり、好ましくは約5%である。
The culture medium used for culturing is not limited to that used for culturing stem cells, and for example, DMEM medium or MEM-α medium can be used. In addition, fetal bovine serum (FCS or FBS), neonatal bovine serum (NBCS), human serum, serum substitutes, leukemia inhibitory factor (LIF), bone morphogenetic protein factor 4 (BMP4), and insulin growth factor binding protein 3 (IGFBP3) ) may include at least one selected from the group consisting of That is, a known medium such as MEM-α medium or DMEM medium supplemented with the above components can be suitably used. The concentration of each component in the medium may be the concentration normally used for culturing stem cells. Concentrations of LIF, BMP4, and IGFBP3 include 5-20 ng/mL.
The culture period is not particularly limited as long as stem cells can be produced, but is, for example, 3 to 30 days, preferably 7 to 20 days, more preferably 10 to 14 days. Depending on the growth of the cells, passage or medium exchange may be performed every 2 to 6 days as appropriate.
The culture temperature is also not particularly limited, but is, for example, 35 to 38°C, preferably 36.5 to 37.5°C, more preferably about 37°C. Also, the CO 2 concentration condition is, for example, 4 to 6%, preferably about 5%.
電気刺激後の癌細胞の培養方法の具体例を以下に記載するが、この培養方法に限定されるものではない。細胞に電気刺激を与えた後、細胞をキュベット電極容器等から取り出し、適切な培養容器(例えば、プラスチック径3.5cm皿等)に入れた幹細胞用培地等に播種し、前記のような培養条件下で培養する。電気刺激後に前記のような培養を行うことにより、細胞はES細胞様の細胞コロニーを形成する。
適時培地交換を行い(例えば1~2日に1度)、ES細胞様の小コロニー(細胞数10程度)が出現するまで培養を継続する。ES細胞様細胞コロニーが複数(例えば5以上)出現した時点で、トリプシン処理により細胞を培養皿から剥離させ、遠心分離により細胞を回収する。回収した細胞は、幹細胞培養用培地等で再培養を行う。この再培養を3~4回繰返すことにより、特徴的なES細胞様細胞コロニーの集団が多数出現するようになる。前記ES細胞様細胞コロニーを形成する細胞は、幹細胞の特徴を有し、多分化能を有する幹細胞である。
電気刺激後の細胞の培養方法は、前記方法に限定されず、遺伝子導入後のiPS細胞の培養に用いられる方法等を特に制限なく用いることができる。例えば、培養には、幹細胞の培養に一般的に用いられるフィーダー細胞を用いてもよい。フィーダー細胞としては、例えば、マウス胎児繊維芽細胞(例えばMEF細胞、STO細胞、又はSNL細胞など)等が挙げられる。但し、電気刺激後の細胞は、約1~2日に1度培地の交換を行いながらコンフルエントになるまで培養を行うことにより、フィーダー細胞のサポートを必要とせずに、細胞死を招くことなく継代培養を続けることができる。
A specific example of a method for culturing cancer cells after electrical stimulation is described below, but the method is not limited to this culturing method. After the cells are electrically stimulated, the cells are removed from the cuvette electrode container or the like, seeded in a stem cell medium or the like placed in an appropriate culture vessel (for example, a plastic dish with a diameter of 3.5 cm), and cultured under the above conditions. cultured below. By culturing as described above after electrical stimulation, the cells form ES cell-like cell colonies.
The medium is changed at appropriate times (for example, once every 1 to 2 days), and culture is continued until ES cell-like small colonies (about 10 cells) appear. When a plurality (for example, 5 or more) of ES cell-like cell colonies appear, the cells are detached from the culture dish by trypsinization and collected by centrifugation. The collected cells are re-cultured in a stem cell culture medium or the like. By repeating this reculturing 3 to 4 times, a large number of characteristic ES cell-like cell colony populations emerge. The cells forming the ES cell-like cell colony are stem cells having stem cell characteristics and pluripotency.
The method for culturing cells after electrical stimulation is not limited to the methods described above, and methods used for culturing iPS cells after gene transfer can be used without particular limitations. For example, feeder cells generally used for culturing stem cells may be used for culturing. Examples of feeder cells include embryonic mouse fibroblasts (eg, MEF cells, STO cells, SNL cells, etc.) and the like. However, after electrical stimulation, the cells are cultured until they become confluent while changing the medium once every 1-2 days. Subculture can be continued.
(幹細胞マーカー)
本発明の製造方法で得られた幹細胞は、OCT4、SOX2、c-MYC、KLF4、STAT3、及びGATA4からなる群から選択される少なくとも1つの幹細胞マーカーを発現する。OCT4、SOX2、c-MYC、KLF4、STAT3、及びGATA4は前記「《幹細胞の製造方法:実施態様1》」の項で説明したものと同じである。
(stem cell marker)
Stem cells obtained by the production method of the present invention express at least one stem cell marker selected from the group consisting of OCT4, SOX2, c-MYC, KLF4, STAT3, and GATA4. OCT4, SOX2, c-MYC, KLF4, STAT3, and GATA4 are the same as those described in the section "<Method for Producing Stem Cells: Embodiment 1>".
(癌幹細胞の細胞化学的特徴)
本発明の幹細胞の製造方法によって、得られた幹細胞の細胞化学的特徴を説明する。
前記幹細胞は、(a)未分化状態で30回以上、好ましくは40回以上の継代が可能である。(b)アルカリフォスファターゼ活性を有し、OCT4、SOX2、KLF4、c-MYC、STAT3、GATA4及びSSEA-3の少なくとも1種、好ましくは2種以上、より好ましくは3種以上を発現する。(c)免疫不全マウスへの移植によりテラトーマを形成し、当該テラトーマ内に少なくとも2胚葉、好ましくは3胚葉を形成する。(d)体外培養条件下で、少なくとも2胚葉由来、好ましくは3胚葉由来の細胞群を形成する。前記(b)は、細胞が未分化状態であることを示し、前記(c)及び(d)は、細胞が多分化能を有することを示す。前記(a)~(d)の性質を有するか否かは、公知の方法により確認可能である。
(Cytochemical characteristics of cancer stem cells)
The cytochemical characteristics of stem cells obtained by the method for producing stem cells of the present invention will be described.
The stem cells (a) can be passaged 30 times or more, preferably 40 times or more in an undifferentiated state. (b) having alkaline phosphatase activity and expressing at least one, preferably two or more, more preferably three or more of OCT4, SOX2, KLF4, c-MYC, STAT3, GATA4 and SSEA-3; (c) forming a teratoma by transplantation into an immunodeficient mouse and forming at least two germ layers, preferably three germ layers within the teratoma; (d) forming a population of cells from at least two germ layers, preferably from three germ layers under in vitro culture conditions; The above (b) indicates that the cells are in an undifferentiated state, and the above (c) and (d) indicate that the cells have pluripotency. Whether or not the material has the properties (a) to (d) can be confirmed by a known method.
例えば、前記(b)については、特開2002-176973号公報に記載の方法、Wang S W, et al., Cell Death & Disease 4, e907 (2013)に記載の方法を用いて確認することができる。 For example, the above (b) can be confirmed using the method described in JP-A-2002-176973 and the method described in Wang S W, et al., Cell Death & Disease 4, e907 (2013). .
また、前記(c)については、例えば、以下の様に実施することができる。例えば10%牛血清代替物含有の培地(例、DMEM培地等)中に、例えば1×106個細胞/mLの濃度で細胞を分散させ、免疫不全マウスの側腹皮下に前記細胞分散液を数mL注入する(例、1mL)。約1ヶ月後、形成されたテラトーマを摘出し、組織学的解析により、テラトーマ内に三胚葉が形成されているか否かを確認する。 Moreover, the above (c) can be carried out, for example, as follows. For example, cells are dispersed in a medium containing 10% bovine serum substitute (eg, DMEM medium, etc.) at a concentration of, for example, 1×10 6 cells/mL, and the cell dispersion is subcutaneously applied to the flank of an immunodeficient mouse. Inject several mL (eg, 1 mL). After about one month, the formed teratoma is excised, and histological analysis is performed to confirm whether or not three germ layers are formed within the teratoma.
また、前記(a)については、30代以上継代を行い、継代細胞が前記(b)の性質を維持しているかどうかを確認すればよい。本実施形態の製造方法により製造された幹細胞は、通常30代以上(好ましくは40代以上)の継代が可能である。なお、本明細書において、「継代」とは、細胞がほぼコンフルエントな状態に達した時点で、細胞の一部(例えば1/3~1/5)を、別の培養容器に入った同様の培地に移し替え、再びコンフルエントな状態まで細胞を増殖させることを意味する。本明細書においては、前記一連の操作を継代数として1回と規定する。なお、通常1回の継代で、細胞は3~6回の細胞分裂を行い得る。 As for the above (a), it may be confirmed whether or not the subcultured cells maintain the properties of the above (b) by subculturing for 30 or more generations. Stem cells produced by the production method of the present embodiment can usually be subcultured for 30 or more generations (preferably 40 or more generations). As used herein, the term "passage" means that a portion of the cells (eg, 1/3 to 1/5) is transferred to another culture vessel when the cells reach a nearly confluent state. medium, and grow the cells again to a confluent state. In the present specification, the series of operations is defined as one passage number. In general, cells can undergo 3 to 6 cell divisions in one passage.
本実施形態の製造方法により製造される癌細胞由来幹細胞は、多分化能を有するため、様々な細胞初期化を誘導する、組織に分化誘導させることが出来る。分化細胞は再生医療用材料として、用いることができる。また癌細胞の悪性化と初期化メカニズムの分子医学、発生学上の解析に有用な研究材料を提供し得る。更に、JDP2の発現抑制剤を開発し、抗癌剤として臨床に応用出来る可能性がある。 Since the cancer cell-derived stem cells produced by the production method of the present embodiment have pluripotency, they can be induced to differentiate into tissues by inducing various cell reprogramming. Differentiated cells can be used as materials for regenerative medicine. It can also provide useful research materials for molecular medicine and developmental analysis of malignant transformation and reprogramming mechanisms of cancer cells. Furthermore, it may be possible to develop a JDP2 expression inhibitor and apply it clinically as an anticancer agent.
《幹細胞》
本発明の幹細胞は、本発明の実施態様1又は実施態様2の幹細胞の製造方法によって得ることができる。前記幹細胞は、癌細胞化のリスクが低減されており、従来の幹細胞とは異なる性質を有していると考えられる。また、従来の幹細胞とは細胞科学的特徴も異なっていると考えられる。
《Stem cells》
The stem cells of the present invention can be obtained by the method for producing stem cells according to Embodiment 1 or Embodiment 2 of the present invention. The stem cells have a reduced risk of becoming cancer cells, and are considered to have different properties from conventional stem cells. In addition, it is considered that the cytochemical characteristics are also different from conventional stem cells.
《作用》
本発明において、ヒストン脱アセチル化酵素阻害剤によって、幹細胞が製造されるメカニズムは、明確に解析されたわけではないが、以下のように推定することができる。
ヒストン脱アセチル化酵素(HDAC)の阻害剤は、体細胞の初期化を誘導するものと推定される。更に、得られた幹細胞に抗癌性を付与しているものと考えられる。
また、本発明において、癌細胞のJDP2遺伝子を抑制することによって、幹細胞が製造されるメカニズムは、明確に解析されたわけではないが、以下のように推定することができる。
発癌遺伝子c-Junが、細胞の初期化に関与しており、特にJDP2遺伝子が細胞の初期化に関与し、その発現を抑制することにより、細胞を幹細胞に誘導できたものと推定される。
《Action》
In the present invention, the mechanism by which stem cells are produced by a histone deacetylase inhibitor has not been clearly analyzed, but can be presumed as follows.
Inhibitors of histone deacetylase (HDAC) are presumed to induce somatic cell reprogramming. Furthermore, it is considered that the resulting stem cells are endowed with anticancer properties.
In addition, in the present invention, the mechanism by which stem cells are produced by suppressing the JDP2 gene of cancer cells has not been clearly analyzed, but can be presumed as follows.
It is presumed that the oncogene c-Jun is involved in cell reprogramming, and the JDP2 gene in particular is involved in cell reprogramming, and suppressing its expression could induce the cells to become stem cells.
以下、実施例によって本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。 EXAMPLES The present invention will be specifically described below with reference to Examples, but these are not intended to limit the scope of the present invention.
《実施例1》ヒト肝癌株細胞HepG2へのJDP2RNA干渉による幹細胞への誘導の確認
凍結保存中のヒト肝癌細胞株HepG2(理研細胞銀行より入手)を融解後、10%FCS(Gibco, Life Technologies)と抗生物質(Gibco, Life Technologies)とを加えたMEMα培地(Gibco, Life Technologies)を5.0mL入れた径10cm皿(Greiner Bio-One)上で、37℃、5%CO2の条件下で増殖培養を行い、実験に用いる材料とした。
培養開始後4~5日経過して、コンフルエントに達した時点で、0.25%トリプシン液(Gibco, Life Technologies)で7~8分間処理し、遠心後、約5×105細胞/mLの濃度で、合成を依頼したJDP2のRNA干渉用ベクター3種(Santa Cruz Biotechnology)を含む溶液(1μg/mL)を20μL加えたDMEM液200μL中で分散し、混和させた。その後、前記混和液をキュベット電極容器に移し替えた。なお、JDP2干渉用のRNA配列(A、B及びC)はそれぞれ以下の通りである。
A.
・センス:GGAUGGAACUCAGAAUGAAtt(配列番号2)
・アンチセンス:UUCAUUCUGAGUUCCAUCCtt(配列番号3)
B.
・センス:GAUGCCGGAACAAGAAGAAtt(配列番号4)
・アンチセンス:UUCUUCUUGUUCCGGCAUCtt(配列番号5)
C.
・センス:GCUUUCAACUGCACAUGUUtt(配列番号6)
・アンチセンス:AACAUGUGCAGUUGAAAGCtt(配列番号7)
<<Example 1>> Confirmation of induction of stem cells by JDP2 RNA interference into human liver cancer cell line HepG2 After thawing human liver cancer cell line HepG2 (obtained from Riken Cell Bank) during cryopreservation, 10% FCS (Gibco, Life Technologies) was used. and antibiotics (Gibco, Life Technologies) on a 10 cm diameter dish (Greiner Bio-One) containing 5.0 mL of MEMα medium (Gibco, Life Technologies) under conditions of 37° C., 5% CO 2 Proliferation culture was performed and used as materials for experiments.
After 4 to 5 days from the start of the culture, when it reached confluency, it was treated with 0.25% trypsin solution (Gibco, Life Technologies) for 7 to 8 minutes, centrifuged, and then about 5 × 10 5 cells/mL. 20 μL of a solution (1 μg/mL) containing three types of JDP2 RNA interference vectors (Santa Cruz Biotechnology) whose synthesis was requested at the same concentration was dispersed and mixed in 200 μL of DMEM solution. After that, the mixed liquid was transferred to the cuvette electrode container. The RNA sequences (A, B and C) for JDP2 interference are as follows.
A.
・Sense: GGAUGGAACUCAGAAUGAAtt (SEQ ID NO: 2)
- Antisense: UUCAUUCUGAGUUCCAUCCtt (SEQ ID NO: 3)
B.
・Sense: GAUGCCGGAACAAGAAGAAtt (SEQ ID NO: 4)
- Antisense: UUCUUCUUGUUCCGGCAUCtt (SEQ ID NO: 5)
C.
- Sense: GCUUUCAACUGCACAUGUUtt (SEQ ID NO: 6)
- Antisense: AACAUGUGCAGUUGAAAGCtt (SEQ ID NO: 7)
前記混和液の入ったキュベット電極をエレクトロポレーション装置(CUY21、Bex)に接続し、20ボルト電圧、50ミリ秒パルス幅、50ミリ秒パルス間隔、10回パルス回数の設定でパルス電流を発生させた。その後、細胞を同一のキュベット電極に入れたまま、10分間の間隔で3回、同様設定で電気刺激処置を反復した。10%FCSと抗生物質を含有し、更に10ng/mL-LIF(Sigma)、10μg/mL-BMP4(Sigma)、及び10μg/mL-IGFBP3(Sigma)を加えたMEMα培地を、フィーダー細胞の被覆の無い、3.5cm径皿(Iwaki)に1.5mL入れ、当該皿上で前記刺激処置後の細胞を播種後、37℃、5%CO2条件下で培養を開始した。 The cuvette electrode containing the admixture was connected to an electroporation device (CUY21, Bex), and a pulse current was generated at a voltage of 20 volts, a pulse width of 50 milliseconds, a pulse interval of 50 milliseconds, and a pulse number of 10 times. rice field. The electrical stimulation treatment was then repeated with the same settings three times at 10 minute intervals while the cells were still in the same cuvette electrode. MEMα medium containing 10% FCS and antibiotics and further supplemented with 10 ng/mL-LIF (Sigma), 10 μg/mL-BMP4 (Sigma), and 10 μg/mL-IGFBP3 (Sigma) was used to coat the feeder cells. 1.5 mL was placed in a 3.5 cm diameter dish (Iwaki), and after seeding the cells after the stimulation treatment on the dish, culturing was started under conditions of 37° C. and 5% CO 2 .
1日1回培地交換を行いながら培養を継続すると、培養開始後7~10日程で、培養皿上に、細胞数10~20程度のコロニーが多数出現した(全体の数パーセント)。皿中の大多数は、HepG2細胞特有の上皮様形態細胞であるが、細胞コロニーを形成する細胞の増殖性はそれらを上回っている為、継代培養を3~4回繰返すことにより、電気刺激処置後約14日間でコロニーを形成する細胞が優勢となった。これらのコロニーは、幹細胞特有の形態、つまり細胞同士が密着して集まり、細胞の殆どの面積を細胞核が占有し、細胞質の割合が極端に少ない、典型的なES様細胞の形態を示す幹細胞様コロニーであった。前記幹細胞様コロニーの顕微鏡写真を図1に示す。 When the culture was continued while exchanging the medium once a day, many colonies with about 10 to 20 cells appeared on the culture plate 7 to 10 days after the start of the culture (several percent of the total). The majority of the cells in the dish are epithelial-like cells peculiar to HepG2 cells. Colony-forming cells predominated approximately 14 days after treatment. These colonies had a morphology peculiar to stem cells, i.e. stem cell-like cells showing a typical ES-like cell morphology, in which the cells were tightly packed together, the nucleus occupied most of the cell area, and the proportion of cytoplasm was extremely low. was a colony. A photomicrograph of the stem cell-like colony is shown in FIG.
上記の様に樹立したHepG2細胞由来幹細胞様細胞に関して、幹細胞として必須の多能性並びに未分化性の有無を、継代数20の細胞を用いて、細胞免疫学かつ分子生物学的解析により解析した。具体的には前記幹細胞様細胞は、幹細胞マーカーであるOCT4、SOX2、c-MYC、KLF4、STAT3、及びGATA4の各抗体に対し陽性反応を示した(図2)。 With respect to the HepG2 cell-derived stem cell-like cells established as described above, the presence or absence of pluripotency and undifferentiation essential for stem cells was analyzed by cell immunological and molecular biological analysis using cells at passage number 20. . Specifically, the stem cell-like cells showed positive reactions to antibodies against stem cell markers OCT4, SOX2, c-MYC, KLF4, STAT3, and GATA4 (Fig. 2).
更に、多能性の証明として、継代数20の細胞を免疫不全マウスの生体内に移植し、テラトーマ内に三胚葉由来組織学的解析を形成する能力の確認を行った。HepG2由来幹細胞によるテラトーマの形成を調べた。即ち、免疫不全SCIDマウスの側腹皮下組織に、約1×107個ずつの細胞を1mLの10%FCS含有DMEM培地に拡散させて注入した。なお、継代数の違いで2区分として、グループ1及び2の2区分けとした。 Furthermore, as proof of pluripotency, cells at passage 20 were implanted in vivo into immunodeficient mice to confirm their ability to form trigerm-layer-derived histological analyzes within teratomas. Teratoma formation by HepG2-derived stem cells was examined. Briefly, about 1×10 7 cells were dispersed in 1 mL of DMEM medium containing 10% FCS and injected into the flank subcutaneous tissue of immunodeficient SCID mice. In addition, it was divided into groups 1 and 2, which were divided into two groups due to the difference in the number of passages.
表中の値は各グループ2頭ずつに形成されたテラトーマの大きさの平均値を示す。 The values in the table indicate the average size of teratomas formed in two animals in each group.
各グループ2頭ずつとして、合計4頭のSCIDマウスにHepG2由来JDP2RNA干渉幹細胞様細胞の移植を行った。移植後30日でテラトーマを摘出し、テラトーマの組織検査を行った。グループ(1)のテラトーマ標本には、外胚葉由来としてケラチノサイト、中胚葉由来として血管内皮様組織、内胚葉由来として消化管組織の形成が認められ、グループ(1)の細胞の多能性が確認された(図3)。また、グループ1及び2共に、テラトーマの形成が確認された(図4)。 HepG2-derived JDP2 RNA interference stem cell-like cells were transplanted into a total of 4 SCID mice, 2 mice per group. Thirty days after the transplantation, the teratoma was removed and histological examination of the teratoma was performed. In the teratoma specimen of group (1), the formation of keratinocytes derived from ectoderm, vascular endothelial-like tissue derived from mesoderm, and gastrointestinal tissue derived from endoderm was observed, confirming the pluripotency of cells of group (1). (Fig. 3). In both Groups 1 and 2, formation of teratoma was confirmed (Fig. 4).
《実施例2》ヒト繊維芽細胞のヒドロキサム酸添加培養による幹細胞への誘導及び癌細胞化リスクの低減性の確認
凍結保存中のヒト繊維芽細胞NHDF(クラボウより購入)を融解後、実施1の場合と同様、10%FCS(Gibco)と抗生物質―抗菌剤(Gibco)とを加えたMEMα(Gibco)を5.0mL入れた径10cm培養皿(Greiner)上で、37℃、5%CO2の条件下で培養し、実験に用いる細胞材料とした。
培養開始後6~7日経過し、コンフルエントに達した時点でトリプシン処理を行い、遠心分離にて細胞を回収した。細胞を接着させず、浮遊培養を行うためポリHEMA(Sigma)600mgをエチルアルコール40mL中で溶解させ、800μL宛径3.5cmの培養皿(Nunc, Thermo Scientific)に塗布し、一晩乾燥させた。スベロイルビスヒドロキサム酸(Cosmo Bio)を100μg/mL濃度で含有させた、実施例1の幹細胞樹立用培地、つまり10%FCS、抗生物質を含有し、更に10ng/mL-LIF(Sigma)、及び10ng/mL-BMP4(Sigma)、及び10ng/mL-IGFBP3(Sigma)を加えたMEMα培地に上記の回収されたNHDF細胞を、約5×105個細胞/mLの濃度で、2mLの培地に分散させた後、ポリHEMA塗布培養皿に播種し、37℃、5%CO2の条件下で培養を開始した。
<<Example 2>> Confirmation of induction of stem cells by hydroxamic acid-added culture of human fibroblasts and reduction of risk of cancer cell formation As in the case, on 10 cm diameter culture dishes (Greiner) containing 5.0 mL of MEMα (Gibco) with 10% FCS (Gibco) and antibiotic-antimicrobial (Gibco) at 37° C., 5% CO 2 . were cultured under the conditions of , and used as cell materials for experiments.
After 6 to 7 days from the start of the culture, when the cells reached confluency, trypsinization was performed and the cells were collected by centrifugation. In order to perform suspension culture without adhering cells, 600 mg of polyHEMA (Sigma) was dissolved in 40 mL of ethyl alcohol, 800 μL was applied to a 3.5 cm diameter culture dish (Nunc, Thermo Scientific), and dried overnight. . Stem cell establishment medium of Example 1 containing suberoyl bishydroxamic acid (Cosmo Bio) at a concentration of 100 μg / mL, that is, 10% FCS, containing antibiotics, further 10 ng / mL-LIF (Sigma), and 10 ng/mL-BMP4 (Sigma) and 10 ng/mL-IGFBP3 (Sigma) were added to MEMα medium, and the collected NHDF cells were added to 2 mL of medium at a concentration of about 5 × 10 5 cells/mL. After being dispersed, they were seeded on a polyHEMA-coated culture dish, and culture was started under conditions of 37° C. and 5% CO 2 .
細胞は培養皿に接着せずに浮遊状態のまま増殖し、3~4日後には細胞数が10個以上の細胞塊を多数形成した。更に培養を継続し、細胞塊の直径が500~60μmに到達した時点で、遠心分離により胚葉体様細胞塊を回収し、ポリHEMA無処理の3.5cm培養皿(Iwaki)で上記と同様の培地、培養条件で接着培養を継続すると、ヒドロキサム酸処理開始後14日間程で、実施例1で見られた幹細胞様コロニーが多数出現した(図5)。当該コロニーの継代培養を数代行うことにより、幹細胞誘導処理(ヒドロキサム酸との共培養)開始後約3~4週間で幹細胞様株を樹立できた。なお、ヒドロキサム酸との共培養処理は幹細胞様コロニーが多数出現した時点で(開始後約14日間前後)、適宜停止した。その後は無添加にて通常の幹細胞培地で培養を継続した。 The cells proliferated in a floating state without adhering to the culture dish, and after 3 to 4 days formed many cell clusters with 10 or more cells. The culture was further continued, and when the diameter of the cell mass reached 500 to 60 μm, the embryoid body-like cell mass was collected by centrifugation and treated with a 3.5 cm culture dish (Iwaki) not treated with poly-HEMA in the same manner as above. When adhesion culture was continued under medium and culture conditions, a large number of stem cell-like colonies observed in Example 1 appeared about 14 days after the start of hydroxamic acid treatment (Fig. 5). A stem cell-like strain could be established about 3 to 4 weeks after the initiation of stem cell induction treatment (co-culture with hydroxamic acid) by subculturing the colony several times. The co-culture treatment with hydroxamic acid was appropriately stopped when a large number of stem cell-like colonies appeared (around 14 days after initiation). After that, culture was continued in a normal stem cell medium without additives.
上記の様にして、樹立されたNHDF細胞由来幹細胞様細胞の幹細胞としての多能性と未分化性の有無を、継代数18の細胞を用いて、細胞免疫学的に解析した。具体的には、前記幹細胞様細胞は、幹細胞マーカーであるOCT4、SOX-2、c-MYC、KLF4、STAT3、GATA4の各抗体に対して陽性反応を示した(図6)。 The presence or absence of pluripotency and undifferentiation as stem cells of the NHDF cell-derived stem cell-like cells established as described above was analyzed cytoimmunologically using 18-passage cells. Specifically, the stem cell-like cells showed positive reactions to each antibody of stem cell markers OCT4, SOX-2, c-MYC, KLF4, STAT3 and GATA4 (Fig. 6).
更に、多能性の保持の有無、並びに癌形成力の有無を確認する為の解析を、以下の様に行った。即ち継代数18のNHDF細胞由来幹細胞様細胞を、免疫不全SCIDマウスの睾丸内組織に、約1×106個細胞を1mLの10%FCS含有DMEM培地に拡散して注入した。比較対照の為、マウスTT2ES細胞を同程度の細胞数にして、反対側の睾丸に移植した。約1ヶ月後、睾丸を摘出したところ、NHDF細胞由来幹細胞を移植した睾丸にテラトーマ形成が認められなかった一方、TT2マウスES細胞移植の睾丸はテラトーマが形成された(図7)。従って本幹細胞様細胞は、癌形成リスクの低減化が明瞭に確認された。 Furthermore, analysis for confirming the presence or absence of maintenance of pluripotency and the presence or absence of cancer-forming ability was performed as follows. That is, NHDF cell-derived stem-like cells at passage number 18 were injected into the intratesticular tissue of immunodeficient SCID mice by spreading about 1×10 6 cells in 1 mL of 10% FCS-containing DMEM medium. For comparison, mouse TT2 ES cells were transplanted into the contralateral testis with similar cell numbers. About one month later, when the testes were removed, teratoma formation was not observed in the testicles transplanted with NHDF cell-derived stem cells, whereas teratoma formation was observed in the testicles transplanted with TT2 mouse ES cells (Fig. 7). Therefore, it was clearly confirmed that this stem cell-like cell has a reduced risk of carcinogenesis.
更に、上記ヒトNHDF細胞の多分化能力の解析を、浮遊培養法により胚葉体様細胞塊を形成させてから、組織学的に行った。即ち、継代数20の細胞を、トリプシン処理により単一細胞に分散させ、遠心分離により細胞を回収した。その後、回収した細胞を約1×106個細胞/mLの濃度で、前述した浮遊培養法と同様にポリHEMAを処理し、細胞非接着性とした3.5cm培養皿(Corning)において浮遊培養により、細胞を胚葉体構造に誘導した。 Furthermore, the pluripotency of the human NHDF cells was analyzed histologically after formation of embryoid body-like cell clusters by the suspension culture method. Briefly, cells at passage number 20 were dispersed into single cells by trypsinization, and cells were collected by centrifugation. Thereafter, the collected cells were treated with poly-HEMA at a concentration of about 1×10 6 cells/mL in the same manner as in the suspension culture method described above, and suspended in a 3.5 cm culture dish (Corning) made non-adhesive. induced cells into embryoid body structures.
《神経細胞への分化誘導》
FCS1%、FGF2及びEGFを各々10μg/mL濃度で含有するDMEM培地で、上記幹細胞様細胞に浮遊培養を施した。開始後3~4日で胚葉体が形成され(図8D)、更に10日~14日間培養を継続して、得られた胚葉体を組織学的に解析したところ、外胚葉組織である神経膠様細胞の形成が認められた(図8A)。
《Induction of differentiation into nerve cells》
The stem cell-like cells were subjected to suspension culture in a DMEM medium containing 1% FCS, FGF2 and EGF each at a concentration of 10 μg/mL. Embryoid bodies were formed 3 to 4 days after initiation (Fig. 8D), culture was continued for 10 to 14 days, and the obtained embryoid bodies were histologically analyzed. Formation of like cells was observed (Fig. 8A).
《内皮細胞への分化誘導》
上記と同様の手法で、血管内皮細胞増殖因子(VEGF, Sigma)を50ng/mLで含有し、FCS10%を添加したDMEM培地で14日~20日間浮遊培養を行った。得られた胚葉体は消化管内皮様細胞(中胚葉組織)の形成が認められた(図8B)。
《Induction of differentiation into endothelial cells》
Suspension culture was performed for 14 to 20 days in a DMEM medium supplemented with 10% FCS containing 50 ng/mL of vascular endothelial growth factor (VEGF, Sigma) in the same manner as above. Formation of gastrointestinal endothelium-like cells (mesoderm tissue) was observed in the obtained embryoid body (Fig. 8B).
《肝細胞への分化誘導》
更に上記と同様の手法で、FGF4(Sigma)、HGF(Sigma)を10μg/mL濃度で含有し、FCSを10%添加したDMEM培地で14日間培養することにより、内胚葉組織である肝細胞様細胞の形成が認められた(図8C)。
《Induction of differentiation into hepatocytes》
Furthermore, in the same manner as above, FGF4 (Sigma), HGF (Sigma) at a concentration of 10 μg / mL, by culturing for 14 days in DMEM medium supplemented with 10% FCS, hepatocyte-like endoderm tissue Cell formation was observed (Fig. 8C).
上記の結果により、上記NHDF幹細胞様細胞は体外培養系で多分化能力を示すことが証明された。 The above results demonstrate that the NHDF stem cell-like cells exhibit pluripotency in an in vitro culture system.
《実施例3》ヒト羊膜細胞のヒドロキサム酸添加培養による幹細胞への誘導並びに癌細胞化リスク低減性の確認
凍結保存中のヒト羊膜由来繊維芽細胞を融解後、実施例1及び2に既述した方法と同様に増殖培養を行い、実験に用いる細胞材料とした。コンフルエントに達したヒト羊膜由来初代細胞を0.25%トリプシン処理し、遠心分離により細胞を回収した。得られた細胞を約1×106個細胞/mLの濃度で実施例2と同条件の設定で、スベロイルビスヒドロキサム酸(Cosmo Bio)を100μg/mL濃度で含有し、更に10%FCS(Gibco)、抗生物質-抗菌剤(Gibco)、10ng/mL-LIF(Sigma)、10μg/mL-BMP4(Sigma)及び10ng/mL-IGFBP3(Sigma)を加えたMEMα培地(Gibco)2mLに分散させた後、ポリHEMA塗布培養皿(3.5cm、Nunc)に播種し、37℃、5%CO2の条件下で培養を開始した。
細胞は浮遊状態のまま増殖を続け、培養開始後7~8日で直径500~600μmの胚葉体様細胞塊が多数出現した。実施例2と同様に、遠心分離により上記胚葉体様細胞塊を回収し、ポリHEMA無処理の3.5cm培養皿(Nunc)で、上記と同様の培地、培養条件で培養を継続すると、ヒドロキサム酸処理開始後10~14日程で幹細胞様コロニーが出現した(図9)。当該コロニーの継代培養を数代行うことにより、幹細胞誘導処理培養の開始後約3週間で幹細胞様細胞株を樹立した。ヒドロキサム酸との共培養処理は、実施例2と同様幹細胞様コロニーが出現した時点で停止した。
前記幹細胞様細胞は、幹細胞としての細胞生物学的特徴を有することが確認された。即ち、前記幹細胞様細胞は、(1)幹細胞マーカー遺伝子OCT4、SOX2、KLF4、c-MYC、STAT3、及びGATA4の発現が陽性であることがRT-PCR法にて確認され(図10)、(2)アルカリフォスファターゼ活性が陽性であることが確認された(図11)。更に(3)継代数15の細胞で、正常核型(46XX)であることを確認した。以上により、上記羊膜由来幹細胞様細胞が、幹細胞の特徴を備えていることが証明された。
<<Example 3>> Induction of stem cells by hydroxamic acid-added culture of human amniotic cells and confirmation of reduction in risk of cancer cell formation After thawing the human amnion-derived fibroblasts during cryopreservation, the above-described examples 1 and 2 were performed. Proliferation culture was performed in the same manner as in the method, and cell materials used in experiments were obtained. Human amnion-derived primary cells that had reached confluency were treated with 0.25% trypsin, and the cells were recovered by centrifugation. The obtained cells were set at a concentration of about 1×10 6 cells/mL under the same conditions as in Example 2, containing suberoyl bishydroxamic acid (Cosmo Bio) at a concentration of 100 μg/mL, and further added with 10% FCS ( Gibco), antibiotic-antimicrobial agent (Gibco), 10 ng/mL-LIF (Sigma), 10 μg/mL-BMP4 (Sigma) and 10 ng/mL-IGFBP3 (Sigma) were added to 2 mL of MEMα medium (Gibco). After that, the cells were seeded on a polyHEMA-coated culture dish (3.5 cm, Nunc), and culture was started under conditions of 37° C. and 5% CO 2 .
The cells continued to proliferate in a floating state, and a large number of embryoid body-like cell clusters with a diameter of 500 to 600 μm appeared 7 to 8 days after the initiation of culture. In the same manner as in Example 2, the embryoid body-like cell mass was collected by centrifugation and cultured in a 3.5 cm culture dish (Nunc) not treated with poly-HEMA under the same medium and culture conditions as described above. Stem cell-like colonies appeared 10 to 14 days after the start of acid treatment (Fig. 9). A stem cell-like cell line was established about 3 weeks after the initiation of the stem cell induction treatment culture by subculturing the colony several times. The co-culture treatment with hydroxamic acid was stopped when stem cell-like colonies appeared as in Example 2.
The stem cell-like cells were confirmed to have cell biological characteristics as stem cells. That is, the stem cell-like cells were confirmed by RT-PCR that the expression of (1) stem cell marker genes OCT4, SOX2, KLF4, c-MYC, STAT3, and GATA4 was positive (Fig. 10), ( 2) Positive alkaline phosphatase activity was confirmed (Fig. 11). Furthermore, (3) cells at passage number 15 were confirmed to have a normal karyotype (46XX). From the above, it was proved that the amnion-derived stem cell-like cells have the characteristics of stem cells.
上記ヒト羊膜由来幹細胞様細胞の多分化能力の解析は、以下の様に行った。継代数15のヒト羊膜由来幹細胞を、特開2005-151907号公報に記載の方法に準じ、EGF(Sigma)、FGF2(Sigma)、及びFGF9(Sigma)をそれぞれ20ng/mL濃度で含有するMEMα(Gibco)培地で、14~21日間接着培養し、その結果、アストロサイトマーカー及び神経幹細胞マーカーであるGFAP,ネスチン、又はTuji1各抗体に陽性反応を示す神経細胞への分化が確認された(外胚葉への分化を示す能力、図12A)。
更に、上記ヒト羊膜細胞由来幹細胞様細胞を、VEGF(Sigma)を50ng/mL濃度で含有し且つFCS10%を添加したMEMα培地で14~21日間培養を開始した。その結果、血球系の形態を示す細胞コロニーが出現し、それらの形態を示す血球細胞は血球マーカーであるCD45に対する抗体に陽性反応を示した(中胚葉への分化能力、図12B)。
一方、上記ヒト羊膜由来幹細胞様細胞を、FGF4(Sigma)、及びHGF(Sigma)を20ng/mL濃度で含有し、且つFCS10%を添加したMEMα培地で14日間培養することにより、α-フェトプロテイン抗体に陽性の肝細胞様形態が認められた(内胚葉への分化能力、図12C)。
以上の結果により、ヒト羊膜細胞由来幹細胞様細胞が、体外培養系で多分化能力を有することが確認された。なお、上記で使用した各種抗体のうち、α-フェトプロテインをコスモバイオより購入した以外は全てSigmaより購入した。抗体は、Fluorescein isothiocyanate(FITC)標識されたものを用いた。
Analysis of the pluripotency of the human amnion-derived stem cell-like cells was performed as follows. Human amnion-derived stem cells at passage number 15 were prepared according to the method described in Japanese Patent Application Laid-Open No. 2005-151907, and MEM α containing EGF (Sigma), FGF2 (Sigma), and FGF9 (Sigma) at a concentration of 20 ng/mL each Gibco) medium for 14 to 21 days of adherent culture, and as a result, differentiation into neurons showing positive reaction to each antibody of astrocyte marker and neural stem cell marker GFAP, Nestin, or Tuji1 was confirmed (ectoderm Ability to show differentiation into , Fig. 12A).
Furthermore, the human amniocyte-derived stem cell-like cells were cultured for 14 to 21 days in MEMα medium containing VEGF (Sigma) at a concentration of 50 ng/mL and supplemented with 10% FCS. As a result, cell colonies exhibiting the morphology of blood cells appeared, and the blood cells exhibiting these morphologies showed a positive reaction to an antibody against the blood cell marker CD45 (potential for differentiation into mesoderm, FIG. 12B).
On the other hand, the human amniotic membrane-derived stem cell-like cells were cultured for 14 days in MEMα medium containing FGF4 (Sigma) and HGF (Sigma) at a concentration of 20 ng/mL and supplemented with 10% FCS to obtain an α-fetoprotein antibody. A positive hepatocyte-like morphology was observed in the cells (potential to differentiate into endoderm, FIG. 12C).
Based on the above results, it was confirmed that the human amniocyte-derived stem cell-like cells have pluripotency in an in vitro culture system. All of the antibodies used above were purchased from Sigma, except for α-fetoprotein, which was purchased from Cosmo Bio. Fluorescein isothiocyanate (FITC)-labeled antibodies were used.
更に、多能性の保持の有無並びに癌形成リスク低減化力の有無を確認する為の解析を、実施例2に準じた方法で行った。即ち、継代数15の羊膜由来幹細胞様細胞を、免疫不全SCIDマウスの睾丸組織内に約1×106個細胞/mL濃度として、1mLの10%FBS含有DMEM培地に拡散させて注入した。対照としてマウスTT2ES細胞を同程度の細胞数として反対側睾丸に移植した。約30日後、睾丸を摘出したところ、ヒト羊膜細胞由来幹細胞を移植した睾丸にはテラトーマ形成が殆ど認められなかったのに対し、TT2マウスES細胞を移植された睾丸にはテラトーマ形成が確認された(図13)。この結果により、本幹細胞様細胞には、癌形成リスクの低減化が明らかに認められた。 Further, an analysis for confirming the presence or absence of maintenance of pluripotency and the presence or absence of the ability to reduce the risk of cancer formation was performed according to the method of Example 2. That is, amnion-derived stem cell-like cells at passage number 15 were diffused into 1 mL of DMEM medium containing 10% FBS and injected into the testicular tissue of immunodeficient SCID mice at a concentration of about 1×10 6 cells/mL. As a control, mouse TT2 ES cells were transplanted into the contralateral testis with a similar number of cells. About 30 days later, when the testes were removed, almost no teratoma formation was observed in the testicles transplanted with human amnion cell-derived stem cells, whereas teratoma formation was confirmed in the testicles transplanted with TT2 mouse ES cells. (Fig. 13). From this result, it was clearly recognized that the risk of cancer formation was reduced in this stem cell-like cell.
以上の結果より、ヒト羊膜幹細胞様細胞は、培養条件下で多分化能力を有しつつ、癌形成リスク低減性のある幹細胞であることが明らかとなった。 From the above results, it was revealed that the human amniotic stem cell-like cells are stem cells that have pluripotency under culture conditions and have the ability to reduce the risk of cancer formation.
本発明の製造方法により製造された幹細胞は、臨床応用分野のみならず、細胞医学、薬学、工学、農学、獣医学各分野の研究発展に非常に有益である。また、本発明の製造方法により製造された幹細胞は、生体内もしくは生体外培養系における細胞の分化転換制御メカニズムの解明や、生殖医学、分子生物学、発生学の研究材料としても利用可能である。
一方、本発明の製造方法により製造された幹細胞は、所望の分化細胞に分化誘導後、体外培養系を用いた種々の医療用細胞として、又は組織、もしくは器官の再生医療用材料として、好適に用いられ得る。また、本発明の癌細胞化リスク低減化法により、癌細胞化リスクが低減された幹細胞は、再生医療用基盤材料や化粧品用素材として使用することができる。更に、JDP2遺伝子の発現抑制剤を開発し、新規抗癌剤として臨床に応用することができる。
Stem cells produced by the production method of the present invention are extremely useful not only for clinical applications but also for research and development in the fields of cell medicine, pharmacy, engineering, agriculture and veterinary medicine. In addition, the stem cells produced by the production method of the present invention can be used as materials for elucidation of cell differentiation control mechanisms in in vivo or in vitro culture systems, reproductive medicine, molecular biology, and embryology. .
On the other hand, the stem cells produced by the production method of the present invention are preferably used as various medical cells using an in vitro culture system or as regenerative medicine materials for tissues or organs after differentiation induction into desired differentiated cells. can be used. In addition, stem cells whose risk of canceration has been reduced by the method for reducing the risk of canceration of the present invention can be used as basic materials for regenerative medicine and cosmetics. Furthermore, a JDP2 gene expression inhibitor can be developed and applied clinically as a novel anticancer agent.
Claims (8)
体細胞を、ヒストン脱アセチル化酵素阻害剤を含む培地で培養する工程を含む、幹細胞の製造方法。 A method for producing stem cells, comprising the step of culturing somatic cells in a medium containing a histone deacetylase inhibitor. 前記ヒストン脱アセチル化酵素阻害剤が、スベロイルビスヒドロキサム酸、トリコスタチンA、酪酸、バルプロ酸、アピシジン、オキサムフラチン(Oxamflatin)、又はスプリトマイシン(Splitomicin)である、請求項1に記載の幹細胞の製造方法。 The production of stem cells according to claim 1, wherein the histone deacetylase inhibitor is suberoylbishydroxamic acid, trichostatin A, butyric acid, valproic acid, apicidin, oxamflatin, or splitomicin. Method. 前記幹細胞が、OCT4、SOX2、c-MYC、KLF4、STAT3、及びGATA4からなる群から選択される少なくとも1つの幹細胞マーカーを発現する、請求項1又は2に記載の幹細胞の製造方法。 3. The method for producing stem cells according to claim 1, wherein the stem cells express at least one stem cell marker selected from the group consisting of OCT4, SOX2, c-MYC, KLF4, STAT3, and GATA4. 請求項1~3のいずれか一項の製造方法による癌細胞化のリスク低減方法。 A method for reducing the risk of cancer cell transformation by the production method according to any one of claims 1 to 3. 癌細胞のJDP2遺伝子をRNA干渉による抑制する工程を含む、幹細胞の製造方法。 A method for producing stem cells, comprising a step of suppressing the JDP2 gene of cancer cells by RNA interference. 前記RNA干渉が、癌細胞にJDP2遺伝子のmRNAの相補的低分子RNAベクターを導入することによって実施される、請求項5に記載の幹細胞の製造方法。 6. The method for producing stem cells according to claim 5, wherein the RNA interference is performed by introducing a small RNA vector complementary to the mRNA of the JDP2 gene into cancer cells. 前記幹細胞が、OCT4、SOX2、c-MYC、KLF4、STAT3、及びGATA4からなる群から選択される少なくとも1つの幹細胞マーカーを発現する、請求項5又は6に記載の幹細胞の製造方法。 7. The method for producing stem cells according to claim 5, wherein the stem cells express at least one stem cell marker selected from the group consisting of OCT4, SOX2, c-MYC, KLF4, STAT3, and GATA4. 請求項1~3及び5~7のいずれか一項に記載の製造方法によって得られる幹細胞。 Stem cells obtained by the production method according to any one of claims 1 to 3 and 5 to 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023078341A JP2023090959A (en) | 2019-01-24 | 2023-05-11 | Method for producing stem cell, and method of reducing risk of transforming into cancer cell |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019010487A JP2020115792A (en) | 2019-01-24 | 2019-01-24 | Method for producing stem cell, and method of reducing risk of transforming into cancer cell |
JP2023078341A JP2023090959A (en) | 2019-01-24 | 2023-05-11 | Method for producing stem cell, and method of reducing risk of transforming into cancer cell |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019010487A Division JP2020115792A (en) | 2019-01-24 | 2019-01-24 | Method for producing stem cell, and method of reducing risk of transforming into cancer cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023090959A true JP2023090959A (en) | 2023-06-29 |
Family
ID=71889082
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019010487A Pending JP2020115792A (en) | 2019-01-24 | 2019-01-24 | Method for producing stem cell, and method of reducing risk of transforming into cancer cell |
JP2023078341A Pending JP2023090959A (en) | 2019-01-24 | 2023-05-11 | Method for producing stem cell, and method of reducing risk of transforming into cancer cell |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019010487A Pending JP2020115792A (en) | 2019-01-24 | 2019-01-24 | Method for producing stem cell, and method of reducing risk of transforming into cancer cell |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP2020115792A (en) |
Family Cites Families (2)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104894060B (en) * | 2014-03-03 | 2018-11-06 | 中国科学院上海生命科学研究院 | Inducing somatic transdifferentiation is the method and its application of neural stem cell |
KR101816103B1 (en) * | 2015-04-13 | 2018-01-08 | 고려대학교 산학협력단 | Direct Conversion Method of Human Fibroblasts into Neural Stem Cells Using Small Molecules |
-
2019
- 2019-01-24 JP JP2019010487A patent/JP2020115792A/en active Pending
-
2023
- 2023-05-11 JP JP2023078341A patent/JP2023090959A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2020115792A (en) | 2020-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | 2020 | Advances in pluripotent stem cells: history, mechanisms, technologies, and applications |
KR101874463B1 (en) | 2018-08-02 | Methods for reprogramming cells and uses thereof |
Brouwer et al. | 2016 | Choices for induction of pluripotency: recent developments in human induced pluripotent stem cell reprogramming strategies |
Abou-Saleh et al. | 2018 | The march of pluripotent stem cells in cardiovascular regenerative medicine |
WO2009114949A1 (en) | 2009-09-24 | Methods for deprogramming somatic cells and uses thereof |
JP2022513355A (en) | 2022-02-07 | Induced pluripotent cells containing controllable transgenes for conditional immortality |
WO2008020666A1 (en) | 2008-02-21 | Embryonic stem cell-like cells |
EP2513297B1 (en) | 2016-09-21 | Materials and methods for generating pluripotent stem cells |
KR101376635B1 (en) | 2014-03-24 | Composition for reprogramming cells into induced pluripotent stem cells comprising Rex1 and method to produce induced pluripotent stem cells using the same |
Yamasaki et al. | 2013 | Long-term serial cultivation of mouse induced pluripotent stem cells in serum-free and feeder-free defined medium |
WO2013011093A1 (en) | 2013-01-24 | Novel method for generation of neural progenitor cells |
RU2399667C1 (en) | 2010-09-20 | Method for preparing pluripotent cells |
Kang et al. | 2010 | Induced pluripotent stem cells (iPSCs)—a new era of reprogramming |
Tai et al. | 2015 | Generation of Arbas Cashmere goat induced pluripotent stem cells through fibroblast reprogramming |
KR101548534B1 (en) | 2015-09-02 | method for dedifferentiating adult cell to induced pluripotent stem cell using electromagnetic field |
KR101166257B1 (en) | 2012-07-19 | Media composition comprising neuropeptide y for the generation, maintenance, prologned undifferentiated growth of pluripotent stem cells and method of culturing pluripotent stem cell using the same |
JP2023090959A (en) | 2023-06-29 | Method for producing stem cell, and method of reducing risk of transforming into cancer cell |
KR102137883B1 (en) | 2020-07-24 | High-efficiency cell culture medium additive including sodium phenylbutyrate |
Skowron et al. | 2014 | An experimental approach to the generation of human embryonic stem cells equivalents |
KR102137884B1 (en) | 2020-07-24 | High-efficiency cell culture medium additive including tauroursodeoxycholic acid |
US11492599B2 (en) | 2022-11-08 | Method for generating induced pluripotent stem cells from fibroblast cells |
KR102137885B1 (en) | 2020-07-24 | High-efficiency cell culture medium additive including butylated hydroxyanisole |
AU2564100A (en) | 2000-09-04 | Pluripotential cells-1 |
KR101744053B1 (en) | 2017-06-07 | Method for producing induced pluripotent stem cells using uniaxial tensile stress |
Xu et al. | 2013 | Road to future: iPSC clinical application in Parkinson’s disease treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
2023-05-11 | A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230511 |
2023-05-11 | A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230511 |
2024-04-09 | A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240409 |
2024-10-01 | A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20241001 |