patents.google.com

JP3743580B2 - heat pump - Google Patents

  • ️Wed Feb 08 2006

JP3743580B2 - heat pump - Google Patents

heat pump Download PDF

Info

Publication number
JP3743580B2
JP3743580B2 JP00818096A JP818096A JP3743580B2 JP 3743580 B2 JP3743580 B2 JP 3743580B2 JP 00818096 A JP00818096 A JP 00818096A JP 818096 A JP818096 A JP 818096A JP 3743580 B2 JP3743580 B2 JP 3743580B2 Authority
JP
Japan
Prior art keywords
refrigerant
regenerator
absorption medium
path
medium
Prior art date
1996-01-22
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00818096A
Other languages
Japanese (ja)
Other versions
JPH09196501A (en
Inventor
田 健 作 前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
1996-01-22
Filing date
1996-01-22
Publication date
2006-02-08
1996-01-22 Application filed by Ebara Corp filed Critical Ebara Corp
1996-01-22 Priority to JP00818096A priority Critical patent/JP3743580B2/en
1997-01-14 Priority to US08/783,042 priority patent/US5791157A/en
1997-01-16 Priority to CNA2004100301908A priority patent/CN1536280A/en
1997-01-16 Priority to CNB971004250A priority patent/CN1172127C/en
1997-07-31 Publication of JPH09196501A publication Critical patent/JPH09196501A/en
1998-04-09 Priority to US09/057,588 priority patent/US5966955A/en
2006-02-08 Application granted granted Critical
2006-02-08 Publication of JP3743580B2 publication Critical patent/JP3743580B2/en
2016-01-22 Anticipated expiration legal-status Critical
Status Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1417Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with liquid hygroscopic desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • F24F6/14Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles
    • F24F2006/146Air-humidification, e.g. cooling by humidification by forming water dispersions in the air using nozzles using pressurised water for spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Central Air Conditioning (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプに係り、特にデシカント式空調システム用の熱源機として使用する蓄熱機能付きヒートポンプに関する。
【0002】
【従来の技術】
デシカント式空調装置は米国特許第2,700,537号明細書に記載されている。この公知例に示されたデシカント式空調装置では、デシカント(吸湿剤)の再生のための熱源として、100〜150℃程度の温度の熱源を必要とし、もっぱら電気ヒータやボイラが熱源として用いられていた。最近になってデシカントの改良により、60〜80℃の温度でもデシカントの再生ができるデシカント空調装置が開発され、温度の低い熱源で運転が可能になって、デシカントの再生および処理空気の冷却用に電動式の蒸気圧縮式ヒートポンプ(冷凍機を含む)を組合せたデシカント式空調装置が開発されるようになった。
【0003】
図12は公知の電動式の蒸気圧縮式ヒートポンプまたは冷凍機を組合せたデシカント式空調装置の従来例で、図13は図12の例の空調機の運転状態を示したモリエル線図である。図12の図中番号101は空調空間、102は送風機、103は処理空気および再生空気と選択的に接することができるデシカント材を内包したデシカントロータ、104は顕熱熱交換器、105は加湿器、106は加湿器の給水配管、107〜113は処理空気の空気通路、140は再生空気の送風機、220は凝縮器で冷媒と再生空気の熱交換器(加熱器)、121は顕熱熱交換器、124〜130は再生空気の空気通路、201〜204は冷媒経路、240は蒸発器で冷媒と再生空気の熱交換器(冷却器)、250は膨張弁、260は圧縮機である。また図中、丸で囲ったアルファベットK〜Vは、図13と対応する空気の状態を示す記号であり、SAは給気を、RAは還気を、OAは外気を、EXは排気を表わす。
【0004】
この従来例の作用について説明すると、図12において、空調される室内101の空気(処理空気)は経路107を経て送風機102に吸引され昇圧されて経路108をへてデシカントロータ103に送られデシカントロータの吸湿剤で空気中の水分を吸着され絶対湿度が低下する。また吸着の際、吸着熱によって空気は温度上昇する。湿度が下がり温度上昇した空気は経路109を経て顕熱熱交換器104に送られ外気(再生空気)と熱交換して冷却される。冷却された空気は経路110を経て冷却器240に送られ冷凍機の作用によって冷却され、経路112を経て加湿器105に送られ水噴射または気化式加湿によって等エンタルピ過程で温度低下し経路113を経て空調空間101に戻される。
【0005】
デシカントはこの過程で水分を吸着したため、再生が必要で、この従来例では外気を用いて次のように行われる。外気(OA)は経路124を経て送風機140に吸引され昇圧されて顕熱熱交換器104に送られ、処理空気を冷却して自らは温度上昇し経路125を経て次の顕熱熱交換器121に流入し、再生後の高温の空気と熱交換して温度上昇する。さらに顕熱熱交換器121を出た再生空気は経路126を経て加熱器220に流入し冷凍機の凝縮熱によって加熱され60〜80℃まで温度上昇し、相対湿度が低下する。相対湿度が低下した再生空気はデシカントロータ103を通過してデシカントロータの水分を除去する。デシカントロータ103を通過した再生空気は経路129を経て顕熱熱交換器121に流入し、再生前の再生空気の余熱を行ったのち経路130を経て排気として外部に捨てられる。
【0006】
これまでの過程をモリエル線図を用いて説明すると、図13において、空調される室内101の空気(処理空気:状態K)は経路107を経て送風機102に吸引され昇圧されて経路108をへてデシカントロータ103に送られデシカントロータの吸湿剤で空気中の水分を吸着され絶対湿度が低下するとともに吸着熱によって空気は温度上昇する(状態L)。湿度が下がり温度上昇した空気は経路109を経て顕熱熱交換器104に送られ外気(再生空気)と熱交換して冷却される(状態M)。冷却された空気は経路110を経て冷却器240に送られ冷凍機の作用によって冷却され(状態N)、経路112を経て加湿器105に送られ水噴射または気化式加湿によって等エンタルピ過程で温度低下し(状態P)、経路113を経て空調空間101に戻される。このようにして室内の還気(K)と給気(P)との間にはエンタルピ差ΔQが生じ、これによって空調空間101の冷房が行われる。
【0007】
デシカントの再生は次のように行われる。外気(OA:状態Q)は経路124を経て送風機140に吸引され昇圧されて顕熱熱交換器104に送られ、処理空気を冷却して自らは温度上昇し(R)経路125を経て次の顕熱熱交換器121に流入し、再生後の高温の空気と熱交換して温度上昇する(状態S)。さらに顕熱熱交換器121を出た再生空気は経路126を経て加熱器220に流入しヒートポンプの凝縮熱によって加熱され60〜80℃まで温度上昇し、相対湿度が低下する(状態T)。相対湿度が低下した再生空気はデシカントロータ103を通過してデシカントロータの水分を除去する(状態U)。デシカントロータ103を通過した再生空気は経路129を経て顕熱熱交換器121に流入し、再生前の再生空気の余熱を行って自らは温度低下した(状態V)のち経路130を経て排気として外部に捨てられる。このようにしてデシカントの再生と処理空気の除湿、冷却をくりかえし行うことによって、デシカントによる空調が行われていた。
【0008】
このように構成されたデシカント空調では、組み合わされる蒸気圧縮冷凍サイクルには80℃程度の凝縮温度と10℃程度の蒸発温度が要求される。近年になって蒸気圧縮冷凍サイクルの冷媒に従来のフロン系を使用せず自然環境に対する影響が少ないアンモニア等の自然冷媒を使用することが望まれるとともに、夏期の日中には圧縮機を停止しても冷房が行えるような所謂蓄熱機能が求められるようになったが、冷凍サイクルの冷媒にアンモニアを使用してこのような凝縮温度を達成しようとすると圧力が42kg/cm2 にもなって異常に高くなり、装置が高価になる欠点があり、また蓄熱機能を持たせようとすると、10℃程度の低温と80℃程度の高温の両方の温度の蓄熱槽が必要となり、設備が極めて複雑で高価なものになる欠点があることが判った。
【0009】
【発明が解決しようとする課題】
本発明は前述した点に鑑みてなされたもので、ヒートポンプの作動圧力を下げて、かつ冷却作用および加熱作用の両方の作用を吸収媒体の濃度ポテンシャルの形態で蓄熱するとともに、蓄熱運転と、蓄熱を保持しつつ冷房を行う運転と、蓄熱を消費して冷房を行う運転と、全く蓄熱を使わずに冷房を行う運転とを選択的に切り換えて運転可能にすることによって、作動範囲が広く、信頼性が高く、かつ安価な蓄熱機能を備えたヒートポンプを提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明によれば、吸収器と再生器と圧縮機とを有し、吸収器と再生器との間を循環する吸収媒体の経路および再生器の冷媒蒸気を圧縮機で圧縮して吸収器に移送する冷媒の経路を有し、前記再生器の冷却作用を外部に取り出す熱媒体と熱交換関係にある蒸発器を設け、前記再生器内の吸収媒体と熱交換関係にある凝縮器を設け、前記圧縮機で圧縮した冷媒蒸気を該凝縮器に導き凝縮した冷媒を貯蔵する冷媒貯蔵空間を設け、再生器で濃縮した吸収媒体を貯蔵する吸収媒体貯蔵空間を設け、前記蒸発器の冷媒空間を前記冷媒貯蔵空間および前記吸収器に接続したヒートポンプにおいて、圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記凝縮器で冷媒を凝縮させることによって吸収媒体を濃縮して吸収媒体濃度を増加させるとともに濃縮した吸収媒体を前記吸収媒体貯蔵空間に貯蔵し、かつ凝縮した冷媒を前記冷媒貯蔵空間に貯蔵する第1の運転モードと、圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記凝縮器で冷媒を凝縮させることによって前記再生器内の吸収媒体を濃縮して吸収媒体濃度を増加させるとともに、前記蒸発器で冷媒を蒸発させて蒸発した冷媒を前記吸収器で吸収させる第2の運転モードと、圧縮機を停止して前記蒸発器で冷媒を蒸発させて蒸発した冷媒を前記吸収器で吸収させる第3の運転モードと、圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記吸収器で吸収させる第4の運転モードの4種類の運転モードとを備え、各々の運転モードを選択的に切換可能に構成してある。
【0011】
本発明によれば、冷媒蒸気を吸収媒体で吸収する吸収器と冷媒蒸気を吸収媒体から分離する再生器と冷媒蒸気を圧縮する圧縮機を有し、該吸収器と該再生器との間を循環する吸収媒体の循環経路および再生器の冷媒蒸気を圧縮機で圧縮して吸収器に移送する冷媒の経路を有し、前記再生器の冷却作用を外部に取り出す熱媒体と熱交換関係にある蒸発器を設け、さらに前記再生器内の吸収媒体と熱交換関係にある凝縮器を設け、さらに前記圧縮機で圧縮した冷媒蒸気を該凝縮器に導き凝縮した冷媒を貯蔵する冷媒貯蔵空間を設け該冷媒貯蔵空間を前記蒸発器と接続し、さらに再生器で濃縮した吸収媒体を貯蔵する吸収媒体貯蔵空間を設け該吸収媒体貯蔵空間を前記発生器および吸収媒体の循環経路と接続し、さらに前記蒸発器の冷媒空間を前記冷媒貯蔵空間および前記吸収器に接続したヒートポンプにおいて、圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記凝縮器で冷媒を凝縮させることによって吸収媒体を濃縮して吸収媒体濃度を増加させるとともに濃縮した吸収媒体を前記吸収媒体貯蔵空間に貯蔵し、かつ凝縮した冷媒を前記冷媒貯蔵空間に貯蔵する第1の運転モードと、圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記凝縮器で冷媒を凝縮させることによって前記再生器内の吸収媒体を濃縮して吸収媒体濃度を増加させるとともに、前記蒸発器で冷媒を蒸発させて蒸発した冷媒を前記吸収器で吸収させる第2の運転モードと、圧縮機を停止して前記蒸発器で冷媒を蒸発させて蒸発した冷媒を前記吸収器で吸収させる第3の運転モードと、圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記吸収器で吸収させる第4の運転モードの4種類の運転モードとを備え、各々の運転モードを選択的に切換可能に構成してある。
【0012】
本発明によれば、冷媒蒸気を吸収媒体で吸収し吸収熱で温熱媒体を加熱する吸収器と再生熱を冷熱媒体から奪って冷媒蒸気を吸収媒体から分離する再生器と冷媒蒸気を圧縮する圧縮機を有し、該吸収器と該再生器との間を循環する吸収媒体の循環経路および再生器の冷媒蒸気を圧縮機で圧縮して吸収器に移送する冷媒の経路を有し、前記再生器の冷却作用を外部に取り出す冷熱媒体の経路を流動するものと同じ冷熱媒体と熱交換関係にある蒸発器を設け、前記冷熱媒体が前記再生器または該蒸発器を選択的に流動できるよう冷熱媒体の経路を開閉弁を介してヒートポンプ外部との冷熱媒体の接続口と接続し、前記再生器内の吸収媒体と熱交換関係にある凝縮器を設け、該凝縮器には前記圧縮機で圧縮した冷媒蒸気を分岐して導く経路と凝縮器で凝縮した冷媒を前記冷媒貯蔵空間に導く経路を設け、該冷媒貯蔵空間を前記蒸発器と接続し、さらに再生器で濃縮した吸収媒体を貯蔵する吸収媒体貯蔵空間を設け該吸収媒体貯蔵空間を前記発生器と接続し、前記吸収媒体貯蔵空間を再生器を出た吸収媒体の循環経路と開閉弁を介して接続し、前記蒸発器の冷媒空間を前記吸収器に接続するよう構成したヒートポンプにおいて、圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記凝縮器で冷媒を凝縮させることによって吸収媒体を濃縮して吸収媒体濃度を増加させるとともに濃縮した吸収媒体を前記吸収媒体貯蔵空間に貯蔵し、かつ凝縮した冷媒を前記冷媒貯蔵空間に貯蔵する第1の運転モードと、圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記凝縮器で冷媒を凝縮させることによって前記再生器内の吸収媒体を濃縮して吸収媒体濃度を増加させるとともに、前記蒸発器で冷媒を蒸発させて蒸発した冷媒を前記吸収器で吸収させる第2の運転モードと、圧縮機を停止して前記蒸発器で冷媒を蒸発させて蒸発した冷媒を前記吸収器で吸収させる第3の運転モードと、圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記吸収器で吸収させる第4の運転モードの4種類の運転モードとを備え、各々の運転モードを選択的に切換可能に構成してある。
【0013】
したがって、冷媒とともに吸収媒体を使用するため、ヒートポンプの作動圧力が下がるとともに、吸収媒体と冷媒を貯蔵することによって、冷却作用および加熱作用の両方を吸収媒体の濃度ポテンシャルの形態で蓄熱し、また蓄熱を取り出す際には冷却作用および加熱作用の両方の作用として同時に取り出すことができ、蓄熱を行う蓄熱運転と、蓄熱を保持しつつ冷房を行う運転と、蓄熱を消費して冷房を行う運転と、全く蓄熱を使わずに冷房を行う運転とを選択的に切り換えて運転可能にすることことによって、作動範囲が広く、信頼性が高く、かつ安価な蓄熱機能を備えたヒートポンプおよびデシカント空調システムを提供することができ、さらに水アンモニア系の吸収作動媒体などの自然冷媒も使用可能となるため、環境に対する影響が少ないヒートポンプを提供することができる。特に本発明のヒートポンプはデシカント空調システムに対して好適に組合せることができる。
【0014】
【発明の実施の形態】
以下、本発明に係るヒートポンプの一実施例を図1乃至図3を参照して説明する。
【0015】
図1は本発明を実施したヒートポンプの基本構成を示す図であり、図2は図1のヒートポンプと組合わせるデシカント空調機の基本構成を示す図である。図1において、本発明を実施したヒートポンプは冷媒蒸気を吸収媒体で吸収し吸収熱で伝熱管30を介して温熱媒体(温水)を加熱する吸収器1と再生熱を伝熱管32を介して冷熱媒体(冷水)から奪って冷媒蒸気を吸収媒体から分離する再生器2と吸収媒体の熱交換器5と冷媒蒸気を圧縮する圧縮機7を有し、該吸収器1と該再生器2との間を循環する吸収媒体の循環経路21、22、23、24、25、26および再生器2の冷媒蒸気を圧縮機7で圧縮して吸収器に移送する冷媒の経路40、41、42及び該経路の途中に調節弁55を有するヒートポンプで、前記再生器2の冷却作用を伝熱管32を介して外部に取り出す冷熱媒体の経路62、63を流動するものと同じ冷熱媒体と伝熱管31を介して熱交換関係にある蒸発器3を設け、さらに前記冷熱媒体が前記再生器2または該蒸発器3を選択的に流動できるよう冷熱媒体の経路62、63を開閉弁70、71を介して、また経路67、68を開閉弁72、73および経路64、65を介して冷熱媒体の接続口60、61と接続し、さらに前記再生器2内の吸収媒体と熱交換関係にある凝縮器4を設け、さらに該凝縮器4には前記圧縮機7で圧縮した冷媒蒸気を経路41から開閉弁56によって分岐して導く経路43と凝縮器4で凝縮した冷媒を前記冷媒貯蔵空間14に導く経路44を設け、さらに該冷媒貯蔵空間14を前記蒸発器3と冷媒経路45、弁52、冷媒経路46を介して接続し、さらに再生器2で濃縮した吸収媒体を貯蔵する吸収媒体貯蔵空間12を設け該吸収媒体貯蔵空間12を前記発生器2と経路27、開閉弁51、経路28を介して接続し、さらに前記吸収媒体貯蔵空間12と再生器2を出た吸収媒体の循環経路21と経路29、3方弁50を介して接続し、さらに前記蒸発器3の冷媒空間を前記吸収器1に経路47を介して接続し、さらに前記再生器には圧力検出器91を設け、該検出器91の検出信号により前記調節弁55を開閉して前記再生器の圧力を設定値に保つ制御機構90を有するするよう構成したものである。
【0016】
このように構成された図1のヒートポンプからは冷熱媒体(冷水)と温熱媒体(温水)が、それぞれ冷水経路の出入口60、61、温水経路の出入口80、81を介して図2に示すデシカント空調機と接続され、循環するよう構成する。
【0017】
図2のデシカント空調機は以下に示すよう構成されている。空調空間101は処理空気の送風機102の吸い込み口と経路107を介して接続し、送風機102の吐出口はデシカントロータ103と経路108を介して接続し、デシカントロータ103の処理空気の出口は再生空気と熱交換関係にある顕熱熱交換器104と経路109を介して接続し、顕熱熱交換器104の処理空気の出口は冷水熱交換器115と経路110を介して接続し、冷水熱交換器115の処理空気の出口は加湿器105と経路119を介して接続し、加湿器105の処理空気の出口は空調空間101と経路111を介して接続して処理空気のサイクルを形成する。
【0018】
一方、再生用の空気経路は、外気を再生空気用の送風機140の吸い込み口と経路124を介して接続し、送風機140の吐出口は処理空気と熱交換関係にある顕熱熱交換器104と接続し、顕熱熱交換器104の再生空気の出口は別の顕熱熱交換器121の低温側入口と経路125を介して接続し、顕熱熱交換器121の低温側出口は温水熱交換器120と経路126を介して接続し、温水熱交換器120の再生空気の出口はデシカントロータ103の再生空気入口と経路127を介して接続し、デシカントロータ103の再生空気の出口は顕熱熱交換器121の高温側入口と経路128を介して接続し、顕熱熱交換器121の高温側出口は外部空間と経路129を介して接続して再生空気を外部から取り入れて、外部に排気するサイクルを形成する。前記温水熱交換器120の温水入口は経路122を介してヒートポンプの温水経路の出口81に接続し、温水熱交換器120の温水出口は経路123および温水ポンプ150を介してヒートポンプの温水経路の入口80に接続する。また前記冷水熱交換器115の冷水入口は経路117を介してヒートポンプの冷水経路の出口61に接続し、冷水熱交換器115の冷水出口は経路118およびポンプ160を介してヒートポンプの冷水経路の入口60に接続するよう構成する。なお図中、丸で囲ったアルファベットK〜Vは、図13と対応する空気の状態を示す記号であり、SAは給気を、RAは還気を、PAは外気を、EXは排気を表わす。
【0019】
本発明によれば、このように構成した図1のヒートポンプを図3に示すような第1乃至第4の4種類の運転モードによって、それぞれ選択的に切り換え可能に構成したものである。図3において、第1の運転モードでは、圧縮機7を運転して前記再生器2の冷媒蒸気を圧縮して前記凝縮器4で冷媒を凝縮させることによって吸収媒体を濃縮して吸収媒体濃度を増加させるとともに濃縮した吸収媒体を前記吸収媒体貯蔵空間12に貯蔵し、かつ凝縮した冷媒を前記冷媒貯蔵空間14に貯蔵するよう構成し、さらに第2の運転モードでは、圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記凝縮器で冷媒を凝縮させることによって前記再生器内の吸収媒体を濃縮して吸収媒体濃度を増加させるとともに、前記蒸発器で冷媒を蒸発させて蒸発した冷媒を前記吸収器で吸収させるよう構成し、さらに第3の運転モードでは、圧縮機を停止して前記蒸発器で冷媒を蒸発させて蒸発した冷媒を前記吸収器で吸収させるよう構成し、さらに第4の運転モードでは圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記吸収器で吸収させるよう構成し、そして各々の運転モードを後述のように選択的に切換可能に構成するものである。
【0020】
次に本実施例の作用について以下に説明する。
【0021】
まず、第1の運転モードにより蓄熱運転を行う場合の運転形態と作用について説明する。このような運転は一般的には夏期に深夜電力を使用して日中の冷房負荷の一部を賄うための冷房能力の備蓄として行うものである。第1の運転モードでは、ヒートポンプは図4のように設定して運転する。図4において、開閉弁56は開いており、経路41と経路43は連通する。調節弁55は制御機構90の作用によって再生器2の圧力を設定値に保つよう制御され、さらに開閉弁51は開いており、吸収媒体貯蔵空間12と再生器2は連通している。弁52は閉じており、冷媒貯蔵空間14と蒸発器3は連通していない。開閉弁72、73は閉じており、蒸発器3には冷熱媒体(冷水)は流動していない。開閉弁70、71は閉じており、再生器2には冷熱媒体(冷水)は流動していない。3方弁50は経路21方向が閉じており、再生器2と吸収媒体経路22は直接連通していない。また空調機では図2において送風機102は停止して空調空間への給気は停止する。送風機140は運転してデシカントの再生ができるよう送風を続ける。冷水は停止し温水のみ運転する。ヒートポンプの圧縮機7と溶液ポンプ6を運転する。
【0022】
このように設定されたヒートポンプの作用について説明すると、図4において圧縮機7を運転すると、再生器2内の吸収媒体から冷媒蒸気が発生し、冷媒は圧縮されて経路41、43を経て再生器2と熱交換関係にある凝縮器4に流入する。冷媒は凝縮器4で熱を再生器2の吸収媒体に奪われて凝縮する。このとき前記の再生器2内の吸収媒体から冷媒蒸気が発生する際の再生熱は冷媒の凝縮熱によって賄われるが、再生熱よりも凝縮熱の方が圧縮機の動力が加わるため一般に大きく、そのため再生器2内の吸収媒体温度及び圧力は上昇傾向になる。しかし圧力検出器91と、制御機構90と調節弁55の作用によって、再生器2内の吸収媒体の圧力が上昇すると、調節弁55が開き、吸収器1に冷媒蒸気を送って過剰な蒸気を吸収器1で吸収させ、また再生器2内の吸収媒体の圧力が下がると、調節弁55が閉じ、吸収器1に送る冷媒蒸気絞って冷媒蒸気を再生器2に保持するよう作用するので、再生器2の圧力は設定値に保つことができる。
【0023】
吸収器1に送られた冷媒蒸気は吸収媒体に吸収され、吸収熱は吸収媒体と温熱媒体が伝熱管30を介して熱交換して冷却される。この時温水は吸収媒体の冷却によって自らは加熱され温度上昇するが、その熱は図2における空調機の送風機140の作用によってもたらされる外気と温水熱交換器120で熱交換し、再生空気に放熱される。この時、デシカントロータ103は気温が上昇し相対湿度が低下した再生空気によって再生作用を受ける。凝縮した冷媒は経路44を経て冷媒貯蔵空間14に導かれ貯蔵される。
【0024】
また吸収媒体は再生器2で濃縮されたのち再生器2から経路27、開閉弁51、経路28を経て吸収媒体貯蔵空間12を経由し、経路29を経て吸収媒体の経路22を経てポンプ6に流入し、ポンプ6の作用によって経路23を経て熱交換器5で吸収器1から戻る吸収媒体と熱交換した後経路24を経て吸収器1に流入し圧縮機7からの一部の冷媒を吸収してわずかに希釈されたのち経路25、熱交換器5、経路26を経て再生器2に還流し循環経路を循環する。このような運転形態では、一部の冷媒は吸収器1で冷媒を吸収して吸収媒体を希釈するが、大部分の冷媒は同じ吸収媒体から分離されて凝縮器4に流入して凝縮されるため、全体としては吸収媒体の濃縮が進んで、冷媒が冷媒貯蔵空間14に十分貯蔵された時点でこの第1の運転モードでの運転を停止し、次のモードに移行する。
【0025】
これまでの吸収媒体の濃縮による蓄熱の過程を図5を用いて説明する。図5は吸収媒体濃縮の過程を示すデューリング線図である。図5において、再生器2中の吸収媒体はCの状態にあり、圧縮機の作用によって、冷媒蒸気(状態E)が分離される。分離された冷媒は圧縮されて(状態F)大部分は凝縮器4に送られ凝縮し(状態G)残りの一部は調節弁55を経て減圧され吸収器1に送られて吸収媒体に吸収される(状態A)。吸収媒体経路を循環する吸収媒体は、再生器2を出て(状態C)熱交換器で加熱され(状態D)、吸収器1に流入し冷媒蒸気を吸収した後(状態A)、熱交換器で冷却され(状態B)、再び再生器に戻る。
【0026】
凝縮の際の凝縮熱は再生器2内の吸収媒体を加熱して、再生熱を賄う。また吸収の際の吸収熱は温水によって冷却され(図中では80℃)て空調機に移送されデシカントの再生に使用する。なおこの運転形態では冷水は製造されず前記のごとく、温水を製造してデシカントの再生空気の加熱に使用し、その際温水は冷却されてヒートポンプに還流する。第1の運転モードが終了した時点で、凝縮した冷媒(状態G)と濃縮した吸収媒体(状態C)がそれぞれ貯蔵空間に貯蔵される。
【0027】
このようにして吸収媒体から冷媒を分離し濃度ポテンシャルの形態で貯蔵することで、蓄熱作用すなわち冷房作用の備蓄作用が得られることは第3の運転モードで示す運転形態で改めて説明する。また本運転形態では温水によるデシカントの再生作用のみ行う。この作用について以下に説明する。
【0028】
図2において、空調機には経路81を経由して温水がヒートポンプから流入する。本運転形態では、送風機140の作用によって、外気が経路124を経て取り入れられ、顕熱熱交換器104に流入するが、顕熱熱交換器104は空調空間を循環する処理空気系統が停止しているため作用せず、従って温度変化せずに経路125を経て別の顕熱熱交換器121に流入し、デシカント再生後の再生空気と熱交換して温度上昇した後経路126を経て温水熱交換器120に流入し、ここで温水によって加熱されて温度上昇して相対湿度が低下する。温水熱交換器120を出て相対湿度が低下した再生空気はデシカントロータ103を通過して、デシカントロータの水分を除去し再生作用をする。デシカントロータ103を通過した再生空気は経路128を経て顕熱熱交換器121に流入し再生空気を余熱した後、経路129をへて外部に排気される。
【0029】
このようにして本発明によれば、第1の運転モードすなわち蓄熱運転中に、停止している空調機のデシカントの再生も同時行うことができる。蓄熱運転は通常深夜に行われ、夏期の深夜は気温の低下によって相対湿度が上昇することが多く、従ってデシカントがこのような外気に触れた状態で放置されるとデシカントが水分を吸着してしまい翌日朝の冷房開始時の能力が不足する可能性があるが、このようにしてデシカントの再生を深夜蓄熱と同時に行っておくことは、翌日の運転開始時に円滑に能力発揮する上で効果がある。
【0030】
次に、第2の運転モードにより蓄熱を併用して蓄熱を保持しつつ冷房運転を行う場合の運転形態と作用について説明する。このような運転は深夜電力を使用して蓄熱を終えた後、日中の本格的冷房運転に備えて蓄熱をあまり使用せずに、冷房運転を行うためのものである。通常冷房負荷は正午から午後4時にかけての時間帯が最も負荷が大きく、該時間帯に集中的に蓄熱を使用することが有効であるため、それまでの時間帯は本運転モードで運転することが全体として効果を発揮する。
【0031】
第2の運転モードでは、ヒートポンプは図6のように設定して運転する。図6において、開閉弁56は開いており、経路41と経路43は連通する。調節弁55は制御機構90の作用によって再生器2の圧力を設定値に保つよう制御され、開閉弁51は開いており、吸収媒体貯蔵空間12と再生器2は連通している。弁52は開いており、冷媒貯蔵空間14から蒸発器3に冷媒が送られる。さらに開閉弁72、73は開いており、蒸発器3には冷熱媒体(冷水)が通水される。開閉弁70、71は閉じており、再生器2には冷熱媒体(冷水)は流動しない。3方弁50は経路21方向が閉じており、再生器2と吸収媒体経路22は直接連通していない。ヒートポンプの圧縮機7と溶液ポンプ6を運転し、また空調機を運転する。
【0032】
このように設定されたヒートポンプの作用について説明すると、図6において圧縮機7を運転すると、再生器2内の吸収媒体から冷媒蒸気が発生し、冷媒は圧縮されて経路41、43を経て再生器2と熱交換関係にある凝縮器4に流入する。冷媒は凝縮器4で熱を再生器2の吸収媒体に奪われて凝縮する。このとき前記の再生器2内の吸収媒体から冷媒蒸気が発生する際の再生熱は冷媒の凝縮熱によって賄われるが、再生熱よりも凝縮熱の方が圧縮機の動力が加わるため一般に大きく、そのため再生器2内の吸収媒体温度及び圧力は上昇傾向になる。しかし圧力検出器91および、制御機構90、調節弁55の作用によって、再生器2内の吸収媒体の圧力が上昇すると、調節弁55が開き、吸収器1に冷媒蒸気を送って過剰な蒸気を吸収器1で吸収させ、また再生器2内の吸収媒体の圧力が下がると、調節弁55が閉じ、吸収器1に送る冷媒蒸気絞って冷媒蒸気を再生器2に保持するよう作用するので再生器2の圧力は設定値に保つことができる。
【0033】
この運転形態ではまた別の冷媒の流動が存在する。蒸発器3には、冷媒貯蔵空間14から冷媒が供給され(弁52には温度式膨張弁やフロート弁等の流量調節機構を装着しても差し支えない)、また蒸発器3では吸収器1からの冷媒蒸気の吸引作用を受けて冷媒が蒸発する。その際、冷水は伝熱管31を介して冷媒に蒸発熱を奪われて冷却される。蒸発器3で蒸発した冷媒は経路47を経て吸収器に流入し吸収される。吸収器1では、蒸発器3から経路47を経て流入した冷媒と再生器2から圧縮機7により圧縮されて経路42を経て流入した冷媒が吸収媒体に吸収され、吸収熱は吸収媒体と温熱媒体(温水)が伝熱管30を介して熱交換して冷却される。この時温水は吸収媒体を冷却することによって自らは加熱され温度上昇するが、その熱は図2における空調機の送風機140の作用によってもたらされる再生空気と温水熱交換器120において熱交換し、再生空気の加熱に使用される。
【0034】
圧縮機7で圧縮され凝縮器4で凝縮した冷媒は経路44を経て冷媒貯蔵空間14に導かれる。また吸収媒体は再生器2から経路27、開閉弁51、経路28を経て吸収媒体貯蔵空間12を経由し、経路29を経て吸収媒体の経路22を経てポンプ6に流入し、ポンプ6の作用によって経路23を経て熱交換器5で吸収器1から戻る吸収媒体と熱交換した後経路24を経て吸収器1に流入し圧縮機7と蒸発器3からの冷媒を吸収して希釈されたのち経路25、熱交換器5、経路26を経て再生器2に還流し循環経路を循環する。
【0035】
これまでの第2の運転モードの運転形態におけるヒートポンプの作用の過程を図7を用いて説明する。図7はヒートポンプの作用の過程を示すデューリング線図である。図7において再生器2中の吸収媒体はCの状態にあり、圧縮機の作用によって、冷媒蒸気(状態E)が分離される。分離された冷媒は圧縮されて(状態F)大部分は凝縮器4に送られ凝縮し(状態G)残りの一部は調節弁55を経て減圧され吸収器1に送られて吸収媒体に吸収される(状態A)が、この圧縮機による作用は前記の蓄熱運転と同じサイクルによる運転で、吸収媒体は再生器2において濃縮作用を受ける。また蒸発器3では吸収器1からの冷媒蒸気の吸引作用を受けて冷媒が蒸発する(状態H)。
【0036】
蒸発した冷媒は経路47を経て吸収器に流入し吸収され(状態A)、この吸収器による作用は公知の吸収冷凍サイクルによる作用と同じ運転で、吸収器では吸収媒体は希釈作用を受ける。蒸発器では蒸発の際には蒸発熱を冷水から奪うことによって冷水を冷却する。冷却した冷水は空調機に移送され処理空気の冷却冷却に使用する。吸収媒体経路を循環する吸収媒体は、再生器2を出て(状態C)熱交換器で加熱され(状態D)、吸収器1に流入し圧縮機から来る冷媒蒸気と蒸発器から来る冷媒蒸気を同時に吸収した後(状態A)、熱交換器で冷却され(状態B)、再び再生器に戻る。また吸収の際の吸収熱は温水によって冷却され(図中では80℃)て空調機に移送されデシカントの再生に使用する。このように第2の運転モードによって、ヒートポンプでは、吸収媒体の濃縮と希釈を同時に行いながら冷水の冷却と、温水の加熱を同時に行うことができる。
【0037】
このようにしてヒートポンプでできた冷温水は空調機に送られ次のようにして冷房作用を行う。図2において、空調される室内101の空気(処理空気)は経路107を経て送風機102に吸引され昇圧されて経路108をへてデシカントロータ103に送られデシカントロータの吸湿剤で空気中の水分を吸着され絶対湿度が低下する。また吸着の際、吸着熱によって空気は温度上昇する。湿度が下がり温度上昇した空気は経路109を経て顕熱熱交換器104に送られ外気(再生空気)と熱交換して冷却される。冷却された空気は経路110を経て冷水熱交換器115に送られさらに冷却される。冷却された処理空気は加湿器105に送られ水噴射または気化式加湿によって等エンタルピ過程で温度低下し経路111を経て空調空間101に戻される。
【0038】
デシカントロータはこの過程で水分を吸着したため、再生が必要で、この実施例では外気を再生用空気として用いて次のように行われる。外気(OA)は経路124を経て送風機140に吸引され昇圧されて顕熱熱交換器104に送られ、処理空気を冷却して自らは温度上昇し経路125を経て次の顕熱熱交換器121に流入し、再生後の高温の空気と熱交換して温度上昇する。さらに顕熱熱交換器121を出た再生空気は経路126を経て温水熱交換器120に流入し温水によって加熱され60〜80℃まで温度上昇し、相対湿度が低下する。温水熱交換器120を出て相対湿度が低下した再生空気はデシカントロータ103を通過してデシカントロータの水分を除去し再生作用をする。デシカントロータ103を通過した再生空気は経路128を経て顕熱熱交換器121に流入し、再生前の再生空気の余熱を行ったのち経路129を経て排気として外部に捨てられる。
【0039】
このようにして、本発明のヒートポンプをデシカント空調機と組合わせることによって、通常の冷房運転を行うことができる。なおこのようなデシカント空調機の作用は図12において示した従来例と同様で冷却、加熱の熱源が、冷媒の代りに冷水、温水から伝達される点のみが異なっており、従って図13のモリエル線図が適用できるため、モリエル線図上による作用の説明は省略する。
【0040】
このようにして第2の運転モードによれば、吸収媒体の濃縮と希釈を同時に行いながら冷房運転ができるため、蓄熱運転で貯蔵した吸収媒体の濃度をなるべく希釈しない様にすることができ、従って蓄熱を保持しながら冷房運転を行うことができる。なおこの第2の運転モードにおいては、吸収媒体の貯蔵空間12にはすでに十分な吸収能力を持った吸収媒体が第1の運転モードで製造貯蔵されているので、万一過大な冷房負荷が加わった場合には、蒸発器に送る冷媒量を増加させることによって冷凍効果を増やしてこのような冷房負荷に対応することもできる。この場合には吸収器による希釈作用が圧縮機による濃縮作用を上回り、従って貯蔵していた濃縮された吸収媒体を希釈しつつ過大な冷房負荷に対応した運転を行う運転形態となる。このように本運転モードは吸収媒体の濃度を一定に保つことを目的としておらず、希釈を遅らせる運転形態をも含むものである。
【0041】
次に、第3の運転モードにより蓄熱を消費して圧縮機を運転することなく冷房運転を行う場合の運転形態と作用について説明する。このような運転は、日中の電力のピークカットとして、圧縮機の動力を切って冷房運転を行うためのものである。通常冷房負荷は正午から午後4時にかけての時間帯が最も負荷が大きく、該時間帯に集中的に蓄熱を使用することが有効であるため、本運転モードで運転することが効果を発揮する。
【0042】
第3の運転モードでは、ヒートポンプは図8のように設定して運転する。図8において、開閉弁56は閉じており、経路41と経路43は連通しない。さらに、調節弁55は制御機構90の作用を切って完全に閉じており、さらに開閉弁51は開いており、吸収媒体貯蔵空間12と再生器2は連通している。さらに弁52は開いており、冷媒貯蔵空間14から蒸発器3に冷媒が送られる。さらに開閉弁72、73は開いており、蒸発器3には冷熱媒体(冷水)が通水される。さらに開閉弁70、71は閉じており、再生器2には冷熱媒体(冷水)は流動しない。さらに3方弁50は経路21方向が閉じており、再生器2と吸収媒体経路22は直接連通していない。さらにヒートポンプの圧縮機7は停止し、溶液ポンプ6は運転し、また空調機は運転する。
【0043】
このように設定されたヒートポンプの作用について説明すると、図8において蒸発器3には、冷媒貯蔵空間14から冷媒が供給され(弁52には温度式膨張弁やフロート弁等の流量調節機構を装着しても差し支えない)、また蒸発器3では吸収器1からの冷媒蒸気の吸引作用を受けて冷媒が蒸発する。その際冷水は伝熱管31を介して冷媒に蒸発熱を奪われて冷却される。蒸発器3で蒸発した冷媒は経路47を経て吸収器に流入し吸収される。吸収器1では、蒸発器3から経路47を経て流入した冷媒が吸収媒体に吸収され、吸収熱は吸収媒体と温水が伝熱管30を介して熱交換して温水に伝達される。
【0044】
この時温水は吸収媒体を冷却することによって自らは加熱され温度上昇するが、その熱は図2における空調機の送風機140の作用によってもたらされる再生空気と温水熱交換器120において熱交換し、再生空気の加熱に使用される。吸収媒体は再生器2から経路27、開閉弁51、経路28を経て吸収媒体貯蔵空間12を経由し、経路29を経て吸収媒体の経路22を経てポンプ6に流入し、ポンプ6の作用によって経路23を経て熱交換器5で吸収器1から戻る吸収媒体と熱交換した後経路24を経て吸収器1に流入し蒸発器3からの冷媒を吸収して希釈されたのち経路25、熱交換器5、経路26を経て再生器2に還流し循環経路を循環する。この場合再生器2では吸収媒体の濃縮作用は行われないので吸収媒体は再生器2を単に通過するのみである。希釈された吸収媒体は吸収媒体貯蔵空間12に流入し、内部に貯蔵した吸収媒体を徐々に希釈する。
【0045】
これまでの第3の運転モードの運転形態におけるヒートポンプの作用の過程を図9を用いて説明する。図9はヒートポンプの作用の過程を示すデューリング線図である。図9において吸収媒体貯蔵空間12中の吸収媒体は通常この運転形態の開始時には十分に吸収能力を持ったCの状態(図中では吸収媒体の冷媒濃度20%)で貯蔵されている。この状態の吸収媒体(水アンモニア溶液)をポンプ6の作用によって吸収器1に送り、75℃程度の温水と熱交換させると、冷媒(アンモニア)を10℃程度で蒸発させることができる吸収作用が発生し、冷媒を吸収して(状態A)自らは希釈され、再生器2を経て吸収媒体貯蔵空間12に戻る。吸収媒体貯蔵空間12には多量の吸収媒体を保有しているので吸収媒体は吸収器1から戻る吸収媒体によって徐々に希釈され、最終的に冷媒濃度が30%まで希釈された時点で吸収温度が次第に低下し始めるまで運転を継続することができる。このように吸収媒体貯蔵空間12と冷媒貯蔵空間14に吸収媒体と冷媒を貯蔵することによって冷熱と温熱の蓄熱作用が得られる。
【0046】
また蒸発器3では吸収器1からの冷媒蒸気の吸引作用を受けて冷媒が蒸発する(状態H)。蒸発した冷媒は経路47を経て吸収器1に流入し吸収され(状態A)、この吸収器による作用は公知の吸収冷凍サイクルによる作用と同じ運転で、吸収媒体は希釈作用を受ける。蒸発器では蒸発の際には蒸発熱を冷水から奪うことによって冷水を冷却する。冷却した冷水は空調機に移送され処理空気の冷却冷却に使用する。また吸収の際の吸収熱は温水によって冷却され(図中では80℃)て空調機に移送されデシカントの再生に使用する。このように第3の運転モードによって、ヒートポンプでは、濃度ポテンシャルの形態で貯蔵した吸収媒体の作用によって、圧縮機を運転することなく冷水の冷却と温水の加熱の両方の作用を同時に行うことができる。
【0047】
このようにしてヒートポンプでできた冷温水は空調機に送られ次のようにして冷房作用を行う。図2において、空調される室内101の空気(処理空気)は経路107を経て送風機102に吸引され昇圧されて経路108をへてデシカントロータ103に送られデシカントロータの吸湿剤で空気中の水分を吸着され絶対湿度が低下する。また吸着の際、吸着熱によって空気は温度上昇する。湿度が下がり温度上昇した空気は経路109を経て顕熱熱交換器104に送られ外気(再生空気)と熱交換して冷却される。冷却された空気は経路110を経て冷水熱交換器115に送られさらに冷却される。冷却された処理空気は加湿器105に送られ水噴射または気化式加湿によって等エンタルピ過程で温度低下し経路111を経て空調空間101に戻される。
【0048】
デシカントロータはこの過程で水分を吸着したため、再生が必要で、この実施例では外気を再生用空気として用いて次のように行われる。外気(OA)は経路124を経て送風機140に吸引され昇圧されて顕熱熱交換器104に送られ、処理空気を冷却して自らは温度上昇し経路125を経て次の顕熱熱交換器121に流入し、再生後の高温の空気と熱交換して温度上昇する。さらに顕熱熱交換器121を出た再生空気は経路126を経て温水熱交換器120に流入し温水によって加熱され60〜80℃まで温度上昇し、相対湿度が低下する。温水熱交換器120を出て相対湿度が低下した再生空気はデシカントロータ103を通過してデシカントロータの水分を除去し再生作用をする。デシカントロータ103を通過した再生空気は経路128を経て顕熱熱交換器121に流入し、再生前の再生空気の余熱を行ったのち経路129を経て排気として外部に捨てられる。
【0049】
このようにして、本発明のヒートポンプをデシカント空調機と組合わせることによって、通常の冷房運転を行うことができる。なおこのようなデシカント空調機の作用は図12において示した従来例と同様で冷却、加熱の熱源が、冷媒の代りにから冷水、温水から伝達される点のみが異なっており、従って図13のモリエル線図が適用できるため、モリエル線図上による作用の説明は省略する。
【0050】
このようにして第3の運転モードによれば、貯蔵した吸収媒体の希釈を行いながら冷房運転ができるため、圧縮機を運転せずに冷房運転を行うことができる。
【0051】
次に、第4の運転モードにより蓄熱を消費してしまった後に、或いは蓄熱を使用することなく冷房運転を行う場合の運転形態と作用について説明する。このような運転は日中の蓄熱による運転を終えた後、深夜電力による蓄熱運転の時間帯まで蓄熱せずに、冷房運転を行うためのものである。通常深夜電力は電力料金が安価であるが、使用できる時間帯は深夜に限られる。従って蓄熱を消費してしまった後、深夜電力料金が適用される時間までの間は蓄熱することなく空調負荷に対応して運転することが経済的であるため、その時間帯までは本運転モードで運転することが効果を発揮する。
【0052】
第4の運転モードでは、ヒートポンプは図10のように設定して運転する。図10において、開閉弁56は閉じており、経路41と経路43は連通しない。さらに、調節弁55は制御機構90の作用を切って調節弁55は全開に設定し、さらに開閉弁51は閉じており、吸収媒体貯蔵空間12と再生器2は連通させない。さらに弁52は閉じており、冷媒貯蔵空間14に冷媒が貯蔵される。さらに開閉弁72、73は閉じており、蒸発器3には冷熱媒体(冷水)が通水されない。さらに開閉弁70、71は開いており、再生器2には冷熱媒体(冷水)が流動する。さらに3方弁50は経路21方向が開いており、再生器2と吸収媒体経路22は直接連通する。さらにヒートポンプの圧縮機7と溶液ポンプ6を運転し、また空調機は運転する。
【0053】
このように設定されたヒートポンプの作用について説明すると、図10において圧縮機7を運転すると、再生器2内の吸収媒体から冷媒蒸気が発生し、冷媒は圧縮されて経路41、42を経て吸収器1に流入し吸収される。吸収器1では吸収媒体と温水が伝熱管30を介して熱交換し吸収熱が冷却される。この時温水は吸収媒体を冷却することによって自らは加熱され温度上昇するが、その熱は図2における空調機の送風機140の作用によってもたらされる再生空気と温水熱交換器120において熱交換し、再生空気の加熱に使用される。
【0054】
また吸収媒体は再生器2から経路21、3方弁50、経路22を経てポンプ6に流入し、ポンプ6の作用によって経路23を経て熱交換器5で吸収器1から戻る吸収媒体と熱交換した後経路24を経て吸収器1に流入し圧縮機7からの冷媒を吸収して希釈されたのち経路25、熱交換器5、経路26を経て再生器2に還流し循環経路を循環する。再生器2では吸収媒体と冷水が伝熱管32を介して熱交換して再生熱が伝達され吸収媒体を加熱する。この時冷水は吸収媒体を加熱することによって自らは冷却され温度上昇する。
【0055】
これまでの第4の運転モードの運転形態におけるヒートポンプの作用の過程を図11を用いて説明する。図11はヒートポンプの作用の過程を示すデューリング線図である。図11において再生器2中の吸収媒体はCの状態にあり、圧縮機の作用によって、冷媒蒸気(状態E)が分離される。分離された冷媒は圧縮されて(状態F)吸収器1に送られて吸収媒体に吸収される(状態A)。再生器2では再生の際には再生熱を冷水から奪うことによって冷水を冷却する(図中では10℃)。冷却した冷水は空調機に移送され処理空気の冷却冷却に使用する。吸収媒体経路を循環する吸収媒体は、再生器2を出て(状態C)熱交換器で加熱され(状態D)、吸収器1に流入し圧縮機から来る冷媒蒸気吸収した後(状態A)、熱交換器で冷却され(状態B)、再び再生器2に戻る。吸収の際の吸収熱は温水に伝達され(図中では80℃)て空調機に移送されデシカントの再生に使用する。このように第4の運転モードによって、ヒートポンプでは、蓄熱を使用することなく冷水の冷却と、温水の加熱を同時に行うことができる。
【0056】
なお前記第3の運転モードにおいて蓄熱が使用できなくなる吸収媒体濃度は冷媒濃度で30%程度であり、一方この第4の運転モードにおける吸収媒体濃度は図11によれば冷媒濃度で50%程度であって作動する吸収媒体の濃度が異なる。このように実施例では異なった濃度で運転する設定を示したが、第4の運転モードにおいても第3の運転モードの運転完了時の濃度30%程度で運転することも可能である。しかしこのような場合には、サイクル全体の作動圧力が低いため、圧縮機の吸い込み冷媒量(冷媒の吸込み体積)が不足し、冷凍能力が不足する可能性が生じる。
【0057】
従って第3の運転モードから第4の運転モードに移行する際には吸収媒体を希釈することが望ましい。その際には系内の全ての吸収媒体を希釈してしまうと、深夜に第1の運転モードに移行する際に再度吸収媒体の濃縮が必要となった時、濃縮する吸収媒体の量が多くなり電力消費量が増えるため、この第4の運転モードでは、循環に必要な最低限の吸収媒体のみを希釈して、残りは第3の運転モードが終了した時点の吸収媒体濃度のままで、吸収媒体貯蔵空間12に吸収媒体を貯蔵することが望ましい。そのため本実施例では、弁51と3方弁50によって、吸収媒体貯蔵空間12に吸収媒体を貯蔵するよう設定した。また第3の運転モードから第4の運転モードに移行する際には吸収媒体を希釈するため、一時的に冷媒貯蔵空間14と冷媒系路22を結ぶ系路47、48中に設けられた弁57を開くことによって、吸収媒体に冷媒を混合するよう構成しても差し支えない。
【0058】
このようにしてヒートポンプでできた冷温水は空調機に送られ次のようにして冷房作用を行う。図2において、空調される室内101の空気(処理空気)は経路107を経て送風機102に吸引され昇圧されて経路108をへてデシカントロータ103に送られデシカントロータの吸湿剤で空気中の水分を吸着され絶対湿度が低下する。また吸着の際、吸着熱によって空気は温度上昇する。湿度が下がり温度上昇した空気は経路109を経て顕熱熱交換器104に送られ外気(再生空気)と熱交換して冷却される。冷却された空気は経路110を経て冷水熱交換器115に送られさらに冷却される。冷却された処理空気は加湿器105に送られ水噴射または気化式加湿によって等エンタルピ過程で温度低下し経路111を経て空調空間101に戻される。
【0059】
デシカントロータはこの過程で水分を吸着したため、再生が必要で、この実施例では外気を再生用空気として用いて次のように行われる。外気(OA)は経路124を経て送風機140に吸引され昇圧されて顕熱熱交換器104に送られ、処理空気を冷却して自らは温度上昇し経路125を経て次の顕熱熱交換器121に流入し、再生後の高温の空気と熱交換して温度上昇する。さらに顕熱熱交換器121を出た再生空気は経路126を経て温水熱交換器120に流入し温水によって加熱され60〜80℃まで温度上昇し、相対湿度が低下する。温水熱交換器120を出て相対湿度が低下した再生空気はデシカントロータ103を通過してデシカントロータの水分を除去し再生作用をする。デシカントロータ103を通過した再生空気は経路128を経て顕熱熱交換器121に流入し、再生前の再生空気の余熱を行ったのち経路129を経て排気として外部に捨てられる。
【0060】
このようにして、本発明のヒートポンプをデシカント空調機と組合わせることによって、通常の冷房運転を行うことができる。なおこのようなデシカント空調機の作用は図12において示した従来例と同様で冷却、加熱の熱源が、冷媒の代りにから冷水、温水から伝達される点のみが異なっており、従って図13のモリエル線図が適用できるため、モリエル線図上による作用の説明は省略する。
【0061】
このようにして第4の運転モードによれば、蓄熱を生じることなくに冷房運転ができるため、後に安価な深夜電力を有効に使用して蓄熱運転を行うことができる。
【0062】
このように本発明のヒートポンプによれば、冷媒とともに吸収媒体を使用するためヒートポンプの作動圧力が下がるとともに、吸収媒体と冷媒を貯蔵することによって、冷却作用および加熱作用の両方を吸収媒体の濃度ポテンシャルの形態で蓄熱し、また蓄熱を取り出す際には冷却作用および加熱作用の両方の作用として同時に取り出すことができ、第1の運転モードとして蓄熱を行う蓄熱運転と、第2の運転モードとして蓄熱を保持しつつ冷房を行う運転と、第3の運転モードとして蓄熱を消費して冷房を行う運転と、第4の運転モードとして全く蓄熱を行わずに冷房を行う運転とを備え、各々の運転モードを選択的に切り換えて運転可能にすることができる。
【0063】
なお、本発明の説明において、機能を明確にするために蒸発器3と冷媒貯蔵空間14を別の構成機器として示したが、蒸発器3に冷媒貯蔵空間14の機能を持たせて一体化しても差し支えなく、その場合には図1における開閉弁52を経路44または43中に設けるとともに、経路47中に新規に開閉弁を設置することで同等の作用が得られる。
【0064】
また本発明の説明において、機能を明確にするために再生器2と吸収媒体貯蔵空間12を別の構成機器として示したが、再生器2に吸収媒体貯蔵空間12の機能を持たせて一体化しても差し支えないが、その場合には第1の運転モードで蓄熱した後に第4の運転モードである圧縮機を運転した非蓄熱運転ができなくなるが、第1の運転モードで蓄熱した後、第2の運転モードあるいは第3の運転モードで蓄熱を使用した冷房運転を行う場合には同等の作用が得られる。
【0065】
【発明の効果】
以上説明したように本発明によれば、ヒートポンプの作動圧力を下げて、かつ冷却作用および加熱作用の両方を吸収媒体の濃度ポテンシャルの形態で蓄熱するとともに、蓄熱運転と、蓄熱を保持しつつ冷房を行う運転と、蓄熱を消費して冷房を行う運転と、全く蓄熱を使わずに冷房を行う運転を選択的に切り換えて運転可能にすることによって、作動範囲が広く、信頼性が高く、運転経費が安価で、かつ安価な蓄熱機能を備えたヒートポンプおよびデシカント空調システムを提供することができる。
【図面の簡単な説明】
【図1】本発明に係るヒートポンプの一実施例の基本構成を示す説明図。
【図2】本発明に係るデシカント空調機の一実施例の基本構成を示す説明図。
【図3】本発明に係る各種運転形態を示す説明図。
【図4】本発明に係るヒートポンプの第1の運転形態示す説明図。
【図5】図4のヒートポンプのサイクルをデューリング線図で示す説明図。
【図6】本発明に係るヒートポンプの第2の運転形態示す説明図。
【図7】図6のヒートポンプのサイクルをデューリング線図で示す説明図。
【図8】本発明に係るヒートポンプの第3の運転形態示す説明図。
【図9】図8のヒートポンプのサイクルをデューリング線図で示す説明図。
【図10】本発明に係るヒートポンプの第4の運転形態示す説明図。
【図11】図10のヒートポンプのサイクルをデューリング線図で示す説明図。
【図12】従来のデシカント空調の基本構成を示す説明図。
【図13】従来のデシカント空調の空気のデシカント空調サイクルをモリエル線図で示す説明図。
【符号の説明】
1・・・吸収器
2・・・再生器
3・・・蒸発器
4・・・凝縮器
5・・・熱交換器
6・・・溶液ポンプ
7・・・圧縮機
12・・・吸収媒体貯蔵空間
14・・・冷媒貯蔵空間
21・・・吸収媒体(溶液)経路
22・・・吸収媒体(溶液)経路
23・・・吸収媒体(溶液)経路
24・・・吸収媒体(溶液)経路
25・・・吸収媒体(溶液)経路
26・・・吸収媒体(溶液)経路
27・・・吸収媒体(溶液)経路
28・・・吸収媒体(溶液)経路
29・・・吸収媒体(溶液)経路
30・・・伝熱管(温水)
31・・・伝熱管(冷水)
32・・・伝熱管(冷水)
40・・・冷媒経路
41・・・冷媒経路
42・・・冷媒経路
43・・・冷媒経路
44・・・冷媒経路
45・・・冷媒経路
46・・・冷媒経路
47・・・冷媒経路
48・・・冷媒経路
50・・・3方弁
51・・・弁
52・・・弁
53・・・3方弁
55・・・調節弁
56・・・弁
57・・・弁
60・・・冷水経路
61・・・冷水経路
62・・・冷水経路
63・・・冷水経路
64・・・冷水経路
65・・・冷水経路
70・・・弁
71・・・弁
72・・・弁
73・・・弁
80・・・温水経路
81・・・温水経路
90・・・制御機構
91・・・圧力検出器
92・・・制御信号経路
93・・・制御信号経路
101・・・空調空間
102・・・送風機
103・・・デシカントロータ
104・・・顕熱熱交換器
105・・・加湿器
106・・・給水管
107・・・空気経路
108・・・空気経路
109・・・空気経路
110・・・空気経路
111・・・空気経路
115・・・冷水熱交換器
117・・・冷水経路
118・・・冷水経路
119・・・空気経路
120・・・温水熱交換器
121・・・顕熱熱交換器
122・・・温水経路
123・・・温水経路
124・・・空気経路
125・・・空気経路
126・・・空気経路
127・・・空気経路
128・・・空気経路
129・・・空気経路
130・・・空気経路
140・・・送風機
150・・・温水ポンプ
160・・・冷水ポンプ
201・・・冷媒経路
202・・・冷媒経路
203・・・冷媒経路
204・・・冷媒経路
220・・・凝縮器
240・・・蒸発器
250・・・膨張弁
260・・・圧縮機
a・・・吸収媒体サイクルの状態点
b・・・吸収媒体サイクルの状態点
c・・・吸収媒体サイクルの状態点
d・・・吸収媒体サイクルの状態点
e・・・吸収媒体サイクルの状態点
f・・・吸収媒体サイクルの状態点
A・・・吸収媒体サイクルの状態点
B・・・吸収媒体サイクルの状態点
C・・・吸収媒体サイクルの状態点
D・・・吸収媒体サイクルの状態点
E・・・吸収媒体サイクルの状態点
F・・・吸収媒体サイクルの状態点
K・・・デシカント空調の空気の状態点
L・・・デシカント空調の空気の状態点
M・・・デシカント空調の空気の状態点
N・・・デシカント空調の空気の状態点
P・・・デシカント空調の空気の状態点
Q・・・デシカント空調の空気の状態点
R・・・デシカント空調の空気の状態点
S・・・デシカント空調の空気の状態点
T・・・デシカント空調の空気の状態点
U・・・デシカント空調の空気の状態点
V・・・デシカント空調の空気の状態点
X・・・デシカント空調の空気の状態点
SA・・・給気
RA・・・還気
EX・・・排気
OA・・・外気
ΔQ・・・冷房効果
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump, and more particularly to a heat pump with a heat storage function used as a heat source device for a desiccant air conditioning system.
[0002]
[Prior art]
A desiccant air conditioner is described in US Pat. No. 2,700,537. In the desiccant type air conditioner shown in this known example, a heat source having a temperature of about 100 to 150 ° C. is required as a heat source for regeneration of the desiccant (humectant), and an electric heater and a boiler are used exclusively as the heat source. It was. Recently, by improving the desiccant, a desiccant air conditioner that can regenerate the desiccant even at a temperature of 60 to 80 ° C. has been developed, and it can be operated with a low-temperature heat source for regenerating the desiccant and cooling the treated air. Desiccant air conditioners that combine electric vapor compression heat pumps (including refrigerators) have been developed.
[0003]
FIG. 12 is a conventional example of a desiccant type air conditioner combined with a known electric vapor compression heat pump or refrigerator, and FIG. 13 is a Mollier diagram showing an operating state of the air conditioner of the example of FIG. In FIG. 12, reference numeral 101 is an air-conditioned space, 102 is a blower, 103 is a desiccant rotor containing a desiccant material that can selectively contact with processing air and regenerated air, 104 is a sensible heat exchanger, and 105 is a humidifier. 106, humidifier water supply pipes, 107 to 113, air passages for processing air, 140, a fan for regenerating air, 220, a condenser, a heat exchanger (heater) for refrigerant and regenerating air, and 121, sensible heat exchange , 124 to 130 are air passages for regenerated air, 201 to 204 are refrigerant paths, 240 is an evaporator and a heat exchanger (cooler) for refrigerant and regenerated air, 250 is an expansion valve, and 260 is a compressor. Also, in the figure, circled alphabets K to V are symbols indicating air conditions corresponding to those in FIG. 13, SA represents supply air, RA represents return air, OA represents outside air, and EX represents exhaust. .
[0004]
The operation of this conventional example will be described. In FIG. 12, the air (processed air) in the air-conditioned room 101 is sucked into the blower 102 through the passage 107 and pressurized and sent to the desiccant rotor 103 through the passage 108 and sent to the desiccant rotor 103. Moisture in the air is adsorbed by the hygroscopic agent and absolute humidity decreases. During adsorption, the temperature of the air rises due to the heat of adsorption. The air whose humidity has decreased and its temperature has risen is sent to the sensible heat exchanger 104 via the path 109 and is cooled by exchanging heat with the outside air (regenerated air). The cooled air is sent to the cooler 240 via the path 110 and is cooled by the action of the refrigerator, and is sent to the humidifier 105 via the path 112 and the temperature is lowered in the isenthalpy process by water injection or vaporization type humidification, and the path 113 is passed. After that, it is returned to the conditioned space 101.
[0005]
Since the desiccant adsorbs moisture in this process, it needs to be regenerated. In this conventional example, the desiccant is performed as follows using outside air. The outside air (OA) is sucked into the blower 140 via the path 124, is pressurized and sent to the sensible heat exchanger 104, cools the processing air, and rises in temperature by itself, and passes through the path 125 to the next sensible heat exchanger 121. The heat rises by exchanging heat with the hot air after regeneration. Further, the regenerative air that has exited the sensible heat exchanger 121 flows into the heater 220 via the path 126, is heated by the condensation heat of the refrigerator, rises in temperature to 60 to 80 ° C., and the relative humidity decreases. Regenerated air whose relative humidity has decreased passes through the desiccant rotor 103 to remove moisture from the desiccant rotor. The regenerated air that has passed through the desiccant rotor 103 flows into the sensible heat exchanger 121 via the path 129, and after remaining heat of the regenerated air before regeneration, it is discarded to the outside via the path 130 as exhaust.
[0006]
The process up to now will be described with reference to the Mollier diagram. In FIG. 13, the air in the air-conditioned room 101 (process air: state K) is sucked into the blower 102 via the path 107 and pressurized, and passed through the path 108. The moisture in the air is adsorbed by the desiccant rotor 103 and is absorbed by the desiccant rotor 103, and the absolute humidity is lowered and the temperature of the air rises due to the heat of adsorption (state L). The air whose humidity has fallen and the temperature has risen is sent to the sensible heat exchanger 104 via the path 109 and is cooled by exchanging heat with the outside air (regeneration air) (state M). The cooled air is sent to the cooler 240 via the path 110 and cooled by the action of the refrigerator (state N), sent to the humidifier 105 via the path 112, and the temperature is lowered in the isenthalpy process by water injection or vaporization type humidification. (State P) and then returned to the conditioned space 101 via the path 113. In this way, an enthalpy difference ΔQ is generated between the return air (K) and the supply air (P) in the room, and the air-conditioned space 101 is thereby cooled.
[0007]
The regeneration of the desiccant is performed as follows. The outside air (OA: state Q) is sucked into the blower 140 via the path 124, is pressurized and sent to the sensible heat exchanger 104, cools the processing air, and rises in temperature by itself (R) through the path 125. It flows into the sensible heat exchanger 121 and heat-exchanges with the high-temperature air after regeneration to increase the temperature (state S). Furthermore, the regenerated air that has exited the sensible heat exchanger 121 flows into the heater 220 via the path 126, is heated by the heat of condensation of the heat pump, rises in temperature to 60 to 80 ° C., and the relative humidity decreases (state T). Regenerated air whose relative humidity has decreased passes through the desiccant rotor 103 and removes moisture from the desiccant rotor (state U). The regenerated air that has passed through the desiccant rotor 103 flows into the sensible heat exchanger 121 via the path 129, and after regenerating the pre-regeneration air before regeneration, the temperature of the regenerated air itself decreases (state V), and then passes through the path 130 as external exhaust. Thrown away. In this way, by repeating the regeneration of the desiccant and the dehumidification and cooling of the processing air, air conditioning by the desiccant has been performed.
[0008]
In the desiccant air conditioner configured as described above, the combined vapor compression refrigeration cycle requires a condensation temperature of about 80 ° C. and an evaporation temperature of about 10 ° C. In recent years, it has been desired to use a natural refrigerant such as ammonia that does not use a conventional chlorofluorocarbon system and has little impact on the natural environment as a refrigerant for the vapor compression refrigeration cycle, and the compressor is stopped during the summer. However, when a so-called heat storage function that can perform cooling is required, ammonia is used as a refrigerant in the refrigeration cycle to achieve such a condensation temperature, the pressure is 42 kg / cm. 2 However, there is a disadvantage that the device becomes abnormally high and the device is expensive, and if it is intended to have a heat storage function, a heat storage tank having both a low temperature of about 10 ° C and a high temperature of about 80 ° C is required, It has been found that there are drawbacks that make the equipment extremely complex and expensive.
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described points, and reduces the operating pressure of the heat pump and stores both cooling and heating functions in the form of the concentration potential of the absorbing medium, and also stores heat storage and heat storage. The operation range is wide by selectively switching between the operation that performs cooling while maintaining heat, the operation that consumes heat storage and performs cooling, and the operation that performs cooling without using any heat storage, An object of the present invention is to provide a heat pump having a highly reliable and inexpensive heat storage function.
[0010]
[Means for Solving the Problems]
According to the present invention, an absorber, a regenerator, and a compressor are provided, and the path of the absorption medium circulating between the absorber and the regenerator and the refrigerant vapor of the regenerator are compressed by the compressor into the absorber. Having a refrigerant path to be transferred, providing an evaporator having a heat exchange relationship with a heat medium for extracting the cooling action of the regenerator to the outside, and providing a condenser having a heat exchange relationship with an absorption medium in the regenerator; A refrigerant storage space for storing the refrigerant condensed by introducing the refrigerant vapor compressed by the compressor to the condenser is provided, an absorption medium storage space for storing the absorption medium concentrated by the regenerator is provided, and the refrigerant space of the evaporator is provided. In the heat pump connected to the refrigerant storage space and the absorber, the compressor is operated to compress the refrigerant vapor in the regenerator and condense the refrigerant in the condenser to concentrate the absorption medium, thereby reducing the concentration of the absorption medium. Increase and concentrate A first operation mode for storing an absorption medium in the absorption medium storage space and storing a condensed refrigerant in the refrigerant storage space; and operating the compressor to compress the refrigerant vapor of the regenerator to compress the condenser A second operation mode in which the absorption medium in the regenerator is concentrated by condensing the refrigerant to increase the concentration of the absorption medium, and the refrigerant is evaporated by the evaporator and the evaporated refrigerant is absorbed by the absorber. And a third operation mode in which the compressor is stopped, the refrigerant is evaporated by the evaporator and the evaporated refrigerant is absorbed by the absorber, and the refrigerant vapor of the regenerator is compressed by operating the compressor. 4 types of operation modes of the 4th operation mode absorbed by the said absorber are comprised, and each operation mode can be selectively switched.
[0011]
According to the present invention, there is provided an absorber that absorbs refrigerant vapor with an absorption medium, a regenerator that separates refrigerant vapor from the absorption medium, and a compressor that compresses the refrigerant vapor, the gap between the absorber and the regenerator. It has a circulation path for the circulating absorption medium and a refrigerant path for compressing the refrigerant vapor of the regenerator by the compressor and transferring it to the absorber, and is in a heat exchange relationship with the heat medium for taking out the cooling action of the regenerator to the outside. Provided with an evaporator, further provided with a condenser having a heat exchange relationship with the absorption medium in the regenerator, and further provided with a refrigerant storage space for storing refrigerant condensed by introducing the refrigerant vapor compressed by the compressor to the condenser. Connecting the refrigerant storage space to the evaporator, further providing an absorption medium storage space for storing the absorption medium concentrated in the regenerator, connecting the absorption medium storage space to the generator and the circulation path of the absorption medium, and The refrigerant space of the evaporator In the heat pump connected to the medium storage space and the absorber, the compressor is operated to compress the refrigerant vapor of the regenerator and condense the refrigerant in the condenser to increase the concentration of the absorption medium. And a first operation mode for storing the concentrated absorption medium in the absorption medium storage space and storing the condensed refrigerant in the refrigerant storage space, and operating the compressor to compress the refrigerant vapor in the regenerator. Then, the refrigerant is condensed by the condenser to concentrate the absorption medium in the regenerator to increase the concentration of the absorption medium, and the refrigerant is evaporated by the evaporator and the evaporated refrigerant is absorbed by the absorber. The second operation mode, the third operation mode in which the compressor is stopped, the refrigerant is evaporated by the evaporator and the evaporated refrigerant is absorbed by the absorber, and the compressor is operated to Compressing the refrigerant vapor vessels and a four operation modes of the fourth operation mode to be absorbed in the absorber, it is selectively switchably constituting each operation mode.
[0012]
According to the present invention, the absorber that absorbs the refrigerant vapor by the absorption medium and heats the hot medium with the absorption heat, the regenerator that takes the regeneration heat from the cold medium and separates the refrigerant vapor from the absorption medium, and the compression that compresses the refrigerant vapor A recirculation path for an absorption medium that circulates between the absorber and the regenerator, and a refrigerant path for compressing the refrigerant vapor of the regenerator by a compressor and transferring the refrigerant to the absorber. An evaporator having a heat exchange relationship with the same cooling medium that flows in the path of the cooling medium that extracts the cooling action of the cooler to the outside is provided, and the cooling medium is cooled so that the cooling medium can selectively flow through the regenerator or the evaporator. A path of the medium is connected to a cooling medium connection port outside the heat pump through an on-off valve, and a condenser having a heat exchange relationship with the absorption medium in the regenerator is provided. The condenser is compressed by the compressor. And condenser for branching and guiding the generated refrigerant vapor A path for guiding the condensed refrigerant to the refrigerant storage space is provided, the refrigerant storage space is connected to the evaporator, and an absorption medium storage space for storing the absorption medium concentrated by the regenerator is provided, and the absorption medium storage space is In the heat pump configured to connect to the generator, connect the absorption medium storage space through a circulation path of the absorption medium exiting the regenerator and an on-off valve, and connect the refrigerant space of the evaporator to the absorber. The compressor is operated to compress the refrigerant vapor of the regenerator and condense the refrigerant in the condenser, thereby concentrating the absorption medium to increase the concentration of the absorption medium, and the concentrated absorption medium into the absorption medium storage space A first operation mode in which the stored and condensed refrigerant is stored in the refrigerant storage space; and the compressor is operated to compress the refrigerant vapor of the regenerator and condense the refrigerant in the condenser. Therefore, the absorption medium in the regenerator is concentrated to increase the absorption medium concentration, the second operation mode in which the refrigerant is evaporated by the evaporator and the evaporated refrigerant is absorbed by the absorber, and the compressor is stopped. A third operation mode in which the refrigerant is evaporated by the evaporator and the evaporated refrigerant is absorbed by the absorber; and the refrigerant vapor of the regenerator is compressed by the compressor and absorbed by the absorber. Four operation modes of the fourth operation mode are provided, and each operation mode can be selectively switched.
[0013]
Therefore, since the absorption medium is used together with the refrigerant, the operating pressure of the heat pump is reduced, and by storing the absorption medium and the refrigerant, both the cooling action and the heating action are stored in the form of the concentration potential of the absorption medium, and the heat storage Can be taken out at the same time as both cooling and heating action, heat storage operation to store heat, operation to cool while holding the heat storage, operation to consume the heat storage and cool, Provide a heat pump and desiccant air conditioning system with a wide range of operation, high reliability, and a low-cost heat storage function by selectively switching between cooling operation without using heat storage at all. In addition, natural refrigerants such as water-ammonia-based absorption working medium can be used. It is possible to provide a small heat pump. In particular, the heat pump of the present invention can be suitably combined with a desiccant air conditioning system.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a heat pump according to the present invention will be described below with reference to FIGS.
[0015]
FIG. 1 is a diagram showing a basic configuration of a heat pump embodying the present invention, and FIG. 2 is a diagram showing a basic configuration of a desiccant air conditioner combined with the heat pump of FIG. In FIG. 1, a heat pump embodying the present invention absorbs refrigerant vapor with an absorbing medium and heats a heating medium (warm water) with absorbed heat through a heat transfer tube 30 and regenerative heat through a heat transfer tube 32. A regenerator 2 for separating the refrigerant vapor from the medium (cold water) and separating the refrigerant vapor from the absorption medium; a heat exchanger 5 for the absorption medium; and a compressor 7 for compressing the refrigerant vapor. The refrigerant paths 40, 41, 42 for compressing the refrigerant vapor of the absorption medium circulating between them, 22, 23, 24, 25, 26 and the regenerator 2 by the compressor 7 and transferring them to the absorber A heat pump having a control valve 55 in the middle of the path, the cooling action of the regenerator 2 taken out through the heat transfer pipe 32 to the outside, through the same cooling medium and heat transfer pipe 31 as flowing in the cooling medium paths 62 and 63 Provided with an evaporator 3 in a heat exchange relationship Further, in order to allow the cooling medium to selectively flow through the regenerator 2 or the evaporator 3, the cooling medium paths 62 and 63 are connected to the opening / closing valves 70 and 71, and the paths 67 and 68 are connected to the opening / closing valves 72, 73 and 73. A condenser 4 connected to the cooling medium connection ports 60 and 61 via the paths 64 and 65 and having a heat exchange relationship with the absorption medium in the regenerator 2 is provided, and the condenser 4 further includes the compressor. 7 is provided with a path 43 that guides the refrigerant vapor compressed in 7 by the opening / closing valve 56 and a path 44 that guides the refrigerant condensed by the condenser 4 to the refrigerant storage space 14, and further evaporates the refrigerant storage space 14. An absorbent medium storage space 12 connected to the regenerator 3 via the refrigerant path 45, the valve 52, and the refrigerant path 46 and further storing the absorbent medium concentrated by the regenerator 2 is provided, and the absorbent medium storage space 12 is connected to the generator 2. Path 27, It is connected via a valve closing 51 and a path 28, and further connected via a three-way valve 50 and a circulation path 21 and a path 29 of the absorbing medium exiting the regenerator 2, and further connected to the evaporator. 3 is connected to the absorber 1 via a path 47, and the regenerator is further provided with a pressure detector 91. The regenerator is opened and closed by the detection signal of the detector 91. The control mechanism 90 is configured to keep the pressure at a set value.
[0016]
The desiccant air conditioner shown in FIG. 2 is supplied from the heat pump shown in FIG. 1 through the cold water passage (cold water) and the hot medium (hot water) through the cold water passages 60 and 61 and the hot water passages 80 and 81, respectively. Connected to the machine and configured to circulate.
[0017]
The desiccant air conditioner of FIG. 2 is configured as follows. The air-conditioned space 101 is connected to the suction port of the processing air blower 102 via the path 107, the discharge port of the blower 102 is connected to the desiccant rotor 103 via the path 108, and the processing air outlet of the desiccant rotor 103 is the regeneration air Is connected to the sensible heat exchanger 104 having a heat exchange relationship with the sensible heat exchanger 104 via the path 109, and the outlet of the processing air of the sensible heat exchanger 104 is connected to the chilled water heat exchanger 115 via the path 110. The processing air outlet of the humidifier 115 is connected to the humidifier 105 via a path 119, and the processing air outlet of the humidifier 105 is connected to the conditioned space 101 via a path 111 to form a processing air cycle.
[0018]
On the other hand, the regeneration air path connects the outside air to the suction port of the regeneration air blower 140 via the path 124, and the discharge port of the blower 140 is connected to the sensible heat exchanger 104 that has a heat exchange relationship with the processing air. The outlet of the regeneration air of the sensible heat exchanger 104 is connected to the low temperature side inlet of another sensible heat exchanger 121 via the path 125, and the low temperature side outlet of the sensible heat exchanger 121 is hot water heat exchange. The regenerator air outlet of the hot water heat exchanger 120 is connected to the regenerator air inlet of the desiccant rotor 103 via the path 127, and the regenerator air outlet of the desiccant rotor 103 is sensible heat. The high temperature side inlet of the exchanger 121 is connected via the path 128, and the high temperature side outlet of the sensible heat exchanger 121 is connected to the external space via the path 129 to take in the regeneration air from the outside and exhaust it to the outside. cycle Formation to. The hot water inlet of the hot water heat exchanger 120 is connected to the outlet 81 of the hot water path of the heat pump via the path 122, and the hot water outlet of the hot water heat exchanger 120 is the inlet of the hot water path of the heat pump via the path 123 and the hot water pump 150. Connect to 80. The cold water inlet of the chilled water heat exchanger 115 is connected to the outlet 61 of the chilled water path of the heat pump via the path 117, and the chilled water outlet of the chilled water heat exchanger 115 is connected to the inlet of the chilled water path of the heat pump via the path 118 and the pump 160. 60 to connect. In the figure, alphabets K to V circled are symbols indicating air states corresponding to those in FIG. 13, SA represents supply air, RA represents return air, PA represents outside air, and EX represents exhaust. .
[0019]
According to the present invention, the heat pump of FIG. 1 configured as described above is configured to be selectively switchable according to the first to fourth operation modes as shown in FIG. In FIG. 3, in the first operation mode, the compressor 7 is operated to compress the refrigerant vapor in the regenerator 2 and condense the refrigerant in the condenser 4, thereby concentrating the absorption medium and reducing the absorption medium concentration. The absorption medium that has been increased and concentrated is stored in the absorption medium storage space 12, and the condensed refrigerant is stored in the refrigerant storage space 14, and in the second operation mode, the compressor is operated to Refrigerant evaporated by condensing the refrigerant vapor in the regenerator and condensing the refrigerant in the condenser to concentrate the absorption medium in the regenerator to increase the concentration of the absorption medium and evaporate the refrigerant in the evaporator In the third operation mode, the compressor is stopped, the refrigerant is evaporated by the evaporator, and the evaporated refrigerant is absorbed by the absorber. Further, in the fourth operation mode, the compressor is operated so that the refrigerant vapor of the regenerator is compressed and absorbed by the absorber, and each operation mode can be selectively switched as will be described later. It constitutes.
[0020]
Next, the operation of this embodiment will be described below.
[0021]
First, an operation mode and an operation in the case of performing the heat storage operation in the first operation mode will be described. Such an operation is generally performed as a storage of cooling capacity to cover part of the cooling load during the daytime using late-night power in summer. In the first operation mode, the heat pump is set and operated as shown in FIG. In FIG. 4, the on-off valve 56 is open, and the path 41 and the path 43 communicate with each other. The control valve 55 is controlled to maintain the pressure of the regenerator 2 at a set value by the action of the control mechanism 90, and the on-off valve 51 is open, so that the absorbing medium storage space 12 and the regenerator 2 are in communication. The valve 52 is closed, and the refrigerant storage space 14 and the evaporator 3 are not in communication. The on-off valves 72 and 73 are closed, and no cold medium (cold water) flows through the evaporator 3. The on-off valves 70 and 71 are closed, and no cold medium (cold water) flows through the regenerator 2. The direction of the path 21 of the three-way valve 50 is closed, and the regenerator 2 and the absorption medium path 22 are not in direct communication. In the air conditioner, the blower 102 is stopped in FIG. 2 and the air supply to the air-conditioned space is stopped. The blower 140 continues to blow so that it can be operated to regenerate the desiccant. Stop cold water and run only hot water. The compressor 7 and the solution pump 6 of the heat pump are operated.
[0022]
The operation of the heat pump thus set will be described. When the compressor 7 is operated in FIG. 4, refrigerant vapor is generated from the absorption medium in the regenerator 2, and the refrigerant is compressed and passes through the paths 41 and 43. 2 flows into the condenser 4 in a heat exchange relationship with the heat exchanger 2. The refrigerant is condensed in the condenser 4 by removing heat from the absorption medium of the regenerator 2. At this time, the regeneration heat when the refrigerant vapor is generated from the absorption medium in the regenerator 2 is covered by the condensation heat of the refrigerant, but the condensation heat is generally larger than the regeneration heat because the power of the compressor is applied, Therefore, the absorption medium temperature and pressure in the regenerator 2 tend to increase. However, when the pressure of the absorption medium in the regenerator 2 rises due to the action of the pressure detector 91, the control mechanism 90, and the control valve 55, the control valve 55 is opened, and refrigerant vapor is sent to the absorber 1 so that excess steam is removed. When absorbed by the absorber 1 and the pressure of the absorbing medium in the regenerator 2 is lowered, the control valve 55 is closed, and the refrigerant vapor sent to the absorber 1 is throttled to act to hold the refrigerant vapor in the regenerator 2. The pressure of the regenerator 2 can be kept at a set value.
[0023]
The refrigerant vapor sent to the absorber 1 is absorbed by the absorption medium, and the absorption heat is cooled by heat exchange between the absorption medium and the heating medium via the heat transfer tube 30. At this time, the hot water itself is heated by the cooling of the absorption medium and the temperature rises, but the heat is exchanged with the outside air brought about by the action of the blower 140 of the air conditioner in FIG. Is done. At this time, the desiccant rotor 103 is regenerated by regenerated air whose temperature has risen and relative humidity has decreased. The condensed refrigerant is guided and stored in the refrigerant storage space 14 via the path 44.
[0024]
The absorbent medium is concentrated in the regenerator 2, and then passes from the regenerator 2 to the pump 6 via the path 27, the on-off valve 51, the path 28, the absorbent medium storage space 12, the path 29, and the absorbent medium path 22. The refrigerant flows into the absorber 1 through the path 24 after exchanging heat with the absorption medium returned from the absorber 1 by the heat exchanger 5 through the path 23 by the action of the pump 6 and absorbs a part of the refrigerant from the compressor 7. Then, after slightly diluted, it is returned to the regenerator 2 through the path 25, the heat exchanger 5, and the path 26, and circulates in the circulation path. In such an operation mode, some of the refrigerant absorbs the refrigerant in the absorber 1 and dilutes the absorption medium, but most of the refrigerant is separated from the same absorption medium and flows into the condenser 4 to be condensed. Therefore, as a whole, the concentration of the absorption medium proceeds, and when the refrigerant is sufficiently stored in the refrigerant storage space 14, the operation in the first operation mode is stopped and the operation proceeds to the next mode.
[0025]
The process of heat storage by concentration of the absorption medium so far will be described with reference to FIG. FIG. 5 is a Düring diagram showing the process of absorption medium concentration. In FIG. 5, the absorbing medium in the regenerator 2 is in a state C, and the refrigerant vapor (state E) is separated by the action of the compressor. The separated refrigerant is compressed (state F), most of which is sent to the condenser 4 and condensed (state G), and the remaining part is decompressed via the control valve 55 and sent to the absorber 1 to be absorbed by the absorption medium. (State A). The absorption medium circulating in the absorption medium path exits the regenerator 2 (state C) and is heated by the heat exchanger (state D), flows into the absorber 1 and absorbs the refrigerant vapor (state A), and then exchanges heat. It is cooled by the regenerator (state B) and returned to the regenerator again.
[0026]
The condensation heat at the time of condensation heats the absorption medium in the regenerator 2 to cover the regeneration heat. Also, the absorbed heat at the time of absorption is cooled by warm water (80 ° C. in the figure), transferred to an air conditioner, and used for regeneration of the desiccant. In this mode of operation, cold water is not produced, and as described above, hot water is produced and used to heat the regeneration air of the desiccant. At this time, the hot water is cooled and returned to the heat pump. When the first operation mode ends, the condensed refrigerant (state G) and the concentrated absorption medium (state C) are stored in the storage spaces.
[0027]
The fact that the refrigerant is separated from the absorption medium and stored in the form of the concentration potential to obtain the heat storage action, that is, the cooling action of the storage action will be described again in the operation mode shown in the third operation mode. In this mode of operation, only desiccant regeneration by hot water is performed. This operation will be described below.
[0028]
In FIG. 2, hot water flows into the air conditioner from the heat pump via a path 81. In this operation mode, the outside air is taken in through the path 124 and flows into the sensible heat exchanger 104 by the action of the blower 140, but the sensible heat exchanger 104 stops the processing air system that circulates in the conditioned space. Therefore, it does not act, and therefore it flows into another sensible heat exchanger 121 via the path 125 without changing its temperature, and heat exchanges with the regenerated air after regeneration of the desiccant to increase the temperature, and then hot water heat exchange via the path 126 It flows into the vessel 120, where it is heated by warm water and the temperature rises and the relative humidity decreases. Regenerated air that has exited the hot water heat exchanger 120 and has a reduced relative humidity passes through the desiccant rotor 103 to remove moisture from the desiccant rotor and regenerates the air. The regenerative air that has passed through the desiccant rotor 103 flows into the sensible heat exchanger 121 via the path 128 to reheat the regenerated air, and is then exhausted to the outside via the path 129.
[0029]
Thus, according to the present invention, the desiccant of the stopped air conditioner can be simultaneously reproduced during the first operation mode, that is, the heat storage operation. Thermal storage operation is normally performed at midnight, and the relative humidity often increases due to a decrease in temperature at midnight in the summer. Therefore, if the desiccant is left in contact with such outside air, the desiccant absorbs moisture. Although the capacity at the start of cooling the next morning may be insufficient, performing regeneration of the desiccant in this way at the same time as late-night heat storage is effective in smoothly exhibiting the capacity at the start of operation the next day. .
[0030]
Next, an operation mode and an operation in the case where the cooling operation is performed while maintaining the heat storage by using the heat storage in the second operation mode will be described. Such operation is for performing cooling operation without using much heat storage in preparation for full-scale cooling operation during the day, after the heat storage is completed using midnight power. Normally, the cooling load is the largest during the time period from noon to 4:00 pm, and it is effective to use heat storage intensively during that time period. Is effective as a whole.
[0031]
In the second operation mode, the heat pump is set and operated as shown in FIG. In FIG. 6, the on-off valve 56 is open, and the path 41 and the path 43 communicate with each other. The control valve 55 is controlled to keep the pressure of the regenerator 2 at a set value by the action of the control mechanism 90, the on-off valve 51 is open, and the absorption medium storage space 12 and the regenerator 2 are in communication. The valve 52 is open, and the refrigerant is sent from the refrigerant storage space 14 to the evaporator 3. Further, the on-off valves 72 and 73 are opened, and a cold medium (cold water) is passed through the evaporator 3. The on-off valves 70 and 71 are closed, and the cold medium (cold water) does not flow into the regenerator 2. The direction of the path 21 of the three-way valve 50 is closed, and the regenerator 2 and the absorption medium path 22 are not in direct communication. The compressor 7 and the solution pump 6 of the heat pump are operated, and the air conditioner is operated.
[0032]
The operation of the heat pump set in this way will be described. When the compressor 7 is operated in FIG. 6, refrigerant vapor is generated from the absorption medium in the regenerator 2, and the refrigerant is compressed and passes through the paths 41 and 43. 2 flows into the condenser 4 in a heat exchange relationship with the heat exchanger 2. The refrigerant is condensed in the condenser 4 by removing heat from the absorption medium of the regenerator 2. At this time, the regeneration heat when the refrigerant vapor is generated from the absorption medium in the regenerator 2 is covered by the condensation heat of the refrigerant, but the condensation heat is generally larger than the regeneration heat because the power of the compressor is applied, Therefore, the absorption medium temperature and pressure in the regenerator 2 tend to increase. However, when the pressure of the absorbing medium in the regenerator 2 rises due to the action of the pressure detector 91, the control mechanism 90, and the regulating valve 55, the regulating valve 55 opens and sends the refrigerant vapor to the absorber 1 to remove excess vapor. When absorbed by the absorber 1 and the pressure of the absorbing medium in the regenerator 2 decreases, the control valve 55 is closed, and the refrigerant vapor sent to the absorber 1 is throttled to act to hold the refrigerant vapor in the regenerator 2, so that regeneration The pressure in vessel 2 can be kept at a set value.
[0033]
In this mode of operation, there is another refrigerant flow. Refrigerant is supplied to the evaporator 3 from the refrigerant storage space 14 (the valve 52 may be provided with a flow rate adjusting mechanism such as a temperature type expansion valve or float valve). The refrigerant evaporates due to the suction action of the refrigerant vapor. At that time, the cold water is cooled by removing heat of evaporation from the refrigerant through the heat transfer pipe 31. The refrigerant evaporated in the evaporator 3 flows into the absorber through the path 47 and is absorbed. In the absorber 1, the refrigerant flowing from the evaporator 3 via the path 47 and the refrigerant compressed from the regenerator 2 by the compressor 7 and flowing via the path 42 are absorbed by the absorption medium, and the absorption heat is absorbed by the absorption medium and the heating medium. (Hot water) is cooled by exchanging heat through the heat transfer tube 30. At this time, the hot water is heated by itself by cooling the absorption medium, and the temperature rises. However, the heat is exchanged with the regenerated air brought about by the action of the air conditioner blower 140 in FIG. Used for air heating.
[0034]
The refrigerant compressed by the compressor 7 and condensed by the condenser 4 is guided to the refrigerant storage space 14 via the path 44. Further, the absorbing medium flows from the regenerator 2 through the path 27, the on-off valve 51 and the path 28, through the absorbing medium storage space 12, into the pump 6 through the path 29, through the path 22 of the absorbing medium, and by the action of the pump 6. After exchanging heat with the absorbing medium returning from the absorber 1 by the heat exchanger 5 via the path 23, the refrigerant flows from the compressor 7 and the evaporator 3 through the path 24 and flows into the absorber 1 and is diluted. 25, the heat exchanger 5 and the path 26 are returned to the regenerator 2 to circulate through the circulation path.
[0035]
The process of the operation of the heat pump in the operation mode of the second operation mode so far will be described with reference to FIG. FIG. 7 is a Duhring diagram showing the process of operation of the heat pump. In FIG. 7, the absorbing medium in the regenerator 2 is in the state C, and the refrigerant vapor (state E) is separated by the action of the compressor. The separated refrigerant is compressed (state F), most of which is sent to the condenser 4 and condensed (state G), and the remaining part is decompressed via the control valve 55 and sent to the absorber 1 to be absorbed by the absorption medium. However, the operation by this compressor is the operation by the same cycle as the heat storage operation described above, and the absorbing medium is subjected to the concentration operation in the regenerator 2. In the evaporator 3, the refrigerant evaporates due to the suction action of the refrigerant vapor from the absorber 1 (state H).
[0036]
The evaporated refrigerant flows into the absorber through the path 47 and is absorbed (state A), and the operation by this absorber is the same operation as the operation by the known absorption refrigeration cycle, and the absorption medium undergoes dilution in the absorber. In the evaporator, the cold water is cooled by removing the heat of evaporation from the cold water during the evaporation. The cooled cold water is transferred to an air conditioner and used for cooling and cooling the processing air. The absorption medium circulating in the absorption medium path exits the regenerator 2 (state C) and is heated by the heat exchanger (state D), flows into the absorber 1 and flows from the compressor and from the evaporator. Are simultaneously absorbed (state A), cooled by a heat exchanger (state B), and returned to the regenerator again. Also, the absorbed heat at the time of absorption is cooled by warm water (80 ° C. in the figure), transferred to an air conditioner, and used for regeneration of the desiccant. As described above, in the second operation mode, the heat pump can simultaneously cool the cold water and heat the hot water while simultaneously concentrating and diluting the absorption medium.
[0037]
The cold / hot water produced by the heat pump in this way is sent to the air conditioner and performs the cooling action as follows. In FIG. 2, the air in the room 101 to be air-conditioned (process air) is sucked into the blower 102 through the passage 107, pressurized, and sent to the desiccant rotor 103 through the passage 108, and moisture in the air is absorbed by the desiccant rotor hygroscopic agent. Adsorption reduces absolute humidity. During adsorption, the temperature of the air rises due to the heat of adsorption. The air whose humidity has decreased and its temperature has risen is sent to the sensible heat exchanger 104 via the path 109 and is cooled by exchanging heat with the outside air (regenerated air). The cooled air is sent to the cold water heat exchanger 115 via the path 110 and further cooled. The cooled processing air is sent to the humidifier 105 and the temperature is lowered in the isenthalpy process by water jetting or vaporization type humidification, and is returned to the conditioned space 101 via the path 111.
[0038]
Since the desiccant rotor has adsorbed moisture in this process, regeneration is necessary. In this embodiment, the outside air is used as regeneration air as follows. The outside air (OA) is sucked into the blower 140 via the path 124, is pressurized and sent to the sensible heat exchanger 104, cools the processing air, and rises in temperature by itself, and passes through the path 125 to the next sensible heat exchanger 121. The heat rises by exchanging heat with the hot air after regeneration. Further, the regenerative air that has exited the sensible heat exchanger 121 flows into the hot water heat exchanger 120 via the path 126 and is heated by the hot water to rise in temperature to 60 to 80 ° C., and the relative humidity is lowered. The regenerated air that has exited the hot water heat exchanger 120 and has a reduced relative humidity passes through the desiccant rotor 103 to remove the moisture in the desiccant rotor and regenerates the air. The regenerated air that has passed through the desiccant rotor 103 flows into the sensible heat exchanger 121 via the path 128, and after regenerating the regenerated air before regeneration, the regenerated air is discarded to the outside via the path 129.
[0039]
Thus, a normal cooling operation can be performed by combining the heat pump of the present invention with a desiccant air conditioner. The operation of such a desiccant air conditioner is the same as that of the conventional example shown in FIG. 12 except that the heat source for cooling and heating is transmitted from cold water and hot water instead of the refrigerant. Since the diagram can be applied, description of the action on the Mollier diagram is omitted.
[0040]
In this way, according to the second operation mode, since the cooling operation can be performed while simultaneously performing the concentration and dilution of the absorption medium, the concentration of the absorption medium stored in the heat storage operation can be minimized. Cooling operation can be performed while maintaining heat storage. In the second operation mode, an absorption medium having a sufficient absorption capacity is already manufactured and stored in the first operation mode in the storage space 12 of the absorption medium, so that an excessive cooling load should be added. In such a case, the cooling effect can be increased by increasing the amount of refrigerant sent to the evaporator to cope with such a cooling load. In this case, the diluting action by the absorber exceeds the concentrating action by the compressor, so that the operation mode corresponding to an excessive cooling load is performed while diluting the concentrated absorbent medium stored. Thus, this operation mode is not intended to keep the concentration of the absorbing medium constant, and includes an operation mode in which dilution is delayed.
[0041]
Next, the operation mode and operation in the case of performing the cooling operation without consuming the heat storage and operating the compressor in the third operation mode will be described. Such an operation is for performing cooling operation by turning off the power of the compressor as a peak cut of electric power during the daytime. Normally, the cooling load is the largest during the time period from noon to 4:00 pm, and it is effective to use heat storage intensively during the time period. Therefore, the operation in the main operation mode is effective.
[0042]
In the third operation mode, the heat pump is set and operated as shown in FIG. In FIG. 8, the on-off valve 56 is closed, and the path 41 and the path 43 do not communicate with each other. Further, the control valve 55 is completely closed by cutting off the control mechanism 90, and the on-off valve 51 is open, so that the absorbent medium storage space 12 and the regenerator 2 are in communication. Further, the valve 52 is open, and the refrigerant is sent from the refrigerant storage space 14 to the evaporator 3. Further, the on-off valves 72 and 73 are opened, and a cold medium (cold water) is passed through the evaporator 3. Further, the on-off valves 70 and 71 are closed, and the cold medium (cold water) does not flow into the regenerator 2. Furthermore, the direction of the path 21 of the three-way valve 50 is closed, and the regenerator 2 and the absorption medium path 22 are not in direct communication. Further, the compressor 7 of the heat pump is stopped, the solution pump 6 is operated, and the air conditioner is operated.
[0043]
The operation of the heat pump thus set will be described. In FIG. 8, the evaporator 3 is supplied with refrigerant from the refrigerant storage space 14 (the valve 52 is equipped with a flow rate adjusting mechanism such as a temperature expansion valve or a float valve). In the evaporator 3, the refrigerant evaporates due to the suction action of the refrigerant vapor from the absorber 1. At that time, the cold water is cooled by removing heat of evaporation from the refrigerant through the heat transfer pipe 31. The refrigerant evaporated in the evaporator 3 flows into the absorber through the path 47 and is absorbed. In the absorber 1, the refrigerant flowing from the evaporator 3 through the path 47 is absorbed by the absorption medium, and the absorption heat is transferred to the hot water through heat exchange between the absorption medium and the hot water via the heat transfer pipe 30.
[0044]
At this time, the hot water is heated by itself by cooling the absorption medium, and the temperature rises. However, the heat is exchanged with the regenerated air brought about by the action of the air conditioner blower 140 in FIG. Used for air heating. The absorption medium flows from the regenerator 2 through the path 27, the on-off valve 51, the path 28, the absorption medium storage space 12, the path 29, the absorption medium path 22, and the pump 6. After the heat exchange with the absorbing medium returning from the absorber 1 through the heat exchanger 5 through the heat exchanger 23, the heat flows into the absorber 1 through the passage 24, absorbs the refrigerant from the evaporator 3, and is diluted after being diluted. 5. Recirculate to the regenerator 2 via the path 26 and circulate through the circulation path. In this case, the regenerator 2 does not concentrate the absorption medium, so the absorption medium simply passes through the regenerator 2. The diluted absorption medium flows into the absorption medium storage space 12 and gradually dilutes the absorption medium stored inside.
[0045]
The process of the action of the heat pump in the operation mode of the third operation mode so far will be described with reference to FIG. FIG. 9 is a Duhring diagram showing the process of operation of the heat pump. In FIG. 9, the absorbing medium in the absorbing medium storage space 12 is normally stored in a state of C having a sufficient absorbing ability (in the figure, the refrigerant concentration of the absorbing medium is 20%) at the start of this operation mode. When the absorbing medium (aqueous ammonia solution) in this state is sent to the absorber 1 by the action of the pump 6 and heat exchanged with hot water of about 75 ° C., the absorbing action that can evaporate the refrigerant (ammonia) at about 10 ° C. is achieved. Is generated, absorbs the refrigerant (state A), is diluted, and returns to the absorption medium storage space 12 through the regenerator 2. Since the absorption medium storage space 12 has a large amount of absorption medium, the absorption medium is gradually diluted by the absorption medium returning from the absorber 1 and finally the absorption temperature is reduced to the point when the refrigerant concentration is diluted to 30%. The operation can be continued until it gradually begins to decline. By storing the absorption medium and the refrigerant in the absorption medium storage space 12 and the refrigerant storage space 14 in this way, a heat storage effect of cold and warm is obtained.
[0046]
In the evaporator 3, the refrigerant evaporates due to the suction action of the refrigerant vapor from the absorber 1 (state H). The evaporated refrigerant flows into the absorber 1 through the path 47 and is absorbed (state A). The action of this absorber is the same operation as that of the known absorption refrigeration cycle, and the absorption medium undergoes a dilution action. In the evaporator, the cold water is cooled by removing the heat of evaporation from the cold water during the evaporation. The cooled cold water is transferred to an air conditioner and used for cooling and cooling the processing air. Also, the absorbed heat at the time of absorption is cooled by warm water (80 ° C. in the figure), transferred to an air conditioner, and used for regeneration of the desiccant. Thus, in the third operation mode, the heat pump can simultaneously perform both the cooling of the cold water and the heating of the hot water without operating the compressor by the action of the absorbing medium stored in the form of the concentration potential. .
[0047]
The cold / hot water produced by the heat pump in this way is sent to the air conditioner and performs the cooling action as follows. In FIG. 2, the air in the room 101 to be air-conditioned (process air) is sucked into the blower 102 through the passage 107, and is pressurized and sent to the desiccant rotor 103 through the passage 108. Adsorption reduces absolute humidity. During adsorption, the temperature of the air rises due to the heat of adsorption. The air whose humidity has decreased and its temperature has risen is sent to the sensible heat exchanger 104 via the path 109 and is cooled by exchanging heat with the outside air (regenerated air). The cooled air is sent to the cold water heat exchanger 115 via the path 110 and further cooled. The cooled processing air is sent to the humidifier 105 and the temperature is lowered in the isenthalpy process by water jetting or vaporization type humidification, and is returned to the conditioned space 101 via the path 111.
[0048]
Since the desiccant rotor has adsorbed moisture in this process, regeneration is necessary. In this embodiment, the outside air is used as regeneration air as follows. The outside air (OA) is sucked into the blower 140 via the path 124, is pressurized and sent to the sensible heat exchanger 104, cools the processing air, and rises in temperature by itself, and passes through the path 125 to the next sensible heat exchanger 121. The heat rises by exchanging heat with the hot air after regeneration. Further, the regenerative air that has exited the sensible heat exchanger 121 flows into the hot water heat exchanger 120 via the path 126 and is heated by the hot water to rise in temperature to 60 to 80 ° C., and the relative humidity is lowered. The regenerated air that has exited the hot water heat exchanger 120 and has a reduced relative humidity passes through the desiccant rotor 103 to remove the moisture in the desiccant rotor and regenerates the air. The regenerated air that has passed through the desiccant rotor 103 flows into the sensible heat exchanger 121 via the path 128, and after regenerating the regenerated air before regeneration, the regenerated air is discarded to the outside via the path 129.
[0049]
Thus, a normal cooling operation can be performed by combining the heat pump of the present invention with a desiccant air conditioner. The operation of such a desiccant air conditioner is the same as the conventional example shown in FIG. 12 except that the heat source for cooling and heating is transmitted from cold water and hot water instead of the refrigerant. Since the Mollier diagram is applicable, description of the action on the Mollier diagram is omitted.
[0050]
In this way, according to the third operation mode, the cooling operation can be performed while diluting the stored absorption medium. Therefore, the cooling operation can be performed without operating the compressor.
[0051]
Next, the operation mode and operation in the case where the cooling operation is performed after the heat storage is consumed in the fourth operation mode or without using the heat storage will be described. Such an operation is for performing the cooling operation without storing heat until the time of the heat storage operation by midnight power after the operation by heat storage during the day is finished. Usually, late-night power is cheap, but the available time is limited to midnight. Therefore, it is economical to operate according to the air conditioning load without storing heat until the time when the late-night electricity rate is applied after consuming the heat storage. Driving on the road is effective.
[0052]
In the fourth operation mode, the heat pump is set and operated as shown in FIG. In FIG. 10, the on-off valve 56 is closed, and the path 41 and the path 43 do not communicate with each other. Further, the control valve 55 cuts off the operation of the control mechanism 90, the control valve 55 is set to fully open, and the on-off valve 51 is closed, so that the absorption medium storage space 12 and the regenerator 2 are not communicated. Further, the valve 52 is closed, and the refrigerant is stored in the refrigerant storage space 14. Furthermore, the on-off valves 72 and 73 are closed, and no cold medium (cold water) is passed through the evaporator 3. Further, the on-off valves 70 and 71 are open, and a cold medium (cold water) flows through the regenerator 2. Further, the direction of the path 21 of the three-way valve 50 is open, and the regenerator 2 and the absorption medium path 22 are in direct communication. Further, the compressor 7 and the solution pump 6 of the heat pump are operated, and the air conditioner is operated.
[0053]
The operation of the heat pump thus set will be described. When the compressor 7 is operated in FIG. 10, refrigerant vapor is generated from the absorption medium in the regenerator 2, and the refrigerant is compressed and passes through the paths 41 and 42 to the absorber. 1 is absorbed and absorbed. In the absorber 1, the absorption medium and hot water exchange heat through the heat transfer tube 30 to cool the absorption heat. At this time, the hot water is heated by itself by cooling the absorption medium, and the temperature rises. However, the heat is exchanged with the regenerated air brought about by the action of the air conditioner blower 140 in FIG. Used for air heating.
[0054]
The absorbing medium flows from the regenerator 2 through the path 21, the three-way valve 50 and the path 22 into the pump 6, and exchanges heat with the absorbing medium returned from the absorber 1 through the path 23 by the action of the pump 6. Then, after flowing into the absorber 1 through the path 24 and absorbing and diluting the refrigerant from the compressor 7, it is returned to the regenerator 2 through the path 25, the heat exchanger 5 and the path 26, and circulates in the circulation path. In the regenerator 2, the absorption medium and cold water exchange heat through the heat transfer pipe 32, and the regenerative heat is transmitted to heat the absorption medium. At this time, the cold water is cooled by heating the absorbing medium and the temperature rises.
[0055]
The process of the operation of the heat pump in the operation mode of the fourth operation mode so far will be described with reference to FIG. FIG. 11 is a Duhring diagram showing the process of operation of the heat pump. In FIG. 11, the absorbing medium in the regenerator 2 is in the state C, and the refrigerant vapor (state E) is separated by the action of the compressor. The separated refrigerant is compressed (state F), sent to the absorber 1 and absorbed by the absorption medium (state A). In the regenerator 2, during regeneration, the cold water is cooled by removing the heat of regeneration from the cold water (10 ° C. in the figure). The cooled cold water is transferred to an air conditioner and used for cooling and cooling the processing air. The absorption medium circulating in the absorption medium path exits the regenerator 2 (state C) and is heated by the heat exchanger (state D) and flows into the absorber 1 and absorbs the refrigerant vapor coming from the compressor (state A). Then, it is cooled by the heat exchanger (state B) and returns to the regenerator 2 again. Absorption heat at the time of absorption is transmitted to warm water (80 ° C. in the figure), transferred to an air conditioner, and used for regeneration of the desiccant. As described above, in the fourth operation mode, the heat pump can simultaneously cool the cold water and heat the hot water without using heat storage.
[0056]
The absorption medium concentration at which heat storage cannot be used in the third operation mode is about 30% in terms of refrigerant concentration, while the absorption medium concentration in this fourth operation mode is about 50% in terms of refrigerant concentration according to FIG. Therefore, the concentration of the working absorption medium is different. As described above, in the embodiment, the setting for operating at different concentrations is shown. However, in the fourth operation mode, it is possible to operate at a concentration of about 30% when the operation in the third operation mode is completed. However, in such a case, since the operating pressure of the whole cycle is low, there is a possibility that the amount of refrigerant sucked by the compressor (refrigerant suction volume) will be insufficient and the refrigeration capacity will be insufficient.
[0057]
Therefore, it is desirable to dilute the absorbing medium when shifting from the third operation mode to the fourth operation mode. In this case, if all of the absorption medium in the system is diluted, the concentration of the absorption medium is large when the absorption medium needs to be concentrated again when shifting to the first operation mode at midnight. Therefore, in this fourth operation mode, only the minimum absorption medium necessary for circulation is diluted, and the remaining is the concentration of the absorption medium at the end of the third operation mode. It is desirable to store the absorbent medium in the absorbent medium storage space 12. Therefore, in this embodiment, the absorption medium is set to be stored in the absorption medium storage space 12 by the valve 51 and the three-way valve 50. In addition, when shifting from the third operation mode to the fourth operation mode, in order to dilute the absorbing medium, valves provided in the passages 47 and 48 that temporarily connect the refrigerant storage space 14 and the refrigerant passage 22 are provided. It may be configured that the refrigerant is mixed with the absorbing medium by opening 57.
[0058]
The cold / hot water produced by the heat pump in this way is sent to the air conditioner and performs the cooling action as follows. In FIG. 2, the air in the room 101 to be air-conditioned (process air) is sucked into the blower 102 through the passage 107, and is pressurized and sent to the desiccant rotor 103 through the passage 108. Adsorption reduces absolute humidity. During adsorption, the temperature of the air rises due to the heat of adsorption. The air whose humidity has decreased and its temperature has risen is sent to the sensible heat exchanger 104 via the path 109 and is cooled by exchanging heat with the outside air (regenerated air). The cooled air is sent to the cold water heat exchanger 115 via the path 110 and further cooled. The cooled processing air is sent to the humidifier 105 and the temperature is lowered in the isenthalpy process by water jetting or vaporization type humidification, and is returned to the conditioned space 101 via the path 111.
[0059]
Since the desiccant rotor has adsorbed moisture in this process, regeneration is necessary. In this embodiment, the outside air is used as regeneration air as follows. The outside air (OA) is sucked into the blower 140 via the path 124, is pressurized and sent to the sensible heat exchanger 104, cools the processing air, and rises in temperature by itself, and passes through the path 125 to the next sensible heat exchanger 121. The heat rises by exchanging heat with the hot air after regeneration. Further, the regenerative air that has exited the sensible heat exchanger 121 flows into the hot water heat exchanger 120 via the path 126 and is heated by the hot water to rise in temperature to 60 to 80 ° C., and the relative humidity is lowered. The regenerated air that has exited the hot water heat exchanger 120 and has a reduced relative humidity passes through the desiccant rotor 103 to remove the moisture in the desiccant rotor and regenerates the air. The regenerated air that has passed through the desiccant rotor 103 flows into the sensible heat exchanger 121 via the path 128, and after regenerating the regenerated air before regeneration, the regenerated air is discarded to the outside via the path 129.
[0060]
Thus, a normal cooling operation can be performed by combining the heat pump of the present invention with a desiccant air conditioner. The operation of such a desiccant air conditioner is the same as the conventional example shown in FIG. 12 except that the heat source for cooling and heating is transmitted from cold water and hot water instead of the refrigerant. Since the Mollier diagram is applicable, description of the action on the Mollier diagram is omitted.
[0061]
In this way, according to the fourth operation mode, since the cooling operation can be performed without causing heat storage, the heat storage operation can be performed later by effectively using inexpensive late-night power.
[0062]
As described above, according to the heat pump of the present invention, the operating pressure of the heat pump is lowered because the absorbing medium is used together with the refrigerant, and the concentration potential of the absorbing medium is achieved by storing the absorbing medium and the refrigerant, thereby allowing both the cooling action and the heating action. When the heat storage is taken out and the heat storage is taken out, both the cooling action and the heating action can be taken out at the same time, and the heat storage operation for storing heat as the first operation mode and the heat storage as the second operation mode are stored. Each operation mode includes an operation for performing cooling while holding, an operation for performing cooling by consuming heat storage as the third operation mode, and an operation for performing cooling without performing heat storage as the fourth operation mode. Can be selectively switched to enable operation.
[0063]
In the description of the present invention, the evaporator 3 and the refrigerant storage space 14 are shown as separate components in order to clarify the functions, but the evaporator 3 is integrated with the function of the refrigerant storage space 14. In this case, the on-off valve 52 in FIG. 1 is provided in the path 44 or 43, and a new on-off valve is installed in the path 47, and the same effect can be obtained.
[0064]
In the description of the present invention, the regenerator 2 and the absorption medium storage space 12 are shown as separate components for clarifying the function. However, the regenerator 2 is integrated with the function of the absorption medium storage space 12. However, in that case, after storing heat in the first operation mode, the non-heat storage operation in which the compressor which is the fourth operation mode is operated cannot be performed, but after storing heat in the first operation mode, In the case of performing the cooling operation using the heat storage in the second operation mode or the third operation mode, the same operation can be obtained.
[0065]
【The invention's effect】
As described above, according to the present invention, the operating pressure of the heat pump is lowered and both the cooling action and the heating action are stored in the form of the concentration potential of the absorption medium, and the heat storage operation and the cooling while maintaining the heat storage are performed. The operation range is wide and the operation is reliable by selectively switching between the operation that performs cooling, the operation that consumes heat storage and performs cooling, and the operation that performs cooling without using heat storage at all. It is possible to provide a heat pump and a desiccant air conditioning system that are inexpensive and have an inexpensive heat storage function.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a basic configuration of an embodiment of a heat pump according to the present invention.
FIG. 2 is an explanatory diagram showing a basic configuration of an embodiment of a desiccant air conditioner according to the present invention.
FIG. 3 is an explanatory diagram showing various operation modes according to the present invention.
FIG. 4 is an explanatory diagram showing a first operation mode of the heat pump according to the present invention.
FIG. 5 is an explanatory diagram showing a cycle of the heat pump of FIG.
FIG. 6 is an explanatory diagram showing a second operation mode of the heat pump according to the present invention.
7 is an explanatory diagram showing a cycle of the heat pump of FIG.
FIG. 8 is an explanatory view showing a third operation mode of the heat pump according to the present invention.
FIG. 9 is an explanatory diagram showing a cycle of the heat pump of FIG.
FIG. 10 is an explanatory view showing a fourth operation mode of the heat pump according to the present invention.
FIG. 11 is an explanatory diagram showing a cycle of the heat pump of FIG.
FIG. 12 is an explanatory diagram showing a basic configuration of a conventional desiccant air conditioner.
FIG. 13 is an explanatory diagram showing a desiccant air-conditioning cycle of air in a conventional desiccant air-conditioner by a Mollier diagram.
[Explanation of symbols]
1 ... Absorber
2 ... Regenerator
3. Evaporator
4 ... Condenser
5 ... Heat exchanger
6 ... Solution pump
7 ... Compressor
12 ... Absorbing medium storage space
14 ... Refrigerant storage space
21 ... Absorption medium (solution) path
22 ... Absorption medium (solution) path
23 ... Absorption medium (solution) path
24 ... Absorption medium (solution) path
25 ... Absorption medium (solution) path
26 ... Absorption medium (solution) path
27 ... Absorption medium (solution) path
28 ... Absorption medium (solution) path
29 ... Absorption medium (solution) path
30 ... Heat transfer tube (hot water)
31 ... Heat transfer tube (cold water)
32 ... Heat transfer tube (cold water)
40: Refrigerant path
41 ... Refrigerant path
42 ... Refrigerant path
43 ... Refrigerant path
44 ... Refrigerant path
45 ... Refrigerant path
46 ... Refrigerant path
47 ... Refrigerant path
48 ... Refrigerant path
50 ... 3-way valve
51 ... Valve
52 ... Valve
53 ... 3-way valve
55 ... Control valve
56 ... Valve
57 ... Valve
60 ... cold water route
61 ... cold water route
62 ... Cold water path
63 ... Cold water path
64 ... cold water route
65 ... cold water route
70 ... Valve
71 ... Valve
72 ... Valve
73 ... Valve
80 ... Warm water route
81 ... Warm water path
90 ... Control mechanism
91 ... Pressure detector
92 ... Control signal path
93 ... Control signal path
101 ... Air-conditioned space
102 ... Blower
103 ... Desiccant rotor
104 ... Sensible heat exchanger
105 ... Humidifier
106 ... water supply pipe
107 ... Air path
108 ... Air path
109 ... Air path
110 ... Air path
111 ... Air path
115 ... cold water heat exchanger
117 ... Cold water path
118 ... Cold water path
119 ... Air path
120 ... Hot water heat exchanger
121 ... Sensible heat exchanger
122 ... hot water route
123 ... hot water route
124 ... Air path
125 ... Air path
126 ... Air path
127 ... Air path
128 ... Air path
129 ... Air path
130 ... Air path
140 ... Blower
150 ... Hot water pump
160 ... cold water pump
201: Refrigerant path
202 ... Refrigerant path
203 ... Refrigerant path
204: Refrigerant path
220 ... Condenser
240 ... Evaporator
250 ... Expansion valve
260 ... Compressor
a: Absorption medium cycle state point
b: Absorption medium cycle state point
c: Absorption medium cycle state point
d: Absorption medium cycle state point
e ... Absorption medium cycle state point
f: Absorption medium cycle state point
A: Absorption medium cycle state point
B: Absorption medium cycle state point
C: Absorption medium cycle state point
D: Absorption medium cycle state point
E: Absorption medium cycle state point
F: Absorption medium cycle state point
K ... Air condition point of desiccant air conditioning
L ... Air condition point for desiccant air conditioning
M: Air condition point for desiccant air conditioning
N ... Air condition point of desiccant air conditioning
P ... Air condition point for desiccant air conditioning
Q ... Air condition point for desiccant air conditioning
R ... Air condition point for desiccant air conditioning
S ・ ・ ・ Air condition point of desiccant air conditioning
T ・ ・ ・ Air condition point of desiccant air conditioning
U ... Air condition point for desiccant air conditioning
V ... Air condition point of desiccant air conditioning
X ... Air condition point of desiccant air conditioning
SA ... Air supply
RA ... Return
EX ... Exhaust
OA ... Outside air
ΔQ ... Cooling effect

Claims (3)

吸収器と再生器と圧縮機とを有し、吸収器と再生器との間を循環する吸収媒体の経路および再生器の冷媒蒸気を圧縮機で圧縮して吸収器に移送する冷媒の経路を有し、前記再生器の冷却作用を外部に取り出す熱媒体と熱交換関係にある蒸発器を設け、前記再生器内の吸収媒体と熱交換関係にある凝縮器を設け、前記圧縮機で圧縮した冷媒蒸気を該凝縮器に導き凝縮した冷媒を貯蔵する冷媒貯蔵空間を設け、再生器で濃縮した吸収媒体を貯蔵する吸収媒体貯蔵空間を設け、前記蒸発器の冷媒空間を前記冷媒貯蔵空間および前記吸収器に接続したヒートポンプにおいて、圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記凝縮器で冷媒を凝縮させることによって吸収媒体を濃縮して吸収媒体濃度を増加させるとともに濃縮した吸収媒体を前記吸収媒体貯蔵空間に貯蔵し、かつ凝縮した冷媒を前記冷媒貯蔵空間に貯蔵する第1の運転モードと、圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記凝縮器で冷媒を凝縮させることによって前記再生器内の吸収媒体を濃縮して吸収媒体濃度を増加させるとともに、前記蒸発器で冷媒を蒸発させて蒸発した冷媒を前記吸収器で吸収させる第2の運転モードと、圧縮機を停止して前記蒸発器で冷媒を蒸発させて蒸発した冷媒を前記吸収器で吸収させる第3の運転モードと、圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記吸収器で吸収させる第4の運転モードの4種類の運転モードとを備え、各々の運転モードを選択的に切換可能に構成したことを特徴とするヒートポンプ。An absorber, a regenerator, and a compressor, and a path for an absorption medium circulating between the absorber and the regenerator and a refrigerant path for compressing the refrigerant vapor of the regenerator by the compressor and transferring the refrigerant to the absorber. An evaporator having a heat exchange relationship with a heat medium for extracting the cooling action of the regenerator to the outside, a condenser having a heat exchange relationship with an absorption medium in the regenerator, and a compressor compressed by the compressor A refrigerant storage space for storing refrigerant condensed by introducing refrigerant vapor to the condenser is provided, an absorption medium storage space for storing the absorption medium concentrated by the regenerator is provided, and the refrigerant space of the evaporator is the refrigerant storage space and the refrigerant In the heat pump connected to the absorber, the compressor is operated to compress the refrigerant vapor of the regenerator and condense the refrigerant in the condenser, thereby concentrating the absorption medium and increasing the concentration of the absorption medium. Medium A first operation mode for storing the condensed refrigerant in the storage medium storage space and storing the condensed refrigerant in the refrigerant storage space; and operating the compressor to compress the refrigerant vapor of the regenerator and condensing the refrigerant in the condenser A second operation mode in which the absorption medium in the regenerator is concentrated to increase the concentration of the absorption medium, the refrigerant is evaporated by the evaporator and the evaporated refrigerant is absorbed by the absorber, and the compressor And the third operation mode in which the refrigerant is evaporated by the evaporator and the evaporated refrigerant is absorbed by the absorber, and the refrigerant vapor of the regenerator is compressed by operating the compressor. A heat pump comprising four types of operation modes of the fourth operation mode to be absorbed and configured to selectively switch each operation mode. 冷媒蒸気を吸収媒体で吸収する吸収器と冷媒蒸気を吸収媒体から分離する再生器と冷媒蒸気を圧縮する圧縮機を有し、該吸収器と該再生器との間を循環する吸収媒体の循環経路および再生器の冷媒蒸気を圧縮機で圧縮して吸収器に移送する冷媒の経路を有し、前記再生器の冷却作用を外部に取り出す熱媒体と熱交換関係にある蒸発器を設け、さらに前記再生器内の吸収媒体と熱交換関係にある凝縮器を設け、さらに前記圧縮機で圧縮した冷媒蒸気を該凝縮器に導き凝縮した冷媒を貯蔵する冷媒貯蔵空間を設け該冷媒貯蔵空間を前記蒸発器と接続し、さらに再生器で濃縮した吸収媒体を貯蔵する吸収媒体貯蔵空間を設け該吸収媒体貯蔵空間を前記発生器および吸収媒体の循環経路と接続し、さらに前記蒸発器の冷媒空間を前記冷媒貯蔵空間および前記吸収器に接続したヒートポンプにおいて、圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記凝縮器で冷媒を凝縮させることによって吸収媒体を濃縮して吸収媒体濃度を増加させるとともに濃縮した吸収媒体を前記吸収媒体貯蔵空間に貯蔵し、かつ凝縮した冷媒を前記冷媒貯蔵空間に貯蔵する第1の運転モードと、圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記凝縮器で冷媒を凝縮させることによって前記再生器内の吸収媒体を濃縮して吸収媒体濃度を増加させるとともに、前記蒸発器で冷媒を蒸発させて蒸発した冷媒を前記吸収器で吸収させる第2の運転モードと、圧縮機を停止して前記蒸発器で冷媒を蒸発させて蒸発した冷媒を前記吸収器で吸収させる第3の運転モードと、圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記吸収器で吸収させる第4の運転モードの4種類の運転モードとを備え、各々の運転モードを選択的に切換可能に構成したことを特徴とするヒートポンプ。An absorber that absorbs refrigerant vapor with an absorbing medium, a regenerator that separates the refrigerant vapor from the absorbing medium, and a compressor that compresses the refrigerant vapor, and circulation of the absorbing medium that circulates between the absorber and the regenerator A refrigerant path for compressing the refrigerant vapor of the path and the regenerator with a compressor and transferring the refrigerant vapor to the absorber, and an evaporator having a heat exchange relationship with a heat medium for extracting the cooling action of the regenerator to the outside, A condenser having a heat exchange relationship with the absorption medium in the regenerator is provided, and further, a refrigerant storage space for storing refrigerant condensed by introducing the refrigerant vapor compressed by the compressor to the condenser is provided. An absorption medium storage space for connecting the evaporator and further storing the absorption medium concentrated in the regenerator is provided, the absorption medium storage space is connected to the circulation path of the generator and the absorption medium, and the refrigerant space of the evaporator is further connected. The refrigerant storage space and In the heat pump connected to the absorber, the compressor is operated to compress the refrigerant vapor of the regenerator and condense the refrigerant in the condenser, thereby concentrating the absorption medium and increasing the concentration of the absorption medium. A first operation mode for storing an absorption medium in the absorption medium storage space and storing a condensed refrigerant in the refrigerant storage space; and operating the compressor to compress the refrigerant vapor of the regenerator to compress the condenser A second operation mode in which the absorption medium in the regenerator is concentrated by condensing the refrigerant to increase the concentration of the absorption medium, and the refrigerant is evaporated by the evaporator and the evaporated refrigerant is absorbed by the absorber. And a third operation mode in which the compressor is stopped, the refrigerant is evaporated by the evaporator and the evaporated refrigerant is absorbed by the absorber, and the refrigerant is discharged from the regenerator by operating the compressor. Fourth and a four operation modes of the operation mode, the heat pump being characterized in that selectively switchably constituting each operation mode to be absorbed in the absorber by condensation. 冷媒蒸気を吸収媒体で吸収し吸収熱で温熱媒体を加熱する吸収器と再生熱を冷熱媒体から奪って冷媒蒸気を吸収媒体から分離する再生器と冷媒蒸気を圧縮する圧縮機を有し、該吸収器と該再生器との間を循環する吸収媒体の循環経路および再生器の冷媒蒸気を圧縮機で圧縮して吸収器に移送する冷媒の経路を有し、前記再生器の冷却作用を外部に取り出す冷熱媒体の経路を流動するものと同じ冷熱媒体と熱交換関係にある蒸発器を設け、前記冷熱媒体が前記再生器または該蒸発器を選択的に流動できるよう冷熱媒体の経路を開閉弁を介してヒートポンプ外部との冷熱媒体の接続口と接続し、前記再生器内の吸収媒体と熱交換関係にある凝縮器を設け、該凝縮器には前記圧縮機で圧縮した冷媒蒸気を分岐して導く経路と凝縮器で凝縮した冷媒を前記冷媒貯蔵空間に導く経路を設け、該冷媒貯蔵空間を前記蒸発器と接続し、さらに再生器で濃縮した吸収媒体を貯蔵する吸収媒体貯蔵空間を設け該吸収媒体貯蔵空間を前記発生器と接続し、前記吸収媒体貯蔵空間を再生器を出た吸収媒体の循環経路と開閉弁を介して接続し、前記蒸発器の冷媒空間を前記吸収器に接続するよう構成したヒートポンプにおいて、圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記凝縮器で冷媒を凝縮させることによって吸収媒体を濃縮して吸収媒体濃度を増加させるとともに濃縮した吸収媒体を前記吸収媒体貯蔵空間に貯蔵し、かつ凝縮した冷媒を前記冷媒貯蔵空間に貯蔵する第1の運転モードと、圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記凝縮器で冷媒を凝縮させることによって前記再生器内の吸収媒体を濃縮して吸収媒体濃度を増加させるとともに、前記蒸発器で冷媒を蒸発させて蒸発した冷媒を前記吸収器で吸収させる第2の運転モードと、圧縮機を停止して前記蒸発器で冷媒を蒸発させて蒸発した冷媒を前記吸収器で吸収させる第3の運転モードと、圧縮機を運転して前記再生器の冷媒蒸気を圧縮して前記吸収器で吸収させる第4の運転モードの4種類の運転モードとを備え、各々の運転モードを選択的に切換可能に構成したことを特徴とするヒートポンプ。An absorber that absorbs the refrigerant vapor with the absorption medium and heats the heating medium with the absorbed heat; a regenerator that takes the regenerative heat from the cold medium and separates the refrigerant vapor from the absorption medium; and a compressor that compresses the refrigerant vapor, A circulation path of an absorption medium that circulates between the absorber and the regenerator, and a refrigerant path that compresses the refrigerant vapor of the regenerator by the compressor and transfers the refrigerant to the absorber. An evaporator having a heat exchange relationship with the same cooling medium that flows through the path of the cooling medium to be taken out is provided, and the cooling medium path is opened and closed so that the cooling medium can selectively flow through the regenerator or the evaporator. A condenser having a heat exchange relationship with the absorption medium in the regenerator is provided, and the refrigerant vapor compressed by the compressor is branched into the condenser. And the refrigerant condensed in the condenser A path leading to the refrigerant storage space is provided, the refrigerant storage space is connected to the evaporator, and an absorption medium storage space for storing the absorption medium concentrated in the regenerator is further provided, and the absorption medium storage space is connected to the generator And operating the compressor in a heat pump configured to connect the absorption medium storage space to the absorption medium circulation path exiting the regenerator via an on-off valve and connect the refrigerant space of the evaporator to the absorber. And compressing the refrigerant vapor of the regenerator and condensing the refrigerant in the condenser to concentrate the absorption medium to increase the concentration of the absorption medium and store the concentrated absorption medium in the absorption medium storage space; and A first operation mode for storing the condensed refrigerant in the refrigerant storage space; and the regeneration by operating the compressor to compress the refrigerant vapor of the regenerator and condensing the refrigerant in the condenser. A second operation mode in which the absorption medium is concentrated by increasing the concentration of the absorption medium and the refrigerant is evaporated by the evaporator and the evaporated refrigerant is absorbed by the absorber; A third operation mode in which the refrigerant is evaporated by the evaporator and the evaporated refrigerant is absorbed by the absorber; and a fourth operation in which the compressor is operated to compress the refrigerant vapor of the regenerator and absorb it by the absorber. A heat pump characterized by comprising four types of operation modes and selectively switching each operation mode.

JP00818096A 1996-01-16 1996-01-22 heat pump Expired - Fee Related JP3743580B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP00818096A JP3743580B2 (en) 1996-01-22 1996-01-22 heat pump
US08/783,042 US5791157A (en) 1996-01-16 1997-01-14 Heat pump device and desiccant assisted air conditioning system
CNA2004100301908A CN1536280A (en) 1996-01-16 1997-01-16 Heat pump device and air conditioner system using drying agent as auxiliary action
CNB971004250A CN1172127C (en) 1996-01-16 1997-01-16 Heat pump and air-conditioning system using drying-agent for assisting
US09/057,588 US5966955A (en) 1996-01-16 1998-04-09 Heat pump device and desiccant assisted air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00818096A JP3743580B2 (en) 1996-01-22 1996-01-22 heat pump

Publications (2)

Publication Number Publication Date
JPH09196501A JPH09196501A (en) 1997-07-31
JP3743580B2 true JP3743580B2 (en) 2006-02-08

Family

ID=11686120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00818096A Expired - Fee Related JP3743580B2 (en) 1996-01-16 1996-01-22 heat pump

Country Status (1)

Country Link
JP (1) JP3743580B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114110849B (en) * 2021-12-06 2022-10-14 中南大学 Integrated device of coupling type air conditioner, water heater and water boiler

Also Published As

Publication number Publication date
JPH09196501A (en) 1997-07-31

Similar Documents

Publication Publication Date Title
US5791157A (en) 1998-08-11 Heat pump device and desiccant assisted air conditioning system
US5761925A (en) 1998-06-09 Absorption heat pump and desiccant assisted air conditioner
JP2994303B2 (en) 1999-12-27 Air conditioning system and operating method thereof
JPH1096542A (en) 1998-04-14 Air conditioning system
JP2001241693A (en) 2001-09-07 Air conditioner
JPH09196482A (en) 1997-07-31 Desiccant air-conditioning apparatus
JPH1026369A (en) 1998-01-27 Air conditioning system and control method
JPH10205819A (en) 1998-08-04 Air conditioner and air conditioning system
JP3743581B2 (en) 2006-02-08 Heat pump and operation method thereof
JPH11132502A (en) 1999-05-21 Dehumidifying air conditioner system
JP3743580B2 (en) 2006-02-08 heat pump
JP3434109B2 (en) 2003-08-04 Desiccant air conditioner
JP3037648B2 (en) 2000-04-24 Dehumidification air conditioning system
JP3743579B2 (en) 2006-02-08 heat pump
JPH0894202A (en) 1996-04-12 Air conditioner
JP2000329375A (en) 2000-11-30 Air conditioner, air conditioning/refrigerating system and operating method for air conditioner
CN117948646B (en) 2024-08-02 All-condition low-temperature regeneration dehumidification rotary wheel dehumidification air conditioning unit and control method
JP2971841B2 (en) 1999-11-08 Air conditioning system
JP3480772B2 (en) 2003-12-22 Absorption heat pump
JPH09196499A (en) 1997-07-31 Heat pump
JP2971842B2 (en) 1999-11-08 Absorption heat pump and air conditioning system using the same as heat source
JP3765932B2 (en) 2006-04-12 Dehumidification air conditioner and dehumidification air conditioning system
JP3434110B2 (en) 2003-08-04 Desiccant air conditioner
JPH1026434A (en) 1998-01-27 Air conditioning system
JP2972834B2 (en) 1999-11-08 Desiccant air conditioner

Legal Events

Date Code Title Description
2005-11-04 A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051104

2005-11-08 TRDD Decision of grant or rejection written
2005-11-11 A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051110

2005-11-24 A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051110

2005-11-25 R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

2008-11-25 LAPS Cancellation because of no payment of annual fees