patents.google.com

JP3758157B2 - RF stage module - Google Patents

  • ️Wed Mar 22 2006

JP3758157B2 - RF stage module - Google Patents

RF stage module Download PDF

Info

Publication number
JP3758157B2
JP3758157B2 JP2002102151A JP2002102151A JP3758157B2 JP 3758157 B2 JP3758157 B2 JP 3758157B2 JP 2002102151 A JP2002102151 A JP 2002102151A JP 2002102151 A JP2002102151 A JP 2002102151A JP 3758157 B2 JP3758157 B2 JP 3758157B2 Authority
JP
Japan
Prior art keywords
circuit
transmission line
balanced
transmission
antenna
Prior art date
2001-04-04
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002102151A
Other languages
Japanese (ja)
Other versions
JP2003018039A (en
Inventor
茂 釼持
昌幸 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
2001-04-04
Filing date
2002-04-04
Publication date
2006-03-22
2002-04-04 Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
2002-04-04 Priority to JP2002102151A priority Critical patent/JP3758157B2/en
2003-01-17 Publication of JP2003018039A publication Critical patent/JP2003018039A/en
2006-03-22 Application granted granted Critical
2006-03-22 Publication of JP3758157B2 publication Critical patent/JP3758157B2/en
2022-04-04 Anticipated expiration legal-status Critical
Status Expired - Fee Related legal-status Critical Current

Links

  • 230000005540 biological transmission Effects 0.000 claims description 109
  • 239000003990 capacitor Substances 0.000 claims description 21
  • 238000004891 communication Methods 0.000 claims description 10
  • 238000010586 diagram Methods 0.000 description 14
  • 238000003780 insertion Methods 0.000 description 8
  • 230000037431 insertion Effects 0.000 description 8
  • 238000006243 chemical reaction Methods 0.000 description 7
  • 238000000034 method Methods 0.000 description 7
  • 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
  • 230000002093 peripheral effect Effects 0.000 description 3
  • 238000010897 surface acoustic wave method Methods 0.000 description 3
  • 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
  • 230000002238 attenuated effect Effects 0.000 description 2
  • 239000000919 ceramic Substances 0.000 description 2
  • 238000005516 engineering process Methods 0.000 description 2
  • 238000001228 spectrum Methods 0.000 description 2
  • 101150015217 FET4 gene Proteins 0.000 description 1
  • ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
  • 229910004298 SiO 2 Inorganic materials 0.000 description 1
  • 230000001413 cellular effect Effects 0.000 description 1
  • 229910052802 copper Inorganic materials 0.000 description 1
  • 230000008878 coupling Effects 0.000 description 1
  • 238000010168 coupling process Methods 0.000 description 1
  • 238000005859 coupling reaction Methods 0.000 description 1
  • 238000007606 doctor blade method Methods 0.000 description 1
  • 230000000694 effects Effects 0.000 description 1
  • 230000005669 field effect Effects 0.000 description 1
  • 238000010304 firing Methods 0.000 description 1
  • 230000001771 impaired effect Effects 0.000 description 1
  • 238000010030 laminating Methods 0.000 description 1
  • 239000000463 material Substances 0.000 description 1
  • 238000010295 mobile communication Methods 0.000 description 1
  • 229910052750 molybdenum Inorganic materials 0.000 description 1
  • 239000011733 molybdenum Substances 0.000 description 1
  • 230000005855 radiation Effects 0.000 description 1
  • 230000035945 sensitivity Effects 0.000 description 1
  • 229910052709 silver Inorganic materials 0.000 description 1
  • 239000000758 substrate Substances 0.000 description 1
  • WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
  • 229910052721 tungsten Inorganic materials 0.000 description 1
  • 239000010937 tungsten Substances 0.000 description 1

Images

Landscapes

  • Electronic Switches (AREA)
  • Transceivers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種コンピュータ、その周辺装置、携帯電話などの移動体通信機に用いられ、これを相互に接続してデータ通信を行う周波数ホッピング方式使用するブルートゥース等のRF回路に関し、特に高周波スイッチ回路とその周辺回路を複合一体化したRF段モジュールに関する。
【0002】
【従来の技術】
2.4GHzのISM(Industrial, Scientific and Medical、産業、科学及び医療)帯域は、DSSS(Direct Sequence Spread Spectrum
ダイレクト・シーケンス・スペクトル拡散)、無線通信向けのもの等のIEEE802.11規格に準拠する無線LAN(WLAN)通信に利用されている。このような無線LAN(WLAN)と同じ2.4GHzのISM帯域を利用し、関連し合う電子機器との接続がケーブルを用いることなく実現でき極めて利便性の高い技術である近距離無線規格ブルートゥース(BluetoothTM)が提案されている。
このブルートゥースは2.4GHzの前記ISM周波数帯を複数の無線チャンネルに分割して使用し、さらに各無線チャンネルを単位時間(1/1600秒)ごとに分割してタイムスロットとし、使用する無線チャンネルをタイムスロットごとに切り替える耐ノイズ性に優れた周波数ホッピング方式が採用されている。送受信の切り替えは、PHS(Personal
Handy Phone System)等と同様に時分割複信(TDD;Time Division Duplex)方式が採用され、このTDD方式は送信と受信を同一のキャリア周波数とする方式である。
【0003】
もともと、ブルートゥースはその利用が同一敷地内、同一建物内など比較的狭い地域として想定されているので、電波が到達するエリアは10m程度の距離範囲であり、送信時で30mW、待機時では0.3mWと省電力に設計されている。このようなブルートゥースのRF回路の一例を図1に示す。このブルートゥースのRF回路は、アンテナANTの後段に高周波フィルタ(FILTER)が配置され、アンテナから入放射する高周波信号は伝送すべき送受信信号に濾波される。その後段には送信回路TXと前記アンテナANTとの接続、及び受信回路RXと前記アンテナANTとの接続を切り替える高周波スイッチSWと、この高周波スイッチSWと前記送信回路間に配置される平衡−不平衡変換回路である第1のバルントランスBalun1と、前記高周波スイッチと前記受信回路間に配置される第2のバルントランスBalun2とを有する。前記高周波スイッチSWは、ブルートゥースの通信がTDD方式で行われること、送信時の電力が30mWと極めて省電力であることがら、GaAsスイッチが広く用いられている。スイッチ回路によりアンテナと受信回路間、送信回路とアンテナ間との接続が切換えられ、高周波信号はそれぞれの回路に適宜導かれる。
RFICのRF段モジュール側の入出力部は雑音指数をさげ、受信感度を上げるように、それぞれ差動動作する様に2本の信号端子にて構成されている。そして前記RFICの入出力インピーダンスは50Ω〜200Ω程度であるため、各部品の特性インピーダンスが異なる場合には、インピーダンス変換回路も必要となり、スイッチ回路とRFICとの間には平衡‐不平衡回路として前記バルントランスBalun1,2が配置されている。
【0004】
【発明が解決しようとする課題】
このようなRF段モジュールは、その無線システムのもつ利便性から、用いられる機器の小型軽量化されたデザイン等の市場要求に応じて、RF段モジュールも小型軽量化が求められ、また低価格化の要請も強い。前記RFICはパワーアンプ等の高周波デバイスを含み、これを駆動するのに従来は直流電圧供給手段からチョークコイルを介して直流電圧を供給していた。小型軽量化の要求に対して最近のRF段モジュールにおいては、前記チョークコイルを含む回路部品の低減が求められていた。
また、RF段モジュールが用いられる機器は、携帯電話などに複合化されるようになってきている。無線LANやブルートゥースが利用するISM周波数帯域は、工作機械や電子レンジ等からの放射ノイズが多い帯域であることから、無線システムとして、もともと通信方式として耐ノイズ性に優れた周波数ホッピング方式が採用されている。しかしながら、他の通信機器、例えばPCS(Personal
Communication Services)DCS(Digital Cellular System)等の携帯電話の高周波信号がごく近傍に存在する場合には、その高周波信号がノイズとして作用し、前記周波数方式であっても少なからず影響を受けてしまう。他方、通信機器にとっても同様に、ブルートゥースの高周波信号がノイズとして作用する。このためアンテナから放射される帯域外の高周波信号は、ブルートゥースでは例えば2倍波で30dB以上の減衰量が望まれている。
しかしながら前記スイッチ回路としてGaAsスイッチを用いる場合には、広帯域な挿入損失で帯域外の減衰量も小さいといった特性から、アンテナトップに配置される高周波フィルタは、その帯域外減衰量の大きなものが必要とされるが、大きな帯域外減衰量を得ようとすれば、フィルタを構成する回路素子を増やさざるを得ず、挿入損失が劣化し、形状も大きくせざるを得ず、更なるRF段モジュールの小型化には限界があった。また無線LANやブルートゥースは、携帯電話やノート型コンピュータのように、バッテリーで駆動させる機器において使用される場合が多い。この為更なる低消費電力化も望まれているが、前記の理由から困難な状況にあった。そこで本発明の目的は、部品点数を削減し、高調波の減衰特性に優れ、かつた低消費電力である小型のRF段モジュールを提供することである。
【0005】
【課題を解決するための手段】
本発明は、送信回路とアンテナとの接続、および受信回路と前記アンテナとの接続を制御するスイッチ回路と、前記スイッチ回路と前記送信回路との間に配置される第1の平衡−不平衡回路を具備し、 前記第1の平衡−不平衡回路は第1の伝送線路と、この第1の伝送線路と電磁結合する第2の伝送線路と第3の伝送線路を備え、前記第1の伝送線路は一端が不平衡端に接続され他端が接地又は開放端となり、前記第2の伝送線路は一端が接地され他端が第1の平衡端に接続され、前記第3の伝送線路は一端が接地され他端が第2の平衡端に接続されバルントランスであって、前記バルントランスの第2、第3の伝送線路の一端同士が、電圧供給端に接続し、前記電圧供給端はコンデンサを介して接地され、パワーアンプを備えたRFICの送信出力平衡端子と前記バルントランスの第1、第2の平衡端とが接続してなり、受信回路とアンテナとが接続される受信時には、前記電圧供給端に直流電圧を印加せず、送信回路とアンテナとが接続される送信時には、前記電圧供給端に直流電圧を印加して、第2、第3の伝送線路を介して第1及び第2の平衡端子から直流電圧をRFICへ出力することを特徴とするRF回路である。
本発明において更に前記スイッチ回路と前記受信回路との間に配置される第2の平衡−不平衡回路を具備し、前記第2の平衡−不平衡回路は第4の伝送線路と、この第4の伝送線路と電磁結合する第5の伝送線路と第6の伝送線路を備え、前記第4の伝送線路は一端が不平衡端に接続され他端が接地又は開放端となり、前記第5の伝送線路は一端が接地され他端が第3の平衡端に接続され、前記第6の伝送線路は一端が接地され他端が第4の平衡端に接続されるバルントランスとするのが好ましい。
本発明のRF回路では、前記コンデンサのホット側から前記第2、第3の伝送線路に直流電圧を供給し、第1及び第2の平衡端子から直流電圧を出力するようになした。この直流電圧により、RFICのパワーアンプを動作させている。
また、アンテナとスイッチ回路との間に、フィルタ回路を配置するのが好ましい。さらに、送信回路からアンテナの間に、前記送信回路からの高周波信号からの高周波信号に含まれる他の無線通信システム周波数帯の周波数成分を選択的に減衰させるように、インダクタとコンデンサとの直列共振回路により減衰極を形成するのが好ましい。そして、前記スイッチ回路と、前記第1、第2の平衡−不平衡回路とを複数の誘電体層を積層してなる積層体に一体化するのが好ましく、さらに誘電体アンテナを具備し、該誘電体アンテナを前記積層体に一体化してもよい。
【0006】
【発明の実施の形態】
本発明について、以下詳細に説明する。図1は本発明の一実施例に係るRF段モジュールの回路ブロックの一例であり、図2乃至5は前記RF段モジュールに用いるバルントランスBalun1、2の等価回路である。
このRF段モジュールは、不要な高周波信号を減衰させる高周波フィルタ(FILTER)と、送信信号と受信信号を切り換える高周波スイッチ(SW)、平衡−不平衡変換回路としてのバルントランスBalun1、Balun2を備える。
図2に送信側に用いるバルントランスの一例を示す。送信側(TX)のバルントランスBalun1は、第1の伝送線路L1とこの第1の伝送線路L1と電磁結合する第2の伝送線路L2と第3の伝送線路L3を備え、前記第1の伝送線路L1は一端が不平衡端101に接続され他端が接地され、第2の伝送線路L2は一端が接地され他端が第1の平衡端102に接続され、第3の伝送線路L3は一端が接地され他端が第2の平衡端103に接続される。前記第1の平衡−不平衡回路を構成するバルントランスの前記第1、第2の伝送線路の一端同士が接続してコンデンサC1を介して接地されるとともに、前記コンデンサのホット側から第2の伝送線路L2と第3の伝送線路L3に直流電圧を供給できるように電圧供給端Vddが形成されている。
この電圧供給端Vddからみて、前記第2の伝送線路L2と前記第3の伝送線路L3はほぼ等しい線路長を有しおり、前記電圧供給端Vddから直流電圧が供給されると、第2の伝送線路L2と前記第3の伝送線路L3には、ほぼ同じ大きさの電流が逆方向に流れ、第1の平衡端102と第2の平衡端103には略等しい直流電圧が出力される。前記第1の平衡端102と第2の平衡端103はRFICの送信側出力部に接続されており、電圧供給端Vddから直流電圧を印加した場合にRFICの送信出力部の2本の平衡端子に、同時にほぼ等しい直流電圧を印加できる。このため従来必要であったチョークコイルを準備する必要がない。本発明のRF段モジュールによれば、従来電圧供給のために必要であった複数のディスクリート部品を削減することが出来るため、RF段モジュールを小型かつ軽量化出来、価格も低廉化出来る。また、前記コンデンサC1は第1の平衡端102と第2の平衡端103に入力される高周波信号の位相差を調整するように機能させることも出来る。
【0007】
図3はバルントランスの他の例を示す等価回路であり、このバルントランスの場合は、前記第1の伝送線路は一端が不平衡端に接続され他端が開放端となり、第2の伝送線路は一端が接地され他端が第1の平衡端に接続され、第3の伝送線路は一端が接地され、他端が第2の平衡端に接続される。この場合も前記第1の平衡−不平衡回路を構成するバルントランスの前記第1、第2の伝送線路の一端同士が接続しコンデンサC1を介して接地されるとともに、前記コンデンサのホット側から直流電圧を供給できるように電圧供給端Vddが形成されており、図2に開示したバルントランスと同様に第2の伝送線路L2と前記第3の伝送線路L3には、ほぼ同じ大きさの電流が逆方向に流れ、第1の平衡端102と第2の平衡端103には略等しい直流電圧が出力される。したがって別途チョークコイルを準備する必要がなく、従来電圧供給のために必要であった複数のディスクリート部品を削減することが出来るため、RF段モジュールを小型かつ軽量化出来、価格も低廉なものに出来る。また、このバルントランスは図14に示すように、2.4GHzの2倍波帯域で減衰極をもつ。バルントランス単体でも不要な高周波信号を減衰させることができ、前段に配置される高周波フィルタに求められる帯域外減衰量、特に通過帯域よりも高周波側の減衰量は、それほど大きなものを用いなくてもよい。この為、高周波フィルタを少ない回路素子で構成出来るので小型化でき、また低挿入損失となるので低消費電力化も実現することができる。それほど大きな帯域外減衰量が必要とされない場合に、前記高周波フィルタとして積層LCフィルタ、弾性表面波フィルタを用いることができ、これらは共に安価に構成できるので、その結果としてRF段モジュールも安価に提供することが出来る。
【0008】
受信側(RX)に用いられるバルントランスBalun2の一例を図4、5に示す。例えば図4のバルントランスBalun2は、第4の伝送線路L4とこの第4の伝送線路L4と電磁結合する第5の伝送線路L5と第6の伝送線路L6を備え、前記第4の伝送線路L4は一端が不平衡端105に接続され他端が接地され、第5の伝送線路L5は一端が接地され他端が第3の平衡端106に接続され、第6の伝送線路L6は一端が接地され他端が第4の平衡端107に接続される。前記第1の平衡−不平衡回路を構成するバルントランスの前記第5、第6の伝送線路の一端同士が接続して接地される。
その基本的な回路構成は送信側(TX)に用いられるバルントランスBalun1と比較し、電圧供給端Vddを有さない点以外は同じである。図5に示したバルントランスBalun2も同様であり、その説明を省く。
【0009】
図6、7は、図1に示すRF段モジュールを構成する高周波スイッチ(SW)の等価回路である。例えば図6に示すダイオードスイッチは、ダイオードD1、D2と、伝送線路L10、L11及びコンデンサC10を主要素子として構成される。また図7に示すGaAsスイッチは、電界効果トランジスタFET1〜FET4、コンデンサC11、抵抗R1、R2を主要素子として構成される。これらの高周波スイッチではDCカット用のコンデンサが必要に応じて配置される。
【0010】
図8乃至10は、図1に示すRF段モジュールを構成する高周波フィルタ(FILTER)の等価回路である。例えば図8の帯域通過フィルタは、コンデンサC100〜C106と、伝送線路L100,L101を主要素子として構成される。また図9示す低域通過フィルタは、コンデンサC110〜C112と伝送線路L110を主要素子として構成される。図10に示す低域通過フィルタは、コンデンサC110〜C112と伝送線路L110、L111を主要素子として構成されるこの低域通過フィルタは伝送線路L111とコンデンサC112を有し、この直列共振回路はグランドに接続される。この直列共振回路の伝送線路L111のインダクタとコンデンサC112の適宜選定することにより、他の通信機器の高周波信号を選択的に減衰することが出来る。また、前記直列共振回路は信号経路に直列に配置されていないので、本来通過させるべき高周波信号の挿入損失特性を損なうことがない。
【0011】
図11乃至13は、他の回路ブロックのRF段モジュールである。例えば図11に回路ブロックとして示すRF段モジュールは、アンテナ(ANT)と高周波スイッチ(SW)間に配置される高周波フィルタ(FILTER)を低域通過フィルタとし、前記高周波スイッチSWと受信側(RX)のバルントランスBalun2との間に高周波フィルタ(FILTER)を配置して構成される。このように構成すれば、アンテナ(ANT)と高周波スイッチ(SW)間に配置される高周波フィルタの帯域内挿入損失を、図1に示すように前記高周波フィルタを帯域通過フィルタのみで構成する場合よりも小さくすることができる、送信側(TX)の挿入損失を図1の回路ブロックに示すRF段モジュールより小さくすることができる。また、高周波スイッチSWと受信側(RX)のバルントランスBalun2との間に配置される高周波フィルタ(FILTER)も、前記低域通過フィルタにより、高周波フィルタに求められる帯域外減衰量、特に通過帯域よりも高周波側の減衰量は、それほど大きなものを用いなくてもよい。この為、高周波フィルタを少ない回路素子で構成出来るので小型化でき、そして低消費電力化も実現することができる。また図12に示す回路ブロックのように、高周波スイッチSWと送信側(TX)のバルントランスBalun1との間に高周波フィルタ(FILTER)を配置し、これを低域通過フィルタとしても良く、この場合には送信側(TX)の挿入損失を図1の回路ブロックに示すRF段モジュールよりも小さくすることが出来る。
図13は、受信側(RX)の平衡−不平衡変換回路として入力が平衡端で、出力が平衡端の弾性表面波フィルタを用いて構成したRF段モジュールである。この場合には、平衡−不平衡変換回路と高周波フィルタを一つの弾性表面波フィルタで構成できるので、RF段モジュールを小型化することが出来る。
【0012】
図8に示すバンドパスフィルタをアンテナと高周波スイッチとの間に配置し、図6に示すダイオードスイッチを前記高周波スイッチとし、送信側の平衡−不平衡変換回路を図3に示すバルントランスとし、受信側の平衡−不平衡変換回路を図5に示すバルントランスとして図1に示すRF段モジュールを構成した。
このRF段モジュールは、送信時にはダイオードスイッチの制御端子VC1に正の電圧が与えられ、ダイオードD1,D2をON状態にするとともに、送信側のバルントランスBalun1の電圧供給端Vddから直流電圧が印加される。また受信時にはダイオードスイッチの制御端子VC1に0の電圧を与え、ダイオードD1,D2をOFF状態にするとともに、送信側のバルントランスBalun1の電圧供給端Vddに直流電圧を印加しないように制御される。このように制御することで、RF段モジュールを省電力なものとしている。
【0013】
このRF段モジュールでは、前記フィルタ、スイッチ回路、バルントランスの伝送線路やコンデンサを誘電体からなる積層体に内蔵するようにし、積層体に内蔵出来なかった受動素子や、ダイオード、GaAsFET、RFIC等の能動素子を前記積層体に搭載するように構成することで、図15に示す小型のRF段モジュール200を構成することが出来た。前記誘電体は、例えばAlを主成分としSiO、SrO、CaO、PbO、NaO、KOを副成分として含む、比誘電率が8の低温焼成が可能なセラミック誘電体材料を用い、これをドクターブレード法などの公知のシート成形方法によって、厚さが30μm〜200μmのグリーンシートとし、そのグリーンシート上にAgやCu等の導電ペーストを印刷して高周波フィルタやバルントランス、高周波スイッチを構成する伝送線路、コンデンサやグランド電極を構成する電極パターンを形成し、それを適宜積層し、一体焼成して構成される。さらに、前記積層体に誘電体アンテナを積層して構成するなどして一体的に構成することも出来るし、面実装タイプの誘電体アンテナを前記積層体に実装してもよい。
また、前記積層体をHTCC(高温同時焼成セラミック)技術を用いて、誘電体をAlとし伝送線路等をタングステンやモリブデンとして構成してもよいし、基板に回路素子を実装して構成することも出来る。
【0014】
本発明のジュールとしては、上述したような様々な回路ブロックのRF段モジュールがあるが、前記の如く、前記電圧供給端Vddから直流電圧を供給し、第2の伝送線路L2と前記第3の伝送線路L3に、ほぼ同じ大きさの電流が逆方向に流れるようにし、第1の平衡端102と第2の平衡端103には略等しい直流電圧が出力するように構成してあれば本発明の範囲内といえる。
【0015】
【発明の効果】
本発明によれば、部品点数を削減し、高調波の減衰特性に優れ、かつ低消費電力の小型のRF段モジュールを提供することが出来る。
【図面の簡単な説明】
【図1】 本発明の一実施例に係るRF段モジュールの回路ブロック図である。
【図2】 本発明のRF段モジュールの送信側に用いるバルントランスの一例を示す等価回路図である。
【図3】 本発明のRF段モジュールの送信側に用いるバルントランスの他の例を示す等価回路図である。
【図4】 本発明のRF段モジュールの受信側に用いるバルントランスの一例を示す等価回路図である。
【図5】 本発明のRF段モジュールの受信側に用いるバルントランスの他の例を示す等価回路図である。
【図6】 本発明のRF段モジュールに用いる高周波スイッチの一例を示す等価回路図である。
【図7】 本発明のRF段モジュールに用いる高周波スイッチの他の例を示す等価回路図である。
【図8】 本発明のRF段モジュールに用いる高周波フィルタの一例を示す等価回路図である。
【図9】 本発明のRF段モジュールに用いる高周波フィルタの他の例を示す等価回路図である。
【図10】 本発明のRF段モジュールに用いる高周波フィルタの他の例を示す等価回路図である。
【図11】 本発明の他の実施例に係るRF段モジュールの回路ブロック図である。
【図12】 本発明の他の実施例に係るRF段モジュールの回路ブロック図である。
【図13】 本発明の他の実施例に係るRF段モジュールの回路ブロック図である。
【図14】 本発明のRF段モジュールに用いるバルントランスの挿入損失特性の一例を示す特性図である。
【図15】 本発明の一実施例に係るRF段モジュールの斜視図である。
【符号の説明】
L1 第1の伝送線路
L2 第2の伝送線路
L3 第3の伝送線路
C1 コンデンサ
101 不平衡端
102 第1の平衡端
103 第2の平衡端
Vdd 電圧供給端
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an RF circuit such as Bluetooth that is used in various computers, peripheral devices thereof, mobile communication devices such as mobile phones, and uses a frequency hopping method in which data communication is performed by connecting them to each other. The present invention relates to an RF stage module in which a peripheral circuit and its peripheral circuits are integrated.
[0002]
[Prior art]
The 2.4 GHz ISM (Industrial, Scientific and Medical) band is the DSSS (Direct Sequence Spread Spectrum).
It is used for wireless LAN (WLAN) communication conforming to the IEEE802.11 standard such as those for direct sequence spread spectrum) and wireless communication. Using the same 2.4 GHz ISM band as such wireless LAN (WLAN), connection with related electronic devices can be realized without using a cable, and this is a very convenient technology. Bluetooth ) has been proposed.
This Bluetooth uses the 2.4 GHz ISM frequency band divided into a plurality of radio channels, and further divides each radio channel every unit time (1/1600 seconds) into a time slot. A frequency hopping method with excellent noise resistance that is switched at each time slot is adopted. To switch between sending and receiving, PHS (Personal
A time division duplex (TDD) method is adopted as in the case of Handy Phone System), and this TDD method is a method in which transmission and reception are the same carrier frequency.
[0003]
Originally, the use of Bluetooth is assumed to be a relatively small area such as in the same premises and in the same building, so the area where radio waves reach is a distance range of about 10 m, 30 mW at the time of transmission, and 0. Designed to save power with 3mW. An example of such a Bluetooth RF circuit is shown in FIG. In this Bluetooth RF circuit, a high-frequency filter (FILTER) is disposed after the antenna ANT, and a high-frequency signal entering and radiating from the antenna is filtered into a transmission / reception signal to be transmitted. In the subsequent stage, a high-frequency switch SW for switching the connection between the transmission circuit TX and the antenna ANT and the connection between the reception circuit RX and the antenna ANT, and a balanced-unbalanced arrangement arranged between the high-frequency switch SW and the transmission circuit. A first balun transformer Balun1 which is a conversion circuit, and a second balun transformer Balun2 disposed between the high frequency switch and the receiving circuit are included. As the high-frequency switch SW, a GaAs switch is widely used because Bluetooth communication is performed by the TDD system and power during transmission is extremely low, 30 mW. The switch circuit switches the connection between the antenna and the reception circuit and between the transmission circuit and the antenna, and the high frequency signal is appropriately guided to each circuit.
The input / output unit on the RF stage module side of the RFIC is configured with two signal terminals so as to perform differential operations so as to reduce the noise figure and increase the receiving sensitivity. Since the input / output impedance of the RFIC is about 50Ω to 200Ω, an impedance conversion circuit is also required when the characteristic impedance of each component is different, and a balanced-unbalanced circuit is provided between the switch circuit and the RFIC. Balun transformers Balun 1 and 2 are arranged.
[0004]
[Problems to be solved by the invention]
In view of the convenience of the wireless system, the RF stage module is required to be smaller and lighter in accordance with the market demands such as the smaller and lighter design of the equipment used, and the price is reduced. The request is also strong. The RFIC includes a high frequency device such as a power amplifier, and conventionally, a DC voltage is supplied from a DC voltage supply means via a choke coil to drive the RFIC. In response to the demand for reduction in size and weight, recent RF stage modules have been required to reduce circuit components including the choke coil.
In addition, devices using the RF stage module have been combined into mobile phones and the like. The ISM frequency band used by wireless LAN and Bluetooth is a band that has a lot of radiation noise from machine tools, microwave ovens, etc., so a frequency hopping method with excellent noise resistance was originally adopted as a wireless system. ing. However, other communication devices such as PCS (Personal
When a high-frequency signal of a mobile phone such as a communication service (DCS) or a digital cellular system (DCS) is present in the vicinity, the high-frequency signal acts as noise, and even the above-described frequency system is affected to some extent. . On the other hand, Bluetooth high-frequency signals also act as noise for communication devices. For this reason, the high frequency signal out of the band radiated from the antenna is desired to be attenuated by 30 dB or more, for example, at a second harmonic in Bluetooth.
However, when a GaAs switch is used as the switch circuit, a high-frequency filter disposed on the antenna top needs to have a large out-of-band attenuation because of the characteristics of a wide band insertion loss and a small out-of-band attenuation. However, if a large out-of-band attenuation is to be obtained, the number of circuit elements constituting the filter has to be increased, the insertion loss has deteriorated, and the shape has to be increased. There was a limit to downsizing. Wireless LAN and Bluetooth are often used in devices that are driven by a battery, such as mobile phones and notebook computers. For this reason, further reduction in power consumption is desired, but it has been difficult for the above reasons. SUMMARY OF THE INVENTION An object of the present invention is to provide a small RF stage module with a reduced number of parts, excellent harmonic attenuation characteristics, and low power consumption.
[0005]
[Means for Solving the Problems]
The present invention, transmission circuit and connected to the antenna, and a switch circuit for controlling the connection between the receiving circuit and the antenna, the first balanced disposed between the switch circuit and the transmission circuit - unbalanced circuit The first balanced-unbalanced circuit includes a first transmission line, a second transmission line electromagnetically coupled to the first transmission line, and a third transmission line. transmission line has one end connected to the unbalanced end, the other end is the ground or an open end, said second transmission line, one end of which is grounded, the other end is connected to the first balanced terminal, the third the transmission line, one end of which is grounded, the other end a connected balun transformer to the second balanced terminal, a second of said balun transformer, one ends of the third transmission line, connected to a voltage supply terminal The voltage supply terminal is grounded via a capacitor and is equipped with a power amplifier. The RFIC transmission output balanced terminal is connected to the first and second balanced ends of the balun transformer, and a DC voltage is not applied to the voltage supply end during reception when the receiving circuit and the antenna are connected. At the time of transmission in which the transmission circuit and the antenna are connected, a DC voltage is applied to the voltage supply terminal, and the DC voltage is supplied from the first and second balanced terminals to the RFIC via the second and third transmission lines. An RF circuit is characterized in that it outputs.
In the present invention, further the second balanced disposed between the switch circuit and said receiving circuit - comprising a unbalanced circuit, the second balanced - unbalanced circuit includes a fourth transmission line, including the fourth fifth transmission line and the sixth transmission line of the transmission line and the electromagnetic coupling, said fourth transmission line has one end connected to the unbalanced end, the other end is the ground or an open end, said fifth transmission line has one end grounded and the other end is connected to the third balanced terminal, the sixth transmission line has one end grounded and the other end connected to the fourth balanced terminal A balun transformer is preferred.
In the RF circuit of the present invention, a DC voltage is supplied to the second and third transmission lines from the hot side of the capacitor, and a DC voltage is output from the first and second balanced terminals. The RFIC power amplifier is operated by this DC voltage.
In addition, a filter circuit is preferably disposed between the antenna and the switch circuit. Further, the series resonance of the inductor and the capacitor is performed between the transmission circuit and the antenna so as to selectively attenuate the frequency component of another radio communication system frequency band included in the high frequency signal from the high frequency signal from the transmission circuit. The attenuation pole is preferably formed by a circuit. Preferably, the switch circuit and the first and second balanced-unbalanced circuits are integrated into a laminate formed by laminating a plurality of dielectric layers, and further provided with a dielectric antenna, A dielectric antenna may be integrated into the laminate.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below. FIG. 1 is an example of a circuit block of an RF stage module according to an embodiment of the present invention, and FIGS. 2 to 5 are equivalent circuits of balun transformers Balun 1 and 2 used in the RF stage module.
This RF stage module includes a high-frequency filter (FILTER) that attenuates unnecessary high-frequency signals, a high-frequency switch (SW) that switches between a transmission signal and a reception signal, and balun transformers Balun1 and Balun2 as balanced-unbalanced conversion circuits.
FIG. 2 shows an example of a balun transformer used on the transmission side. The transmission side (TX) balun transformer Balun1 includes a first transmission line L1, a second transmission line L2 and a third transmission line L3 electromagnetically coupled to the first transmission line L1, and the first transmission line L1. The line L1 has one end connected to the unbalanced end 101 and the other end grounded, the second transmission line L2 has one end grounded and the other end connected to the first balanced end 102, and the third transmission line L3 has one end Is grounded and the other end is connected to the second balanced end 103. One ends of the first and second transmission lines of the balun transformer constituting the first balanced-unbalanced circuit are connected to each other and grounded via the capacitor C1, and the second side is connected to the second side from the hot side of the capacitor. A voltage supply terminal Vdd is formed so that a DC voltage can be supplied to the transmission line L2 and the third transmission line L3.
When viewed from the voltage supply terminal Vdd, the second transmission line L2 and the third transmission line L3 have substantially the same line length, and when a DC voltage is supplied from the voltage supply terminal Vdd, the second transmission line L2 Currents of substantially the same magnitude flow in opposite directions in the line L2 and the third transmission line L3, and substantially equal DC voltages are output to the first balanced end 102 and the second balanced end 103. The first balanced end 102 and the second balanced end 103 are connected to an RFIC transmission side output unit, and when a DC voltage is applied from the voltage supply end Vdd, two balanced terminals of the RFIC transmission output unit In addition, substantially the same DC voltage can be applied simultaneously. For this reason, it is not necessary to prepare the choke coil which was conventionally required. According to the RF stage module of the present invention, it is possible to reduce a plurality of discrete parts that have been conventionally required for voltage supply. Therefore, the RF stage module can be reduced in size and weight, and the price can be reduced. The capacitor C1 can also function to adjust the phase difference between the high-frequency signals input to the first balanced end 102 and the second balanced end 103.
[0007]
FIG. 3 is an equivalent circuit showing another example of a balun transformer. In this balun transformer, one end of the first transmission line is connected to an unbalanced end and the other end is an open end. One end is grounded and the other end is connected to the first balanced end. The third transmission line has one end grounded and the other end connected to the second balanced end. Also in this case, one ends of the first and second transmission lines of the balun transformer constituting the first balanced-unbalanced circuit are connected to each other and grounded via the capacitor C1, and direct current is applied from the hot side of the capacitor. A voltage supply terminal Vdd is formed so that a voltage can be supplied. Similar to the balun transformer disclosed in FIG. 2, the second transmission line L2 and the third transmission line L3 have substantially the same current. Flowing in the opposite direction, substantially equal DC voltages are output to the first balanced end 102 and the second balanced end 103. Therefore, there is no need to prepare a separate choke coil, and it is possible to reduce a plurality of discrete parts that have been necessary for voltage supply in the past. Therefore, the RF stage module can be reduced in size and weight, and the price can be reduced. . Further, this balun transformer has an attenuation pole in the second harmonic band of 2.4 GHz as shown in FIG. The balun transformer alone can attenuate unnecessary high-frequency signals, and the out-of-band attenuation required for the high-frequency filter arranged in the previous stage, especially the attenuation on the high-frequency side of the passband, does not need to be so large. Good. For this reason, since the high frequency filter can be configured with a small number of circuit elements, the size can be reduced, and the power consumption can be reduced because of the low insertion loss. When such a large amount of out-of-band attenuation is not required, a laminated LC filter and a surface acoustic wave filter can be used as the high-frequency filter, and these can be configured at low cost, and as a result, the RF stage module is also provided at low cost. I can do it.
[0008]
An example of the balun transformer Balun2 used on the receiving side (RX) is shown in FIGS. For example, the balun transformer Balun2 of FIG. 4 includes a fourth transmission line L4, a fifth transmission line L5 and a sixth transmission line L6 that are electromagnetically coupled to the fourth transmission line L4, and the fourth transmission line L4. Has one end connected to the unbalanced end 105 and the other end grounded, the fifth transmission line L5 has one end grounded and the other end connected to the third balanced end 106, and the sixth transmission line L6 has one end grounded. The other end is connected to the fourth balanced end 107. One ends of the fifth and sixth transmission lines of the balun transformer constituting the first balanced-unbalanced circuit are connected to each other and grounded.
The basic circuit configuration is the same as that of the balun transformer Balun 1 used on the transmission side (TX) except that it does not have the voltage supply terminal Vdd. The same applies to the balun transformer Balun2 shown in FIG.
[0009]
6 and 7 are equivalent circuits of the high frequency switch (SW) constituting the RF stage module shown in FIG. For example, the diode switch shown in FIG. 6 includes diodes D1 and D2, transmission lines L10 and L11, and a capacitor C10 as main elements. Further, the GaAs switch shown in FIG. 7 includes field effect transistors FET1 to FET4, a capacitor C11, and resistors R1 and R2 as main elements. In these high-frequency switches, a DC cut capacitor is disposed as necessary.
[0010]
8 to 10 are equivalent circuits of a high frequency filter (FILTER) constituting the RF stage module shown in FIG. For example, the bandpass filter of FIG. 8 includes capacitors C100 to C106 and transmission lines L100 and L101 as main elements. Further, the low-pass filter shown in FIG. 9 includes capacitors C110 to C112 and a transmission line L110 as main elements. The low-pass filter shown in FIG. 10 includes capacitors C110 to C112 and transmission lines L110 and L111 as main elements. The low-pass filter includes a transmission line L111 and a capacitor C112, and the series resonant circuit is connected to the ground. Connected. By appropriately selecting the inductor and capacitor C112 of the transmission line L111 of this series resonant circuit, the high frequency signal of other communication devices can be selectively attenuated. Further, since the series resonant circuit is not arranged in series in the signal path, the insertion loss characteristic of the high-frequency signal that should be passed through is not impaired.
[0011]
11 to 13 show RF stage modules of other circuit blocks. For example, an RF stage module shown as a circuit block in FIG. 11 uses a high-frequency filter (FILTER) disposed between an antenna (ANT) and a high-frequency switch (SW) as a low-pass filter, and the high-frequency switch SW and the receiving side (RX). A high-frequency filter (FILTER) is arranged between the balun transformer Balun 2 of the above. If comprised in this way, the insertion loss of the high frequency filter arrange | positioned between an antenna (ANT) and a high frequency switch (SW) will be compared with the case where the said high frequency filter is comprised only with a band pass filter, as shown in FIG. The insertion loss on the transmission side (TX) can be made smaller than that of the RF stage module shown in the circuit block of FIG. Further, the high-frequency filter (FILTER) disposed between the high-frequency switch SW and the receiving side (RX) balun transformer Balun2 is also made of the low-pass filter by the out-of-band attenuation required for the high-frequency filter, particularly from the pass band. However, the attenuation amount on the high frequency side may not be so large. For this reason, the high-frequency filter can be configured with a small number of circuit elements, so that it can be miniaturized and low power consumption can be realized. Further, as in the circuit block shown in FIG. 12, a high frequency filter (FILTER) may be arranged between the high frequency switch SW and the transmission side (TX) balun transformer Balun1, and this may be used as a low-pass filter. The insertion loss on the transmission side (TX) can be made smaller than that of the RF stage module shown in the circuit block of FIG.
FIG. 13 shows an RF stage module configured as a reception-side (RX) balanced-unbalanced conversion circuit using a surface acoustic wave filter having an input at the balanced end and an output at the balanced end. In this case, the balanced-unbalanced conversion circuit and the high-frequency filter can be constituted by a single surface acoustic wave filter, so that the RF stage module can be reduced in size.
[0012]
The band-pass filter shown in FIG. 8 is arranged between the antenna and the high-frequency switch, the diode switch shown in FIG. 6 is the high-frequency switch, the transmission-side balanced-unbalanced conversion circuit is the balun transformer shown in FIG. The RF stage module shown in FIG. 1 is configured with the balun transformer shown in FIG. 5 as the balanced-unbalanced conversion circuit on the side.
In this RF stage module, a positive voltage is applied to the control terminal VC1 of the diode switch during transmission, the diodes D1 and D2 are turned on, and a DC voltage is applied from the voltage supply terminal Vdd of the balun transformer Balun1 on the transmission side. The Further, at the time of reception, a voltage of 0 is applied to the control terminal VC1 of the diode switch to turn off the diodes D1 and D2, and control is performed so that no DC voltage is applied to the voltage supply terminal Vdd of the balun transformer Balun1 on the transmission side. By controlling in this way, the RF stage module is made power-saving.
[0013]
In this RF stage module, the filter, the switch circuit, the transmission line of the balun transformer and the capacitor are incorporated in a laminate made of a dielectric, and passive elements, diodes, GaAsFET, RFIC, etc. that could not be incorporated in the laminate A small RF stage module 200 shown in FIG. 15 could be configured by mounting the active element on the laminate. The dielectric is, for example, a ceramic dielectric capable of low-temperature firing having a relative dielectric constant of 8 and containing SiO 2 , SrO, CaO, PbO, Na 2 O, and K 2 O as subcomponents, with Al 2 O 3 as a main component. Using a material, this is formed into a green sheet having a thickness of 30 μm to 200 μm by a known sheet forming method such as a doctor blade method, and a conductive paste such as Ag or Cu is printed on the green sheet, and then a high frequency filter or a balun transformer is used. In addition, the transmission line constituting the high-frequency switch, the electrode pattern constituting the capacitor and the ground electrode are formed, and these are appropriately laminated and integrally fired. Furthermore, it can be configured integrally by stacking a dielectric antenna on the laminate, or a surface mount type dielectric antenna may be mounted on the laminate.
Further, the laminated body may be formed by using HTCC (high temperature co-fired ceramic) technology, the dielectric may be Al 2 O 3 and the transmission line may be tungsten or molybdenum, or the circuit element may be mounted on the substrate. You can also
[0014]
As the module of the present invention, there are RF stage modules of various circuit blocks as described above. As described above, a DC voltage is supplied from the voltage supply terminal Vdd, and the second transmission line L2 and the third transmission line L3 are supplied. If the transmission line L3 is configured so that substantially the same current flows in the opposite direction and substantially equal DC voltages are output to the first balanced end 102 and the second balanced end 103, the present invention. It can be said that it is within the range.
[0015]
【The invention's effect】
According to the present invention, it is possible to provide a small RF stage module with a reduced number of parts, excellent harmonic attenuation characteristics, and low power consumption.
[Brief description of the drawings]
FIG. 1 is a circuit block diagram of an RF stage module according to an embodiment of the present invention.
FIG. 2 is an equivalent circuit diagram showing an example of a balun transformer used on the transmission side of the RF stage module of the present invention.
FIG. 3 is an equivalent circuit diagram showing another example of a balun transformer used on the transmission side of the RF stage module of the present invention.
FIG. 4 is an equivalent circuit diagram showing an example of a balun transformer used on the receiving side of the RF stage module of the present invention.
FIG. 5 is an equivalent circuit diagram showing another example of a balun transformer used on the receiving side of the RF stage module of the present invention.
FIG. 6 is an equivalent circuit diagram showing an example of a high-frequency switch used in the RF stage module of the present invention.
FIG. 7 is an equivalent circuit diagram showing another example of the high-frequency switch used in the RF stage module of the present invention.
FIG. 8 is an equivalent circuit diagram showing an example of a high-frequency filter used in the RF stage module of the present invention.
FIG. 9 is an equivalent circuit diagram showing another example of the high-frequency filter used in the RF stage module of the present invention.
FIG. 10 is an equivalent circuit diagram showing another example of the high-frequency filter used in the RF stage module of the present invention.
FIG. 11 is a circuit block diagram of an RF stage module according to another embodiment of the present invention.
FIG. 12 is a circuit block diagram of an RF stage module according to another embodiment of the present invention.
FIG. 13 is a circuit block diagram of an RF stage module according to another embodiment of the present invention.
FIG. 14 is a characteristic diagram showing an example of insertion loss characteristics of a balun transformer used in the RF stage module of the present invention.
FIG. 15 is a perspective view of an RF stage module according to an embodiment of the present invention.
[Explanation of symbols]
L1 first transmission line L2 second transmission line L3 third transmission line C1 capacitor 101 unbalanced end 102 first balanced end 103 second balanced end Vdd voltage supply end

Claims (6)

送信回路とアンテナとの接続、および受信回路と前記アンテナとの接続を制御するスイッチ回路と、前記スイッチ回路と前記送信回路との間に配置される第1の平衡−不平衡回路を具備し、
前記第1の平衡−不平衡回路は第1の伝送線路と、この第1の伝送線路と電磁結合する第2の伝送線路と第3の伝送線路を備え、
前記第1の伝送線路は一端が不平衡端に接続され他端が接地又は開放端となり、
前記第2の伝送線路は一端が接地され他端が第1の平衡端に接続され、
前記第3の伝送線路は一端が接地され他端が第2の平衡端に接続されバルントランスであって、
前記バルントランスの第2、第3の伝送線路の一端同士が、電圧供給端に接続し、前記電圧供給端はコンデンサを介して接地され、
パワーアンプを備えたRFICの送信出力平衡端子と前記バルントランスの第1、第2の平衡端とが接続してなり、
受信回路とアンテナとが接続される受信時には、前記電圧供給端に直流電圧を印加せず、送信回路とアンテナとが接続される送信時には、前記電圧供給端に直流電圧を印加して、第2、第3の伝送線路を介して第1及び第2の平衡端子から直流電圧をRFICへ出力することを特徴とするRF回路。
Comprising a unbalanced circuit, - a switch circuit for controlling the connection of the connection between the transmitting circuit and the antenna, and a reception circuit and the antenna, the first balanced disposed between said switch circuit and the transmission circuit
The first balanced-unbalanced circuit includes a first transmission line, a second transmission line and a third transmission line electromagnetically coupled to the first transmission line,
Said first transmission line has one end connected to the unbalanced end, the other end is the ground or an open end,
It said second transmission line has one end grounded and the other end connected to the first balanced terminal,
Said third transmission line has one end grounded, a second end is a balun transformer that is connected to the second balanced terminal,
The second of the balun transformer, one ends of the third transmission line, connected to the voltage supply terminal, the voltage supply terminal is grounded through a capacitor,
A transmission output balanced terminal of an RFIC having a power amplifier is connected to the first and second balanced ends of the balun transformer,
At the time of reception in which the receiving circuit and the antenna are connected, a DC voltage is not applied to the voltage supply terminal, and at the time of transmission in which the transmission circuit and the antenna are connected, a DC voltage is applied to the voltage supply terminal, An RF circuit that outputs a DC voltage to the RFIC from the first and second balanced terminals via the third transmission line.
前記スイッチ回路と前記受信回路との間に配置される第2の平衡−不平衡回路を具備し、
前記第2の平衡−不平衡回路は第4の伝送線路と、この第4の伝送線路と電磁結合する第5の伝送線路と第6の伝送線路を備え、
前記第4の伝送線路は一端が不平衡端に接続され他端が接地又は開放端となり、
前記第5の伝送線路は一端が接地され他端が第3の平衡端に接続され、
前記第6の伝送線路は一端が接地され他端が第4の平衡端に接続されるバルントランスであることを特徴とする請求項1に記載のRF回路。
A second balanced-unbalanced circuit disposed between the switch circuit and the receiving circuit;
The second balanced-unbalanced circuit includes a fourth transmission line, a fifth transmission line electromagnetically coupled to the fourth transmission line, and a sixth transmission line.
Said fourth transmission line has one end connected to the unbalanced end, the other end is the ground or an open end,
It said fifth transmission line has one end grounded and the other end is connected to the third balanced terminal,
It said sixth transmission line has one end grounded, RF circuit of claim 1, wherein the other end is a balun transformer that is connected to the fourth balanced terminal.
前記アンテナと前記スイッチ回路との間に、フィルタ回路を有することを特徴とする請求項1又は2に記載のRF回路。 The RF circuit according to claim 1, further comprising a filter circuit between the antenna and the switch circuit. 送信回路からアンテナの間に、前記送信回路からの高周波信号からの高周波信号に含まれる他の無線通信システム周波数帯の周波数成分を選択的に減衰させる手段を有し、前記手段がインダクタとコンデンサとの直列共振回路による減衰極の形成であることを特徴とする請求項3に記載のRF回路。Means for selectively attenuating frequency components of other radio communication system frequency bands included in the high frequency signal from the high frequency signal from the transmission circuit between the transmission circuit and the antenna, wherein the means includes an inductor, a capacitor, The RF circuit according to claim 3, wherein an attenuation pole is formed by a series resonance circuit. 請求項1乃至4のいずれかに記載のRF回路において、前記スイッチ回路と、前記第1、第2の平衡−不平衡回路と、RFICを複数の誘電体層を積層してなる積層体に一体化することを特徴とするRF段モジュール。5. The RF circuit according to claim 1, wherein the switch circuit, the first and second balanced-unbalanced circuits, and the RFIC are integrated into a stacked body formed by stacking a plurality of dielectric layers. An RF stage module characterized in that 誘電体アンテナを具備し、該誘電体アンテナを前記積層体に一体化することを特徴とする請求項5に記載のRF段モジュール。6. The RF stage module according to claim 5, further comprising a dielectric antenna, wherein the dielectric antenna is integrated with the laminated body.

JP2002102151A 2001-04-04 2002-04-04 RF stage module Expired - Fee Related JP3758157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002102151A JP3758157B2 (en) 2001-04-04 2002-04-04 RF stage module

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001105378 2001-04-04
JP2001-105378 2001-04-04
JP2002102151A JP3758157B2 (en) 2001-04-04 2002-04-04 RF stage module

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005260713A Division JP4143976B2 (en) 2001-04-04 2005-09-08 module

Publications (2)

Publication Number Publication Date
JP2003018039A JP2003018039A (en) 2003-01-17
JP3758157B2 true JP3758157B2 (en) 2006-03-22

Family

ID=26613054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002102151A Expired - Fee Related JP3758157B2 (en) 2001-04-04 2002-04-04 RF stage module

Country Status (1)

Country Link
JP (1) JP3758157B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004274172A (en) * 2003-03-05 2004-09-30 Sony Corp Balun
JP4123435B2 (en) 2003-10-14 2008-07-23 富士通メディアデバイス株式会社 High frequency switch module
JP2005184244A (en) * 2003-12-17 2005-07-07 Mitsumi Electric Co Ltd Coupler and high frequency module
JP2005184245A (en) * 2003-12-17 2005-07-07 Mitsumi Electric Co Ltd Coupler and high frequency module
US7391596B2 (en) * 2003-12-19 2008-06-24 Broadcom Corporation High frequency integrated circuit pad configuration including ESD protection circuitry
JP4678571B2 (en) * 2004-05-20 2011-04-27 日立金属株式会社 Multilayer balun transformer and high-frequency switch module using the same
JP4678572B2 (en) * 2004-05-20 2011-04-27 日立金属株式会社 Multilayer balun transformer and high-frequency switch module using the same
JP2005348054A (en) * 2004-06-02 2005-12-15 Murata Mfg Co Ltd Balanced clock signal output circuit, and high frequency oscillator using the same
JP4178420B2 (en) * 2004-06-30 2008-11-12 日立金属株式会社 High frequency circuit, high frequency component and multiband communication device
JP4288529B2 (en) * 2004-06-30 2009-07-01 日立金属株式会社 High frequency components and multiband communication devices
WO2006064691A1 (en) * 2004-12-13 2006-06-22 Hitachi Metals, Ltd. High frequency circuit, high frequency circuit components and communication apparatus using the same
FR2894062B1 (en) 2005-11-30 2011-06-03 St Microelectronics Sa BALUN A IMPEDANCE REPORT 1/4
FR2894078A1 (en) 2005-11-30 2007-06-01 St Microelectronics Sa Combiner/splitter, e.g. for balanced power amplifiers, mixers, or phase shifters, lines formed of planar winding, and second discrete capacitive element connecting the external ends of windings
FR2902933B1 (en) 2006-06-22 2008-09-05 St Microelectronics Sa COMBINER / POWER DIVIDER
KR100777188B1 (en) * 2006-11-30 2007-11-19 (주)카이로넷 RF receivers, RF transceivers, and multiple I / O RF transceivers with integrated balun
EP2348572A4 (en) 2008-11-14 2013-04-17 Fujikura Ltd Resin multilayer device and method for manufacturing same
WO2012036134A1 (en) 2010-09-14 2012-03-22 日立金属株式会社 Laminate-type electronic component provided with filter and balun
CN103066940B (en) * 2012-12-12 2015-11-25 锐迪科科技有限公司 Passive Balun
WO2019159774A1 (en) 2018-02-13 2019-08-22 株式会社村田製作所 Balance filter
CN116015342B (en) * 2023-03-27 2023-06-02 安徽矽磊电子科技有限公司 Radio frequency receiving and transmitting front-end circuit shared by receiving and transmitting antennas

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137626A (en) * 1978-04-18 1979-10-25 Nec Corp Broad-band transformer circuit
JP3166571B2 (en) * 1995-07-18 2001-05-14 松下電工株式会社 Balanced transmission circuit
US5644272A (en) * 1996-03-05 1997-07-01 Telefonaktiebolaget Lm Ericsson High frequency balun provided in a multilayer substrate
JP3186604B2 (en) * 1996-10-09 2001-07-11 株式会社村田製作所 Surface acoustic wave filter device
JP3838386B2 (en) * 1997-03-28 2006-10-25 日立金属株式会社 Compound switch
JPH10303640A (en) * 1997-04-25 1998-11-13 Nippon Telegr & Teleph Corp <Ntt> Antenna system
JP2000236227A (en) * 1999-02-12 2000-08-29 Ngk Spark Plug Co Ltd Laminate type balun

Also Published As

Publication number Publication date
JP2003018039A (en) 2003-01-17

Similar Documents

Publication Publication Date Title
JP3758157B2 (en) 2006-03-22 RF stage module
US7398103B2 (en) 2008-07-08 High-frequency module and mobile communication apparatus using the same
JP5122602B2 (en) 2013-01-16 High frequency switch module
US7200365B2 (en) 2007-04-03 Composite high frequency component and mobile communication device including the same
US7035602B2 (en) 2006-04-25 High-frequency composite switch component
EP1237290B1 (en) 2007-04-11 Antenna duplexer and mobile communication device using the same
US7356349B2 (en) 2008-04-08 High-frequency module and communication apparatus
JP4221205B2 (en) 2009-02-12 Diplexer and high-frequency switch using the same
JP2003133989A (en) 2003-05-09 Multi-band antenna switch circuit, multi-band antenna switch laminated module composite component, and communication device using the circuit and the component
JP2004517583A (en) 2004-06-10 Electrical circuit module, circuit module device and use of circuit module and circuit module device
JP4702622B2 (en) 2011-06-15 Switch module
JPH11112264A (en) 1999-04-23 Filter
JP3807615B2 (en) 2006-08-09 Multiband antenna switch circuit
JP3866989B2 (en) 2007-01-10 Antenna duplexer and mobile communication device using the same
JP2004253953A (en) 2004-09-09 Antenna switch circuit, antenna switch module using the same and communication system
JP4143976B2 (en) 2008-09-03 module
JP2006295530A (en) 2006-10-26 Antenna switch module, and communication device using it
JP4140033B2 (en) 2008-08-27 High frequency components
JP2005244860A (en) 2005-09-08 High frequency switching module and communication apparatus using the same
JP2003060409A (en) 2003-02-28 Bluetooth rf module
JP2006246234A (en) 2006-09-14 High frequency switching module and radio communications device using the same

Legal Events

Date Code Title Description
2004-12-27 A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

2005-07-19 A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050715

2005-09-12 A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050909

2005-12-05 TRDD Decision of grant or rejection written
2005-12-12 A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051209

2006-01-06 A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051222

2006-01-13 R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3758157

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

2009-01-06 FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

2010-01-12 FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

2011-01-06 FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

2011-01-11 FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

2012-01-10 FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

2012-12-27 FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

2022-01-13 LAPS Cancellation because of no payment of annual fees