JP4857901B2 - Desiccant air conditioning system - Google Patents
- ️Wed Jan 18 2012
JP4857901B2 - Desiccant air conditioning system - Google Patents
Desiccant air conditioning system Download PDFInfo
-
Publication number
- JP4857901B2 JP4857901B2 JP2006134797A JP2006134797A JP4857901B2 JP 4857901 B2 JP4857901 B2 JP 4857901B2 JP 2006134797 A JP2006134797 A JP 2006134797A JP 2006134797 A JP2006134797 A JP 2006134797A JP 4857901 B2 JP4857901 B2 JP 4857901B2 Authority
- JP
- Japan Prior art keywords
- air
- desiccant
- conditioning system
- zone
- air conditioning Prior art date
- 2006-05-15 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002274 desiccant Substances 0.000 title claims description 46
- 238000004378 air conditioning Methods 0.000 title claims description 31
- 238000005057 refrigeration Methods 0.000 claims description 20
- 238000001179 sorption measurement Methods 0.000 claims description 17
- 238000003795 desorption Methods 0.000 claims description 16
- 238000005111 flow chemistry technique Methods 0.000 claims 1
- 238000007791 dehumidification Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 238000001816 cooling Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000001143 conditioned effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/1411—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
- F24F3/1423—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1016—Rotary wheel combined with another type of cooling principle, e.g. compression cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1032—Desiccant wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/104—Heat exchanger wheel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1072—Rotary wheel comprising two rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1084—Rotary wheel comprising two flow rotor segments
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Central Air Conditioning (AREA)
Description
本発明は、デシカント空調システムに係り、特に処理空気を効率的に除湿処理することができるデシカント空調システムに関する。 The present invention relates to a desiccant air conditioning system, and more particularly to a desiccant air conditioning system capable of efficiently dehumidifying treated air.
空調システムにおいては、温度と湿度の調整が課題であり、特に、湿度の高い空間を快適な空間とするために、除湿機能が重要である。除湿の方式としては、図6に示すように、圧縮機100、蒸発器102、凝縮器104を有する冷凍サイクル106を用いて、処理空気を蒸発器102で冷却除湿し、凝縮器104で再熱して空調空間に供給する冷却式除湿方法が一般的である。これは、特許文献1に示すような吸着式では、乾燥剤の再生のために多大な再生熱エネルギーが必要となるからである。 In the air conditioning system, adjustment of temperature and humidity is an issue, and in particular, a dehumidifying function is important in order to make a high-humidity space a comfortable space. As a dehumidification method, as shown in FIG. 6, using a refrigeration cycle 106 having a compressor 100, an evaporator 102, and a condenser 104, the process air is cooled and dehumidified by the evaporator 102 and reheated by the condenser 104. A cooling dehumidification method for supplying air conditioning space is generally used. This is because the adsorption type as shown in Patent Document 1 requires a large amount of regenerative heat energy for regenerating the desiccant.
図6のように構成された冷却除湿空調システムの動作を、図7の湿り空気線図を参照して説明する。図中、横軸は乾球温度を、縦軸は絶対湿度を示し、各斜線は等相対湿度線を示す。斜線の内、実線は飽和線、すなわち、その絶対湿度における露点を示す。この例では、夏の高温多湿の外気を処理して室内に導入する場合を説明する。 The operation of the cooling and dehumidifying air conditioning system configured as shown in FIG. 6 will be described with reference to the humid air diagram of FIG. In the figure, the horizontal axis represents the dry bulb temperature, the vertical axis represents the absolute humidity, and each oblique line represents an equirelative humidity line. Of the diagonal lines, the solid line indicates the saturation line, that is, the dew point at the absolute humidity. In this example, a case where the hot and humid outdoor air in summer is processed and introduced into the room will be described.
処理空気(状態A’)は、冷凍サイクルの蒸発器において冷却され、飽和線に沿って温度が低下する過程で水分を凝結して放出する(状態C’→D’)。処理空気はさらに冷凍サイクルの凝縮器において加熱されて昇温し(状態F’)、相対湿度が低下した被処理空気として、導出口より空調空間に導出される。 The process air (state A ') is cooled in the evaporator of the refrigeration cycle and condenses and releases moisture in the process of decreasing temperature along the saturation line (state C' → D '). The treated air is further heated in the condenser of the refrigeration cycle to rise in temperature (state F '), and is led to the conditioned space from the outlet as the treated air with a reduced relative humidity.
しかしながら、この冷却式除湿方法では、処理空気の温度が低くて露点が氷点下になる場合には、蒸発器に霜が成長する。このため、所定時間の動作後に霜取り作業が必要になり、連続運転が不可能であった。また、処理空気の温度が低い時は、図3のモリエ線図に破線で示すように、冷媒の蒸発温度が下がって、冷凍効果が減少するため、充分な除湿能力を得られないという問題もあった。 However, in this cooling-type dehumidification method, frost grows in the evaporator when the temperature of the processing air is low and the dew point is below freezing point. For this reason, defrosting work is required after an operation for a predetermined time, and continuous operation is impossible. Further, when the temperature of the processing air is low, as shown by the broken line in the Mollier diagram of FIG. 3, the evaporating temperature of the refrigerant is lowered and the refrigeration effect is reduced, so that a sufficient dehumidifying ability cannot be obtained. there were.
特開平08−210664号公報Japanese Patent Application Laid-Open No. 08-210664
本発明は、前記事情に鑑みて為されたもので、処理空気の温度が低い場合でも、連続的にかつ効率良く除湿する機能を備えた空調システムを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide an air conditioning system having a function of dehumidifying continuously and efficiently even when the temperature of the processing air is low.
前記目的を達成するために、請求項1に記載の発明は、空気中の水分を吸着し、かつ空気中に水分を脱着できるデシカントが担持されたハニカム状のデシカントロータであって、前記デシカントロータは水分を吸着する吸着ゾーンと水分を脱着する脱着ゾーンとに仕切られており、吸着ゾーンを流れる空気と脱着ゾーンを流れる空気とがほぼ対向流をなすデシカントロータと;圧縮機と蒸発器と凝縮器とからなる冷凍サイクルとを有し;システムに導入した処理空気をデシカントロータの脱着ゾーン、冷凍サイクルの蒸発器、前記デシカントロータの吸着ゾーン、冷凍サイクルの凝縮器の順に流すよう構成したことを特徴とするデシカント空調システムである。
請求項1に記載の発明においては、冷凍サイクルにデシカントロータによる水分の吸着工程を組み合わせることで、より高い除湿作用を得ることができる。
In order to achieve the above object, the invention according to claim 1 is a honeycomb-shaped desiccant rotor carrying a desiccant that adsorbs moisture in the air and is capable of desorbing moisture in the air. Is divided into an adsorption zone that adsorbs moisture and a desorption zone that desorbs moisture, and a desiccant rotor in which the air flowing through the adsorption zone and the air flowing through the desorption zone form a counterflow; compressor, evaporator and condensation A refrigeration cycle comprising a refrigeration unit; the processing air introduced into the system is configured to flow in the order of a desiccant rotor desorption zone, a refrigeration cycle evaporator, the desiccant rotor adsorption zone, and a refrigeration cycle condenser. It is a characteristic desiccant air conditioning system.
In the first aspect of the present invention, a higher dehumidifying action can be obtained by combining the refrigeration cycle with a moisture adsorption step by a desiccant rotor.
請求項2に記載の発明は、請求項1に記載のデシカント空調システムにおいて、前記凝縮器通過後の処理空気と前記デシカントの脱着ゾーン流入前の空気とを熱交換させる顕熱交換器を設けたことを特徴とする。
請求項2に記載の発明においては、顕熱交換器で熱回収するため、室内相対湿度が高い時のデシカントの吸着能力が増加して除湿量が増加するとともに、除湿量当りの圧縮動力が減少するため省エネルギーとなる。
According to a second aspect of the present invention, in the desiccant air conditioning system according to the first aspect, a sensible heat exchanger for exchanging heat between the processed air after passing through the condenser and the air before entering the desorption zone of the desiccant is provided. It is characterized by that.
In the invention of claim 2, since heat recovery is performed by the sensible heat exchanger, the adsorption capacity of the desiccant when the indoor relative humidity is high increases, the dehumidification amount increases, and the compression power per dehumidification amount decreases. To save energy.
請求項3に記載の発明は、請求項2に記載のデシカント空調システムにおいて、前記顕熱熱交換器の交換熱量を可変式にしたことを特徴とする。
請求項3に記載の発明においては、必要な除湿負荷に応じて顕熱熱交換器の交換熱量を調整することによって多様な顕熱比の除湿空調負荷に対応することができる。
The invention according to claim 3 is the desiccant air conditioning system according to claim 2, wherein the exchange heat quantity of the sensible heat exchanger is variable.
In invention of Claim 3, it can respond to dehumidification air-conditioning load of various sensible heat ratios by adjusting the exchange heat amount of a sensible heat exchanger according to required dehumidification load.
請求項1ないし請求項3に記載の発明によれば、処理空気の温度が低い場合でも、連続的にかつ効率良く除湿する機能を備えた空調システムを提供することができる。 According to the first to third aspects of the present invention, it is possible to provide an air conditioning system having a function of dehumidifying continuously and efficiently even when the temperature of the processing air is low.
以下、図面を参照してこの発明の実施の形態を説明する。
図1に示すデシカント空調システムは、処理空気の導入流路10と導出流路12を形成するフレーム14と、導入流路10と導出流路12の間に跨って配置され、各部がこれらの2つの流路の間を交互に循環するデシカントロータ16と、圧縮機18と蒸発器20と凝縮器22とからなる冷凍サイクル24と、送風機26を備え、さらに、導入空気と導出空気の間で顕熱交換を行う顕熱交換器28とを備えている。
Embodiments of the present invention will be described below with reference to the drawings.
The desiccant air conditioning system shown in FIG. 1 is disposed across a frame 14 that forms an introduction flow path 10 and a discharge flow path 12 for processing air, and between the introduction flow path 10 and the discharge flow path 12. A desiccant rotor 16 that circulates alternately between the two flow paths, a refrigeration cycle 24 composed of a compressor 18, an evaporator 20, and a condenser 22 and a blower 26 are provided, and further, a clear air is introduced between the introduced air and the derived air. And a sensible heat exchanger 28 for performing heat exchange.
これらの機器は、以下のように配置されている。すなわち、導入口32から導入流路10流路へ導入された処理空気は、顕熱交換器28の高温ゾーン28aとデシカントロータ16の脱着ゾーン16aを通過して冷凍サイクル24の蒸発器20に至り、水分を凝縮させて放出する。処理空気は、さらに導出流路12へ流れて、デシカントロータ16の吸着ゾーン16bと冷凍サイクル24の凝縮器22および顕熱交換器28の低温ゾーン28bを経て導出口34から排気される。 These devices are arranged as follows. That is, the processing air introduced from the inlet 32 to the introduction passage 10 passage passes through the high temperature zone 28 a of the sensible heat exchanger 28 and the desorption zone 16 a of the desiccant rotor 16 and reaches the evaporator 20 of the refrigeration cycle 24. Water is condensed and released. The processing air further flows into the outlet channel 12 and is exhausted from the outlet 34 through the adsorption zone 16b of the desiccant rotor 16, the condenser 22 of the refrigeration cycle 24, and the low temperature zone 28b of the sensible heat exchanger 28.
デシカントロータ16は、空気中の水分を吸着し、かつ空気中に水分を脱着できるデシカントが担持されたハニカム状のロータであって、導入流路10と導出流路12の両方に跨って配置され、導入流路10側に有る部分が水分を脱着する脱着ゾーン16aとなり、導出流路12側に有る部分が水分を吸着して除湿する吸着ゾーンとなる。吸着ゾーン16bを流れる空気と脱着ゾーン16aを流れる空気とがほぼ対向流をなしている。 The desiccant rotor 16 is a honeycomb-like rotor that supports a desiccant that adsorbs moisture in the air and can desorb moisture in the air, and is disposed across both the introduction channel 10 and the outlet channel 12. The portion on the introduction flow channel 10 side becomes a desorption zone 16a for desorbing moisture, and the portion on the discharge flow channel 12 side becomes an adsorption zone for adsorbing moisture to dehumidify. The air flowing through the adsorption zone 16b and the air flowing through the desorption zone 16a are almost in counterflow.
また、この実施の形態では、顕熱交換器28も、熱交換媒体がハニカム状のロータであって、導入流路10と導出流路12の両方に跨って配置され、その回転によって熱交換が行われるものである。従って、熱交換媒体の回転速度によって交換熱量を調整することができる。 Further, in this embodiment, the sensible heat exchanger 28 is also a honeycomb-shaped rotor whose heat exchange medium is disposed across both the introduction flow path 10 and the discharge flow path 12, and heat exchange is performed by the rotation thereof. Is to be done. Therefore, the amount of exchange heat can be adjusted by the rotational speed of the heat exchange medium.
このように構成されたデシカント空調システムの動作を、図2の湿り空気線図を参照して説明する。図中、横軸は乾球温度を、縦軸は絶対湿度を示し、各斜線は等相対湿度線を示す。斜線の内、実線は飽和線、すなわち、その絶対湿度における露点を示す。この例では、夏の高温多湿の外気を処理して室内に導入する場合を説明する。 The operation of the thus configured desiccant air conditioning system will be described with reference to the wet air diagram of FIG. In the figure, the horizontal axis represents the dry bulb temperature, the vertical axis represents the absolute humidity, and each oblique line represents an equirelative humidity line. Of the diagonal lines, the solid line indicates the saturation line, that is, the dew point at the absolute humidity. In this example, a case where the hot and humid outdoor air in summer is processed and introduced into the room will be described.
処理空気(状態A)は、顕熱交換器28の低温ゾーン28aを通過し、顕熱交換ロータ32との間で熱交換を行って温度が上昇する(状態B)。温度上昇した処理空気は、デシカントロータ16の脱着ゾーン16aを通過し、等エンタルピー線BCに沿って水分吸収してデシカントを脱着し、湿度が上昇し、温度が低下する(状態C)。この処理空気は、さらに冷凍サイクル24の蒸発器20において冷却され、飽和線に沿って温度が低下する過程で水分を凝結して放出する(状態D)。処理空気は、デシカントロータ16の吸着ゾーン16bを通過し、等エンタルピー線DEに沿って水分を吸着され、湿度が低下し、温度が上昇する(状態E)。処理空気はさらに冷凍サイクル24の凝縮器22において加熱されて昇温し(状態F)、さらに顕熱交換器28の高温ゾーン28bを通過して顕熱交換ロータ32との間で熱交換を行って冷却され(状態G)、相対湿度が低下した被処理空気として、導出口34より空調空間に導出される。 The processing air (state A) passes through the low temperature zone 28a of the sensible heat exchanger 28, and heat is exchanged with the sensible heat exchange rotor 32 to increase the temperature (state B). The process air whose temperature has increased passes through the desorption zone 16a of the desiccant rotor 16, absorbs moisture along the isoenthalpy line BC, desorbs the desiccant, increases the humidity, and decreases the temperature (state C). This treated air is further cooled in the evaporator 20 of the refrigeration cycle 24, and condenses and releases moisture in the process of decreasing the temperature along the saturation line (state D). The treated air passes through the adsorption zone 16b of the desiccant rotor 16, is adsorbed with moisture along the isoenthalpy line DE, decreases in humidity, and increases in temperature (state E). The processing air is further heated in the condenser 22 of the refrigeration cycle 24 to rise in temperature (state F), and further passes through the high temperature zone 28b of the sensible heat exchanger 28 to exchange heat with the sensible heat exchange rotor 32. Then, the air to be treated is cooled (state G) and treated as air having a reduced relative humidity, and is led out to the conditioned space through the outlet 34.
このように、この実施の形態では、顕熱交換器28で熱回収するために状態Aで示す処理空気の相対湿度が高い場合であっても、状態Bで示される脱着工程入口の空気の相対湿度が低下する(乾燥する)ため、デシカントロータの脱着ゾーンにおける水分脱着作用が増加し、それに伴って吸着ゾーンにおける水分吸着除湿効果が大きくなり、除湿量が増加する。 Thus, in this embodiment, even when the relative humidity of the processing air indicated by the state A is high for heat recovery by the sensible heat exchanger 28, the relative air at the desorption process inlet indicated by the state B is relatively high. Since the humidity decreases (drys), the moisture desorption effect in the desorption zone of the desiccant rotor increases, and the moisture adsorption dehumidification effect in the adsorption zone increases accordingly, and the dehumidification amount increases.
また、従来の冷却除湿空調システムで同じ絶対湿度の被除湿空気を得たい場合には、図3の湿り空気線図に示すように、冷凍サイクルの成績係数(COP)を3とした場合、本発明において冷凍サイクルから印加される熱量比CD:EF≒3:4と従来の冷却除湿空調システムの熱量比CD’ :D’F’は、ほぼ同じ(≒3:4)、若しくは排熱が増加する(≒3:4〜)と見なせるから、従来の冷却除湿空調システムでは状態D’で示す冷却除湿後の処理空気温度が低下するとともに、状態E’で示す再熱後の処理空気温度も上昇する。このため、図4のモリエ線図に示すように、本発明では、状態Dで示す空気と熱交換する蒸発器の蒸発圧力が、従来の冷却除湿空調システムに比べて上昇するとともに、状態Fで示す処理空気と熱交換する凝縮器の凝縮圧力が低下するため、圧縮動力が減少し、省エネルギーである。 Further, when it is desired to obtain dehumidified air having the same absolute humidity in the conventional cooling and dehumidifying air conditioning system, as shown in the humid air diagram of FIG. 3, when the coefficient of performance (COP) of the refrigeration cycle is 3, In the present invention, the heat ratio CD: EF≈3: 4 applied from the refrigeration cycle and the heat ratio CD ′: D′ F ′ of the conventional cooling and dehumidifying air conditioning system are substantially the same (≈3: 4) or the exhaust heat is increased. Therefore, the processing air temperature after cooling and dehumidification indicated by state D ′ is lowered and the processing air temperature after reheating indicated by state E ′ is also increased in the conventional cooling and dehumidifying air conditioning system. To do. Therefore, as shown in the Mollier diagram of FIG. 4, in the present invention, the evaporation pressure of the evaporator that exchanges heat with the air shown in the state D is higher than that in the conventional cooling and dehumidifying air conditioning system, and in the state F, Since the condensation pressure of the condenser that exchanges heat with the processing air to be shown is reduced, the compression power is reduced and energy is saved.
なお、上記の実施の形態において、顕熱交換器28を用いない場合には、デシカントによる水分吸着作用が小さくなるので、最終処理空気の絶対湿度もやはり高くなる。顕熱交換器28の要否は、デシカント空調システムが用いられる状況に応じて決めればよい。
また、室内の湿度(相対湿度、露点温度又は絶対湿度)を検出して、湿度が高い時、顕熱ロータを廻すようにしてもよい。
さらに、室内の湿度の測定値に応じて顕熱ロータの回転数を変化させ、交換熱量を調整するようにしてもよい。回転数を変えることにより、図2に示す顕熱比(SHF)が変化し、E点の位置が変化するので、多様な顕熱比の除湿空調負荷に対応して適切な除湿作用を得ることができる。
In the above embodiment, when the sensible heat exchanger 28 is not used, the moisture adsorption action by the desiccant is reduced, so that the absolute humidity of the final process air is also increased. The necessity of the sensible heat exchanger 28 may be determined according to the situation in which the desiccant air conditioning system is used.
Further, indoor humidity (relative humidity, dew point temperature or absolute humidity) may be detected, and when the humidity is high, the sensible heat rotor may be rotated.
Further, the exchange heat quantity may be adjusted by changing the number of revolutions of the sensible heat rotor in accordance with the measured value of the humidity in the room. By changing the number of revolutions, the sensible heat ratio (SHF) shown in FIG. 2 changes and the position of point E changes. Can do.
図5は、この発明の他の実施の形態を示すもので、冬季の室内の加湿を行うためのデシカント空調システムである。この実施の形態では、室内空気を除湿して外気よりも低い絶対湿度にして外へ排気する第1の処理経路40と、排気よりも高い絶対湿度の外気を取り入れて加温、加湿し、室内に供給する第2の処理経路42を備えている。第1の処理経路40は、基本的に先の実施の形態のデシカント空調システムと同様の構成であるが、冷凍サイクル24に補助凝縮器44を設けており、これを第2の処理経路42に設置して、外気の加温に用いている。 FIG. 5 shows another embodiment of the present invention, which is a desiccant air conditioning system for humidifying a room in winter. In this embodiment, the indoor air is dehumidified to have an absolute humidity lower than that of the outside air and exhausted to the outside, and the outside air having an absolute humidity higher than that of the exhaust is taken in and heated and humidified. A second processing path 42 is provided. The first processing path 40 has basically the same configuration as the desiccant air conditioning system of the previous embodiment, but an auxiliary condenser 44 is provided in the refrigeration cycle 24, and this is connected to the second processing path 42. It is installed and used for warming the outside air.
第2の処理経路42は、送風機46の下流側に上記補助凝縮器44を設置し、その下流側に気化式の加湿器48を設置し、加温・加湿した新鮮な空気を室内に供給する。この実施の形態では、加湿器48の水源として、第1の処理経路40で除湿した水分を用いるようにしているので、水を補給する必要が無い。なお、加湿器48の上流側に水質浄化殺菌装置50を設置して清浄化した水分を加湿に用いるようにしている。 In the second processing path 42, the auxiliary condenser 44 is installed on the downstream side of the blower 46, and a vaporizing humidifier 48 is installed on the downstream side of the second processing path 42, so that freshly heated and humidified air is supplied into the room. . In this embodiment, since the moisture dehumidified in the first treatment path 40 is used as the water source of the humidifier 48, it is not necessary to supply water. The water purification and sterilization device 50 is installed on the upstream side of the humidifier 48 so that the purified water is used for humidification.
なお第2の処理空気経路42は必ずしも、屋外に開口している必要はなく、屋内に開口していても差し支えない。この場合には、第1の処理空気経路40から排出した空気量に相当する外気が、窓の隙間や自然換気口から流入し、それらの外気と室内空気の混合空気が第2の処理空気となって作用するが、室内への加湿作用が損なわれることはなく、施工の都合で屋外への開口部が1箇所しか許容されない場合の対応方法として使用できる。 The second processing air path 42 does not necessarily have to be opened outdoors, and may be opened indoors. In this case, the outside air corresponding to the amount of air discharged from the first processing air path 40 flows from the gaps of the windows or the natural ventilation openings, and the mixed air of the outside air and the room air is combined with the second processing air. However, it does not impair the humidifying action in the room, and can be used as a countermeasure when only one opening to the outdoors is allowed for the convenience of construction.
この発明の第1の実施の形態のデシカント空調システムの構成を示す図である。It is a figure which shows the structure of the desiccant air conditioning system of 1st Embodiment of this invention. 第1の実施の形態のデシカント空調システムの動作を説明するための湿り空気線図である。It is a humid air line figure for demonstrating operation | movement of the desiccant air conditioning system of 1st Embodiment. 第1の実施の形態のデシカント空調システムを用いた場合と、従来のシステムを用いた場合とを比較するため、冷凍サイクルと熱交換する空気の状態を説明する湿り空気線図である。In order to compare the case where the desiccant air-conditioning system of 1st Embodiment is used, and the case where the conventional system is used, it is a humid air line figure explaining the state of the air which heat-exchanges with a refrigerating cycle. 第1の実施の形態のデシカント空調システムを用いた場合と、従来のシステムを用いた場合とを比較するため、冷凍サイクルを説明するモリエ線図である。It is a Mollier diagram explaining a refrigerating cycle in order to compare the case where the desiccant air-conditioning system of a 1st embodiment is used, and the case where a conventional system is used. この発明の第2の実施の形態のデシカント空調システムの構成を示す図である。It is a figure which shows the structure of the desiccant air-conditioning system of 2nd Embodiment of this invention. 従来の空調システムの構成を示す図である。It is a figure which shows the structure of the conventional air conditioning system. 従来の空調システムの動作を説明するための湿り空気線図である。It is a humid air line figure for demonstrating operation | movement of the conventional air conditioning system.
符号の説明Explanation of symbols
10 導入流路
12 導出流路
14 フレーム
16 デシカントロータ
16a 脱着ゾーン
16b 吸着ゾーン
18 圧縮機
20 蒸発器
22 凝縮器
24 冷凍サイクル
26 送風機
28 顕熱交換器
28a 高温ゾーン
28b 低温ゾーン
30 導入口
32 導出口
40 第1の処理経路
42 第2の処理経路
44 補助凝縮器
46 送風機
48 加湿器
50 水質浄化殺菌装置
DESCRIPTION OF SYMBOLS 10 Introduction flow path 12 Outlet flow path 14 Frame 16 Desiccant rotor 16a Desorption zone 16b Adsorption zone 18 Compressor 20 Evaporator 22 Condenser 24 Refrigerating cycle 26 Blower 28 Sensible heat exchanger 28a High temperature zone 28b Low temperature zone 30 Inlet port 32 Outlet port 40 1st processing path 42 2nd processing path 44 Auxiliary condenser 46 Blower 48 Humidifier 50 Water purification purification sterilizer
Claims (3)
システムに導入した処理空気をデシカントロータの脱着ゾーン、冷凍サイクルの蒸発器、前記デシカントロータの吸着ゾーン、冷凍サイクルの凝縮器の順に流すよう構成したことを特徴とするデシカント空調システム。 A honeycomb-shaped desiccant rotor carrying a desiccant capable of adsorbing moisture in the air and capable of desorbing moisture in the air, wherein the desiccant rotor is divided into an adsorption zone for adsorbing moisture and a desorption zone for desorbing moisture. A desiccant rotor in which the air flowing through the adsorption zone and the air flowing through the desorption zone form a substantially counterflow; and a refrigeration cycle comprising a compressor, an evaporator, and a condenser;
A desiccant air-conditioning system configured to flow processing air introduced into the system in the order of a desiccant rotor desorption zone, a refrigeration cycle evaporator, the desiccant rotor adsorption zone, and a refrigeration cycle condenser. 前記凝縮器通過後の処理空気と前記デシカントロータの脱着ゾーン流入前の空気とを熱交換させる顕熱交換器を設けたことを特徴とする請求項1に記載のデシカント空調システム。
The desiccant air conditioning system according to claim 1 , further comprising a sensible heat exchanger for exchanging heat between the processed air after passing through the condenser and the air before flowing into the desorption zone of the desiccant rotor .
前記顕熱交換器の交換熱量を可変式にしたことを特徴とする請求項2に記載のデシカント空調システム。The desiccant air conditioning system according to claim 2, wherein the amount of heat exchanged by the sensible heat exchanger is variable.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006134797A JP4857901B2 (en) | 2006-05-15 | 2006-05-15 | Desiccant air conditioning system |
PCT/JP2007/000430 WO2007132550A1 (en) | 2006-05-15 | 2007-04-20 | Desiccant air conditioning system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006134797A JP4857901B2 (en) | 2006-05-15 | 2006-05-15 | Desiccant air conditioning system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007303772A JP2007303772A (en) | 2007-11-22 |
JP4857901B2 true JP4857901B2 (en) | 2012-01-18 |
Family
ID=38693652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006134797A Active JP4857901B2 (en) | 2006-05-15 | 2006-05-15 | Desiccant air conditioning system |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4857901B2 (en) |
WO (1) | WO2007132550A1 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100947617B1 (en) | 2008-05-22 | 2010-03-15 | 엘지전자 주식회사 | Air conditioner |
WO2009153842A1 (en) * | 2008-06-20 | 2009-12-23 | Shibata Katsumi | Drying apparatus |
WO2010013285A1 (en) * | 2008-07-28 | 2010-02-04 | Shibata Katsumi | Brine desalinating apparatus and method of brine desalination |
JP4942799B2 (en) * | 2009-08-05 | 2012-05-30 | 三菱電機株式会社 | Dehumidifying / humidifying device and air conditioner equipped with the same |
JP5202720B2 (en) * | 2011-12-19 | 2013-06-05 | 三菱電機株式会社 | Dehumidifying / humidifying device and air conditioner equipped with the same |
JP5945688B2 (en) * | 2012-03-23 | 2016-07-05 | パナソニックIpマネジメント株式会社 | Dehumidifier |
JP6096148B2 (en) * | 2014-03-27 | 2017-03-15 | 株式会社アースクリーン東北 | Desiccant air conditioner |
JP6296617B2 (en) * | 2015-07-15 | 2018-03-20 | 福島工業株式会社 | Cooling storage and dehumidifying air conditioning system |
KR101989428B1 (en) * | 2015-11-04 | 2019-06-14 | 한국과학기술연구원 | Humidity and heat exchanger |
JP6779653B2 (en) * | 2016-04-21 | 2020-11-04 | 株式会社テクノ菱和 | Outside air processing system, control device and control method of outside air processing system |
KR102289482B1 (en) * | 2019-12-30 | 2021-08-13 | 주식회사 휴마스터 | Air conditioning system |
CN112606661A (en) * | 2020-12-15 | 2021-04-06 | 安徽法西欧汽车部件有限公司 | Peculiar smell removing air conditioner filtering device for automobile |
US11592195B2 (en) | 2021-02-12 | 2023-02-28 | Trane International Inc. | Dehumidifying air handling unit and desiccant wheel therefor |
KR102501076B1 (en) * | 2022-05-17 | 2023-02-17 | 주식회사 거양 | Non-rotating desiccant dehumidifier |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0232493B2 (en) * | 1983-03-26 | 1990-07-20 | Kubota Noki Seisakusho Kk | SHUNKANCHAKUDATSUKURATSUCHI |
JPS59180124U (en) * | 1983-05-18 | 1984-12-01 | 日本ピ−マツク株式会社 | refrigeration dehumidifier |
WO2005123225A1 (en) * | 2004-06-17 | 2005-12-29 | Matsushita Electric Industrial Co., Ltd. | Dehumidifier |
-
2006
- 2006-05-15 JP JP2006134797A patent/JP4857901B2/en active Active
-
2007
- 2007-04-20 WO PCT/JP2007/000430 patent/WO2007132550A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2007132550A1 (en) | 2007-11-22 |
JP2007303772A (en) | 2007-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4857901B2 (en) | 2012-01-18 | Desiccant air conditioning system |
US6311511B1 (en) | 2001-11-06 | Dehumidifying air-conditioning system and method of operating the same |
KR101749194B1 (en) | 2017-06-20 | Air-conditioner capable of heating and humidity control and the method thereof |
US7930896B2 (en) | 2011-04-26 | Air conditioning system |
JP4835688B2 (en) | 2011-12-14 | Air conditioner, air conditioning system |
KR101664791B1 (en) | 2016-10-12 | Air-conditioner capable of ventilation and humidity control and the method thereof |
WO2007141901A1 (en) | 2007-12-13 | Humidity controller |
AU2006253462B2 (en) | 2010-03-11 | Air conditioning system |
US20230022397A1 (en) | 2023-01-26 | Air quality adjustment system |
WO2013014708A1 (en) | 2013-01-31 | Humidity controller and air conditioning system |
JP2005525528A (en) | 2005-08-25 | Sorptive heat exchanger and associated cooling sorption method |
CN103090484B (en) | 2015-08-05 | A kind of humiture independence control air conditioner system and using method thereof |
KR20190024396A (en) | 2019-03-08 | Air conditioner and the method thereof |
JP2011089665A (en) | 2011-05-06 | Humidity control device |
CN102149976A (en) | 2011-08-10 | Air conditioner |
JP2005195285A (en) | 2005-07-21 | Air conditioner |
JP5542777B2 (en) | 2014-07-09 | Air conditioner |
KR20190024394A (en) | 2019-03-08 | Air conditioner and the method thereof |
CN108253557A (en) | 2018-07-06 | Multistage subregion dehumidification system for runner and its operation method |
JP2001174074A (en) | 2001-06-29 | Dehumidification device |
KR100607108B1 (en) | 2006-08-01 | Four Seasons Outdoor Air Conditioning System |
JP3933264B2 (en) | 2007-06-20 | Dehumidification air conditioning system |
JP2005140372A (en) | 2005-06-02 | Air conditioner |
JP2005164220A (en) | 2005-06-23 | Air conditioner |
JP2008304113A (en) | 2008-12-18 | Humidifying air-conditioning system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
2008-11-27 | A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081126 |
2011-04-14 | A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110413 |
2011-04-29 | A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110428 |
2011-06-03 | A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110602 |
2011-07-15 | A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110714 |
2011-09-30 | TRDD | Decision of grant or rejection written | |
2011-10-05 | A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111004 |
2011-10-06 | A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
2011-11-10 | A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111017 |
2011-11-11 | R150 | Certificate of patent or registration of utility model |
Ref document number: 4857901 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
2011-11-14 | FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141111 Year of fee payment: 3 |
2012-07-11 | FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141111 Year of fee payment: 3 |
2014-10-14 | R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2015-10-13 | R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2016-10-18 | R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2017-10-17 | R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2018-10-16 | R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2019-10-15 | R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2020-10-12 | R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2021-10-12 | R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2022-10-13 | R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2023-10-12 | R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2024-10-17 | R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |