KR100464107B1 - Microorganism consortia for the degradation of diesel and process for preparation thereof - Google Patents
- ️Fri Dec 31 2004
Info
-
Publication number
- KR100464107B1 KR100464107B1 KR10-2000-0073791A KR20000073791A KR100464107B1 KR 100464107 B1 KR100464107 B1 KR 100464107B1 KR 20000073791 A KR20000073791 A KR 20000073791A KR 100464107 B1 KR100464107 B1 KR 100464107B1 Authority
- KR
- South Korea Prior art keywords
- diesel
- oil
- pseudomonas
- strain
- strains Prior art date
- 2000-12-06
Links
- 230000015556 catabolic process Effects 0.000 title abstract description 13
- 238000006731 degradation reaction Methods 0.000 title abstract description 13
- 244000005700 microbiome Species 0.000 title abstract description 11
- 238000000034 method Methods 0.000 title abstract description 9
- 238000002360 preparation method Methods 0.000 title description 2
- 239000002689 soil Substances 0.000 claims abstract description 18
- 230000000813 microbial effect Effects 0.000 claims abstract description 14
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 10
- 241000589516 Pseudomonas Species 0.000 claims description 33
- 238000000354 decomposition reaction Methods 0.000 abstract description 21
- 230000000694 effects Effects 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000002609 medium Substances 0.000 description 20
- 210000004027 cell Anatomy 0.000 description 13
- 230000012010 growth Effects 0.000 description 12
- 235000015097 nutrients Nutrition 0.000 description 11
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 10
- 241000736131 Sphingomonas Species 0.000 description 7
- 238000004945 emulsification Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 4
- 230000001804 emulsifying effect Effects 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 230000007062 hydrolysis Effects 0.000 description 4
- 238000006460 hydrolysis reaction Methods 0.000 description 4
- 239000003208 petroleum Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- FBWADIKARMIWNM-UHFFFAOYSA-N N-3,5-dichloro-4-hydroxyphenyl-1,4-benzoquinone imine Chemical compound C1=C(Cl)C(O)=C(Cl)C=C1N=C1C=CC(=O)C=C1 FBWADIKARMIWNM-UHFFFAOYSA-N 0.000 description 3
- 238000006065 biodegradation reaction Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 238000004817 gas chromatography Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000006916 nutrient agar Substances 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 241000589565 Flavobacterium Species 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 210000004748 cultured cell Anatomy 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000002054 inoculum Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 241000589944 Aquaspirillum Species 0.000 description 1
- 241000589564 Flavobacterium sp. Species 0.000 description 1
- 241000589774 Pseudomonas sp. Species 0.000 description 1
- 241001135759 Sphingomonas sp. Species 0.000 description 1
- 241000983364 Stenotrophomonas sp. Species 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 231100000693 bioaccumulation Toxicity 0.000 description 1
- 239000012267 brine Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012737 fresh medium Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 239000013028 medium composition Substances 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000008057 potassium phosphate buffer Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 239000006150 trypticase soy agar Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
- C12N1/205—Bacterial isolates
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12R—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
- C12R2001/00—Microorganisms ; Processes using microorganisms
- C12R2001/01—Bacteria or Actinomycetales ; using bacteria or Actinomycetales
- C12R2001/38—Pseudomonas
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Virology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Tropical Medicine & Parasitology (AREA)
- Processing Of Solid Wastes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
본 발명은 유류분해 미생물제제 및 그 제조방법에 관한 것으로, 유류로 오염된 토양에서 유류를 분해할 수 있는 미생물들을 분리한 후, 이 중에서 유류분해능이 뛰어난 미생물을 선별하여 조합한 유류분해용 미생물제제를 제공한다. 본 발명에 따른 유류분해 미생물제제는 유류분해율 및 생태계 적응성을 향상시키는 효과가 있다.The present invention relates to an oil-degrading microbial agent and a method for manufacturing the same, and after separating microorganisms capable of decomposing oil in soil contaminated with oil, among them, microorganisms for oil-degrading microorganisms are selected and combined. to provide. Oil decomposition microbial agent according to the present invention has the effect of improving the oil degradation rate and ecosystem adaptability.
Description
본 발명은 유류분해 미생물제제에 관한 것으로, 더욱 상세하게는 토양으로부터 유류분해능이 우수한 균주를 선별하여 조합한 유류분해 미생물제제 및 상기 유류분해 미생물제제를 제조하는 방법에 관한 것이다.The present invention relates to an oil-degrading microbial agent, and more particularly, to a method for producing an oil-degrading microbial agent and a method for producing the oil-degrading microbial agent by selecting and combining strains having excellent oil-degrading ability from soil.
디젤은 다양한 석유 탄화수소 및 이와 관련된 화합물들을 포함한다. 석유 탄화수소 및 이를 함유한 제품들은 인류의 산업발전에 커다란 기여를 하였지만 반면에 환경오염의 주요한 원인으로 작용하고 있다. 석유 탄화수소는 다양한 생물계에 대한 그들의 분해저항성, 생물로의 축적 및 독성으로 인하여 심각한 환경문제를 야기시키고 있다.Diesel includes various petroleum hydrocarbons and related compounds. Petroleum hydrocarbons and products containing them have contributed greatly to the industrial development of mankind, but on the other hand, they are a major cause of environmental pollution. Petroleum hydrocarbons cause serious environmental problems due to their degradation resistance, bioaccumulation and toxicity to various biological systems.
유류오염은 누출, 저장탱크의 파손 및 수송사고 등으로 인하여 발생하며, 디젤은 저장소 부근의 토양 및 지하수의 주요한 오염원이다. 오염물질들은 기화, 광화학적 및 토양화학적 반응, 그리고 생물분해에 의해 자연적으로 제거되나, 상당한시간이 소요된다. 그 동안 물리화학적인 토양처리방법이 주로 사용되어 왔으나, 처리효율 및 비용면에서 한계를 나타내고 있다. 따라서, 최근에는 유류의 자연분해에 중추적인 역할을 담당하는 미생물을 이용한 생물학적인 토양정화방법이 연구되고 있다.Oil pollution is caused by leaks, breakage of storage tanks and transport accidents. Diesel is a major source of contamination in soil and groundwater near storage. Contaminants are naturally removed by vaporization, photochemical and soil chemical reactions, and biodegradation, but take considerable time. The physicochemical soil treatment method has been mainly used, but it shows limitations in terms of treatment efficiency and cost. Therefore, in recent years, biological soil purification methods using microorganisms, which play a pivotal role in the natural decomposition of oil, have been studied.
본 발명자들은 토양으로부터 유류분해능이 우수한 미생물을 분리하여 특허출원(특허출원 제 1999-10776호)한 바 있다. 그러나, 단일균주일 때보다 분리균주들을 조합함으로써 유류분해율 및 생태계에 대한 적응성을 향상시킬 수 있다는 사실을 발견하였으며, 이에 본 발명을 완성하게 되었다.The present inventors have applied for a patent application (Patent Application No. 1999-10776) for separating microorganisms having excellent oil resolution from soil. However, the present inventors have found that by combining the isolates rather than the single strain, the oil degradation rate and the adaptability to the ecosystem can be improved, thereby completing the present invention.
따라서, 본 발명의 목적은 유류로 오염된 토양으로부터 유류를 분해하는 미생물을 분리하고 이 중에서 유류분해능이 뛰어난 미생물을 선별하여 이들을 조합한 유류분해 미생물제제를 제공하는 것이다.Accordingly, it is an object of the present invention to isolate microorganisms that degrade oil from soil contaminated with oil, and to select microorganisms having excellent oil-degrading ability among them, to provide an oil-decomposing microbial agent combining them.
본 발명의 다른 목적은 상기 유류분해 미생물제제를 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for preparing the oil-degrading microbial agent.
상기 목적을 달성하기 위하여, 본 발명에서는 오염된 토양으로부터 유류분해 균주를 분리하여 선별한 후, 상기 선별된 균주들을 조합하면서 유류분해능을 조사함으로써 유류분해 미생물제제를 제조하였다.In order to achieve the above object, in the present invention, by separating and screening the hydrolysis strain from the contaminated soil, by combining the selected strains to investigate the oil degradation ability to prepare a hydrolysis microbial formulation.
이하, 본 발명의 구성 및 작용을 설명한다.Hereinafter, the configuration and operation of the present invention.
도 1은 본 발명에 따라 선별된 유류분해균주(25℃에서 6일 동안 유일한 탄소원으로 디젤을 함유하는 최소영양배지에서 배양)의 디젤분해율을 나타낸 그래프,1 is a graph showing the diesel decomposition rate of the hydrolysis strain selected according to the present invention (cultivated in a minimal nutrient medium containing diesel as the only carbon source for 6 days at 25 ℃),
도 2는 본 발명에 따른 유류분해 미생물제제(4% (v/v) 디젤을 함유하는 배지에서 6일 동안 배양)를 배양하여 디젤을 분해한 후 잔류하는 디젤을 가스크로마토그래피로 분석한 결과를 나타낸 그래프(큰 피크는 대조구로서 4% (v/v) 디젤),Figure 2 shows the results of analyzing the residual diesel after gas culture by culturing the oil-degrading microbial agent (incubated for 6 days in a medium containing 4% (v / v) diesel) according to the present invention by gas chromatography Graph shown (large peak is 4% (v / v) diesel as control),
도 3은 슈도모나스 Y2G1, 슈도모나스 Y2K4 및 스핑고모나스 D3K1으로 구성된 유류분해 미생물제제(유일한 탄소원으로 4% (v/v) 디젤을 함유하는 최소배지에서 6일 동안 25℃에서 배양)의 시간에 따른 세포성장, 디젤농도 및 pH의 변화를 나타낸 그래프,FIG. 3 shows cells according to the time of lyolytic microbial formulation consisting of Pseudomonas Y2G1, Pseudomonas Y2K4 and Sphingmonas D3K1 (incubated at 25 ° C. for 6 days in a minimal medium containing 4% (v / v) diesel as the only carbon source). Graph showing changes in growth, diesel concentration and pH,
도 4는 슈도모나스 Y2G1, 슈도모나스 Y2K4 및 스핑고모나스 D3K1을 각각 단독으로 배양하였을 경우와 균주조합으로 배양하였을 경우에 콜로니 수(CFU)의 변화를 나타낸 그래프(상기 균주는 4% (v/v) 디젤을 함유하는 최소배지 및 25℃에서 6일 동안 배양, 초기 접종량은 1 ×106CFU/mL, 배양한 세포를 희석하여 영양한천배지에 도말한 후 25℃에서 3일 동안 배양함으로써 CFU를 측정),4 is a graph showing the change in colony number (CFU) when Pseudomonas Y2G1, Pseudomonas Y2K4, and Sphingomonas D3K1 were cultured alone or in combination with each other (the strain is 4% (v / v) diesel Incubate for 6 days at a minimum medium containing and 25 ℃, the initial inoculum is 1 × 10 6 CFU / mL, diluting the cultured cells and plated in nutrient agar medium and incubated for 3 days at 25 ℃ to measure CFU) ,
도 5는 4% (v/v) 디젤을 함유하는 최소배지에서 성장한 선별된 분리균주의 소수성도(헥사데칸상으로 분배된 세포탁도의 백분율로 표현)를 나타낸 그래프,FIG. 5 is a graph showing the hydrophobicity (expressed as a percentage of cell turbidity distributed over hexadecane) of selected isolates grown in minimal medium containing 4% (v / v) diesel,
도 6은 4% (v/v) 디젤을 함유하는 최소배지에서 성장한 선별된 분리균주의 유화활성을 나타낸 그래프이다.6 is a graph showing the emulsification activity of selected isolate strains grown in a minimal medium containing 4% (v / v) diesel.
본 발명은 오염된 토양을 채취하여 유류분해 균주를 분리하여 선별하는 단계; 상기 분리균주를 동정하는 단계; 선별된 균주들을 조합하여 각 균주조합의 유류분해능을 조사하는 단계; 및 분리균주의 소수성도 및 유화활성을 조사하는 단계로 구성되어 있다.The present invention comprises the steps of separating and screening the oil decomposition strain by collecting the contaminated soil; Identifying the isolated strain; Combining the selected strains to investigate the oil resolution of each strain combination; And examining the hydrophobicity and emulsifying activity of the isolate.
이하, 본 발명의 구체적인 구성을 실시예를 들어 설명하고자 하지만, 본 발명의 권리범위는 하기 실시예에만 한정되는 것은 아니다.Hereinafter, the specific configuration of the present invention will be described with reference to Examples, but the scope of the present invention is not limited only to the following Examples.
실시예 1. 유류분해 균주의 분리 및 선별Example 1 Isolation and Screening of Lactic Acid Strains
본 발명에 사용된 토양시료는 국내에 유류저장소 근처의 오염된 토양에서 채취하였다. 토양시료를 토양의 상단 15 cm로부터 채취하여 2 mm 직경의 체로 거른 후, 사용하기 전까지 4℃에 보관하였다. 각각의 장소에서 채취한 토양시료 10 g을 10 mL 최소영양배지에 넣고 4℃에서 15분 동안 1분의 on/off 주기로 초음파처리하였다. 상기 토양현탁액의 상등액(100 μL)을 10% (v/v) 디젤을 함유하는 최소영양배지 5 mL에 접종시키고 4℃에서 4주 동안 배양하였다. 상기 농화배양된 시료를 매주 새로운 배지에 접종시켜 계대배양하였다. 영양한천배지(Nutrient Broth Agar, Difco)에서의 마지막 계대배양시에 접종원을 희석하여 평판배양한 결과, 서로 다른 형태 및 성장속도를 나타내는 콜로니들이 형성되었다. 상기 최소영양배지의 조성은 하기 표 1과 같다.Soil samples used in the present invention were collected from contaminated soil near oil storage in Korea. Soil samples were taken from the top 15 cm of the soil, filtered through a 2 mm diameter sieve, and stored at 4 ° C. until use. 10 g of soil samples collected at each site were placed in 10 mL minimal nutrient medium and sonicated at 4 ° C. for 15 min on / off cycle. The supernatant (100 μL) of the soil suspension was inoculated in 5 mL of minimal nutrient medium containing 10% (v / v) diesel and incubated at 4 ° C. for 4 weeks. The enriched samples were passaged by inoculating fresh medium every week. As a result of dilution of the inoculum at the last subculture in Nutrient Broth Agar (Difco), colonies with different morphology and growth rates were formed. The minimum nutritional medium composition is shown in Table 1 below.
최소영양배지의 조성Minimum Nutritional Medium 성분ingredient 농도(mg/L 증류수)Concentration (mg / L Distilled Water) NaNO3 NaNO 3 44 KH2PO4 KH 2 PO 4 0.150.15 Na2HPO4 Na 2 HPO 4 0.50.5 MgSO4·7H2OMgSO 4 7 H 2 O 0.20.2 FeCl3·6H2OFeCl 3 · 6H 2 O 0.00050.0005 CaCl2·2H2OCaCl 2 · 2H 2 O 0.010.01 pHpH 7.07.0
각각 분리된 콜로니의 유류분해능은 DCPIP 시험법을 사용하여 다음과 같이 측정하였다. 10% (v/v) 디젤을 함유하는 최소영양배지 200 μL에 DCPIP (3 g/L) 5 μL를 첨가하여 각각의 균주 콜로니를 25℃에서 일주일 동안 배양하였다. 유류분해능은 유류분해 균주 콜로니를 포함하는 반응튜브의 색이 청색에서 무색으로 변화하는 것(Charlotte Schou 등, 1998)을 이용함으로써 측정하였다.The oil resolution of each isolated colony was measured as follows using the DCPIP test method. Each strain colony was incubated for one week at 25 ° C. by adding 5 μL of DCPIP (3 g / L) to 200 μL of a minimal nutrient medium containing 10% (v / v) diesel. The oil resolution was measured by using the color of the reaction tube containing the oil degradation strain colony changed from blue to colorless (Charlotte Schou et al., 1998).
실험결과, 디젤을 분해할 수 있는 활성을 가진 128개의 균주를 분리하였고 DCPIP 시험을 통하여 그 중에서 다시 39개의 균주를 분리하였다. 상기 39개의 분리균주 중에서 디젤을 함유하는 최소영양배지에서 빠르게 성장한 11개의 분리균주에 대해 그 성장특성을 조사하였고 그 결과는 하기 표 2와 같다.As a result, 128 strains having the activity to decompose diesel were isolated, and 39 strains were isolated from the DCPIP test. Among the 39 isolated strains, the growth characteristics of the 11 isolated strains rapidly grown in diesel-containing minimal nutrient medium were investigated, and the results are shown in Table 2 below.
유류분해 균주의 분리 및 성장특성Isolation and Growth Characteristics of Hydrolysis Strains No.No. 분리균주Isolated strain 속명Generic name 성장특성Growth characteristics 비성장속도(10-3/hr)Specific growth rate (10 -3 / hr) 흡광도660 nm(배양 70시간)Absorbance 660 nm (70 hours culture) 최대성장Growth 흡광도660 nm Absorbance 660 nm 시간 (hr)Hour (hr) 1One Y1K3Y1K3 아쿠아스피릴럼 속Aquaspirum 6.536.53 0.4570.457 0.5210.521 9090 22 Y2G1Y2G1 슈도모나스 속Pseudomonas genus 7.407.40 0.480.48 0.4990.499 100100 33 Y2K4Y2K4 슈도모나스 속Pseudomonas genus 6.926.92 0.5560.556 0.5680.568 8080 44 Y2C3Y2C3 슈도모나스 속Pseudomonas genus 3.673.67 0.4240.424 0.640.64 120120 55 Y5K2Y5K2 슈도모나스 속Pseudomonas genus 1.031.03 0.30.3 0.3430.343 140140 66 D3K1D3K1 스핑고모나스 속Sphingomonas 3.333.33 0.4270.427 0.4740.474 140140 77 D3K3D3K3 스테노트로포모나스 속Stenotropomonas genus 2.972.97 0.3490.349 0.4540.454 140140 88 I2K3I2K3 슈도모나스 속Pseudomonas genus 8.108.10 0.3940.394 0.4410.441 110110 99 I2D2I2D2 플라보박테리엄 속Flavobacterium genus 5.075.07 0.4910.491 0.5870.587 140140 1010 J1D1J1D1 플라보박테리엄 속Flavobacterium genus 3.473.47 0.3790.379 0.5540.554 140140 1111 J1C2J1C2 슈도모나스 속Pseudomonas genus 7.437.43 0.4850.485 0.5960.596 140140
상기 11개의 균주 중에서 슈도모나스 I2K3가 가장 높은 성장속도를 나타내었고 슈도모나스 Y2K4가 가장 빠른 초기성장속도를 나타내었다.Among the 11 strains, Pseudomonas I2K3 showed the highest growth rate and Pseudomonas Y2K4 showed the fastest initial growth rate.
실시예 2. 분리균주의 동정Example 2. Identification of Strains
상기 분리균주들을 트립신 소이(tryptic soy) 한천배지에서 48시간동안 28℃에서 배양하였다. 멸균된 루프(loop)로 긁어냄으로써 평판배양한 세포를 수집한 후 지방산 메틸 에스테르(FAME) 분석(Chung 등, 1997)에 사용하였다. 에스테르 가수분해(saponification), 메틸화 및 추출은 MIDI 매뉴얼(Microbial Identification, Inc.)에 기술된 절차(Sasser, M, 1990)를 이용함으로써 수행하였다.The isolates were incubated at 28 ° C. for 48 hours in tryptic soy agar medium. Plated cells were collected by scraping with a sterile loop and used for fatty acid methyl ester (FAME) analysis (Chung et al., 1997). Ester saponification, methylation and extraction were performed using the procedure described in the MIDI Manual (Microbial Identification, Inc.) (Sasser, M, 1990).
디젤을 함유하는 최소영양배지에서 빠르게 성장한 균주를 FAME 분석을 통하여 동정한 결과, 표 2와 같이, Y1K3는 아쿠아스피릴럼 속(Aquaspirillum sp.)으로, D3K3은 스테노트로포모나스 속(Stenotrophomonas sp.)으로, I2D2 및 J1D1은 플라보박테리엄 속(Flavobacterium sp.)으로, D3K1은 스핑고모나스 속(Sphingomonas sp.)으로 확인되었으며, 상기 5개의 균주를 제외한 나머지 균주들은 슈도모나스 속(Pseudomonas sp.)으로 확인되었다.Fast growing strains in diesel-containing minimal nutrient medium were identified by FAME analysis. As shown in Table 2, Y1K3 is aquaspirillum sp. , And D3K3 is a Stenotrophomonas sp. ), I2D2 and J1D1 were identified as Flavobacterium sp. , D3K1 was identified as Sphingomonas sp. , And the remaining strains except for the five strains were Pseudomonas sp. It was confirmed.
본 발명에 따라 오염된 토양으로부터 분리동정한 상기 유류분해 미생물 중에서 스핑고모나스 D3K1을 1999년 3월 11일에 수탁번호 KCTC 8935P로, 슈도모나스 Y2G1 및 슈도모나스 Y2K4를 2000년 10월 30일에 각각 수탁번호 KCTC 18049P 및 KCTC 18050P로 생명공학연구소 소재 유전자은행에 기탁하였다.Among the lyolytic microorganisms isolated from contaminated soil according to the present invention, sphingomonas D3K1 was assigned to accession number KCTC 8935P on March 11, 1999, and Pseudomonas Y2G1 and Pseudomonas Y2K4 on October 30, 2000, respectively. KCTC 18049P and KCTC 18050P were deposited in the Gene Bank of the Institute of Biotechnology.
실시예 3. 유류분해능 조사Example 3. Oil resolution investigation
실험예 1. 디젤분해Experimental Example 1. Diesel decomposition
균주성장 및 디젤의 생분해는 유일한 탄소 및 에너지원으로서 4% (v/v) 디젤을 함유하는 최소영양배지 50 mL에서 분리균주를 배양함으로써 모니터하였으며, 배양조건은 25℃, 120 rpm이었다. 잔류 디젤농도 및 균주성장은 배양 6일 후에 측정하였다. 초기 세포농도는 1 ×106CFU/mL로 조절하였고 접종량은 2% (v/v)이었다.Strain growth and biodegradation of diesel were monitored by culturing isolated strains in 50 mL of minimal nutrient medium containing 4% (v / v) diesel as the only carbon and energy source, and the culture conditions were 25 ° C. and 120 rpm. Residual diesel concentration and strain growth were measured after 6 days of culture. Initial cell concentration was adjusted to 1 × 10 6 CFU / mL and inoculation amount was 2% (v / v).
실험예 2. 분리균주의 조합Experimental Example 2. Combination of Isolated Strains
상기 11개의 분리균주 중 유류분해능이 우수한 5개의 균주를 선별하여 지수성장기 때의 각 균주를 1:1로 조합한 후 최소영양배지에 접종시켰다. 접종세포농도는 1 ×106CFU/mL이었으며, 배양액의 2% (v/v)를 접종하였다. 상기 분리균주의조합을 25℃에서 6일 동안 배양한 후, 디젤의 분해율 및 세포성장(O.D. 660 nm)을 하기에 기술된 방법에 따라 측정하였다.Five strains having excellent oil resolution among the 11 isolated strains were selected, and each strain during the exponential growth phase was combined 1: 1 and inoculated into a minimal nutrient medium. The inoculated cell concentration was 1 × 10 6 CFU / mL and 2% (v / v) of the culture was inoculated. After the combination of the isolates was incubated at 25 ° C. for 6 days, the degradation rate and cell growth (OD 660 nm) of diesel were measured according to the method described below.
형성된 콜로니의 수(CFUs)는 종래의 방법(Venkateswaran, K. 등, 1991)에 따라 측정하였다. 단일균주배양 및 혼합균주배양시의 균주들의 변화를 모니터링하기 위하여 배양 2일 및 6일 후에 균체를 0.85% 소금물로 희석하여 영양한천배지에서 평판배양하였다. 상기 영양한천 평판배양을 통하여 모든 혼합균주들의 콜로니를 서로 구별할 수 있었다.The number of colonies formed (CFUs) was measured according to conventional methods (Venkateswaran, K. et al., 1991). In order to monitor the changes of the strains in single strain culture and mixed strain culture, the cells were diluted in 0.85% brine and cultured in nutrient agar medium after 2 and 6 days of culture. Through the nutrient agar plate culture it was possible to distinguish the colonies of all the mixed strains.
실험예 3. 디젤시료의 분석Experimental Example 3. Analysis of Diesel Samples
배양액에 존재하는 디젤은 종래의 방법(EPA 3510C)에 따라 헥산으로 추출한 후, 모세관 컬럼(capillary column; HP-5, 전장 30 m, 직경 0.53 mm; Hewlette Packard Co., U.S.A.) 및 FID(flame ionization detector) 검출기를 탑재한 기체크로마토그래피(GC-HP 6890, Hewlette Packard Co., U.S.A.)를 사용하여 분석하였다. 검출기 및 주입구(injector)의 운전온도는 각각 250℃ 및 200℃이었다.The diesel present in the culture was extracted with hexane according to a conventional method (EPA 3510C), followed by a capillary column (HP-5, 30 m in total length, 0.53 mm in diameter; Hewlette Packard Co., USA) and FID (flame ionization). detector Analysis was performed using gas chromatography (GC-HP 6890, Hewlette Packard Co., USA) equipped with a detector. The operating temperatures of the detector and the injector were 250 ° C and 200 ° C, respectively.
컬럼(오븐)온도는 처음 3분 동안은 45℃로 고정시킨 후 12℃/min의 속도로 275℃까지 증가시켰다. 운반기체(carrier gas)는 헬륨을 사용하였으며, 상기 기체의 유속은 5 mL/min이었다. 디젤의 양은 총 석유 탄화수소(TPH)의 정량분석법(EPA i8015B)에 따라 각 피크 면적의 합을 계산함으로써 결정하였다.The column (oven) temperature was fixed at 45 ° C. for the first 3 minutes and then increased to 275 ° C. at a rate of 12 ° C./min. The carrier gas was helium, and the gas flow rate was 5 mL / min. The amount of diesel was determined by calculating the sum of each peak area according to the quantitative analysis of total petroleum hydrocarbons (TPH) (EPA i8015B).
도 1은 선별된 11개의 유류분해 미생물의 디젤분해율을 나타낸 것이다. 이 중에서 스핑고모나스 D3K1의 디젤분해율이 83.77%로 가장 높았으며, 아쿠아스피릴럼 Y1K3 및 슈도모나스 Y5K2 두 균주가 50% 이상의 높은 디젤분해율을 나타냈다. 아쿠아스피릴럼 Y1K3, 슈도모나스 Y2G1 및 슈도모나스 Y2K4는 비교적 빠른 디젤 생분해율 및 세포성장속도를 나타냈으며, 반면에 슈도모나스 Y2C3의 디젤분해율을 매우 낮았다. 상기 11개의 균주 중에서 유류분해율이 상대적으로 우수한 균주, 즉 아쿠아스피릴럼 Y1K3, 슈도모나스 Y2G1, Y2K4, Y5K2 및 스핑고모나스 D3K1을 혼합균주의 배양에 의한 디젤분해시험에 사용하였고, 그 결과는 하기 표 3와 같다.Figure 1 shows the diesel decomposition rate of the selected 11 oil-degrading microorganisms. Among them, sphingomonas D3K1 had the highest diesel decomposition rate of 83.77%, and two strains of aquaspirilum Y1K3 and Pseudomonas Y5K2 showed high diesel decomposition rate of 50% or more. Aquaspiryllum Y1K3, Pseudomonas Y2G1 and Pseudomonas Y2K4 showed relatively fast diesel biodegradation rate and cell growth rate, while Pseudomonas Y2C3 showed very low diesel degradation rate. Among the 11 strains, strains having a relatively high oil degradation rate, namely, aquaspirilum Y1K3, Pseudomonas Y2G1, Y2K4, Y5K2, and Sphingomonas D3K1 were used in the diesel decomposition test by culture of the mixed strain, and the results are shown in Table 3 below. Same as
유류분해 균주조합의 디젤분해Diesel Degradation of Oil Strain Combination 균주조합Strain combination 디젤분해율(%)Diesel decomposition rate (%) 균주조합Strain combination 디젤분해율(%)Diesel decomposition rate (%) 1 & 21 & 2 76.4776.47 1 & 2 & 61 & 2 & 6 89.4689.46 1 & 31 & 3 16.8316.83 2 & 3 & 52 & 3 & 5 94.3994.39 1 & 51 & 5 75.7675.76 2 & 3 & 62 & 3 & 6 93.5393.53 1 & 61 & 6 73.5773.57 2 & 5 & 62 & 5 & 6 80.0680.06 2 & 32 & 3 75.1675.16 3 & 5 & 63 & 5 & 6 40.4140.41 2 & 52 & 5 75.2775.27 1 & 2 & 3 & 51 & 2 & 3 & 5 70.8070.80 2 & 62 & 6 82.0782.07 1 & 2 & 3 & 61 & 2 & 3 & 6 78.8378.83 3 & 53 & 5 69.0169.01 1 & 2 & 5 & 61 & 2 & 5 & 6 89.8689.86 3 & 63 & 6 86.0786.07 1 & 3 & 5 & 61 & 3 & 5 & 6 90.6990.69 5 & 65 & 6 93.4393.43 2 & 3 & 5 & 62 & 3 & 5 & 6 70.1770.17 1 & 2 & 31 & 2 & 3 33.8133.81 1 & 2 & 3 & 5 & 61 & 2 & 3 & 5 & 6 72.1472.14 1 & 2 & 51 & 2 & 5 72.0972.09
대부분의 균주조합은 단일균주일 때보다 높은 디젤분해율을 나타냈다. 3개의 균주조합(1 & 3, 1 & 2 & 3, 3 & 5 & 6)을 제외하고는 모든 균주의 조합이 50% 이상의 디젤분해능을 나타냈다.Most strain combinations showed higher diesel decomposition rates than single strains. Except for three strain combinations (1 & 3, 1 & 2 & 3, 3 & 5 & 6), all strain combinations showed more than 50% diesel resolution.
균주조합 2 & 3 & 5와 2 & 3 & 6이 각각 94.59% 및 93.53%로 가장 높은 디젤분해율을 나타냈다. 도 2는 균주조합 2 & 3 & 6에 의한 디젤분해를 기체크로마토그래피를 이용하여 잔류디젤의 피크로 분석한 결과로서, 대부분의 피크가 배양 6일 후에 사라지거나 감소하였음을 확인하였다.Strain combinations 2 & 3 & 5 and 2 & 3 & 6 showed the highest diesel decomposition rates of 94.59% and 93.53%, respectively. 2 is a result of analyzing the diesel decomposition by the combination 2 & 3 & 6 as the peak of the residual diesel using gas chromatography, it was confirmed that most peaks disappeared or decreased after 6 days of culture.
도 3은 상기 균주조합을 디젤이 함유된 배지에서 배양하였을 때, 시간에 따른 세포성장, 잔류디젤 및 pH의 변화를 나타낸 것이다. 세포가 급속하게 성장함에 따라, 잔류하는 디젤의 양이 급격히 감소하였고, pH는 심하게 변화되지 않았다.Figure 3 shows the change in cell growth, residual diesel and pH with time when the strain combination was cultured in a medium containing diesel. As the cells grew rapidly, the amount of diesel remaining remained drastically reduced and the pH did not change significantly.
도 4는 상기 2, 3 및 6 균주의 단일배양과 혼합배양시에 콜로니 수(CFU)의 변화를 비교한 것이다. 슈도모나스 Y2G1은 혼합배양하였을 경우에 단독으로 배양하였을 경우에 비하여 콜로니 수가 배양 2일째에 40% 증가하였으며, 슈도모나스 Y2K4는 혼합배양하였을 경우에 콜로니 수가 배양 2일째에 370%로 급격히 증가하였다. 스핑고모나스 D3K1의 경우는 혼합배양시의 콜로니 수가 단독배양시보다 배양 6일째에 220% 증가하였다. 도 3에서 나타낸 바와 같이, 상기 균주조합의 배양에서 초기 2일 동안에 잔류디젤의 양이 급속히 감소하였다. 상기 결과를 토대로 디젤의 초기분해에 슈도모나스 Y2K4가 주로 관여하였고, 배양후반기의 디젤분해에는 스핑고모나스 D3K1이 작용하였음을 확인하였다.Figure 4 compares the change in colony number (CFU) during the single and mixed culture of the 2, 3 and 6 strains. Pseudomonas Y2G1 increased by 40% on the second day of culture compared to when cultured alone, and Pseudomonas Y2K4 increased by 370% on the second day of culture. In the case of Sphingmonas D3K1, the number of colonies in the mixed culture was increased by 220% on the 6th day of culture compared to the single culture. As shown in Figure 3, the amount of residual diesel rapidly decreased during the initial 2 days in the culture of the strain combination. Pseudomonas Y2K4 was mainly involved in the initial decomposition of diesel based on the results, it was confirmed that the sphingomonas D3K1 acted on the diesel decomposition in the second half of the culture.
실시예 4. 분리균주의 소수성도 및 유화활성 측정Example 4 Determination of Hydrophobicity and Emulsification Activity of Separated Strains
실험예 4. 소수성도 측정Experimental Example 4. Hydrophobicity Measurement
분리균주의 상대 소수성도(relative hydrophobicity)는 BATH 시험법(Zhang 등, 1994)에 따라 측정하였으며, 분석할 세포를 다음의 절차에 의해 준비하였다. 배양된 세포를 10,000 ×g로 원심분리하여 수집한 후, 분석에 방해될 수 있는 물질을 제거하기 위하여 두번 세척한 다음, 400 nm에서의 광학밀도(OD)를 1.0으로 조절하기 위하여 상기 세포를 최소영양배지에 재현탁시켰다. 상기 세포용액(4.0 mL) 및 헥사데칸(1.0 mL)을 테스트튜브에 혼합하고 상기 튜브를 60초 동안 진동교반(vortex)한 후, 헥사데칸 및 수용액상을 30분 동안 정치시켜 상기 두 상을 분리하였다. 상기 수용액상을 파스퇴르 피펫으로 조심스럽게 제거한 후 수용액상의 탁도를 400 nm에서 측정하였다. 세포의 소수성도는 헥사데칸상으로 분배된 세포탁도의 백분율로 표현하였으며, 하기 식 1에 따라 계산하였다.The relative hydrophobicity of the isolate was measured according to the BATH test method (Zhang et al., 1994), and the cells to be analyzed were prepared by the following procedure. The cultured cells were collected by centrifugation at 10,000 × g, washed twice to remove any material that could interfere with the assay, and then the cells were minimally adjusted to adjust the optical density (OD) to 400 at 400 nm. Resuspend in nutrient medium. The cell solution (4.0 mL) and hexadecane (1.0 mL) were mixed in a test tube, the tube was vortexed for 60 seconds, and the hexadecane and aqueous phases were allowed to stand for 30 minutes to separate the two phases. It was. The aqueous phase was carefully removed with a Pasteur pipette and the turbidity of the aqueous phase was measured at 400 nm. The hydrophobicity of the cells was expressed as a percentage of cell turbidity distributed over hexadecane, and was calculated according to the following formula (1).
소수성도 = {(1 - 수용액상의 OD) ×100}/세포현탁액의 OD ---- [1]Hydrophobicity = {(1-OD in aqueous solution) x 100} / OD of cell suspension ---- [1]
실험예 5. 유화활성 측정Experimental Example 5. Measurement of Emulsification Activity
각 분리균주의 유화활성은 Ko 등(1998)에 의해 기술된 방법에 따라 측정하였다. 세포배양액을 원심분리하여 세포를 유리시킨 후 셀룰로오스 아세테이트 필터(0.45 ㎛ 직경, Adventec MFS. Inc., Japan)로 여과하였다. 상기 필터에 포집된 세포물질(0.5 mL)을 n-헥사데칸 0.1 mL가 첨가된 50 mM 인산칼륨 완충액 2.5 mL를 함유하는 테스트튜브에 첨가하였다. 수용액상의 유화활성은 610 nm에서의 광학밀도로 측정하였다.The emulsification activity of each isolate was measured according to the method described by Ko et al. (1998). Cell cultures were centrifuged to free the cells and filtered through a cellulose acetate filter (0.45 μm diameter, Adventec MFS. Inc., Japan). Cellular material collected in the filter (0.5 mL) was added to a test tube containing 2.5 mL of 50 mM potassium phosphate buffer with 0.1 mL of n-hexadecane added. The emulsion activity of the aqueous phase was measured by optical density at 610 nm.
도 5 및 6은 각각 선별된 11개 분리균주의 소수성도 및 유화활성을 나타낸 것이다. 도 5에서 나타낸 바와 같이, D3K1 및 Y2C3을 제외한 대부분의 분리균주에서 소수성도 및 디젤제거율 사이에 비례관계가 존재하였으며, 즉 소수성도가 높은 균주일수록 디젤제거율이 높았다. 도 6에서 나타낸 바와 같이, 슈도모나스 Y2G1을제외하고, 10개의 분리균주는 낮은 유화활성을 나타냈다.5 and 6 show hydrophobicity and emulsifying activity of 11 isolates selected, respectively. As shown in FIG. 5, in most isolates except D3K1 and Y2C3, there was a proportional relationship between hydrophobicity and diesel removal rate, that is, the higher hydrophobicity, the higher diesel removal rate. As shown in Fig. 6, except for Pseudomonas Y2G1, 10 isolates showed low emulsification activity.
상기 실험결과, 균주조합 2 & 3 & 5(슈도모나스 Y2G1, 슈도모나스 Y2K4 및 슈도모나스 Y5K2)과 균주조합 2 & 3 & 6(슈도모나스 Y2G1, 슈도모나스 Y2K4 및 스핑고모나스 D3K1)이 디젤분해에 가장 적절한 균주조합이었다. 상기 균주조합에서 각각의 균주는 모두 디젤분해능이 우수한 균주이었으며, 슈도모나스 Y2G1 및 Y2K4는 디젤을 함유하는 최소영양배지에서 빠른 성장속도를 나타내었다. 균주조합 2 & 3 & 6에서, 가장 빠른 디젤분해 균주인 스핑고모나스 D3K1은 배양 후반기의 디젤분해에 작용하였고, 슈도모나스 Y2G1 및 Y2K4는 배양 초기의 디젤분해에 관여하였음을 확인하였다.As a result, strain combinations 2 & 3 & 5 (Pseudomonas Y2G1, Pseudomonas Y2K4 and Pseudomonas Y5K2) and strain combinations 2 & 3 & 6 (Pseudomonas Y2G1, Pseudomonas Y2K4 and Sphingomonas D3K1) were the most suitable strain combinations for diesel decomposition. . Each strain in the strain combination was a strain having excellent diesel resolution, Pseudomonas Y2G1 and Y2K4 showed a fast growth rate in the minimum nutrient medium containing diesel. In strain combinations 2 & 3 & 6, spingomonas D3K1, the fastest diesel degradation strain, acted on diesel degradation in the second half of the culture, and Pseudomonas Y2G1 and Y2K4 were involved in the diesel degradation at the beginning of the culture.
높은 소수성도 및 유화활성을 보유한 슈도모나스 Y2G1은 높은 디젤분해율 (57.69%)을 나타냈다. 그러나, 디젤분해율과 소수성도 및 유화활성 사이의 비례관계를 확증하기는 어려웠다. 또한, 단지 분해능이 우수한 균주의 조합만이 디젤분해율이 높다고 확증할 수는 없었다. 따라서, 디젤을 분해하는 적절한 미생물제제를 제조하기 위해서는 선별된 분리균주를 다양하게 서로 조합하여 초반과 후반기에 각각 유류분해능이 우수하여야 하며, 또한 생태계에 대한 적응성도 높아야 한다. 본 발명에 따른 유류분해 미생물제제는 상기 요건을 충족하였다.Pseudomonas Y2G1 with high hydrophobicity and emulsifying activity showed high diesel decomposition rate (57.69%). However, it was difficult to establish the proportional relationship between diesel decomposition rate, hydrophobicity and emulsifying activity. In addition, only a combination of strains with good resolution could not be confirmed as having a high diesel decomposition rate. Therefore, in order to manufacture an appropriate microbial agent that decomposes diesel, the separated isolates must be variously combined with each other to have excellent oil resolution in the early and late stages, and also have high adaptability to the ecosystem. The oil-degrading microbial preparations according to the invention fulfill the above requirements.
이상, 본 발명의 구체적인 구성을 실시예를 참조하여 상세하게 설명한 바와같이, 본 발명은 유류분해능이 우수한 혼합균주로 구성된 미생물제제를 제공함으로써 단일균주를 사용할 때보다 유류분해율 및 생태계 적응성을 향상시키는 뛰어난 효과가 있으므로 환경산업상 매우 유용한 발명인 것이다.As described above in detail with reference to the specific configuration of the present invention, the present invention provides an excellent microorganism formulation consisting of mixed strains having excellent oil resolution ability to improve the oil decomposition rate and ecosystem adaptability than when using a single strain Since it is effective, it is a very useful invention for the environmental industry.
Claims (2)
오염된 토양으로부터 분리하여 선별한 슈도모나스 Y2G1(수탁번호: KCTC 18049P), 슈도모나스 Y2K4(수탁번호: KCTC 18050P) 및 스핑고모나스 D3K1(수탁번호: KCTC 8935P)으로 구성됨을 특징으로 하는 유류분해 미생물제제.An oil-degrading microbial agent comprising Pseudomonas Y2G1 (Accession No .: KCTC 18049P), Pseudomonas Y2K4 (Accession No .: KCTC 18050P), and Sphingonanas D3K1 (Accession No .: KCTC 8935P), isolated from contaminated soil. 삭제delete
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0073791A KR100464107B1 (en) | 2000-12-06 | 2000-12-06 | Microorganism consortia for the degradation of diesel and process for preparation thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0073791A KR100464107B1 (en) | 2000-12-06 | 2000-12-06 | Microorganism consortia for the degradation of diesel and process for preparation thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020044733A KR20020044733A (en) | 2002-06-19 |
KR100464107B1 true KR100464107B1 (en) | 2004-12-31 |
Family
ID=27679950
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2000-0073791A KR100464107B1 (en) | 2000-12-06 | 2000-12-06 | Microorganism consortia for the degradation of diesel and process for preparation thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100464107B1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020096861A (en) * | 2001-06-19 | 2002-12-31 | 정욱진 | Composition for remidation of soils contaminated by oils and indegradable organic chemicals |
KR100444294B1 (en) * | 2002-06-29 | 2004-08-16 | 주식회사 에코솔루션 | Novel Cellulomonas sp. with degradable activity of PAHs and clarifying method of pollutants having PAHs using the same |
BRPI0512142B1 (en) | 2004-06-17 | 2018-01-23 | Statoil Petroleum As | Method for treatment of an underground formation, use of a material, and, hydrocarbon well treatment composition |
CA2569770C (en) | 2004-06-17 | 2012-02-21 | Statoil Asa | Water reductions in subterranean formations |
CA2604220A1 (en) | 2005-04-26 | 2006-11-02 | Rune Godoey | Method of well treatment and construction |
KR100837876B1 (en) * | 2007-03-21 | 2008-06-13 | 한국생명공학연구원 | Functional microbial community with diesel oil decomposition activity FMC-X7 |
GB2450502B (en) * | 2007-06-26 | 2012-03-07 | Statoil Asa | Microbial enhanced oil recovery |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH099981A (en) * | 1995-06-28 | 1997-01-14 | Sekiyu Sangyo Kasseika Center | Oil-water separation method in oil-water two-phase microbial reaction |
US5888396A (en) * | 1996-12-17 | 1999-03-30 | Perriello; Felix Anthony | Bioremediation of pollutants with butane-utilizing bacteria |
KR20000034035A (en) * | 1998-11-27 | 2000-06-15 | 구본탁 | Biological Purification of Oil Polluted Soils Using Petroleum Hydrolyzed Microbial Agents |
KR20000037151A (en) * | 2000-04-10 | 2000-07-05 | 윤병대 | The method for the development of carriers for the wastewater treatment and the immobilized carriers containing microorganisms |
US6110372A (en) * | 1996-12-17 | 2000-08-29 | Perriello; Felix Anthony | Bioremediation of petroleum pollutants with alkane-utilizing bacteria |
US6133016A (en) * | 1997-04-07 | 2000-10-17 | Energy Biosystems Corporation | Sphingomonas biodesulfurization catalyst |
KR20010004646A (en) * | 1999-06-29 | 2001-01-15 | 허태학 | Complex strain for disintegrating kerosene and its making method |
KR20010004647A (en) * | 1999-06-29 | 2001-01-15 | 허태학 | Complex strain for disintegrating diesel oil and its making method |
-
2000
- 2000-12-06 KR KR10-2000-0073791A patent/KR100464107B1/en active IP Right Grant
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH099981A (en) * | 1995-06-28 | 1997-01-14 | Sekiyu Sangyo Kasseika Center | Oil-water separation method in oil-water two-phase microbial reaction |
US5888396A (en) * | 1996-12-17 | 1999-03-30 | Perriello; Felix Anthony | Bioremediation of pollutants with butane-utilizing bacteria |
US6110372A (en) * | 1996-12-17 | 2000-08-29 | Perriello; Felix Anthony | Bioremediation of petroleum pollutants with alkane-utilizing bacteria |
US6133016A (en) * | 1997-04-07 | 2000-10-17 | Energy Biosystems Corporation | Sphingomonas biodesulfurization catalyst |
KR20000034035A (en) * | 1998-11-27 | 2000-06-15 | 구본탁 | Biological Purification of Oil Polluted Soils Using Petroleum Hydrolyzed Microbial Agents |
KR20010004646A (en) * | 1999-06-29 | 2001-01-15 | 허태학 | Complex strain for disintegrating kerosene and its making method |
KR20010004647A (en) * | 1999-06-29 | 2001-01-15 | 허태학 | Complex strain for disintegrating diesel oil and its making method |
KR20000037151A (en) * | 2000-04-10 | 2000-07-05 | 윤병대 | The method for the development of carriers for the wastewater treatment and the immobilized carriers containing microorganisms |
Also Published As
Publication number | Publication date |
---|---|
KR20020044733A (en) | 2002-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Senoo et al. | 1989 | Isolation and identification of an aerobic γ-HCH-decomposing bacterium from soil |
Janssen et al. | 1997 | Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil |
Li et al. | 1991 | Specific association of diazotrophic acetobacters with sugarcane |
Falcon et al. | 1995 | Isolation of microorganisms with lignin transformation potential from soil of Tenerife Island |
Antony et al. | 2012 | Diversity and physiology of culturable bacteria associated with a coastal Antarctic ice core |
KR102564256B1 (en) | 2023-08-08 | Microorganism producing sulfur and method for preparing sulfur using the same |
KR100464107B1 (en) | 2004-12-31 | Microorganism consortia for the degradation of diesel and process for preparation thereof |
CN109929785B (en) | 2021-12-17 | Bacterium capable of degrading 2, 6-dimethylphenol and microbial inoculum produced by same |
CA2291929C (en) | 2004-12-14 | Novel microorganisms, microbial symbionts, their culture methods, and methods for treating manganese-containing water using them |
US5804435A (en) | 1998-09-08 | Method for obtaining organic solvent-resistant microorganisms and organic solvent-resistant microorganisms obtainable by the method |
JP5724217B2 (en) | 2015-05-27 | Method for preparing dehalococcides bacterium culture solution, chlorinated ethylene purification agent and purification method |
US5989896A (en) | 1999-11-23 | Method for degrading polychlorinated biphenyls and novel microorganism |
Konishi et al. | 1994 | Isolation and characteristics of acid-and aluminum-tolerant bacterium |
CN101368200A (en) | 2009-02-18 | Medium and screening method for screening anaerobic simultaneous sulfate reduction and denitrification functional strains |
EP0248400A2 (en) | 1987-12-09 | Enzyme and process for its preparation |
DE2915108C2 (en) | 1984-08-23 | Process for the epoxidation of C 2 -C 4 4 -n alkenes, butadiene or mixtures thereof |
CN110423709B (en) | 2021-01-01 | A high concentration of phenol and aniline degrading bacteria and its application |
JP6566473B2 (en) | 2019-08-28 | Novel microorganisms capable of resolving organic compounds having a cyclic ether structure and their use |
DE69632360T2 (en) | 2005-05-04 | Microorganism mutants that express oxygenase, processes for biodegradation of organic compounds and remediation of the environment with it |
Zvyagintseva et al. | 2001 | Degradation of machine oil by nocardioform bacteria |
CN115725455B (en) | 2023-10-13 | Alpha-naphthol degrading bacteria and application thereof |
Wai et al. | 2020 | Hydrocarbon and dye degradation by actinomycetes from flooded soils |
Vanama et al. | 2014 | Isolation of novel mutant strain for enhanced production of extracellular serratiopeptidase from mangrove soil |
JPH05504300A (en) | 1993-07-08 | Biological composition for the remediation of contaminated soil, methods and devices for using this composition |
JP4612996B2 (en) | 2011-01-12 | Method for removing and recovering dyes using microorganisms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
2000-12-06 | PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20001206 |
2002-04-19 | A201 | Request for examination | |
2002-04-19 | PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20020419 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20001206 Comment text: Patent Application |
2002-06-19 | PG1501 | Laying open of application | |
2004-05-19 | E902 | Notification of reason for refusal | |
2004-05-19 | PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20040519 Patent event code: PE09021S01D |
2004-11-26 | E701 | Decision to grant or registration of patent right | |
2004-11-26 | PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20041126 |
2004-12-20 | GRNT | Written decision to grant | |
2004-12-20 | PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20041220 Patent event code: PR07011E01D |
2004-12-20 | PR1002 | Payment of registration fee |
Payment date: 20041221 End annual number: 3 Start annual number: 1 |
2004-12-31 | PG1601 | Publication of registration | |
2007-12-07 | PR1001 | Payment of annual fee |
Payment date: 20071207 Start annual number: 4 End annual number: 4 |
2008-11-14 | PR1001 | Payment of annual fee |
Payment date: 20081117 Start annual number: 5 End annual number: 5 |
2009-10-01 | PR1001 | Payment of annual fee |
Payment date: 20091001 Start annual number: 6 End annual number: 6 |
2010-09-30 | PR1001 | Payment of annual fee |
Payment date: 20100930 Start annual number: 7 End annual number: 7 |
2011-10-13 | PR1001 | Payment of annual fee |
Payment date: 20111013 Start annual number: 8 End annual number: 8 |
2012-10-11 | FPAY | Annual fee payment |
Payment date: 20121011 Year of fee payment: 9 |
2012-10-11 | PR1001 | Payment of annual fee |
Payment date: 20121011 Start annual number: 9 End annual number: 9 |
2013-10-01 | FPAY | Annual fee payment |
Payment date: 20131001 Year of fee payment: 10 |
2013-10-01 | PR1001 | Payment of annual fee |
Payment date: 20131001 Start annual number: 10 End annual number: 10 |
2014-10-01 | FPAY | Annual fee payment |
Payment date: 20141001 Year of fee payment: 16 |
2014-10-01 | PR1001 | Payment of annual fee |
Payment date: 20141001 Start annual number: 11 End annual number: 16 |
2020-12-07 | PC1801 | Expiration of term |
Termination date: 20210606 Termination category: Expiration of duration |