TWI337691B - Apparatus and method for positioning control - Google Patents
- ️Mon Feb 21 2011
TWI337691B - Apparatus and method for positioning control - Google Patents
Apparatus and method for positioning control Download PDFInfo
-
Publication number
- TWI337691B TWI337691B TW096126912A TW96126912A TWI337691B TW I337691 B TWI337691 B TW I337691B TW 096126912 A TW096126912 A TW 096126912A TW 96126912 A TW96126912 A TW 96126912A TW I337691 B TWI337691 B TW I337691B Authority
- TW
- Taiwan Prior art keywords
- signal
- module
- displacement
- controlled
- control device Prior art date
- 2007-07-24
Links
- 238000000034 method Methods 0.000 title claims description 12
- 238000006073 displacement reaction Methods 0.000 claims description 91
- 206010011469 Crying Diseases 0.000 claims description 3
- 241000282376 Panthera tigris Species 0.000 claims description 3
- 230000008030 elimination Effects 0.000 claims description 3
- 238000003379 elimination reaction Methods 0.000 claims description 3
- 238000009825 accumulation Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 claims 1
- 239000004575 stone Substances 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 10
- 239000000428 dust Substances 0.000 description 3
- JJWKPURADFRFRB-UHFFFAOYSA-N carbonyl sulfide Chemical compound O=C=S JJWKPURADFRFRB-UHFFFAOYSA-N 0.000 description 2
- 238000003359 percent control normalization Methods 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 238000011410 subtraction method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/19—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
- G05B19/21—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
- G05B19/23—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
- G05B19/238—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is only used to control speed in steps according to distance left, or to give a stop signal when error reaches zero
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/19—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
- G05B19/27—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an absolute digital measuring device
- G05B19/29—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an absolute digital measuring device for point-to-point control
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/19—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
- G05B19/33—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an analogue measuring device
- G05B19/35—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an analogue measuring device for point-to-point control
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/42—Servomotor, servo controller kind till VSS
- G05B2219/42104—Loop switch, speed loop then position loop, mode switch
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position Or Direction (AREA)
- Feedback Control In General (AREA)
Description
1337691 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種定位控制裝置及定位控制方 法,尤指一種依據一位移命令與一死點預設值的比較運算 結果,用以控制受控體的位移及定位之控制裝置及方法。 【先前技術】 參考第一圖,為習知控制系統方塊示意圖。在以往的 控制系統中,包括有一人機或發令者10、一控制驅動電路 12及一受控體14。控制驅動電路12接收從人機或發令者 10送出的命令SD,進而根據該命令SD輸出一控制訊號 SC給該受控體14。該受控體14受控於該控制訊號SC而 動作,並且送出一反饋訊號SF回到控制驅動電路12,以 提供控制驅動電路12進行閉迴路的控制。另外,控制驅動 電路12更可將控制中的狀態送回給人機或發令者10,以 提供使用者查看控制系統的狀態。 配合第一圖,請參考第二圖,第二圖為習知滑車行進 控制示意圖。此滑車20行進控制係採用了前述習知的控制 系統。人機或發令者10發佈一前進命令SD給控制驅動電 路12,使其驅動設置於滑車20中的受控體14,用以帶動 滑車20前進,此時,受控體14會送出反饋訊號SF回到 控制驅動電路12。如此,控制驅動電路12係以閉迴路控 制滑車20的前進。 當滑車20行進到一死點區域時,滑車20上的頂針202 觸動一反饋裝置24。此時,反饋裝置24會送出一死點反 饋訊號ST到控制驅動電路12,以通知控制驅動電路12進 5 1337691 行停車或重置,讓滑車20不至於碰撞到臨限面22,而達 到滑車20概略的定位。’此種控制方式,讓滑車20的定位 不受磨耗、粉塵、氣流、震動等因素的影響,而得以正常 運作。 然而,由於加工技術的進步,促使越來越多的零組件 或組成設計,必須具有高精度、低誤差及小型化等條件, 如前述滑車20的位移與定位也都需要符合前述各條件。 因此,當所驅動的受控體14,其運動條件進入了微觀 (micro cosmic)或近場(near-field)的領域時,常會因為 反饋裝置24過大的體積而無法實現。另外,反饋裝置24 也將因為磨耗、粉塵或加工上的因素,而產生反應上的偏 差,導致滑車20停車於臨限面22的距離間隙,無法有效 趨近於零。 同時,若將反饋裝置24移除,滑車20停車於臨限面 22的距離間隙,也會因為臨限面22表面的變異因素,而 無法有效趨近於零,更嚴重的是,控制驅動電路12中的積 分器(未標示)積分這些距離間隙後,將產生很大的動力 來驅動滑車20前進,而造成受控體14承受極大的無效虛 功,甚至損害。 【發明内容】 有鑑於此,本發明提供一定位控制裝置及方法,本發 明乃在於依據一位移命令與一死點預設值的比較運算結 果,進而控制受控體的位移及定位。此定位控制裝置不需 使用習知的反饋裝置,而可以讓受控體達到精確的定位, 以避免受控體的定位落入死點區域所造成嚴重的損害。 6 1337691 —為此,本發明的定位控制裝置包括有一仲裁模組、一 第一驅動模組、—第二驅動模組、一切換模組及一誤差消 除杈組。其中,仲裁模組具有一死點預設值,以及接收一 位私中令。仲裁模组比較運算位命盥以 輪出並且,將位移命令轉換二號輸 ^第驅動模組連接於仲裁模組與受控體,係接收位移 λ遽與%控體輸出的一位移反饋訊號,用以輸出一第一驅 動訊號。第二驅動模組用以輸出一第二驅動訊號。 ^刀換模、、且連接於仲裁模組、第一驅動模組、第二驅動 ,組及X,體’切換模組受控於控制訊號,用以將第一驅 讯號或第二驅動訊號送到受控體。誤差消除模組連接於 1裁模組與第—驅動模組,係受控於仲裁模組,用以消除 弟一驅動模组之誤差累積量。 再者’本發明的定位控制方法,適用於一定位控制裝 t以控制-受控體的位移及定位,其步驟為:首先,取 二Ϊ私:=亚:判斷位移命令是否可以解讀。若是可 纟躺位移命令是否已經處理過。若是未經 立移命令’比對此新的位移命令與-人。若斷此新的位移命令與死點預設值是否吻 ;二合’則控制受控體停止移動,以達定位狀態。 比==轉換成-二移罐 訊號控制受控體‘f=出的位移反饋訊據與此位移 置,而可控::2位?制裝置不需使用反饋裝 cosmic) &確的&位’係適用於微觀(micro 近豕(_咖d)的領域,而具有彳小型化的 7 1337691 優點。另外,本發明之定位控制方法依據位移命令與死點 預設值之比較結果,來控制受控體進入位移或定位的行 程,並藉由定位的行程而達到高精度、低誤差的定位控制。 為了使貴審查委員能更進一步暸解本發明特徵及技 術内容,請參閱以下有關本發明之詳細說明與附圖,然而 所附圖式僅提供參考與說明用,並非用來對本發明加以限 制0 【實施方式】1337691 IX. Description of the Invention: [Technical Field] The present invention relates to a positioning control device and a positioning control method, and more particularly to a comparison operation result based on a displacement command and a dead point preset value for controlling the controlled Control device and method for displacement and positioning of a body. [Prior Art] Referring to the first figure, it is a block diagram of a conventional control system. In the conventional control system, there is a man machine or issuer 10, a control drive circuit 12 and a controlled body 14. The control drive circuit 12 receives the command SD sent from the human machine or the dispatcher 10, and outputs a control signal SC to the controlled body 14 based on the command SD. The controlled body 14 is controlled by the control signal SC, and sends a feedback signal SF back to the control driving circuit 12 to provide control for controlling the driving circuit 12 to perform closed loop. In addition, the control drive circuit 12 can further return the status in the control to the human machine or the dispatcher 10 to provide the user with a view of the status of the control system. For the first picture, please refer to the second picture. The second picture is a schematic diagram of the conventional trolley travel control. This trolley 20 travel control system employs the aforementioned conventional control system. The manipulator or the sender 10 issues a forward command SD to the control drive circuit 12 to drive the controlled body 14 disposed in the trolley 20 for driving the trolley 20 forward. At this time, the controlled body 14 sends a feedback signal SF. Returning to the control drive circuit 12. Thus, the control drive circuit 12 controls the advancement of the trolley 20 in a closed loop. When the trolley 20 travels to a dead zone, the thimble 202 on the trolley 20 activates a feedback device 24. At this time, the feedback device 24 sends a dead point feedback signal ST to the control drive circuit 12 to notify the control drive circuit 12 to stop or reset, so that the trolley 20 does not collide to the threshold surface 22, and reaches the trolley 20 Rough positioning. This type of control allows the positioning of the trolley 20 to be affected by factors such as wear, dust, airflow, and vibration. However, due to advances in processing technology, more and more components or component designs are required to have high precision, low error, and miniaturization. For example, the displacement and positioning of the above-described pulley 20 also need to meet the foregoing conditions. Therefore, when the controlled body 14 is driven into a micro cosmic or near-field field, it is often impossible to achieve due to the excessive volume of the feedback device 24. In addition, the feedback device 24 will also cause a deviation in response due to wear, dust or processing factors, causing the trolley 20 to stop at a distance gap of the threshold surface 22, and cannot effectively approach zero. At the same time, if the feedback device 24 is removed, the pulley 20 is parked on the distance gap of the threshold surface 22, and the variability of the surface of the threshold surface 22 may not be effectively approached to zero. More seriously, the control driving circuit is controlled. When the integrators (not shown) in 12 integrate these distance gaps, a large amount of power is generated to drive the trolley 20 forward, causing the controlled body 14 to undergo significant ineffective virtual work and even damage. SUMMARY OF THE INVENTION In view of the above, the present invention provides a positioning control apparatus and method. The present invention is based on a comparison result of a displacement command and a dead point preset value, thereby controlling the displacement and positioning of the controlled body. The positioning control device does not require the use of conventional feedback devices, but allows the controlled body to be accurately positioned to avoid serious damage caused by the positioning of the controlled body falling into the dead zone. 6 1337691 - To this end, the positioning control device of the present invention comprises an arbitration module, a first driving module, a second driving module, a switching module and an error eliminating group. The arbitration module has a dead-end preset value and receives a private order. The arbitration module compares the operation bit to rotate, and converts the displacement command to the second drive module to be connected to the arbitration module and the controlled body, and receives a displacement feedback signal of the displacement λ遽 and the % control output. For outputting a first driving signal. The second driving module is configured to output a second driving signal. ^The knife is changed, and is connected to the arbitration module, the first driving module, the second driving, the group and the X, the body switching module is controlled by the control signal for using the first driving signal or the second driving The signal is sent to the controlled body. The error elimination module is connected to the 1 cutting module and the first driving module, and is controlled by the arbitration module to eliminate the error accumulation amount of the first driving module. Furthermore, the positioning control method of the present invention is applicable to a positioning control device to control the displacement and positioning of the controlled body. The steps are as follows: First, take the second private: = sub: determine whether the displacement command can be interpreted. If the 纟 位移 displacement command has been processed. If the command is not moved, it is compared to the new displacement command. If the new displacement command and the dead point preset value are kissed, the second control will stop the movement of the controlled body to reach the positioning state. Ratio == converted to - two shift tank signal control body 'f = out of the displacement feedback signal and this displacement, and controllable:: 2 position system does not need to use feedback to install cosmic) & The position 'is suitable for the microscopic (micro-dark) field, and has the advantage of the miniaturized 7 1337691. In addition, the positioning control method of the present invention is based on the comparison of the displacement command and the dead-end preset value. To control the stroke of the controlled body into displacement or positioning, and achieve high-precision, low-error positioning control by positioning the stroke. In order to enable the reviewing committee to further understand the features and technical contents of the present invention, please refer to the following related The detailed description of the invention and the accompanying drawings are only for the purpose of illustration and description.
立請參閱第三圖’為本發明之定位控制裝置的功能方塊 示意圖。定位控制裝置4連接於一受控體5,係作為受控 體5的位移與定位的控制,定位控制裝置4從一人機或$ 令者(未標示)接收一位移命令Si以及從受控體5取得 一位移反饋訊號S2,並且根據位移命令S1盥 號S2,以控制受控體5的位移與定位。,、減^Please refer to the third figure' for a functional block diagram of the positioning control device of the present invention. The positioning control device 4 is connected to a controlled body 5 as a control for displacement and positioning of the controlled body 5, and the positioning control device 4 receives a displacement command Si and a controlled body from a human machine or a driver (not shown). 5 A displacement feedback signal S2 is obtained, and according to the displacement command S1 盥 S2, the displacement and positioning of the controlled body 5 are controlled. ,, minus ^
—復參閱第三圖,定位控制裝置4包括一仲裁模組4〇、 〆第一驅動模組42、一第二驅動模組44、一切換模組46 及一誤差消除模組48。其中,仲裁模組4〇具有一死點預 設值(未標旬’仲裁缝4〇也從域或發令者取得位移 p si’亚且比較運异位移命令S1與内部之死點預設值, 根據比較結果輸出-㈣訊號S3。另外,仲裁模組4〇 將位移命令S1轉換成—位移訊號S4輸出。 斑受第―驅動模組42連接於仲裁模組40 二驅二:移訊號S4與位移反饋訊號S2。第 的差值S而輪移訊號S4與位移反饋訊號S2 私連接於仲裁模 驅動5“ S5。而誤差;肖除模組 、、’· 0與第一驅動模組42,其係受控於仲 8 裁模組40,用以消除$__ 移反饋訊號S2之誤力枳、,且42中位移訊號S4與位 °、左系積量。 復參閱第三圖,第 動訊號S6。另外,切_=昇且44用以輸出一第二驅 驅動模組42、第_、、 6連接於仲裁模組4〇、第一 裁模組4 0輸出的控制% 及叉控體5,其係受控於仲 幻進行切換動作,以將切換模組46根據控制訊號 S6送到受控體5。:第驅動訊號§5或第二驅動訊號 復參閱第三圖,第— + —第一控制迴路,此第一二力杈組42與切換模組46形成 之位移訊號S4與位制迴路根據位移命令 S1轉換 動的控制。而第矾號S2,作為受控體5位移驅 控制迴路,此第二^果、‘且44與切換模組46形成一第二 且根據運算結果m S1與死點預設值,並 動作。 、 匕制第一控制迴路或第二控制迴路 前述中,當仲裁模組40比較運¥纟士 不符合死點預設值時,仲裁模,且4,二°果為位移命令S1 制切換模組46,使之將第輸出的控制訊號S3控 以提供^雕 驅動訊號S5切換到受控體5, 空體5的位移驅動。反之,當仲裁模組4〇比較運 Γ的^令S1符合死點預設值時,仲裁模組40輸 S6切二到%控制切換模組46 ’使之將第二驅動訊號 、又控體5,以提供受控體5的定位驅動。 的雪1己:ί二圖’請蒼閱第四圖’為本發明定位控制裝置 陸w。。不思圖。仲裁模組40包括一微處理器' 402與-邏輯 皁列早凡404 ’該微處理器4〇2藉由執行一演算程序,以 1337691 ,較運算位移命令S1與死點預設值,用以控制邏輯陣列 早元404輸出控制訊號S3,以及轉換位移命令Sl成為位 移訊號S4輸出。同時,仲裁模組4〇可藉由' 的處理運算,用以調整該死點預設值。另外,仲裁模: ^可以連接於第二驅動模組44,並藉由二者之連接關係, 得以控制第二驅動模組44調整第二驅動訊號%的輸出。 復配合第二圖,參閱第四圖,第一驅動模组42包括 有—誤差放大器420、一 PID運算器422及一^法器。 誤差,大器420作為位移訊號S4與位移反饋訊號幻之減 法運异,以輸出一位置誤差5虎Verror。ΡΠ)運首哭422 包括有一比例運算器4220、一積分運算器4222 微分 運异器4224,前述該些運算器4220、4222、4224皆連接 方、為差放大斋420。並且分別以比例運算、積分運算及微 分運算該位置誤差訊號Verr〇r’進而分別輸出一比例訊號 S7、一積分訊號S8及一微分訊號S9。而加法器424連接" 於前述該些運算器4220、4222、4224,係以加法運算整合 了比例訊號S7、積分訊號S8及微分訊號S9,進而輸出第 一驅動訊號S5。 復配合第三圖,參閱第四圖,誤差消除模組48包括 有一微分器放電開關482與一積分器放電開關484,其中, 微分器放電開關482連接於PID運算器422之微分運算器 4224,而積分器放電開關484則連接於piD運算器之 積分運算器4222。微分器放電開關482與積分器放電開關 484文控於仲裁模組4〇,用以分別消除微分運算器CM 與積分運算器4222中位置誤差訊號Verr〇r的累積量 差累積量)。 ' 10 雷、二第三圖’參閱第四圖’第二驅動模組44為- 壓驅動模組。而在第四圖中,第二驅 動拉組44係以電壓驅動模 :組44由-偏壓養與—可調電阻b二二= ίΓ=Γ得以產生不同的第二驅動訊號:二In the third embodiment, the positioning control device 4 includes an arbitration module 4A, a first driving module 42, a second driving module 44, a switching module 46, and an error eliminating module 48. The arbitration module 4〇 has a preset value of a dead point (unscheduled 'arbitration seam 4〇 also obtains the displacement p si' from the domain or the sender and compares the different displacement command S1 with the internal dead point preset value And outputting - (4) signal S3 according to the comparison result. In addition, the arbitration module 4 转换 converts the displacement command S1 into a displacement signal S4 output. The spot is driven by the first driving module 42 to the arbitration module 40, the second drive 2: the mobile signal S4 And the displacement feedback signal S2. The first difference S and the wheel shift signal S4 and the displacement feedback signal S2 are privately connected to the arbitration mode driver 5"S5. The error; the mode division module, the '0' and the first drive module 42 The system is controlled by the secondary 8 cutting module 40 to eliminate the misalignment of the $__ shifting feedback signal S2, and the displacement signal S4 in the 42 and the left and left accumulated products. The signal is S6. In addition, the cut__liter and 44 are used to output a second drive drive module 42, the _, 6 connected to the arbitration module 4 〇, the first cut module 40 output control % and fork The control body 5 is controlled by the imaginary switching operation to send the switching module 46 to the controlled body 5 according to the control signal S6. The signal §5 or the second driving signal refers to the third figure, the first---the first control loop, the displacement signal S4 formed by the first two-force group 42 and the switching module 46 and the bit circuit are converted according to the displacement command S1. Dynamic control. The second suffix S2, as the controlled body 5 displacement drive control loop, the second effect, 'and 44 and the switching module 46 form a second and according to the operation result m S1 and the dead point preset value And the first control loop or the second control loop, in the foregoing, when the arbitration module 40 compares the transport gentleman does not meet the dead-end preset value, the arbitration mode, and 4, two degrees is the displacement command The S1 switching module 46 is configured to control the output control signal S3 to provide the driving drive signal S5 to the controlled body 5, and the displacement driving of the empty body 5. Conversely, when the arbitration module 4 is relatively When the S1 is matched with the preset value of the dead point, the arbitration module 40 sends the S6 to the % control switching module 46' to cause the second driving signal and the control body 5 to provide the positioning driving of the controlled body 5. The snow 1 has: ί二图 'Please read the fourth picture 'for the positioning control device of the invention land w.. Do not think. Zhong The module 40 includes a microprocessor '402 and a logic soap column 404'. The microprocessor 4〇2 performs a calculation program to compare the displacement command S1 and the dead point preset value by 1337691. The control logic array early element 404 outputs the control signal S3, and the conversion displacement command S1 becomes the output of the displacement signal S4. At the same time, the arbitration module 4 can be used to adjust the dead point preset value by the processing of '. : ^ can be connected to the second driving module 44, and by the connection relationship between the two, the second driving module 44 can be controlled to adjust the output of the second driving signal %. Referring to the second figure, refer to the fourth figure, A driving module 42 includes an error amplifier 420, a PID operator 422, and a controller. The error 420 is used as the displacement signal S4 and the displacement feedback signal illusion subtraction method to output a position error of 5 tiger Verror. The first crying 422 includes a proportional computing unit 4220 and an integral computing unit 4222 differential alienating device 4224. The computing devices 4220, 4222, and 4224 are all connected to each other and are differentially amplified. And the proportional error signal Verr〇r' is respectively converted by a proportional operation, an integral operation and a differential operation to respectively output a proportional signal S7, an integral signal S8 and a differential signal S9. The adder 424 is connected to the operators 4220, 4222, and 4224, and integrates the proportional signal S7, the integrated signal S8, and the differential signal S9 by an addition operation, thereby outputting the first driving signal S5. Referring to the third figure, referring to the fourth figure, the error elimination module 48 includes a differentiator discharge switch 482 and an integrator discharge switch 484, wherein the differentiator discharge switch 482 is connected to the differential operator 4224 of the PID operator 422. The integrator discharge switch 484 is connected to the integral operator 4222 of the piD operator. The differentiator discharge switch 482 and the integrator discharge switch 484 are controlled by the arbitration module 4A to cancel the cumulative amount difference of the position error signal Verr〇r in the differential operator CM and the integral operator 4222, respectively. '10 Ray, 2rd third diagram' refers to the fourth diagram' The second drive module 44 is a -voltage drive module. In the fourth figure, the second driving pull group 44 is driven by a voltage: the group 44 is biased by - the adjustable resistor b2 = ίΓ = Γ to generate different second driving signals:
刀、杈組46包括有—切換開關460與一放大哭 偷’切換開關受控 I :而進行切換動作,將第4動訊 式〜 放大器462則將第—驅動訊號S5 或弟—驅動訊號S6放大且送至受控體5。 & 法4己合請參閱第五圖,為本發明之定位控制方 =?,:控!受控體5的位移及定位。首::: (S1^ «人&或發令者(未標示)接收位移命令si 曰(=):以及韻位移命令31是否可以解讀( 接著判斷位移命令S1是否為前次 命令⑶5)。若是位移命令si未在前次掉^ =理過’則定位控制裝置4會根據位移命令sThe knives and cymbal groups 46 include a switch 460 and an amplifying crying switch to control the switching I: and the switching action is performed, and the fourth motion type to the amplifier 462 will drive the first driving signal S5 or the younger driving signal S6. Zoomed in and sent to the controlled body 5. Please refer to the fifth figure for the positioning control method of the present invention =?,: control! The displacement and positioning of the controlled body 5. First::: (S1^ «People & or sender (not shown) receives the displacement command si 曰 (=): and whether the rhyme displacement command 31 can be interpreted (following whether the displacement command S1 is the previous command (3) 5). If the displacement command si is not lost in the previous time, the positioning control device 4 will be based on the displacement command s.
應於位移命令S1的死點預設值(叫同J ^桑^制裝置4依據位移命令S1而控制受控體$進入位 命令tf 控位移時’定位控制裝置4會判斷位移 控制…控制受控體5進入二=勿)合在= 的知作中’控織置4會將㈣所存放的 二 的清除’使其不至於影響下_次的定位操;。二二开 1337691 型化的優點。同時,本發明之定位控制裝置藉由執行定位 操作,而達到高精度、低誤差的定位控制,而不受磨耗、 粉塵、氣流、震動等因素的影響。 按,以上所述,僅為本發明最佳之具體實施例,惟本 發明之特徵並不侷限於此,任何熟悉該項技藝者在本發明 之領域内,可輕易思及之變化或修飾,皆可涵蓋在以下本 案之專利範圍。 【圖式簡單說明】 第一圖為習知控制系統方塊示意圖; 弟·一圖為習知滑車行進控制不意圖, 第三圖為本發明之定位控制裝置的功能方塊示意圖; 第四圖為本發明定位控制裝置的電路示意圖; 第五圖為本發明之定位控制方法流程示意圖;及 第六圖為實施本發明之滑車行進控制示意圖。 【主要元件符號說明】 習知: 人機或發令者10 控制驅動電路12 受控體14 命令SD 控制訊號SC 反饋訊號SF 死點反饋訊號ST 滑車20 13 1337691 臨限面22 頂針202 反饋裝置24 本發明: 定位控制裝置4 仲裁模組40 微處理器402 邏輯陣列單元404 第一驅動模組42 誤差放大器420 HD運算器422 比例運算器4220 積分運算器4222 微分運算器4224 加法器424 弟二驅動核組44 偏壓VDD 可調電阻R 切換模組46 切換開關460 放大器462 誤差消除模組48 微分器放電開關482 積分器放電開關484 14 1337691 受控體5 位移命令SI 位移反饋訊號S2 控制訊號S3 位移訊號S4 第一驅動訊號S5 第二驅動訊號S6 比例訊號S7 積分訊號S 8 微分訊號S9 滑車30 平貼面302 臨限面32The positioning control device 4 judges the displacement control...the control is determined by the preset value of the dead point of the displacement command S1 (called the same as the J ^ 桑^ device 4 according to the displacement command S1 and the controlled body $ enters the bit command tf control displacement) The control body 5 enters the second = not) in the knowledge of = 'control woven 4 will (4) the second clear of the stored 'to make it not affect the next _ times positioning operation; The advantages of the type 2337691. At the same time, the positioning control device of the present invention achieves high-precision, low-error positioning control by performing a positioning operation without being affected by factors such as abrasion, dust, airflow, vibration, and the like. The above description is only the preferred embodiment of the present invention, but the features of the present invention are not limited thereto, and any one skilled in the art can easily change or modify it in the field of the present invention. Both can be covered in the following patent scope of this case. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a block diagram of a conventional control system; the first figure is a schematic diagram of the conventional pulley control, and the third figure is a functional block diagram of the positioning control device of the present invention; The circuit diagram of the positioning control device is invented; the fifth figure is a schematic flow chart of the positioning control method of the present invention; and the sixth figure is a schematic diagram of the trolley traveling control for implementing the present invention. [Main component symbol description] Convention: Human machine or sender 10 Control drive circuit 12 Controlled body 14 Command SD control signal SC Feedback signal SF Dead point feedback signal ST Block 20 13 1337691 Front face 22 Thimble 202 Feedback device 24 Invention: Positioning control device 4 Arbitration module 40 Microprocessor 402 Logic array unit 404 First drive module 42 Error amplifier 420 HD operator 422 Proportional operator 4220 Integral operator 4222 Differential operator 4224 Adder 424 Brother II driver core Group 44 Bias VDD Adjustable Resistor R Switching Module 46 Diverter Switch 460 Amplifier 462 Error Cancellation Module 48 Derivative Discharge Switch 482 Integrator Discharge Switch 484 14 1337691 Controlled Body 5 Displacement Command SI Displacement Feedback Signal S2 Control Signal S3 Displacement Signal S4 First drive signal S5 Second drive signal S6 Proportional signal S7 Integrated signal S 8 Differential signal S9 Trolley 30 Flat veneer 302 Frontal face 32
Claims (1)
1337691 十、申請專利範圍: 1. 一種定位控制裝置,係接收一位移命令與一受控體輸出 的一位移反饋訊號,用以控制該受控體的位移與定位, 該裝置包括: 一仲裁模組,具有一死點預設值,該仲裁模組比較運算該 位移命令與該死點預設值,用以輸出一控制訊號,以及 將該位移命令轉換成一位移訊號; 一第一驅動模組,連接於該仲裁模組與該受控體,該第一 • 驅動模組接收該位移訊號與該位移反饋訊號,用以輸出 一第一驅動訊號; 一第二驅動模組,輸出一第二驅動訊號;及 一切換模組,連接於該仲裁模組、該第一驅動模組、該第 二驅動模組及該受控體,該切換模组受控於該控制訊 號,係將該第一驅動訊號或該第二驅動訊號送到該受控 體。 2. 如申請專利範圍第1項所述之定位控制裝置,進一步包 • 括一誤差消除模組,該誤差消除模組連接於該仲裁模組 與該第一驅動模組,該誤差消除模組受控於該仲裁模 組,用以消除該第一驅動模組之誤差累積量。 3. 如申請專利範圍第2項所述之定位控制裝置,其中該第 一驅動模組包括: 一誤差放大器,係減法運算該位移訊號與該位移反饋 " 訊號,用以輸出一位置誤差訊號; 一 HD運算器,連接於該誤差放大器,該PID控制器 運算該位置誤差訊號,以及輸出一比例訊號、一積 16 1337691 分訊號及一微分訊號;及 一加法器,連接於該PID控制器,係整合該比例訊 號、該積分訊號及該微分訊號,以及輸出該第一驅 動訊號。 4. 如申請專利範圍第1項所述之定位控制裝置,其中,該 位移命令不符合該死點預設值時,該控制訊號控制該切 換模組切換該第一驅動訊號輸出到該受控體,以提供該 受控體的移動。 5. 如申請專利範圍第1項所述之定位控制裝置,其中,該 位移命令符合該死點預設值時,該控制訊號控制該切換 模組切換該第二驅動訊號輸出到該受控體,以提供該受 控體的定位。 6. 如申請專利範圍第1項所述之定位控制裝置,其中,該 仲裁模組包括一微處理器與一邏輯陣列單元,該微處理 器執行一演算程序,以比較運算該位移命令與該死點預 設值,用以控制該邏輯陣列單元輸出該控制訊號以及轉 換該位移命令成為該位移訊號。 7. 如申請專利範圍第6項所述之定位控制裝置,其中,該 仲裁模組連接該第二驅動模組,且該仲裁模組藉由該微 處理器的處理運算,用以控制該第二驅動模組調整該第 二驅動訊號輸出。 8. 如申請專利範圍第6項所述之定位控制裝置,其中,該 仲裁模組藉由該微處理器的處理運算,用以調整該死點 預設值。 17 1337691 9. 如申請專利範圍第3項所述之定位控制裝置,其中該PID 運算器進一步連接於該誤差消除模組,而該誤差消除模 組包括有一微分器放電開關與一積分器放電開關,該微 分器放電開關與該積分器放電開關受控於該仲裁模 組,用以消除儲存於該PID運算器之誤差累積量。 10. 如申請專利範圍第1項所述之定位控制裝置,其中該第 二驅動模組為一電流驅動模組或一電壓驅動模組。 11. 如申請專利範圍第1項所述之定位控制裝置,其中該切 換模組包括有一切換開關連接一放大器,該切換開關受 控於該控制訊號,係透過該放大器將該第一驅動訊號或 該第二驅動訊號送到該受控體。 12. —種定位控制裝置,係接收一位移命令與一受控體輸出 的一位移反饋訊號,用以控制該受控體的位移與定位, 該裝置包括: 一第一控制迴路,係根據該位移命令與該位移反饋訊 號,用以控制該受控體的位移; 一第二控制迴路,用以控制該受控體的定位;及 一仲裁模組,具有一死點預設值,該仲裁模組比較運 算該位移命令與該死點預設值,並根據運算結果, 用以控制該第一控制迴路或該第二控制迴路動作。 13. 如申請專利範圍第12項所述之定位控制裝置,其中該 仲裁模組包括一微處理器與一邏輯陣列單元,該微處理 器執行一演算程序,以比較運算該位移命令與該死點預 設值,用以控制該邏輯陣列單元輸出一控制訊號以及將 該位移命令轉換成一位移訊號。 18 14.如申請專利範圍第 — 第一控制迴路包括:、.处之定位控制裝置,其中該 -第 :驅動模組,連接於 弟一驅動模組接收兮哉杈組與該受控體’該 號,用該位移反饋訊 _組及 第二控制迴路包括:、述之疋位控制裝置,其中該 一第二驅動模組, 該切換模級,連接於該仲絲f動訊號;及 該受控體,該切換模二二:、玄弟二驅動模組及 該第二驅勤訊制訊號,係切換 包括一誤差消除模植,▲卜疋位匕狐置,進一步 組與該第-驅_ & 71>s除模組連接於該仲裁模 組,用以消除二差消除模紐受控於該仲裁模 »?.如申請專利範圍第16=之誤差累積量。 第-驅動模組—:項所述之定位控制裝置,其中該 μ ^°。算該位移婦υ與該位移反饋 «,,用以輸出一位置誤差訊號; •運开③’連接於該誤差放大器,該〶控制器 =异該位置誤差訊號,以及輸出-比例tfl號、-積 /刀汛唬及一微分訊號;及 19 一加法器,連接於哕ΡΤΓΛ i 1 轳太V 〇Λ D控制器’係整合該比例訊 該微分訊號,以及輸出該Η 18.如申請專利範圍第1 $ 第二驅動模組進一步連』位控制裝置’其令該 模组L”/連接騎裁模組,係受控於該仲裁 棋、、且以讀弟二驅動訊號輸出。 19二:A專利:圍第13項所述之定位控制裝置,其中該 設值U 處理器的處理運算,用賴整該死點預 ^包括有-微分器;二 關,該微分哭放雪門門办__ ’貝刀扣风私開 ^ . ra。。 一碭關與4積分器放電開關受控於該仲 21=消除儲存於該PiD運算器 ‘如申明專利範圍第15項所 第二驅動模組為-電流弓區W衣直’其中該 22石由…, 動杈組或一電壓驅動模組。 •如申靖專利範圍第15項所诚$ 切換模”括右+ „ 疋位控制裝置,其中該 受控於該= ^ = Γ接一放大器’該切換開關 H 虎係透過該放大器將 或该弟二驅動訊號送至該⑽體。 ㈣如虎 23.-種定位控制方法,適用於—定位 受控體的位移及定位,該方法包括: 从制一 接^位移命令,以及判斷該位移命令是否可以解 若是可解讀,則判斷該位移命令是否已經處理過; 20 1337691 若未經處理,則根據該位移 , H㈣受控體位移;7 _—死點預設 、 騎該位移命令與該死點預設錢否吻人 若是吻合,則控制受控體定位。 σ, 24·如申請專利顧第23項所述 接收-位移命令步驟前,妓位其中在 及自我檢驗。 』衣置進仃初始化以 料鄕㈣24摘叙 • 該定位控難置進行初始化以及自㈣^法’其中在 發生錯誤,則產生—錯誤回報訊1我“步驟令,若是 26.如申請專利範圍第23項所述之定 該位移命令是否可以解讀步^在判斷 新接收該位移命令。 ^〜不可解頃,則重 項所述,控_ ’不夕P 7疋否已經處理過步驟中,戈3 到接收該位移命令之步驟。 -疋處理過’則回 > 28如申μ專職圍第23項所述 =位步驟〜步清除二^ 法,在判斷 合,則控制受控合步驟後’若是不吻 中之誤差累積^進一步週期性清除該定位控制裝置 211337691 X. Patent application scope: 1. A positioning control device for receiving a displacement command and a displacement feedback signal of a controlled body output for controlling displacement and positioning of the controlled body, the device comprising: an arbitration mode The group has a dead point preset value, and the arbitration module compares and calculates the displacement command and the dead point preset value for outputting a control signal, and converting the displacement command into a displacement signal; a first driving module, connecting In the arbitration module and the controlled body, the first driving module receives the displacement signal and the displacement feedback signal for outputting a first driving signal; and a second driving module outputs a second driving signal. And a switching module connected to the arbitration module, the first driving module, the second driving module and the controlled body, the switching module being controlled by the control signal, the first driving The signal or the second driving signal is sent to the controlled body. 2. The positioning control device according to claim 1, further comprising an error eliminating module connected to the arbitration module and the first driving module, the error eliminating module The arbitration module is controlled to eliminate the error accumulation amount of the first driving module. 3. The positioning control device of claim 2, wherein the first driving module comprises: an error amplifier that subtracts the displacement signal and the displacement feedback signal to output a position error signal An HD operator connected to the error amplifier, the PID controller calculates the position error signal, and outputs a proportional signal, a product 16 1337691 minute signal and a differential signal; and an adder connected to the PID controller And integrating the proportional signal, the integral signal and the differential signal, and outputting the first driving signal. 4. The positioning control device according to claim 1, wherein the control signal controls the switching module to switch the first driving signal output to the controlled body when the displacement command does not meet the preset value of the dead point. To provide movement of the controlled body. 5. The positioning control device of claim 1, wherein the control signal controls the switching module to switch the second driving signal output to the controlled body when the displacement command meets the preset value of the dead point, To provide the positioning of the controlled body. 6. The positioning control device of claim 1, wherein the arbitration module comprises a microprocessor and a logic array unit, the microprocessor executing a calculation program to compare the operation of the displacement command with the damn The preset value is used to control the logic array unit to output the control signal and convert the displacement command to become the displacement signal. 7. The positioning control device according to claim 6, wherein the arbitration module is connected to the second driving module, and the arbitration module is controlled by the microprocessor to control the first The second driving module adjusts the second driving signal output. 8. The positioning control device according to claim 6, wherein the arbitration module is configured to adjust the dead point preset value by the processing operation of the microprocessor. The locating control device of claim 3, wherein the PID operator is further connected to the error eliminator module, and the error eliminator module comprises a differentiator discharge switch and an integrator discharge switch The differentiator discharge switch and the integrator discharge switch are controlled by the arbitration module to eliminate the accumulated error amount stored in the PID operator. 10. The positioning control device of claim 1, wherein the second driving module is a current driving module or a voltage driving module. 11. The positioning control device of claim 1, wherein the switching module includes a switch to connect to an amplifier, the switch is controlled by the control signal, and the first drive signal is The second driving signal is sent to the controlled body. 12. A positioning control device for receiving a displacement command and a displacement feedback signal of a controlled body output for controlling displacement and positioning of the controlled body, the device comprising: a first control loop, according to the a displacement command and the displacement feedback signal for controlling displacement of the controlled body; a second control loop for controlling positioning of the controlled body; and an arbitration module having a dead point preset value, the arbitration mode The group compares the displacement command with the dead point preset value, and according to the operation result, controls the first control loop or the second control loop to operate. 13. The positioning control device of claim 12, wherein the arbitration module comprises a microprocessor and a logic array unit, the microprocessor executing a calculation program to compare the operation of the displacement command with the dead point The preset value is used to control the logic array unit to output a control signal and convert the displacement command into a displacement signal. 18 14. As claimed in the patent scope - the first control loop comprises: a positioning control device at:, wherein the -: drive module is connected to the first drive module to receive the stack and the controlled body' The number, the displacement feedback signal group and the second control circuit include: the clamp control device, wherein the second drive module, the switching mode is connected to the secondary wire signal; and The controlled body, the switching mode 22:, the Xuandi two drive module and the second drive signal, the switch includes an error elimination model, ▲ 疋 匕 匕 ,, further group and the first - The drive_ &71>s module is connected to the arbitration module to eliminate the difference between the two differential cancellation modes controlled by the arbitration mode. As described in the patent application range 16=. Positioning control device of the first-drive module-: item, wherein the μ ^°. Calculating the displacement of the woman and the displacement feedback «, for outputting a position error signal; • the opening 3' is connected to the error amplifier, the 〒 controller = the position error signal, and the output - the ratio tfl number, - a product/knife and a differential signal; and 19 an adder connected to the 哕ΡΤΓΛi 1 轳 too V 〇Λ D controller' is to integrate the proportional signal and output the Η 18. as claimed The 1st second driving module is further connected with a "position control device" which causes the module L"/connected riding module to be controlled by the arbitration chess, and is output by the reading second driving signal. A patent: The positioning control device according to Item 13, wherein the processing operation of the set value U processor includes a presence-differentiator for the dead point; the second level, the differential crying and snowing door _ _ 'Bei knife buckle wind private open ^. ra.. One shut and 4 integrator discharge switch controlled by the secondary 21 = eliminate the storage in the PiD operator 'such as the second drive module of claim 15 For the - current bow area W clothing straight 'where the 22 stone by ..., moving group or a battery Drive module. • For example, Shen Jing patent scope item 15 is the "switch mode" including right + „ clamp control device, where the control is based on the = ^ = Γ connected to an amplifier 'the switch H through the tiger The amplifier sends the second driving signal to the (10) body. (4) The tiger 23.-type positioning control method is applicable to the displacement and positioning of the positioning controlled body, and the method comprises: selecting a displacement command from the system, and judging Whether the displacement command can be interpreted if it is interpretable, then it is judged whether the displacement command has been processed; 20 1337691 If not processed, according to the displacement, H (four) controlled body displacement; 7 _ - dead point preset, ride the displacement command If it is matched with the dead-end default money, the controlled body is controlled. σ, 24·If the receiving-displacement command step described in the patent application No. 23, the position is self-tested. Initialization to the material 鄕 (4) 24 excerpt • The positioning control is difficult to initialize and from (4) ^ method 'When an error occurs, it is generated - error return message 1 I "step order, if it is 26. If you apply for a patent Whether the displacement command can be interpreted in step 23 or not is judged to newly receive the displacement command. ^~Unsolvable, then the item is described in the item _ ‘ 不 P P 7疋 has not processed the step, Go 3 to receive the step of the displacement command. -疋processed 'then back> 28 as stated in the 23rd item of the application of the full-time division = step-by-step clearing the second method, in the judgment of the combination, then after controlling the controlled combination step, if the error is not accumulated in the kiss ^ Further periodically clearing the positioning control device 21
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW096126912A TWI337691B (en) | 2007-07-24 | 2007-07-24 | Apparatus and method for positioning control |
JP2008154044A JP4807648B2 (en) | 2007-07-24 | 2008-06-12 | Positioning control device and positioning control method |
US12/214,196 US8055384B2 (en) | 2007-07-24 | 2008-06-17 | Apparatus and method for positioning control |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW096126912A TWI337691B (en) | 2007-07-24 | 2007-07-24 | Apparatus and method for positioning control |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200905429A TW200905429A (en) | 2009-02-01 |
TWI337691B true TWI337691B (en) | 2011-02-21 |
Family
ID=40296084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096126912A TWI337691B (en) | 2007-07-24 | 2007-07-24 | Apparatus and method for positioning control |
Country Status (3)
Country | Link |
---|---|
US (1) | US8055384B2 (en) |
JP (1) | JP4807648B2 (en) |
TW (1) | TWI337691B (en) |
Families Citing this family (5)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI407282B (en) * | 2010-03-03 | 2013-09-01 | Univ Ishou | Positioning controller |
TWI407279B (en) * | 2010-03-08 | 2013-09-01 | Univ Ishou | Positioning controller |
TWI641196B (en) * | 2017-05-05 | 2018-11-11 | 茂達電子股份有限公司 | Current balance circuit and multiphase converter using the same |
CN110297472A (en) * | 2019-06-28 | 2019-10-01 | 上海商汤智能科技有限公司 | Apparatus control method, terminal, controlled plant, electronic equipment and storage medium |
CN113626313B (en) * | 2021-07-15 | 2024-01-09 | 厦门立林科技有限公司 | Automatic test system based on manual operation simulation |
Family Cites Families (14)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57189217A (en) * | 1981-05-18 | 1982-11-20 | Nec Corp | Positioning controller |
US4727303A (en) * | 1986-05-22 | 1988-02-23 | Gmf Robotics Corporation | Positional control method and system utilizing same |
US4851748A (en) * | 1986-11-20 | 1989-07-25 | Westinghouse Electric Corp. | Basic digital multi-axis robot control having modular performance expansion capability |
US4860215A (en) * | 1987-04-06 | 1989-08-22 | California Institute Of Technology | Method and apparatus for adaptive force and position control of manipulators |
US4808063A (en) * | 1987-11-03 | 1989-02-28 | Westinghouse Electric Corp. | Robot system employing force/position control |
JPH0298701A (en) * | 1988-10-05 | 1990-04-11 | Toshiba Corp | Controller |
JP3248988B2 (en) * | 1993-06-25 | 2002-01-21 | 三菱電機株式会社 | Servo device |
JPH07175521A (en) * | 1993-12-21 | 1995-07-14 | Toshiba Corp | Controller for servomotor |
EP0727059B1 (en) * | 1994-09-01 | 2001-10-17 | Koninklijke Philips Electronics N.V. | Drive and x-ray device comprising such a drive |
JP3173996B2 (en) * | 1996-06-06 | 2001-06-04 | オークマ株式会社 | Control device for synchronous motor |
US5848535A (en) * | 1997-03-24 | 1998-12-15 | Gas Research Institute | Control system having a binomial setpoint filter |
JP2001129776A (en) * | 1999-11-05 | 2001-05-15 | Fanuc Ltd | Tracking device for detection line using sensor |
US6424873B1 (en) * | 1999-12-30 | 2002-07-23 | Honeywell Inc. | Systems and methods for limiting integral calculation components in PID controllers |
JP4185383B2 (en) * | 2003-02-28 | 2008-11-26 | 富士重工業株式会社 | Control system and control method using immune network |
-
2007
- 2007-07-24 TW TW096126912A patent/TWI337691B/en not_active IP Right Cessation
-
2008
- 2008-06-12 JP JP2008154044A patent/JP4807648B2/en not_active Expired - Fee Related
- 2008-06-17 US US12/214,196 patent/US8055384B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
TW200905429A (en) | 2009-02-01 |
JP2009032242A (en) | 2009-02-12 |
US20090030546A1 (en) | 2009-01-29 |
US8055384B2 (en) | 2011-11-08 |
JP4807648B2 (en) | 2011-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI337691B (en) | 2011-02-21 | Apparatus and method for positioning control |
Zhou et al. | 2016 | Controlling the motion of multiple objects on a Chladni plate |
García-Valdovinos et al. | 2007 | Observer-based sliding mode impedance control of bilateral teleoperation under constant unknown time delay |
US20150137721A1 (en) | 2015-05-21 | Power tool |
CN104085437B (en) | 2016-06-29 | Fully automatic line inspection robot shopping cart and shopping system |
JP2012127922A5 (en) | 2013-12-19 | |
Collins et al. | 2014 | The particle valve: On-demand particle trapping, filtering, and release from a microfabricated polydimethylsiloxane membrane using surface acoustic waves |
CN108786041B (en) | 2020-12-22 | Intelligent ball picking control method and intelligent ball picking robot |
CN111094105A (en) | 2020-05-01 | Safety control method and device for electric mobile trolley |
Liaw et al. | 2008 | Enhanced adaptive motion tracking control of piezo-actuated flexure-based four-bar mechanisms for micro/nano manipulation |
Prufer et al. | 1994 | Identification of robot dynamics with differential and integral models: a comparison |
JP2004147368A (en) | 2004-05-20 | Motor position control device |
CN112947501A (en) | 2021-06-11 | Multi-AUV hybrid formation method based on improved artificial potential field method and state switching |
Tan et al. | 2007 | Direct visualization of surface acoustic waves along substrates using smoke particles |
CN102545760A (en) | 2012-07-04 | Control system |
JP5332904B2 (en) | 2013-11-06 | AC motor sensorless control device |
WO2006011203A1 (en) | 2006-02-02 | Position control device and control method thereof |
Prazenica et al. | 2005 | Vision-based kalman filtering for aircraft state estimation and structure from motion |
JP3111335B2 (en) | 2000-11-20 | Unmanned cleaning truck |
CN106814736B (en) | 2020-02-11 | Path control method and system for robot |
CN205427466U (en) | 2016-08-03 | Linear Motor Precision Trajectory Tracking Device |
CN100592232C (en) | 2010-02-24 | Positioning control device and positioning control method |
CN109656150B (en) | 2021-12-21 | High-precision deviation control method of composite shaft control system based on matlab |
Zhang et al. | 2009 | Fast tool servo control for diamond-cutting microstructured optical components |
JP5786633B2 (en) | 2015-09-30 | MOBILE BODY CONTROL DEVICE, ITS CONTROL METHOD, AND PROGRAM |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
2017-11-21 | MM4A | Annulment or lapse of patent due to non-payment of fees |