TWI514421B - Transparent conducting composite film with anti-reflection - Google Patents
- ️Mon Dec 21 2015
TWI514421B - Transparent conducting composite film with anti-reflection - Google Patents
Transparent conducting composite film with anti-reflection Download PDFInfo
-
Publication number
- TWI514421B TWI514421B TW097151885A TW97151885A TWI514421B TW I514421 B TWI514421 B TW I514421B TW 097151885 A TW097151885 A TW 097151885A TW 97151885 A TW97151885 A TW 97151885A TW I514421 B TWI514421 B TW I514421B Authority
- TW
- Taiwan Prior art keywords
- transparent conductive
- reflective
- composite film
- substrate
- conductive composite Prior art date
- 2008-12-31
Links
Landscapes
- Laminated Bodies (AREA)
Description
本發明是有關於一種抗反射透明導電複合膜的結構。 The present invention relates to a structure of an antireflection transparent conductive composite film.
透明導電層(Transparent Conducting Layer,TCL)因具有高的入射光穿透率與導電特性,已被廣泛應用於各種光電元件,是重要的透明導電電極。目前應用領域涵蓋太陽能吸收面板、觸控式面板、光電偵測器以及日常生活中熟悉的平面顯示面板(電視、電腦、行動電話、電子錶、衛星導航),未來的應用上更可進一步包括:超薄顯示器、大面積電視牆、和軟性顯示器等等。 The Transparent Conducting Layer (TCL) has been widely used in various photovoltaic elements due to its high incident light transmittance and conductive properties, and is an important transparent conductive electrode. The current application areas include solar absorption panels, touch panels, photodetectors, and familiar flat display panels (television, computer, mobile phone, electronic watch, satellite navigation) in daily life. Future applications may further include: Ultra-thin displays, large-area video walls, and soft displays.
習知透明導電層多使用金屬氧化物,如銦錫氧化物(Indium Tin Oxide,ITO)、銦鋅氧化物(Indium Zinc Oxide,IZO)等等。然而金屬氧化物其折射率普遍大於2以上。因此用於導電層時,入射光容易因折射率差異而產生反射現象,以致於使用者不容易清楚辨識顯示內容,特別是在戶外環境更是難以使用。舉例而言,由於外界的入射光並無法全部進入顯示器,一般塑膠膜材單面會有約4%左右的反射,而反射光將影響人眼觀看影像的品質。減少反射光將可以提高顯示器的對比與色彩鮮明度,所以各種資、通訊產品及電視皆應用了抗反射層來提高影像品質。 Conventional transparent conductive layers often use metal oxides such as Indium Tin Oxide (ITO), Indium Zinc Oxide (IZO), and the like. However, metal oxides generally have a refractive index greater than 2 or more. Therefore, when used for a conductive layer, the incident light is likely to be reflected by the difference in refractive index, so that the user does not easily recognize the display content, and is particularly difficult to use in an outdoor environment. For example, since the incident light from the outside cannot enter the display, the plastic film generally has about 4% reflection on one side, and the reflected light will affect the quality of the image viewed by the human eye. Reducing the reflected light will improve the contrast and color sharpness of the display, so various anti-reflection layers are applied to various assets, communication products and televisions to improve image quality.
美國專利案U.S.4497539、U.S.4784467提出採用多層膜組合、控制膜厚及材料折射率之差異性可使入射光有 效達到抗反射。此項技術雖可控制入射光穿透率及波長,然而乾式製程需真空環境、薄膜附著性要求較嚴苛、多層鍍膜製作成本較高、以及基材需耐溫較高材料,對於塑膠基材一類,比如聚碳酸酯樹脂(Polycarbonate,PC)、聚酯纖維(Polyester,PET)等其軟化點較低材料不適合。 U.S. Patent No. 4,497,539, U.S. Patent No. 4,784,467, the disclosure of which is incorporated herein by reference to U.S. Pat. Effective anti-reflection. Although this technology can control the incident light transmittance and wavelength, the dry process requires a vacuum environment, the film adhesion requirements are more stringent, the multi-layer coating production cost is higher, and the substrate needs a higher temperature resistant material, for the plastic substrate. One type, such as polycarbonate resin (Polycarbonate, PC), polyester fiber (Polyester, PET) and the like, the material having a lower softening point is not suitable.
美國專利案U.S.6436541利用多層抗反射透明導電複合膜型式,但使用具導電性材料。其用於抗靜電用途、電阻過高而且其導電層結構朝外,無法應用於顯示器。 U.S. Patent 6,435,541 utilizes a multilayer anti-reflective transparent conductive composite film type, but uses a conductive material. It is used for antistatic applications, its resistance is too high, and its conductive layer structure is facing outwards, which cannot be applied to displays.
近年來,藉由仿生物概念「蛾眼」的研究可以得到關於表面結構對光學特性的特殊效果。在大自然中,一些昆蟲(如飛蛾、蜻蜓)的複眼具有次波長的奈米結構,由於此次波長的奈米結構具有增進入射光波穿透,減少光線反射的效果,因而有助於增強昆蟲的視覺,以進行夜間飛行,且較不易為掠食者發現。 In recent years, special effects on the optical properties of surface structures have been obtained by studying the concept of the biological phenomenon "moth eye". In nature, the compound eye of some insects (such as moths and crickets) has a sub-wavelength nanostructure. This nano-structure of this wavelength has the effect of enhancing the penetration of incident light waves and reducing the reflection of light, thus contributing to the enhancement. Insect vision for night flight and less likely to be found by predators.
圖1是電子顯微鏡下,蛾複眼結構的示意圖。101、102和103分別是蛾複眼局部低倍率、中倍率和高倍率的放大圖。科學家發現,蛾複眼的基部(蛾複眼局部低倍率的放大圖101所示)、中部(蛾複眼局部中倍率的放大圖102所示)和頂部(蛾複眼局部高倍率的放大圖103所示)的折射率的變化程度呈現漸變的關係。換言之,基部的折射率最大,中部的折射率次之,而頂部的折射率最小(接近空氣折射率1.0)。而蛾複眼的結構幾乎可以接收全部的入射光而不發生反射現象。 Fig. 1 is a schematic view showing the structure of a moth compound eye under an electron microscope. 101, 102, and 103 are magnified views of the local low magnification, medium magnification, and high magnification of the moth compound eyes, respectively. The scientists found that the base of the moth compound eye (shown in enlarged view 101 of the low-magnification of the moth compound eye), the middle part (shown in enlarged view 102 of the magnification of the moth compound eye area), and the top part (shown in enlarged view 103 of the local high magnification of the moth compound eye) The degree of change in the refractive index exhibits a gradual relationship. In other words, the refractive index of the base is the largest, the refractive index of the middle portion is second, and the refractive index of the top is the smallest (close to the refractive index of the air of 1.0). The structure of the moth compound eye can receive almost all of the incident light without reflection.
同樣地,若在一段非常寬廣的入射光波段中需得到較 低的反射率時,表面相鄰結構之間的週期距離愈小愈好,而且在基材上的這些結構大小尺度,必須小於光之波長。表面結構的光學特性可由等效介質理論(Effective Medium Theory)來分析解釋,如果是連續的表面結構變化,就像是漸變或是梯度的折射率變化,可藉由等效膜層的梯度折射率,呈現出有效的趨勢變化,便可以達到較佳的抗反射效果。 Similarly, if you need to get a very wide range of incident light At low reflectance, the smaller the periodic distance between adjacent structures on the surface, the better the size of these structures on the substrate must be less than the wavelength of light. The optical properties of the surface structure can be analyzed and explained by the Effective Medium Theory. If it is a continuous surface structure change, such as a gradient or gradient refractive index change, the gradient index of the equivalent film can be used. , showing an effective trend change, can achieve better anti-reflection effect.
參考「蛾眼」的概念,台灣專利案TW 200724479提出利用規則多孔性的氧化物薄膜模具轉印法來製作奈米結構,可以達到抗反射與疏水效果,並利用有機和無機塗層形成奈米結構保護。然而,此技術並未製作出連續相接的奈米結構,其抗反射效果較差,且未揭露如何應用於透明導電層。 Referring to the concept of "moth eye", Taiwan Patent No. TW 200724479 proposes to use a regular porous oxide film mold transfer method to fabricate nanostructures, which can achieve anti-reflection and hydrophobic effects, and form nanometers using organic and inorganic coatings. Structural protection. However, this technique does not produce a continuous-contact nanostructure, which has a poor anti-reflection effect and does not disclose how it is applied to a transparent conductive layer.
本發明提出一種抗反射透明導電複合膜。此複合膜光學膜兼具抗反射和透明導電功能。 The invention provides an antireflection transparent conductive composite film. The composite film optical film has both anti-reflection and transparent conductive functions.
本發明提出一種抗反射透明導電複合膜,包括一基材、一第一奈米抗反射結構層、以及一第一透明導電層。基材有一第一表面與一第二表面。第一奈米抗反射結構層置放在該基材的該第一表面上。第一透明導電層置放該第一奈米抗反射結構層上,且覆蓋過該基材的該第一表面。 The invention provides an antireflection transparent conductive composite film comprising a substrate, a first nano anti-reflective structure layer, and a first transparent conductive layer. The substrate has a first surface and a second surface. A first nano anti-reflective structural layer is disposed on the first surface of the substrate. The first transparent conductive layer is placed on the first nano anti-reflective structure layer and covers the first surface of the substrate.
依據本發明一實施例,所述之抗反射透明導電複合膜,例如該第一透明導電層的材料包括金、銀、鋁、鎳、 銅、鉻、銦錫氧化物、銦鋅氧化物、摻鋁氧化鋅(AZO)、摻鎵氧化鋅(GZO)、碳、或導電高分子薄膜。 According to an embodiment of the invention, the anti-reflective transparent conductive composite film, for example, the material of the first transparent conductive layer comprises gold, silver, aluminum, nickel, Copper, chromium, indium tin oxide, indium zinc oxide, aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), carbon, or a conductive polymer film.
依據本發明一實施例,所述之抗反射透明導電複合膜,例如該第一透明導電層的厚度小於200奈米之間。 According to an embodiment of the invention, the anti-reflective transparent conductive composite film, for example, the first transparent conductive layer has a thickness of less than 200 nm.
依據本發明一實施例,所述之抗反射透明導電複合膜,例如該第一奈米抗反射結構層包含多個第一凸出結構體分佈在該奈米抗反射結構層的區域,該些第一凸出結構體是由該基材向凸出而橫截面積漸減的結構。 According to an embodiment of the present invention, the anti-reflective transparent conductive composite film, for example, the first nano anti-reflective structure layer includes a plurality of first protruding structures distributed in regions of the nano anti-reflective structure layer, The first projecting structure is a structure in which the base material is convex and the cross-sectional area is gradually reduced.
依據本發明一實施例,所述之抗反射透明導電複合膜,例如該些第一凸出結構在該基材的一底部週期尺寸介於50~500奈米的寬幅。 According to an embodiment of the invention, the anti-reflective transparent conductive composite film, for example, the first protruding structures have a width of 50 to 500 nanometers in a bottom period of the substrate.
依據本發明一實施例,所述之抗反射透明導電複合膜,例如該些第一凸出結構的高度介於50~750奈米之間。 According to an embodiment of the invention, the anti-reflective transparent conductive composite film, for example, the height of the first protruding structures is between 50 and 750 nm.
依據本發明一實施例,所述之抗反射透明導電複合膜,例如該些第一凸出結構體是錐狀體、半球體、正弦體、或是凸出幾何形體。 According to an embodiment of the invention, the anti-reflective transparent conductive composite film, for example, the first protruding structures are a cone, a hemisphere, a sinusoid, or a convex geometry.
依據本發明一實施例,所述之抗反射透明導電複合膜,例如更包括一第二奈米抗反射結構層,置放在該基材的該第二表面上。 According to an embodiment of the invention, the anti-reflective transparent conductive composite film further includes a second nano anti-reflective structure layer disposed on the second surface of the substrate.
依據本發明一實施例,所述之抗反射透明導電複合膜,例如該第二奈米抗反射結構層包含多個第二凸出結構體分佈在該奈米抗反射結構層的區域,該些第二凸出結構體是由該基材向凸出而橫截面積漸減的結構。 According to an embodiment of the present invention, the anti-reflective transparent conductive composite film, for example, the second nano anti-reflective structure layer includes a plurality of second protruding structures distributed in a region of the nano anti-reflective structure layer, The second projecting structure is a structure in which the base material is convex and the cross-sectional area is gradually reduced.
依據本發明一實施例,所述之抗反射透明導電複合 膜,例如該些第二凸出結構在該基材的一底部週期尺寸介於50~500奈米的寬幅。 According to an embodiment of the invention, the anti-reflective transparent conductive composite The film, for example, the second protruding structures have a width of 50 to 500 nm in a bottom period of the substrate.
依據本發明一實施例,所述之抗反射透明導電複合膜,例如該些第二凸出結構的高度介於50~750奈米之間。 According to an embodiment of the invention, the anti-reflective transparent conductive composite film, for example, the height of the second protruding structures is between 50 and 750 nm.
依據本發明一實施例,所述之抗反射透明導電複合膜,例如該些第二凸出結構體是錐狀體、半球體、正弦體、或是凸出幾何形體。 According to an embodiment of the invention, the anti-reflective transparent conductive composite film, for example, the second protruding structures are a cone, a hemisphere, a sinusoidal body, or a convex geometry.
依據本發明一實施例,所述之抗反射透明導電複合膜,例如更包括一第二透明導電層,置放該第二奈米抗反射結構層上,且覆蓋過該基材的該第二表面。 According to an embodiment of the present invention, the anti-reflective transparent conductive composite film further includes a second transparent conductive layer disposed on the second nano anti-reflective structure layer and covering the second substrate. surface.
依據本發明一實施例,所述之抗反射透明導電複合膜,例如該第二透明導電層的厚度小於200奈米之間。 According to an embodiment of the invention, the anti-reflective transparent conductive composite film, for example, the second transparent conductive layer has a thickness of less than 200 nm.
本發明又提出一種抗反射透明導電複合膜,包括一基材與一導電奈米抗反射結構層,基材有一第一表面與一第二表面。導電奈米抗反射結構層置放在該基材的該第一表面上。 The invention further provides an anti-reflective transparent conductive composite film comprising a substrate and a conductive nano anti-reflective structure layer, the substrate having a first surface and a second surface. A conductive nano anti-reflective structural layer is disposed on the first surface of the substrate.
依據本發明一實施例,所述之抗反射透明導電複合膜,例如導電奈米抗反射結構層的材料包括金、銀、鋁、鎳、銅、鉻、銦錫氧化物、銦鋅氧化物、摻鋁氧化鋅(AZO)、摻鎵氧化鋅(GZO)、碳、或導電高分子薄膜。 According to an embodiment of the invention, the anti-reflective transparent conductive composite film, such as a conductive nano anti-reflective structural layer, comprises gold, silver, aluminum, nickel, copper, chromium, indium tin oxide, indium zinc oxide, Aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), carbon, or a conductive polymer film.
依據本發明一實施例,所述之抗反射透明導電複合膜,例如更包括一奈米抗反射結構層,置放在該基材的該第二表面上,與該導電奈米抗反射結構層相對。 According to an embodiment of the present invention, the anti-reflective transparent conductive composite film further includes a nano anti-reflective structure layer disposed on the second surface of the substrate, and the conductive nano anti-reflective structure layer. relatively.
依據本發明一實施例,所述之抗反射透明導電複合 膜,例如該導電奈米抗反射結構層具有多個凸出結構體分佈在該導電奈米抗反射結構層的區域。 According to an embodiment of the invention, the anti-reflective transparent conductive composite The film, for example, the conductive nano anti-reflective structure layer has a plurality of protruding structures distributed in a region of the conductive nano anti-reflective structure layer.
依據本發明一實施例,所述之抗反射透明導電複合膜,例如該些凸出結構體是凸出端小而底端大的一漸變結構。 According to an embodiment of the invention, the anti-reflective transparent conductive composite film, for example, the protruding structures are a gradual structure having a small protruding end and a large bottom end.
為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description.
本發明提出一種結構抗反射透明導電層,其中一面或兩面具備次波長奈米結構。利用奈米結構達成入射光入射時介質折射率之漸變效果,達成高品質之抗反射功效。並且其中一面具有透明導電層,整合而成具備抗反射和透明導電功能的複合光學膜。 The invention provides a structural anti-reflective transparent conductive layer, wherein one or both sides have a sub-wavelength nanostructure. The nanostructure is used to achieve the gradual effect of the refractive index of the medium when the incident light is incident, thereby achieving high-quality anti-reflection effect. And one side has a transparent conductive layer, and is integrated into a composite optical film having anti-reflection and transparent conductive functions.
以下舉一修實施例來說明本發明,但是本發明不僅限於所舉實施例。又所舉實施例之間有可以相互適當結合。 The invention is illustrated by the following examples, but the invention is not limited to the examples. Further, the embodiments may be combined with each other as appropriate.
圖2A是依照本發明之一實施例之抗反射透明導電複合膜200的剖面示意圖。請參見圖2A。抗反射透明導電複合膜200包括奈米抗反射結構206、透明導電層204和基材202。基材202是透明材質做為結構的基礎。奈米抗反射結構206設置在基材202的一表面上。透明導電層204坐落於奈米抗反射結構206上去覆蓋過基材202的表面。如果抗反射透明導電複合膜200是用於顯示器,則透明導電層204是面向元件的內側,以利於施加操作電壓以控制元件。而外界的入射光的方向是先入射到基材202後,再 進入奈米抗反射結構206。由於外界光不會被反射而影響到影像光,可以提升對比度等。換句或說,在本實施例中,透明導電層204與奈米抗反射結構206在基材200的內側,而使用者的目光集中在基材200的外側即與一般顯示器的應用相同。然而,奈米抗反射結構的折射系數漸變的特性,其於兩面入射的光都有抗反射的效果。 2A is a schematic cross-sectional view of an anti-reflective transparent conductive composite film 200 in accordance with an embodiment of the present invention. See Figure 2A. The anti-reflective transparent conductive composite film 200 includes a nano anti-reflective structure 206, a transparent conductive layer 204, and a substrate 202. The substrate 202 is a transparent material as the basis for the structure. The nano anti-reflective structure 206 is disposed on a surface of the substrate 202. The transparent conductive layer 204 sits on the nano anti-reflective structure 206 to cover the surface of the substrate 202. If the anti-reflective transparent conductive composite film 200 is for a display, the transparent conductive layer 204 is facing the inner side of the element to facilitate application of an operating voltage to control the element. The direction of the incident light from the outside is incident on the substrate 202 first, and then Enter the nano anti-reflective structure 206. Since the external light is not reflected and affects the image light, the contrast can be improved. In other words, in the present embodiment, the transparent conductive layer 204 and the nano anti-reflective structure 206 are on the inner side of the substrate 200, and the user's eyes are concentrated on the outside of the substrate 200, that is, the same as the application of the general display. However, the refractive index of the nano anti-reflective structure has a gradual change characteristic, and the light incident on both sides has an anti-reflection effect.
不同的基材200可增強抗反射透明導電複合膜204抗紫外線、阻水性、耐熱性、耐化學品、耐久、尺寸安定性、強韌性、抗曲折性、耐磨、耐刮、阻氣性、防蝕等等不同特性。例如採用塑膠類、玻璃類或二氧化矽當作基材材料,然而本發明並不限於此。 Different substrates 200 can enhance the anti-reflection transparent conductive composite film 204 against ultraviolet rays, water resistance, heat resistance, chemical resistance, durability, dimensional stability, toughness, resistance to tortuosity, abrasion resistance, scratch resistance, gas barrier properties, Different characteristics such as corrosion protection. For example, plastic, glass or cerium oxide is used as the substrate material, but the present invention is not limited thereto.
奈米抗反射結構206的製造方法,包括:提供基板、在該基板上形成複數個呈矩陣排列的凸起物。其具體製造方法包括:熱壓法(相當於奈米轉印法)、紫外線固化法、或可撓式彩色濾光片技術。比如本實施例利用熱壓式的奈米壓印方法,以多孔性的陽極氧化鋁為壓印模板,便可形成複數個呈矩陣排列的凸起物。或直接利用轉印方式,將奈米抗反射結構206形成於基材202上。 The method for fabricating the nano anti-reflective structure 206 includes providing a substrate on which a plurality of protrusions arranged in a matrix are formed. Specific manufacturing methods include: hot pressing (equivalent to nano transfer method), ultraviolet curing method, or flexible color filter technology. For example, in this embodiment, a hot-pressed nanoimprint method is used, and a porous anodized aluminum is used as an imprint template to form a plurality of protrusions arranged in a matrix. The nano anti-reflective structure 206 is formed on the substrate 202 either directly by a transfer method.
在一實施例中,亦可利用紫外線固化法(Ultraviolet Curing)即可將奈米抗反射結構206,以短波長且會引起的化學反應能量之紫外線進行照射,即可達到固化、乾燥、附著於基材202。此技術稱為「紫外線固化、乾燥、接著技術」。 In one embodiment, the ultraviolet anti-reflection structure 206 can be irradiated with ultraviolet rays of a short-wavelength and chemical reaction energy by ultraviolet curing (Ultraviolet Curing) to cure, dry, and adhere. Substrate 202. This technology is called "ultraviolet curing, drying, and subsequent technology."
在另一實施例中,將奈米抗反射結構206進行可撓式 彩色濾光片技術(Roll-to-Roll Technique)。舉例而言,當乾膜光阻面黏合到基材202上之際,同時進行曝光、乾膜基材脫離、顯影、進入烘箱乾燥,最後將已完成奈米抗反射結構圖案的可撓式彩色濾光片收捲。其技術重點主要是跳脫傳統製程方式,以建立適合連續式生產製程的液晶顯示光電薄膜。 In another embodiment, the nano anti-reflective structure 206 is flexibly Color-to-Roll Technique. For example, when the dry film resistive surface is bonded to the substrate 202, simultaneous exposure, dry film substrate detachment, development, oven drying, and finally a flexible color of the finished nano anti-reflective structure pattern is achieved. The filter is wound up. Its technical focus is mainly to break away from the traditional process to establish a liquid crystal display photoelectric film suitable for continuous production processes.
奈米抗反射結構206是由奈米凸出結構所構成。以半元的奈米球體為例,其是上小下寬的漸變結構。在一高度的橫截面208上,其是愈接近基材202有愈大的截面積。如此從光學的等效現象,就構成折射係數漸變增大的結構,也因此對於入射光而言可以減少反射。 The nano anti-reflective structure 206 is composed of a nano protruding structure. Taking a half-nano nanosphere as an example, it is a gradual structure with a small upper and a lower width. On a high cross section 208, it is the closer the cross-sectional area of the substrate 202. Thus, from the optical equivalent phenomenon, a structure in which the refractive index is gradually increased is formed, and thus the reflection can be reduced for incident light.
每一凸出結構的底部週期尺寸例如介於50~500奈米之間的寬幅、高度例如介於50~750奈米之間、形狀例如為立體的錐狀結構。奈米抗反射結構206之功能在於降低入射光因透明導電層204導致之高反射率,同時提升入射光穿透率。奈米抗反射結構206的折射系數可以例如選擇與基材202相近。 The bottom period of each of the protruding structures is, for example, a width between 50 and 500 nm, a height of, for example, between 50 and 750 nm, and a shape such as a three-dimensional tapered structure. The function of the nano anti-reflection structure 206 is to reduce the high reflectivity of the incident light due to the transparent conductive layer 204 while increasing the incident light transmittance. The refractive index of the nano anti-reflective structure 206 can be selected, for example, to be similar to the substrate 202.
關於製作奈米抗反射結構206的方法,有多種方式可以達成,不限於所舉的方式。例如使用斜角沉積(oblique-angle deposition)法,只要控制立體結構的密度對深度變化的函數,就可以達到折射率漸減的特性。使得第一截面與第二截面之間的折射率呈漸變趨勢。如此一來,在奈米抗反射結構206內層間的介面產生光全反射的臨界角會加大,也就減少或消除入射光被全反射的比例。 There are various ways in which the method of fabricating the nano anti-reflective structure 206 can be achieved, and is not limited to the manner in which it is presented. For example, by using the oblique-angle deposition method, as long as the density-to-depth change function of the solid structure is controlled, the characteristic of decreasing refractive index can be achieved. The refractive index between the first cross section and the second cross section is gradually changed. As a result, the critical angle of total light reflection generated by the interface between the layers in the nano anti-reflective structure 206 is increased, and the ratio of total reflection of the incident light is reduced or eliminated.
圖2B繪示依照本發明之其他實施例之奈米抗反射結構的剖面示意圖。奈米抗反射結構中複數個呈矩陣排列的凸起物的立體結構的造型可能性很多種,圖2(a)例如是錐狀的結構,其更例如可以是角錐或是圓錐。圖2(b)例如是半圓球體。圖2(c)例如是凸出半幾何形體。換句話說,能達到折射系數漸變的奈米結構皆可以使用,其更例如是正弦形體。 2B is a schematic cross-sectional view of a nano anti-reflective structure in accordance with other embodiments of the present invention. There are many possibilities for the three-dimensional structure of the plurality of protrusions arranged in a matrix in the nano anti-reflection structure. FIG. 2(a) is, for example, a tapered structure, which may be, for example, a pyramid or a cone. Fig. 2(b) is, for example, a semi-spherical sphere. Fig. 2(c) is, for example, a convex semi-geometry. In other words, a nanostructure capable of achieving a gradation of the refractive index can be used, which is more, for example, a sinusoidal body.
透明導電層220包括:金、銀、鋁、鎳、銅、鉻、銦錫氧化物(Indium Tin Oxide,ITO)、新式銦鋅氧化物(Indium Zinc Oxide,IZO)、摻鋁氧化鋅(AZO)、摻鎵氧化鋅(GZO)、碳、或導電高分子薄膜其中之一或其組合。而透明導電層之厚度介於0~200奈米之間。透明導電層220之功能在於整合抗反射和透明導電。在實際應用上有輕量化、薄型化、可撓性等優勢,這些優點在個人隨身攜帶用的電子用品,如電子紙、可收捲式電視在未來有很大的發展潛力。 The transparent conductive layer 220 includes: gold, silver, aluminum, nickel, copper, chromium, indium tin oxide (ITO), new indium zinc oxide (Indium Zinc Oxide, IZO), aluminum-doped zinc oxide (AZO) One or a combination of gallium-doped zinc oxide (GZO), carbon, or a conductive polymer film. The thickness of the transparent conductive layer is between 0 and 200 nm. The function of the transparent conductive layer 220 is to integrate anti-reflection and transparent conduction. In practical applications, there are advantages such as light weight, thinning, and flexibility. These advantages have great potential for development in electronic products that are carried by individuals, such as electronic paper and retractable television.
圖3是依照本發明之一實施例之抗反射透明導電複合膜300的剖面示意圖。請參見圖3。抗反射透明導電複合膜300包括:導電透明層310和基材320,其中導電透明層310是透明導電層上直接形成奈米抗反射結構。導電透明層310形成基材320上。 3 is a schematic cross-sectional view of an anti-reflective transparent conductive composite film 300 in accordance with an embodiment of the present invention. See Figure 3. The anti-reflective transparent conductive composite film 300 includes a conductive transparent layer 310 and a substrate 320, wherein the conductive transparent layer 310 is a transparent conductive layer directly forming a nano anti-reflective structure. A conductive transparent layer 310 is formed on the substrate 320.
圖4是依照本發明之一實施例之抗反射透明導電複合膜400的剖面示意圖。請參見圖4。抗反射透明導電複合膜400包括:奈米抗反射結構410、透明導電層420和基 材430。奈米抗反射結構410與透明導電層420構成在基材430的複合結構415。複合結構415包括形成於奈米抗反射結構410之上的透明導電層420。而外界入射光的方向例如正對複合結構415的頂部。 4 is a schematic cross-sectional view of an anti-reflective transparent conductive composite film 400 in accordance with an embodiment of the present invention. See Figure 4. The anti-reflective transparent conductive composite film 400 includes: a nano anti-reflective structure 410, a transparent conductive layer 420, and a base Material 430. The nano anti-reflective structure 410 and the transparent conductive layer 420 constitute a composite structure 415 of the substrate 430. The composite structure 415 includes a transparent conductive layer 420 formed over the nano anti-reflective structure 410. The direction of the incident light from the outside is, for example, facing the top of the composite structure 415.
複合結構415之製造方法包括:首先可參考前述圖2A實施例中關於奈米抗反射結構206的相關說明,便可完成奈米抗反射結構410。之後在奈米抗反射結構410表面鍍上透明導電層420。然而,在其他如後述的實施例做不同的組合,如此亦可達到整合抗反射和透明導電的要求,本發明不僅限制於此實施例。 The manufacturing method of the composite structure 415 includes: first, referring to the related description of the nano anti-reflection structure 206 in the foregoing embodiment of FIG. 2A, the nano anti-reflection structure 410 can be completed. The surface of the nano anti-reflective structure 410 is then plated with a transparent conductive layer 420. However, different combinations of other embodiments as described later can also achieve the requirements of integrating anti-reflection and transparent conduction, and the present invention is not limited to this embodiment.
圖5是依照本發明之一實施例之抗反射透明導電複合膜500的剖面示意圖。請參見圖5。抗反射透明導電複合膜500包括:奈米抗反射結構510、透明導電層520和基材530。奈米抗反射結構510、透明導電層520形成前述實施例所示複合結構(複合結構515)在基材530的一面。又基材530的另一面也更又設置有單獨的奈米抗反射結構510。亦即基材530之第一表面黏附奈米抗反射結構510,而基材之第二表面黏附複合結構515。而入射光的方向可正對第二表的複合結構515的頂部或是正對複合結構515的另一側,即是基材530之第一表面上的奈米抗反射結構510的頂部。 FIG. 5 is a schematic cross-sectional view of an anti-reflective transparent conductive composite film 500 in accordance with an embodiment of the present invention. See Figure 5. The anti-reflective transparent conductive composite film 500 includes a nano anti-reflective structure 510, a transparent conductive layer 520, and a substrate 530. The nano anti-reflective structure 510 and the transparent conductive layer 520 form a composite structure (composite structure 515) of the foregoing embodiment on one side of the substrate 530. Further, the other side of the substrate 530 is further provided with a separate nano anti-reflection structure 510. That is, the first surface of the substrate 530 adheres to the nano anti-reflective structure 510, and the second surface of the substrate adheres to the composite structure 515. The direction of the incident light may be opposite the top of the composite structure 515 of the second meter or the other side of the composite structure 515, that is, the top of the nano anti-reflective structure 510 on the first surface of the substrate 530.
圖6是依照本發明之一實施例之抗反射透明導電複合膜600的剖面示意圖。請參見圖6。抗反射透明導電複合膜600包括:奈米抗反射結構610、透明導電層620和基 材630。奈米抗反射結構610、透明導電層620形成前述實施例所示複合結構,其如第一複合結構615A、第二複合結構615B。基材630介於第一複合結構615A和第二複合結構615B之間。亦即基材630之第一表面形成有第一複合結構615A,而基材之第二表面形成有第二複合結構615B。而入射光的方向可正對第一複合結構615A或第二複合結構615B的頂部。因此,本實施例例如可以應用於需要雙面電極驅動的軟性電子元件。 FIG. 6 is a schematic cross-sectional view of an anti-reflective transparent conductive composite film 600 in accordance with an embodiment of the present invention. See Figure 6. The anti-reflective transparent conductive composite film 600 includes: a nano anti-reflective structure 610, a transparent conductive layer 620, and a base. Material 630. The nano anti-reflective structure 610 and the transparent conductive layer 620 form the composite structure shown in the foregoing embodiment, such as the first composite structure 615A and the second composite structure 615B. The substrate 630 is interposed between the first composite structure 615A and the second composite structure 615B. That is, the first surface of the substrate 630 is formed with the first composite structure 615A, and the second surface of the substrate is formed with the second composite structure 615B. The direction of the incident light may be opposite the top of the first composite structure 615A or the second composite structure 615B. Therefore, the present embodiment can be applied, for example, to a soft electronic component that requires double-sided electrode driving.
圖7繪示ITO/PET透明導電膜的剖面示意圖。ITO代表銦錫氧化物(Indium Tin Oxide,ITO),而PET代表聚酯纖維(Polyester,PET)。 FIG. 7 is a schematic cross-sectional view showing an ITO/PET transparent conductive film. ITO stands for Indium Tin Oxide (ITO) and PET stands for Polyester (PET).
於圖7(a),其結構尚未形成有奈米抗反射結構、單純ITO/PET透明導電膜。其基材730例如為PET而透明導電層720例如為ITO。此也是一般習知透明導電膜的結構。於圖7(b),本發明在基材730上形成奈米抗反射結構710後,接著又形成透明導電層720在奈米抗反射結構710上。 In Fig. 7(a), a nano-anti-reflective structure and a simple ITO/PET transparent conductive film have not been formed. The substrate 730 is, for example, PET, and the transparent conductive layer 720 is, for example, ITO. This is also a structure of a conventional transparent conductive film. In FIG. 7(b), after forming the nano anti-reflective structure 710 on the substrate 730, the transparent conductive layer 720 is formed on the nano anti-reflective structure 710.
於圖7(c),在基材730的一面形成奈米抗反射結構710,而透明導電層720則形成於奈米抗反射結構710的另一面。 In FIG. 7(c), a nano anti-reflective structure 710 is formed on one side of the substrate 730, and a transparent conductive layer 720 is formed on the other side of the nano anti-reflective structure 710.
於圖7(d),基材730的兩面形成奈米抗反射結構710則形成,其中一個奈米抗反射結構710上加上一透明導電層720上,使用時導電層720位於內側。 In FIG. 7(d), a double-sided anti-reflective structure 710 is formed on both sides of the substrate 730, and a transparent conductive layer 720 is applied to one of the nano anti-reflective structures 710. In use, the conductive layer 720 is located inside.
表一是ITO/PET透明導電膜光譜量測數據。數據中分別代表圖7(a)~圖7(d)所示不同透明導電膜結構之入射光 波長550nm與其反射率的關係。AR是奈米抗反射結構。 Table 1 is the spectral measurement data of ITO/PET transparent conductive film. The data represents the incident light of different transparent conductive film structures shown in Figures 7(a) to 7(d), respectively. The relationship between the wavelength of 550 nm and its reflectance. AR is a nano anti-reflective structure.
以(A)PET/ITO的透明導電層為例,反射率約19.9%。(B)在奈米抗反射結構製作ITO導電膜於其上,可以將反射率降到約2.27%。(C)在PET面製作奈米抗反射結構,可以將反射率降到約8.11%。(D)是在ITO和PET兩面均製作奈米抗反射結構,並於一抗反射結構層上鍍上ITO。如此可以將反射率更大幅降到約1.54%。 Taking the transparent conductive layer of (A) PET/ITO as an example, the reflectance is about 19.9%. (B) The ITO conductive film was formed on the nano anti-reflective structure, and the reflectance was reduced to about 2.27%. (C) A nano anti-reflective structure is formed on the PET surface to reduce the reflectance to about 8.11%. (D) A nano anti-reflective structure was formed on both sides of ITO and PET, and ITO was plated on the anti-reflective structure layer. This can reduce the reflectance to a maximum of about 1.54%.
圖8繪示雙面透明導電膜的剖面示意圖。ITO代表銦錫氧化物(Indium Tin Oxide,ITO),而PC代表聚碳酸酯樹脂(Polycarbonate,PC)的基材。圖8的左圖是不含奈米抗反射結構的ITO/PC/ITO透明導電膜結構。基材830例如為PC,而透明導電層820例如為ITO。圖8的右圖是ITO/AR/PET/AR/ITO的結構。於基材830上下兩面,形成 有奈米抗反射結構810,之後在奈米抗反射結構810上,加上透明導電層820,以形成雙面奈米抗反射結構導電膜840。 8 is a schematic cross-sectional view showing a double-sided transparent conductive film. ITO stands for Indium Tin Oxide (ITO), and PC stands for a substrate of polycarbonate resin (PC). The left side of Fig. 8 is an ITO/PC/ITO transparent conductive film structure containing no nano anti-reflection structure. The substrate 830 is, for example, a PC, and the transparent conductive layer 820 is, for example, ITO. The right diagram of Figure 8 is the structure of ITO/AR/PET/AR/ITO. Formed on the upper and lower sides of the substrate 830 There is a nano anti-reflective structure 810, and then a transparent conductive layer 820 is applied over the nano anti-reflective structure 810 to form a double-sided nano anti-reflective structure conductive film 840.
表二是ITO/PET/ITO透明導電膜光譜量測數據。 Table 2 shows the spectral measurement data of ITO/PET/ITO transparent conductive film.
表二的(A)、(B)分別代表不同透明導電膜結構,以及入射光波長與其反射率的關係。(A)以ITO/PET/ITO的透明導電層為例,其入射光波長550nm處反射率高達26.28%。(B)是製作雙面導電及雙面奈米抗反射結構ITO/AR/PET/AR/ITO,可以將入射光波長550nm處反射率降到約3.65%。 (A) and (B) of Table 2 respectively represent structures of different transparent conductive films, and the relationship between the wavelength of incident light and its reflectance. (A) Taking the transparent conductive layer of ITO/PET/ITO as an example, the reflectance of the incident light at a wavelength of 550 nm is as high as 26.28%. (B) is a double-sided conductive and double-sided nano anti-reflective structure ITO/AR/PET/AR/ITO, which can reduce the reflectance of the incident light at a wavelength of 550 nm to about 3.65%.
本發明在基材的一面或是雙面形成有奈米抗反射結構層,以配合導電透明層的形成。 The invention forms a nano anti-reflective structure layer on one or both sides of the substrate to match the formation of the conductive transparent layer.
綜上所述,本發明利用奈米轉印法直接將奈米抗反射結構成型於基材單面或雙面,可達到具抗反射功能之可撓性導電抗反射透明導電複合膜,而可應用於軟性顯示器。再者,抗反射透明導電複合膜製造成本低、製程不需真空 環境、製程溫度低,適合製作塑膠類基材、基材毋須前處理、抗反射透明導電複合膜結構附著性高而且可結合抗污功能。 In summary, the present invention directly forms a nano anti-reflective structure on one or both sides of a substrate by using a nano-transfer method, and can realize a flexible conductive anti-reflective transparent conductive composite film with anti-reflection function. Used in soft displays. Furthermore, the anti-reflective transparent conductive composite film is low in manufacturing cost and requires no vacuum in the process. Low environment and process temperature, suitable for making plastic substrates, pre-treatment of substrates, anti-reflective transparent conductive composite film structure with high adhesion and anti-fouling function.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.
100~104‧‧‧蛾複眼局部放大圖 100~104‧‧‧Special enlargement of moth compound eyes
200‧‧‧抗反射透明導電複合膜 200‧‧‧Anti-reflective transparent conductive composite film
202‧‧‧基材 202‧‧‧Substrate
204‧‧‧透明導電層 204‧‧‧Transparent conductive layer
206‧‧‧奈米抗反射結構 206‧‧‧Nan anti-reflection structure
208‧‧‧橫截面 208‧‧‧ cross section
300‧‧‧抗反射透明導電複合膜 300‧‧‧Anti-reflective transparent conductive composite film
310‧‧‧透明導電層 310‧‧‧Transparent conductive layer
320‧‧‧基材 320‧‧‧Substrate
400‧‧‧抗反射透明導電複合膜 400‧‧‧Anti-reflective transparent conductive composite film
410‧‧‧奈米抗反射結構 410‧‧‧Nemi anti-reflection structure
415‧‧‧複合結構 415‧‧‧Composite structure
420‧‧‧透明導電層 420‧‧‧Transparent conductive layer
430‧‧‧基材 430‧‧‧Substrate
500‧‧‧抗反射透明導電複合膜 500‧‧‧Anti-reflective transparent conductive composite film
510‧‧‧奈米抗反射結構 510‧‧Non anti-reflection structure
515‧‧‧複合結構 515‧‧‧Composite structure
520‧‧‧透明導電層 520‧‧‧Transparent conductive layer
530‧‧‧基材 530‧‧‧Substrate
600‧‧‧抗反射透明導電複合膜 600‧‧‧Anti-reflective transparent conductive composite film
610‧‧‧奈米抗反射結構 610‧‧N. Nano anti-reflection structure
615A、615B‧‧‧複合結構 615A, 615B‧‧‧ composite structure
620‧‧‧透明導電層 620‧‧‧Transparent conductive layer
630‧‧‧基材 630‧‧‧Substrate
710‧‧‧奈米抗反射結構 710‧‧Non anti-reflection structure
720‧‧‧透明導電層 720‧‧‧Transparent conductive layer
730‧‧‧基材 730‧‧‧Substrate
810‧‧‧奈米抗反射結構 810‧‧N. Nano anti-reflection structure
820‧‧‧透明導電層 820‧‧‧Transparent conductive layer
830‧‧‧基材 830‧‧‧Substrate
840‧‧‧雙面抗反射結構導電複合膜 840‧‧‧Double-sided anti-reflective structure conductive composite film
圖1繪示電子顯微鏡下,蛾複眼結構的示意圖。 Figure 1 is a schematic view showing the structure of a moth compound eye under an electron microscope.
圖2A繪示依照本發明之一實施例之抗反射透明導電複合膜的剖面示意圖。 2A is a schematic cross-sectional view of an anti-reflective transparent conductive composite film in accordance with an embodiment of the present invention.
圖2B繪示依照本發明之一實施例抗反射奈米結構剖面示意圖。 2B is a schematic cross-sectional view showing an anti-reflective nanostructure according to an embodiment of the present invention.
圖3~7是依照本發明之一些實施例之抗反射透明導電複合膜的剖面示意圖。 3 to 7 are schematic cross-sectional views of an antireflection transparent conductive composite film in accordance with some embodiments of the present invention.
圖8繪示依照本發明一實施例,雙面透明導電膜的剖面示意圖。 FIG. 8 is a cross-sectional view showing a double-sided transparent conductive film according to an embodiment of the invention.
200‧‧‧抗反射透明導電複合膜 200‧‧‧Anti-reflective transparent conductive composite film
202‧‧‧基材 202‧‧‧Substrate
204‧‧‧透明導電層 204‧‧‧Transparent conductive layer
206‧‧‧奈米抗反射結構 206‧‧‧Nan anti-reflection structure
Claims (17)
一種抗反射透明導電複合膜,包括:一基材,有一第一表面與一第二表面;一第一奈米抗反射結構層,置放在該基材的該第一表面上,該第一奈米抗反射結構層包含均勻分布的多個第一凸出結構體,每一個該第一凸出結構體的頂端結構,是平滑曲面,該些第一凸出結構體是由該基材向外凸出而橫截面積漸減的結構;一第一透明導電層,置放該第一奈米抗反射結構層上,且覆蓋過該基材的該第一表面;以及一第二奈米抗反射結構層,置放在該基材的該第二表面上。 An anti-reflective transparent conductive composite film comprising: a substrate having a first surface and a second surface; a first nano anti-reflective structure layer disposed on the first surface of the substrate, the first The nano anti-reflective structure layer comprises a plurality of first protruding structures uniformly distributed, and each of the top structures of the first protruding structures is a smooth curved surface, and the first protruding structures are oriented by the substrate a structure protruding outwardly and having a decreasing cross-sectional area; a first transparent conductive layer disposed on the first nano anti-reflective structure layer and covering the first surface of the substrate; and a second nano-resistance A reflective structural layer disposed on the second surface of the substrate. 如申請專利範圍第1項所述之抗反射透明導電複合膜,其中該第一透明導電層的材料包括金、銀、鋁、鎳、銅、鉻、銦錫氧化物、銦鋅氧化物、摻鋁氧化鋅(AZO)、摻鎵氧化鋅(GZO)、碳、或導電高分子薄膜。 The anti-reflective transparent conductive composite film according to claim 1, wherein the material of the first transparent conductive layer comprises gold, silver, aluminum, nickel, copper, chromium, indium tin oxide, indium zinc oxide, and doping Aluminum zinc oxide (AZO), gallium-doped zinc oxide (GZO), carbon, or a conductive polymer film. 如申請專利範圍第1項所述之抗反射透明導電複合膜,其中該第一透明導電層的厚度小於200奈米之間。 The antireflection transparent conductive composite film according to claim 1, wherein the first transparent conductive layer has a thickness of less than 200 nm. 如申請專利範圍第1項所述之抗反射透明導電複合膜,其中該些第一凸出結構在該基材的一底部週期尺寸介於50~500奈米的寬幅。 The anti-reflective transparent conductive composite film according to claim 1, wherein the first protruding structures have a width of 50 to 500 nm in a bottom period of the substrate. 如申請專利範圍第1項所述之抗反射透明導電複合膜,其中該些第一凸出結構的高度介於50~750奈米之間。 The anti-reflective transparent conductive composite film according to claim 1, wherein the height of the first protruding structures is between 50 and 750 nm. 如申請專利範圍第1項所述之抗反射透明導電複合膜,其中該些第一凸出結構體是錐狀體、半球體、正弦體、或是凸出幾何形體。 The anti-reflective transparent conductive composite film according to claim 1, wherein the first protruding structures are a cone, a hemisphere, a sinusoid, or a convex geometry. 如申請專利範圍第1項所述之抗反射透明導電複合膜,其中該第二奈米抗反射結構層包含多個第二凸出結構體分佈在該奈米抗反射結構層的區域,該些第二凸出結構體是由該基材向凸出而橫截面積漸減的結構。 The anti-reflective transparent conductive composite film according to claim 1, wherein the second nano anti-reflective structure layer comprises a plurality of second protruding structures distributed in a region of the nano anti-reflective structure layer, The second projecting structure is a structure in which the base material is convex and the cross-sectional area is gradually reduced. 如申請專利範圍第1項所述之抗反射透明導電複合膜,其中該些第二凸出結構在該基材的一底部週期尺寸介於50~500奈米的寬幅。 The anti-reflective transparent conductive composite film according to claim 1, wherein the second protruding structures have a width of 50 to 500 nm in a bottom period of the substrate. 如申請專利範圍第1項所述之抗反射透明導電複合膜,其中該些第二凸出結構的高度介於50~750奈米之間。 The anti-reflective transparent conductive composite film according to claim 1, wherein the height of the second protruding structures is between 50 and 750 nm. 如申請專利範圍第1項所述之抗反射透明導電複合膜,其中該些第二凸出結構體是錐狀體、半球體、正弦體、或是凸出幾何形體。 The anti-reflective transparent conductive composite film according to claim 1, wherein the second protruding structures are a cone, a hemisphere, a sinusoid, or a convex geometry. 如申請專利範圍第1項所述之抗反射透明導電複合膜,更包括一第二透明導電層,置放該第二奈米抗反射結構層上,且覆蓋過該基材的該第二表面。 The anti-reflective transparent conductive composite film according to claim 1, further comprising a second transparent conductive layer disposed on the second nano anti-reflective structure layer and covering the second surface of the substrate . 如申請專利範圍第11項所述之抗反射透明導電複合膜,其中該第二透明導電層的厚度小於200奈米之間。 The anti-reflective transparent conductive composite film according to claim 11, wherein the second transparent conductive layer has a thickness of less than 200 nm. 一種抗反射透明導電複合膜,包括:一基材,有一第一表面與一第二表面;一導電奈米抗反射結構層,是單層結構,置放在該基 材的該第一表面上;以及一奈米抗反射結構層,置放在該基材的該第二表面上,與該導電奈米抗反射結構層相對。 An antireflection transparent conductive composite film comprising: a substrate having a first surface and a second surface; and a conductive nano anti-reflective structure layer, which is a single layer structure, placed on the base And the nano anti-reflective structure layer is disposed on the second surface of the substrate opposite to the conductive nano anti-reflective structure layer. 如申請專利範圍第13項所述之抗反射透明導電複合膜,其中該導電奈米抗反射結構層的材料包括金、銀、鋁、鎳、銅、鉻、銦錫氧化物、銦鋅氧化物、摻鋁氧化鋅(AZO)、摻鎵氧化鋅(GZO)、碳、或導電高分子薄膜。 The anti-reflective transparent conductive composite film according to claim 13, wherein the conductive nano anti-reflective structure layer comprises gold, silver, aluminum, nickel, copper, chromium, indium tin oxide, indium zinc oxide Aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), carbon, or a conductive polymer film. 如申請專利範圍第13項所述之抗反射透明導電複合膜,其中該導電奈米抗反射結構層具有多個凸出結構體分佈在該導電奈米抗反射結構層的區域,每一個該凸出結構體的頂端結構,是平滑曲面。 The anti-reflective transparent conductive composite film according to claim 13, wherein the conductive nano anti-reflective structure layer has a plurality of protruding structures distributed in a region of the conductive nano anti-reflective structure layer, each of the convex The top structure of the structure is a smooth surface. 如申請專利範圍第15項所述之抗反射透明導電複合膜,其中該些凸出結構體是凸出端小而底端大的一漸變結構。 The anti-reflective transparent conductive composite film according to claim 15, wherein the protruding structures are a gradual structure having a small protruding end and a large bottom end. 如申請專利範圍第15項所述之抗反射透明導電複合膜,其中該些凸出結構體是錐狀體、半球體、正弦體、或是凸出幾何形體。 The antireflection transparent conductive composite film according to claim 15, wherein the protruding structures are a cone, a hemisphere, a sinusoid, or a convex geometry.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW097151885A TWI514421B (en) | 2008-12-31 | 2008-12-31 | Transparent conducting composite film with anti-reflection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW097151885A TWI514421B (en) | 2008-12-31 | 2008-12-31 | Transparent conducting composite film with anti-reflection |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201025354A TW201025354A (en) | 2010-07-01 |
TWI514421B true TWI514421B (en) | 2015-12-21 |
Family
ID=44852583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW097151885A TWI514421B (en) | 2008-12-31 | 2008-12-31 | Transparent conducting composite film with anti-reflection |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI514421B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW563067B (en) * | 2001-01-17 | 2003-11-21 | Seiko Epson Corp | Touch panel and electronic machine |
TWI240089B (en) * | 2001-07-19 | 2005-09-21 | Global Lighting Technologies I | Light redirecting films and film systems |
TWI288699B (en) * | 2006-03-31 | 2007-10-21 | Danotech Co Ltd | Touch panel with high transmittance |
US20080304155A1 (en) * | 2007-06-06 | 2008-12-11 | Sony Corporation | Optical element, method for producing same, replica substrate configured to form optical element, and method for producing replica substrate |
-
2008
- 2008-12-31 TW TW097151885A patent/TWI514421B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW563067B (en) * | 2001-01-17 | 2003-11-21 | Seiko Epson Corp | Touch panel and electronic machine |
TWI240089B (en) * | 2001-07-19 | 2005-09-21 | Global Lighting Technologies I | Light redirecting films and film systems |
TWI288699B (en) * | 2006-03-31 | 2007-10-21 | Danotech Co Ltd | Touch panel with high transmittance |
US20080304155A1 (en) * | 2007-06-06 | 2008-12-11 | Sony Corporation | Optical element, method for producing same, replica substrate configured to form optical element, and method for producing replica substrate |
Also Published As
Publication number | Publication date |
---|---|
TW201025354A (en) | 2010-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tan et al. | 2017 | Broadband antireflection film with moth-eye-like structure for flexible display applications |
Yang et al. | 2017 | Ultra-antireflective synthetic brochosomes |
Keshavarz Hedayati et al. | 2016 | Antireflective coatings: Conventional stacking layers and ultrathin plasmonic metasurfaces, a mini-review |
Yuan et al. | 2020 | Record-high transparent electromagnetic interference shielding achieved by simultaneous microwave fabry–pérot interference and optical antireflection |
CN102869506B (en) | 2015-10-14 | The manufacture method of optical laminate, optical laminate, polarizer and image display device |
CN105829999B (en) | 2019-02-15 | Optical sheet, conductive sheet, and display device including the optical sheet |
JP5549216B2 (en) | 2014-07-16 | Transparent conductive laminate, method for producing the same, and touch panel |
CN105225728B (en) | 2017-01-04 | A kind of low resistance transparent conductive film and preparation method thereof |
JP6079637B2 (en) | 2017-02-15 | LAMINATE, DISPLAY DEVICE, LIGHTING DEVICE, SOLAR CELL, AND METHOD FOR PRODUCING LAMINATE |
CN1474949A (en) | 2004-02-11 | Low reflection, high transmission, touch-panel membrane |
JP2011194679A (en) | 2011-10-06 | Transparent and conductive laminate, method for manufacturing same, and touch panel |
CN214338304U (en) | 2021-10-01 | Housing components and electronic equipment |
CN211507150U (en) | 2020-09-15 | Light-transmitting conductive metal grid structure |
Choi et al. | 2019 | A review on the fabrication and applications of sub-wavelength anti-reflective surfaces based on biomimetics |
CN109387889A (en) | 2019-02-26 | Anti-reflection structure, display device and anti-reflection structure production method |
KR20110047154A (en) | 2011-05-06 | Low reflection and high contact angle substrate and its manufacturing method |
CN113422854B (en) | 2024-08-06 | Double-texture effect composite board mobile phone rear cover and manufacturing method thereof |
CN113470890A (en) | 2021-10-01 | Transparent conductive film structure and manufacturing method thereof |
CN203930742U (en) | 2014-11-05 | Nano-silver thread conductive laminate structure and contact panel |
TWI514421B (en) | 2015-12-21 | Transparent conducting composite film with anti-reflection |
Bae et al. | 2021 | Transparent polymer nanocomposite with three-dimensional ZnO thin-shell with high UV-shielding performance |
CN203930764U (en) | 2014-11-05 | Nano-silver thread conductive laminate structure and contact panel |
CN102637752A (en) | 2012-08-15 | Thin-film solar cell |
WO2021017202A1 (en) | 2021-02-04 | Electronic device and cover plate thereof |
CN105204673B (en) | 2019-03-01 | Touch panel |