TWI586943B - Enhanced-fft online machine vibration measurement system and method - Google Patents
- ️Sun Jun 11 2017
TWI586943B - Enhanced-fft online machine vibration measurement system and method - Google Patents
Enhanced-fft online machine vibration measurement system and method Download PDFInfo
-
Publication number
- TWI586943B TWI586943B TW105107502A TW105107502A TWI586943B TW I586943 B TWI586943 B TW I586943B TW 105107502 A TW105107502 A TW 105107502A TW 105107502 A TW105107502 A TW 105107502A TW I586943 B TWI586943 B TW I586943B Authority
- TW
- Taiwan Prior art keywords
- fft
- frequency
- data
- enhanced
- machine Prior art date
- 2016-03-11
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
Description
本發明係有關於一種建立enhanced-FFT線上機台振動量測系統與方法,尤指一種可建構遠端感測、診斷、預警、維護等機制之機台振動量測系統,進而達到降低機台維修成本,有效提升產業競爭力功效為其創新應用發明者。 The invention relates to a vibration measuring system and method for establishing an enhanced-FFT online machine, in particular to a vibration measuring system for a machine capable of constructing a mechanism for remote sensing, diagnosis, early warning and maintenance, thereby achieving a reduction of the machine platform. Maintenance costs, effectively improve the competitiveness of the industry for its innovative application inventors.
按,滾動元件軸承是工業旋轉機器最常用的裝置,其振動的狀態經常被視為衡量品質的主要特徵,在機器未故障之前亦經常用於預測性保養的重要指標,基於這樣的緣由,振動分析是旋轉機器故障偵測、診斷與預測最關鍵的條件工具(condition tool)。 Pressing, rolling element bearings are the most commonly used devices for industrial rotating machines. The state of vibration is often regarded as the main characteristic of measuring quality. It is also used as an important indicator for predictive maintenance before the machine fails. Based on such reasons, vibration Analysis is the most critical condition tool for rotating machine fault detection, diagnosis and prediction.
有許多各種不同的方法可以用於軸承故障的分析與診斷,例如,振動、聲音、溫度與變形量等,其中以頻率分析最能夠有效掲露振動的來源與幅度。通常,在振動高頻與低頻的範圍都是我們最感到高度興趣的地方,典型最常用的量測方法就是DFT的演算法。當振動處於穩態的條件之下,FFT的演算法甚至提供更快速的計算時間,但卻不影響其精確性。在實務上,當滾動元件軸承有變形或是故障的情況時,振動的訊號將出現暫態與非週期性的特性,如此,就會造成無論是DFT或FFT都無法獲得精確的結果,先天上的限制主要是由於頻譜洩 漏的問題所造成。雖然快速傅立葉轉換(Fast Fourier Transform,FFT)直到今日仍是使用最為廣泛的方法,但直接使用FFT分析,對於有缺陷軸承因其具有非固定訊號的特性,分析效率無法達到精確的目標。 There are many different methods that can be used for the analysis and diagnosis of bearing faults, such as vibration, sound, temperature and deformation, among which frequency analysis is the most effective way to reveal the source and magnitude of vibration. In general, the range of vibration high frequency and low frequency is the place we are most interested in. The most commonly used measurement method is the DFT algorithm. When the vibration is in steady state, the FFT algorithm even provides faster calculation time without affecting its accuracy. In practice, when the rolling element bearing is deformed or faulty, the vibration signal will have transient and aperiodic characteristics, so that neither DFT nor FFT can obtain accurate results, innate The limitation is mainly due to spectrum leakage Caused by the problem of leakage. Although the Fast Fourier Transform (FFT) is still the most widely used method to this day, the direct use of FFT analysis makes it impossible to achieve accurate targets for defective bearings due to their non-fixed signal characteristics.
然而,近年來網際網路與通信科技蓬勃發展,帶動了物聯網(Internet of Things,IOT)的快速擴張以及廣泛地應用於各種事物管理上面。物聯網可以應用電子標籤將真實的物體上網聯結,所有設備都可以查找出它們的具體位置,並且利用電腦對機器設備進行集中管理與控制。基於這樣的發展趨勢,利用物聯網的技術可應用於各類型機台或是裝置,以建構遠端感測、診斷、預警、維護之機制,可大幅降低機台維修成本,有效提升產業競爭力。 However, in recent years, the Internet and communication technologies have flourished, which has led to the rapid expansion of the Internet of Things (IOT) and its widespread application to various things management. The Internet of Things can use electronic tags to connect real objects to the Internet. All devices can find their specific location and use the computer to centrally manage and control the devices. Based on such a development trend, the technology using the Internet of Things can be applied to various types of machines or devices to construct a mechanism for remote sensing, diagnosis, early warning, and maintenance, which can greatly reduce the maintenance cost of the machine and effectively enhance the industrial competitiveness. .
今,發明人秉持多年該相關行業之豐富設計開發及實際製作經驗,運用物聯網技術再予以研究改良,特提供一種建立enhanced-FFT線上機台振動量測系統與方法,以期達到更佳實用價值性之目的者。 Today, the inventor has long been rich in design and development and practical production experience of the relevant industry, and has been researched and improved by using Internet of Things technology. It provides a system and method for establishing vibration-measurement of enhanced-FFT online machine in order to achieve better practical value. The purpose of sex.
本發明之主要目的在於提供一種建立enhanced-FFT線上機台振動量測系統與方法,尤指一種發展一個enhanced-FFT(e-FFT)運算模型,用於實現線上即時軸承振動的偵測與分析,利用快速傅立葉轉換(FFT)所形成的潰散能量,建立其與主要振動頻率之間的數值關係,同時,利用主要頻率點周圍潰散能量的回收,可有效回復原振動訊號的振幅(亦即重力加速度),由於所建立的模型為代數關係式,演算時間極短,適合用於即時系統的執行,於此,在實務應用上,模型演算利用單晶片程式執行運算並立即將頻譜結果傳輸至(MySQL)資料庫,然後經由PHP與APP進行即時的觀測與記錄,異常情況的歷史資料亦可進行線上查 詢,達成遠端感測、診斷、預警、維護機台等機制,進而降低機台維修成本,有效提升產業競爭力為其目的。 The main object of the present invention is to provide a system and method for establishing vibration measurement of an enhanced-FFT line machine, in particular to develop an enhanced-FFT (e-FFT) operation model for realizing detection and analysis of on-line instantaneous bearing vibration. Using the collapse energy generated by the fast Fourier transform (FFT) to establish the numerical relationship between it and the main vibration frequency, and at the same time, the recovery of the collapse energy around the main frequency point can effectively restore the amplitude of the original vibration signal (ie, gravity). Acceleration), because the established model is an algebraic relationship, the calculation time is extremely short, which is suitable for the execution of real-time systems. In practice, the model calculus uses a single-chip program to perform operations and immediately transmits the spectrum results to (MySQL). ) database, then instant observation and recording via PHP and APP, historical data of abnormal conditions can also be checked online Inquiries, to achieve remote sensing, diagnosis, early warning, maintenance of the machine and other mechanisms, thereby reducing the maintenance costs of the machine, and effectively improve the industrial competitiveness for its purpose.
本發明建立enhanced-FFT線上機台振動量測系統主要目的與功效,係由以下具體技術手段所達成:其主要包含有至少一加速感測元件、控制處理器、enhanced-FFT運算模型、數據擷取模組、資料庫伺服器、網頁資料管理模組及一下載於行動裝置上的APP應用程式,其中該加速感測元件可對應安裝於欲檢測機台設備上,以偵測機台運作時之平穩度及異常現象,再藉以控制處理器基於enhanced-FFT運算模型進行頻譜分析,且將檢測分析資料傳輸至數據擷取模組,該數據擷取模組將振動頻譜資料進行是否有超過預警值判斷,其判斷數據結果傳輸儲存於資料庫伺服器中,而該網頁資料管理模組連結資料庫伺服器,可即時讀取顯示檢測資料,而供行動裝置上的APP應用程式連結查詢者;藉此,利用物聯網的技術可應用於各類型機台或是裝置,以建構遠端感測、診斷、預警、維護之機制,可大幅降低機台維修成本,有效提升產業競爭力。 The main purpose and effect of the invention are to establish an enhanced-FFT online machine vibration measurement system, which is achieved by the following specific technical means: it mainly comprises at least one acceleration sensing component, a control processor, an enhanced-FFT operation model, and data 撷The module, the database server, the webpage data management module, and an APP application downloaded from the mobile device, wherein the acceleration sensing component is correspondingly mounted on the device to be tested to detect the operation of the machine The smoothness and anomaly, and then the control processor performs spectrum analysis based on the enhanced-FFT operation model, and transmits the detection and analysis data to the data acquisition module, and the data acquisition module performs the vibration spectrum data to exceed whether the warning is exceeded. The value judgment, the judgment data result transmission is stored in the database server, and the webpage data management module is connected to the database server, and the display detection data can be read immediately, and the APP application on the mobile device is connected to the queryer; In this way, the technology using the Internet of Things can be applied to various types of machines or devices to construct remote sensing, diagnosis, early warning, and dimensional The mechanism, can significantly reduce machine maintenance costs, effectively enhance industrial competitiveness.
如上所述之建立enhanced-FFT線上機台振動量測系統,其中該加速感測元件為採用一種量測加速度的加速規,該加速規安裝於機台上,可偵測機台運作時之平穩度,進而偵測機台之精準度是否產生異常的現象者。 The enhanced-FFT online machine vibration measurement system is established as described above, wherein the acceleration sensing component is an acceleration gauge using a measurement acceleration, and the acceleration gauge is installed on the machine platform to detect the smooth operation of the machine platform. Degree, and then to detect whether the accuracy of the machine is abnormal.
如上所述之建立enhanced-FFT線上機台振動量測系統,其中該控制處理器採用單晶片,建構一個enhanced-FFT(E-FFT)運算模型,用於實現線上即時軸承振動的偵測與分析,利用主要頻率點周圍潰散能量的回收,可有效回復原振動訊號的振幅(亦即重力加速度);由於所建立的模型為代數關係式,演算時間極短,適合用於即時系統的運算執行。 The enhanced-FFT online machine vibration measurement system is established as described above, wherein the control processor uses a single chip to construct an enhanced-FFT (E-FFT) operation model for realizing detection and analysis of on-line instantaneous bearing vibration. The recovery of the collapsed energy around the main frequency point can effectively restore the amplitude of the original vibration signal (ie, the acceleration of gravity); since the established model is an algebraic relationship, the calculation time is extremely short, which is suitable for the execution of the real-time system.
如上所述之建立enhanced-FFT線上機台振動量測系統,其中該控制處理器1.透過RS232/RS4853與電腦進行通訊連線。2.接收自電腦端的命令。3.擷取感測器電路電壓之訊號。4.傳送檢測資料(感測器電路等訊號)至電腦端。 The enhanced-FFT online machine vibration measurement system is established as described above, wherein the control processor 1 communicates with the computer through RS232/RS4853. 2. Receive commands from the computer. 3. Capture the signal of the sensor circuit voltage. 4. Transfer the test data (sensor circuit and other signals) to the computer.
如上所述之建立enhanced-FFT線上機台振動量測系統,其中該數據擷取模組係分別與控制處理器及資料庫伺服器連結,主要執行資料傳遞與接收,以接收控制處理器所傳輸之振動頻譜資料,經判斷是否超過預警值,並將判斷後之檢測資料傳至資料庫伺服器者。 As described above, the enhanced-FFT online machine vibration measurement system is established, wherein the data acquisition module is respectively connected with the control processor and the database server, and mainly performs data transmission and reception to be transmitted by the control processor. The vibration spectrum data is judged whether the warning value is exceeded, and the detected detection data is transmitted to the database server.
如上所述之建立enhanced-FFT線上機台振動量測系統,其中該資料庫伺服器係分別與數據擷取模組及網頁資料管理模組連結,其主要負責將判斷後之檢測資料的紀錄與管理,進一步該資料庫伺服器包含一顯示介面,可將檢測資料顯示於顯示介面上,以提供監控機台/設備、歷史資料查詢及預警功能。 As described above, the enhanced-FFT online machine vibration measurement system is established, wherein the database server is respectively connected with the data acquisition module and the webpage data management module, and is mainly responsible for recording the record of the detected detection data. Management, further the database server includes a display interface, which can display the detection data on the display interface to provide monitoring machine/device, historical data query and early warning function.
如上所述之建立enhanced-FFT線上機台振動量測系統,其中該網頁資料管理模組係與資料庫伺服器連結,主要提供資料即時顯示、管理與查詢分析者。 The above-mentioned enhanced-FFT online machine vibration measurement system is established as described above, wherein the webpage data management module is linked with the database server, and mainly provides instant display, management and query analysis of the data.
如上所述之建立enhanced-FFT線上機台振動量測系統,其中該APP應用程式為下載於行動裝置上,可供使用者連結網頁資料管理模組,而提供資料即時顯示圖表、查詢分析。 The enhanced-FFT online machine vibration measurement system is established as described above, wherein the APP application is downloaded to the mobile device, and the user can link the webpage data management module to provide real-time display of the chart and query analysis.
如上所述之建立enhanced-FFT線上機台振動量測系統,其中數據擷取模組、資料庫伺服器及網頁資料管理模組,可依據實際需求,獨立個別電腦,並透過網路(TCP/IP)加以連結,進而可整合在同一部電腦當中。 As described above, the enhanced-FFT online machine vibration measurement system is established, wherein the data acquisition module, the database server and the webpage data management module can be independent of individual computers according to actual needs, and through the network (TCP/ IP) is linked and can be integrated into the same computer.
本發明以enhanced-FFT線上機台振動量測方法主要目的與功效,係由以下具體技術手段所達成: 其主要以enhanced-FFT運算模型進行線上即時軸承振動的偵測與頻譜分析;係先設定取樣頻率(f s )、取樣點數(N)、頻寬(τ),同時進行訊號取樣;再執行FFT;之後決定主要頻譜的個數(M);再找出最大振幅(f 1)與次大振幅(f 2)落點的頻率;接著,將回收能量的頻寬(τ)設一定值,再進行檢查是否最大振幅與次大振幅落點頻率之間的距離與倍數傅立葉基本頻率(△f)的關係;再計算頻率漂移量(△f k )及回復之振幅量(R.A.);最後,排除已找到的最大振幅的頻率點f 1,設定M=M-1;檢查是否M=0,如果是,步驟停止,若否,則重回找出最大振幅(f 1)與次大振幅(f 2)落點的頻率。 The main purpose and effect of the vibration measurement method of the enhanced-FFT online machine are achieved by the following specific technical means: The detection and spectrum analysis of the on-line instantaneous bearing vibration are mainly performed by the enhanced-FFT operation model; Sampling frequency ( f s ), number of sampling points (N), bandwidth ( τ ), simultaneous signal sampling; then perform FFT; then determine the number of main spectrum (M); then find the maximum amplitude ( f 1 ) and The frequency of the next large amplitude ( f 2 ) falling point; then, set the bandwidth ( τ ) of the recovered energy to a certain value, and then check whether the distance between the maximum amplitude and the sub-large amplitude falling point frequency and the multiple Fourier fundamental frequency ( Δ f ); recalculate the frequency drift (Δ f k ) and the amplitude of the return (RA); finally, exclude the frequency point f 1 of the largest amplitude found, set M=M-1; check if M= 0, if yes, the step stops, and if not, it returns to find the frequency of the maximum amplitude ( f 1 ) and the second largest amplitude ( f 2 ).
由上述之元件組成與實施說明可知,本發明與現有結構相較之下,本發明具有以下之優點: It can be seen from the above components and implementation description that the present invention has the following advantages as compared with the prior art:
1.本發明建立enhanced-FFT線上機台振動量測系統與方法,利用單晶片建立即時機台振動檢測系統,並以enhanced-FFT模型方法進行機台振動訊號之頻譜分析。 1. The invention establishes an enhanced-FFT online machine vibration measurement system and method, and establishes a real-time machine vibration detection system by using a single wafer, and performs spectrum analysis of the vibration signal of the machine by an enhanced-FFT model method.
2.本發明建立enhanced-FFT線上機台振動量測系統與方法,具有人機介面操作系統。 2. The invention establishes an enhanced-FFT online machine vibration measurement system and method, and has a human-machine interface operating system.
3.本發明建立enhanced-FFT線上機台振動量測系統與方法,具有資料擷取端及顯示介面系統。 3. The invention establishes an enhanced-FFT online machine vibration measurement system and method, and has a data acquisition end and a display interface system.
4.本發明建立enhanced-FFT線上機台振動量測系統與方法,提供雲端資料庫管理系統。 4. The invention establishes an enhanced-FFT online machine vibration measurement system and method, and provides a cloud database management system.
5.本發明建立enhanced-FFT線上機台振動量測系統與方法,提供APP線上及時顯示與查詢程式;藉此,利用物聯網的技術可應用於各類型機台或是裝置,以建構遠端感測、診斷、預警、維護之機制,可大幅降低機台維修成本,有效提升產業競爭力。 5. The invention establishes an enhanced-FFT online machine vibration measuring system and method, and provides an APP line timely display and query program; thereby, the technology of using the Internet of Things can be applied to various types of machines or devices to construct a remote end. The mechanism of sensing, diagnosis, early warning and maintenance can greatly reduce the maintenance cost of the machine and effectively enhance the industrial competitiveness.
(1)‧‧‧加速感測元件 (1) ‧‧‧Accelerated sensing components
(2)‧‧‧控制處理器 (2) ‧‧‧Control Processor
(3)‧‧‧數據擷取模組 (3) ‧‧‧Data Capture Module
(31)‧‧‧顯示介面 (31)‧‧‧Display interface
(4)‧‧‧資料庫伺服器 (4) ‧‧‧Database Server
(5)‧‧‧網頁資料管理模組 (5) ‧‧‧Web data management module
(51)‧‧‧顯示介面 (51)‧‧‧Display interface
(6)‧‧‧APP應用程式 (6) ‧‧‧APP application
(A)‧‧‧機台 (A)‧‧‧ Machines
(B)‧‧‧行動裝置 (B) ‧‧‧ mobile devices
第一圖:本發明之系統架構示意圖 First: Schematic diagram of the system architecture of the present invention
第二圖:本發明之訊號處理電路示意圖 Second picture: schematic diagram of the signal processing circuit of the present invention
第三圖:本發明之機台未振動波形示意圖 Third figure: Schematic diagram of the unvibrated waveform of the machine of the present invention
第四圖:本發明之機台啟動振動波形示意圖 Figure 4: Schematic diagram of the starting vibration waveform of the machine of the present invention
第五圖:本發明之機台振動及敲擊波形示意圖 Figure 5: Schematic diagram of vibration and tapping waveform of the machine of the present invention
第六圖:本發明之e-FFT運算模型流程示意圖 Figure 6 is a flow chart of the e-FFT operation model of the present invention
第七圖:本發明之振動預警監控介面示意圖 Figure 7: Schematic diagram of the vibration warning monitoring interface of the present invention
第八圖:本發明之資料庫歷史與警告資料查詢介面示意圖 Figure 8: Schematic diagram of the database history and warning data query interface of the present invention
第九圖:本發明採e-FFT運算模型之振動頻譜分析圖表 Ninth diagram: vibration spectrum analysis chart of the e-FFT operation model of the present invention
第十圖:本發明之異常資料查詢頁面示意圖 Figure 10: Schematic diagram of the abnormal data query page of the present invention
第十一圖:本發明之APP即時圖表顯示示意圖 Figure 11: Schematic diagram of the APP instant chart display of the present invention
為令本發明所運用之技術內容、發明目的及其達成之功效有更完整且清楚的揭露,茲於下詳細說明之,並請一併參閱所揭之圖式及圖號:首先,請參閱第一圖本發明之建立enhanced-FFT線上機台振動量測系統架構示意圖所示,其主要包含有:至少一加速感測元件(1),係對應安裝於欲檢測機台(A)上,可偵測機台(A)運作時之平穩度,及偵測機台(A)之精準度是否產生異常的現象;進一步該加速感測元件(1)可採用量測加速度的加速規者。 For a more complete and clear disclosure of the technical content, the purpose of the invention and the effects thereof achieved by the present invention, the following is a detailed description, and please refer to the drawings and drawings: First, please refer to The first figure shows the schematic diagram of the architecture of the vibration measurement system for the enhanced-FFT online machine of the present invention, which mainly comprises: at least one acceleration sensing component (1), which is correspondingly mounted on the machine (A) to be tested. It can detect the smoothness of the operation of the machine (A) and detect whether the accuracy of the machine (A) is abnormal. Further, the acceleration sensing element (1) can adopt an acceleration gauge for measuring acceleration.
一控制處理器(2),係與加速感測元件(1)連結,且接收加速感測元件(1)所感測之振動頻率,該控制處理器(2)中建構有 enhanced-FFT(E-FFT)運算模型,此運算模型用於實現線上即時軸承振動的偵測與頻譜分析;一數據擷取模組(3),係與控制處理器及連結,用以接收控制處理器(2)所傳輸之振動頻譜資料,並判斷是否超過預警值,再將判斷後之檢測資料傳輸,進一步該數據擷取模組(3)包含有一顯示介面(31),該顯示介面(31)用來顯示檢測資料,以提供監控機台/設備、歷史資料查詢及預警功能;一資料庫伺服器(4),係與數據擷取模組(3)連結,且接收數據擷取模組(3)所傳輸之檢測資料,並負責紀錄與管理;一網頁資料管理模組(5),係與資料庫伺服器(4)連結,該網頁資料管理模組(5)進一步包含一顯示介面(51),主要提供資料即時顯示、管理與查詢分析;及一APP應用程式(6),係下載於行動裝置(B)中,且對應連結網頁資料管理模組(5),主要供使用者透過行動裝置(B)中的APP應用程式(6)連結網頁資料管理模組(5),而提供資料即時顯示圖表、查詢分析。 A control processor (2) is coupled to the acceleration sensing component (1) and receives a vibration frequency sensed by the acceleration sensing component (1), and the control processor (2) is constructed Enhanced-FFT (E-FFT) operation model, which is used to realize online detection and spectrum analysis of instantaneous bearing vibration; a data acquisition module (3), system and control processor and connection for receiving control The vibration spectrum data transmitted by the processor (2), and determining whether the warning value is exceeded, and then transmitting the determined detection data, further the data acquisition module (3) comprises a display interface (31), the display interface ( 31) used to display test data to provide monitoring machine/equipment, historical data query and early warning function; a database server (4), which is connected with the data capture module (3), and receives data capture mode The detection data transmitted by the group (3) is responsible for recording and management; a webpage data management module (5) is linked with the database server (4), and the webpage data management module (5) further comprises a display Interface (51), which provides instant display, management and query analysis; and an APP application (6) downloaded from the mobile device (B) and corresponding to the web page data management module (5), mainly for use Connected via the APP app (6) in the mobile device (B) Page data management module (5), and provide real-time data display graph analysis.
以下實際說明本發明所採用之技術與較佳使用規格:首先,本發明系統中之加速感測元件(1)是採用PCB352A25/NC之加速規,而該加速規之訊號處理電路主要分為緩衝、濾波放大、箝位放大、二階濾波(如第二圖所示),訊號經過處理號以示波器來做顯示及確認加速規是否正常動作,首先測量機台(A)未振動時,訊號是沒有變動的(如第三圖所示),在測量機台(A)啟動時,訊號會依照機台(A)的振動而產生變化(如第四圖所示),最後再測量機台(A)啟動時,給予適量的敲擊所產生的變化來測試加速規的最大限制範圍是否符合控制處理器(單晶片)所需要的規格(如第五圖所示); 經由上述,可獲得加速規偵測機台(A)運作時之平穩度及偵測機台(A)之精準度是否產生異常現象的振動頻率,而將該振動頻率傳送至控制處理器(2)。 The following describes the technology and preferred use specifications of the present invention: First, the accelerating sensing component (1) in the system of the present invention adopts an acceleration gauge of PCB352A25/NC, and the signal processing circuit of the accelerometer is mainly divided into buffering, Filter amplification, clamp amplification, second-order filtering (as shown in the second figure), the signal is processed by the oscilloscope to display and confirm whether the acceleration gauge is operating normally. First, when the measuring machine (A) is not vibrating, the signal is unchanged. (as shown in the third figure), when the measuring machine (A) is started, the signal will change according to the vibration of the machine (A) (as shown in the fourth figure), and finally the measuring machine (A) At startup, the change caused by the appropriate amount of tapping is applied to test whether the maximum limit range of the accelerometer conforms to the specifications required by the control processor (single chip) (as shown in the fifth figure); Through the above, the vibration frequency of the acceleration gauge detecting machine (A) during operation and the accuracy of detecting the accuracy of the machine (A) can be obtained, and the vibration frequency is transmitted to the control processor (2) ).
接著,該控制處理器(2)採用PIC 18F4520單晶片[本發明實際施作所採用的晶片],該控制處理器(2)基於E-FFT運算模型進行頻譜分析,採用E-FFT運算模型,用於實現線上即時軸承振動的偵測與分析,主要功能為1.透過RS232/RS485轉換器與數據擷取模組(3)[電腦]進行通訊連線。2.接收來自數據擷取模組(3)[電腦]端命令。3.擷取加速規之訊號處理電路的電壓訊號並進行E-FFT運算模型。4.傳送檢測資料(訊號處理電路所偵測的振動頻率訊號)至數據擷取模組(3)[電腦]端。 Next, the control processor (2) adopts a PIC 18F4520 single chip [the wafer used in the actual application of the present invention], and the control processor (2) performs spectrum analysis based on the E-FFT operation model, and adopts an E-FFT operation model. It is used to realize the detection and analysis of online real-time bearing vibration. The main function is 1. Communication connection with data acquisition module (3) [computer] through RS232/RS485 converter. 2. Receive the command from the data capture module (3) [computer]. 3. Capture the voltage signal of the signal processing circuit of the acceleration gauge and perform an E-FFT operation model. 4. Transfer the detection data (the vibration frequency signal detected by the signal processing circuit) to the data acquisition module (3) [computer] end.
接著,說明所運用之E-FFT運算模型原理與分析:根據傅立葉級數(Fourier Series),系統訊號i s (t)可簡單地表示成有限個一序列正弦諧波(sinusoidal harmonics)的組成,如下列式子所示: Next, the principle and analysis of the E-FFT operation model used are explained. According to the Fourier series, the system signal i s ( t ) can be simply expressed as a finite sequence of sinusoidal harmonics. As shown in the following formula:
其中ω m =2πf m ,與。 Where ω m = 2πf m , versus .
以△t間隔時間取樣訊號,式(3)可以離散方式呈現,如下式所示: In the sample signal interval △ t, of Formula (3) may be presented discretely, as shown in the following formula:
其中n是離散取樣序數,而時間變數t=n△t。 Where n is the discrete sampling ordinal and the time variable t = n Δ t .
i s [n]週期為T,其傅立葉基本角頻率(△ω)定義為 The period i s [ n ] is T and its Fourier base angular frequency (Δ ω ) is defined as
假設波形取樣p(p>1)個週期,△ω可表示為 Assuming waveform sampling p ( p > 1) cycles, △ ω can be expressed as
其中。 among them .
傅立葉基本頻率(△f)可定義如下: The Fourier fundamental frequency (Δ f ) can be defined as follows:
其中,以及。註:波形係以f s 取樣頻率取樣N個點數。 among them ,as well as . Note: The waveform samples N points at the f s sampling frequency.
藉由Parseval關係式之離散型態,波形的能量(Power)P可表示如 下: With the discrete form of the Parseval relation, the power P of the waveform can be expressed as follows:
在頻率f k 處的能量可表示為P[f k ]=I s [k]2+I s [N-k]2=2I s [k]2 (9) The energy at the frequency f k can be expressed as P [ f k ]= I s [ k ] 2 + I s [ N - k ] 2 =2 I s [ k ] 2 (9)
其中k=0,1,2,…,N/2-1。 Where k = 0, 1, 2, ..., N / 2-1.
由上式第m th 個主要諧波的振幅位於離散頻率f k 的位置,表示如下: The amplitude of the formula m th harmonics of the main frequency f k is located in a discrete position, expressed as follows:
其中m=1,2,…,M。 Where m =1, 2,..., M .
f k 諧波的能量可能會由於頻譜洩漏(spectral leakage)的問題,而潰散至f k 諧波的周圍,因此,諧波能量於f k 諧波的鄰近處可以恢復成”群組能量(group power)”。每一群組能量可以收集到f k-△k 與f k+△k 之間的能量,如下所示: The energy of the f k harmonic may be broken around the f k harmonic due to the problem of spectral leakage. Therefore, the harmonic energy can be restored to the group energy in the vicinity of the f k harmonic. Power)". Each group of energy The energy between f k -Δ k and f k +Δ k can be collected as follows:
其中τ是正整數,表示群組之頻寬。 Where τ is a positive integer representing the bandwidth of the group.
每一個諧波振幅可寫成如下所示: Each harmonic amplitude can be written as follows:
進一步分別考慮兩種間級諧波在小頻率偏移與大頻率偏移的情形,根據使用FFT訊號頻譜分析的效應(effect);而整體完整的模型-基於FFT洩 漏能量分佈法則發展精確快速的時變間級諧波量測與追蹤模型,其流程圖如第六圖所示,流程步驟說明如下: Further consider the case of two kinds of inter-level harmonics in small frequency offset and large frequency offset, according to the effect of using FFT signal spectrum analysis; and the overall complete model-based on FFT leakage The leakage energy distribution rule develops an accurate and fast time-varying inter-harmonic measurement and tracking model. The flow chart is shown in the sixth figure. The process steps are as follows:
步驟(1)設定f s (取樣頻率)、N(取樣點數)、τ(頻寬),以及進行訊號取樣。 Step (1) sets f s (sampling frequency), N (sampling points), τ (bandwidth), and performs signal sampling.
步驟(2)執行FFT。 Step (2) performs FFT.
步驟(3)決定主要頻譜的個數(M)。 Step (3) determines the number of main spectra (M).
步驟(4)f 1與f 2分別定義為最大振幅與次大振幅落點的頻率。 Step (4) f 1 and f 2 are defined as the frequencies of the maximum amplitude and the sub-large amplitude drop point, respectively.
步驟(5)檢查是否|f 1-f 2|<4△f,若是,設定τ=1然後至步驟(10),否則,至下一步驟。進一步註解:|f 1-f 2|<4△f意即最大振幅與次大振幅落點頻率之間的距離小於4倍的傅立葉基本頻率(△f),τ=1意即回收能量的頻寬設為1。 Step (5) checks if | f 1 - f 2 | < 4 Δ f , and if so, sets τ =1 and then to step (10), otherwise, to the next step. Further note: | f 1 - f 2 | < 4 Δ f means that the distance between the maximum amplitude and the sub-large amplitude drop frequency is less than 4 times the Fourier fundamental frequency (Δ f ), τ =1 means the frequency of energy recovery The width is set to 1.
步驟(6)檢查是否4△f |f 1-f 2|<6△f,若是,設定τ=2然後至步驟(10),否則,至下一步驟。進一步註解:4△f |f 1-f 2|<6△f意即最大振幅與次大振幅落點頻率之間的距離小於6倍大於4倍的傅立葉基本頻率(△f),τ=2意即回收能量的頻寬設為2。 Step (6) Check if 4△ f | f 1 - f 2 |<6Δ f , if yes, set τ = 2 and then to step (10), otherwise, go to the next step. Further comments: 4△ f | f 1 - f 2 |<6△ f means that the distance between the maximum amplitude and the sub-large amplitude drop frequency is less than 6 times greater than 4 times the Fourier fundamental frequency (Δ f ), and τ = 2 means the frequency of energy recovery The width is set to 2.
步驟(7)檢查是否6△f |f 1-f 2|<8△f,若是,設定τ=3然後至步驟(10),否則,至下一步驟。進一步註解:6△f |f 1-f 2|<8△f意即最大振幅與次大振幅落點頻率之間的距離小於8倍大於6倍的傅立葉基本頻率(△f),τ=3意即回收能量的頻寬設為3。 Step (7) check if 6△ f | f 1 - f 2 |<8Δ f , if yes, set τ = 3 and then go to step (10), otherwise, go to the next step. Further notes: 6△ f | f 1 - f 2 |<8△ f means that the distance between the maximum amplitude and the sub-large amplitude drop frequency is less than 8 times greater than 6 times the Fourier fundamental frequency (Δ f ), and τ = 3 means the frequency of energy recovery The width is set to 3.
步驟(8)檢查是否8△f |f 1-f 2|<10△f,若是,設定τ=4然後至步驟(10),否則,至下一步驟。進一步註解:8△f |f 1-f 2|<10△f意即最大振幅與次大振幅落點頻率之間的距離小於10倍大於8倍的傅立葉基本頻率(△f),τ=4意即回收能量的頻寬設為4。 Step (8) to check if 8△ f | f 1 - f 2 | <10Δ f , if yes, set τ = 4 and then go to step (10), otherwise, go to the next step. Further comments: 8△ f | f 1 - f 2 |<10△ f means that the distance between the maximum amplitude and the sub-large amplitude drop frequency is less than 10 times greater than 8 times the Fourier fundamental frequency (Δ f ), and τ = 4 means the frequency of energy recovery The width is set to 4.
步驟(9)設定τ=5。註解:τ=4意即回收能量的頻寬設為4。 Step (9) sets τ = 5. Note: τ = 4 means that the bandwidth of the recovered energy is set to 4.
步驟(10)計算頻率漂移量(△f k ),回復之振幅量(R.A.)。註解:,。 Step (10) calculates the frequency drift amount (Δ f k ) and the amplitude of the return (RA). annotation: , .
步驟(11)排除已找到的最大振幅的頻率點f 1,設定M=M-1。 Step (11) excludes the frequency point f 1 of the largest amplitude found and sets M = M-1.
步驟(12)檢查是否M=0。如果是,步驟停止,若否,重回至步驟(4)。 Step (12) checks if M=0. If yes, the step is stopped, and if not, return to step (4).
以上為E-FFT運算模型於系統執行時所進行的分析步驟,而所獲得檢測資料,即會傳送至數據擷取模組(3)[電腦]端。 The above is the analysis step performed by the E-FFT operation model during system execution, and the obtained detection data is transmitted to the data acquisition module (3) [computer] end.
當數據擷取模組(3)接收到控制處理器(2)傳送的檢測資料後,配合顯示於顯示介面(31)上,而該顯示介面(31)可供機台監控介面與預警值設定操控[如第七圖所示]: After the data acquisition module (3) receives the detection data transmitted by the control processor (2), it is displayed on the display interface (31), and the display interface (31) is provided for the machine monitoring interface and the warning value setting. Manipulation [as shown in Figure 7]:
a.開啟通訊埠:選擇所連結數據擷取模組(3)[電腦]的通訊埠。 a. Open the communication port: Select the communication port of the connected data capture module (3) [computer].
b.機台編號選擇:選擇所要監視的機台(A)編號,目前系統預設為一個機台編號。 b. Machine number selection: Select the machine (A) number to be monitored. The current system default is a machine number.
c.預警值設定:各種機台(A)有不同種的異常值判斷,可藉由設定來針對每台機器的異常值去監控。 c. Warning value setting: Various machine (A) have different kinds of abnormal value judgments, which can be monitored by setting the abnormal value of each machine.
d.手動與自動模式選擇:手動可以針對使用者的需要去做局部監視。 d. Manual and automatic mode selection: Manually can be used for local monitoring of the user's needs.
e.檢測結果即時顯示(機台、頻譜圖型):以目前的機台(A)所產生的振動量去做即時監視,於此,本發明機台實施振動量異常且位於1.2KHz~1.5KHz之間。 e. Instant display of test results (machine table, spectrum pattern): Real-time monitoring is performed by the vibration amount generated by the current machine (A). Here, the machine of the present invention performs abnormal vibration and is located at 1.2KHz~1.5. Between KHz.
f.資料上傳資料庫選擇與間隔設定:來做為儲存的依據,間隔可以指定數據間隔多少時間(秒)來做儲存。 f. Data upload database selection and interval setting: as the basis for storage, the interval can specify how long (in seconds) the data interval is to be stored.
g.系統時間顯示:顯示當下的時間。 g. System time display: displays the current time.
h.檢測結果連結資料庫伺服器(4)查詢。 h. The test result is linked to the database server (4) for enquiry.
進一步可由檢測結果連結資料庫伺服器(4)進行查詢,歷史資料與預警資料顯示介面(31)[如第八圖所示],主要功能如下: Further, the detection result may be linked to the database server (4) for query, historical data and early warning data display interface (31) [as shown in the eighth figure], the main functions are as follows:
a.歷史資料查詢:藉由瀏覽歷史資料,來判斷機台(A)是否需更換或修正。 a. Historical data query: By browsing historical data, it is judged whether the machine (A) needs to be replaced or corrected.
b.異常值資料查詢:當超出異常值時,可立即去做修正與調整機台(A)。 b. Abnormal value data query: When the abnormal value is exceeded, the correction and adjustment machine (A) can be done immediately.
c.選擇顯示資料數量:依使用者的所需要監視的數據多寡來做判斷依據。 c. Select the number of displayed data: based on the amount of data the user needs to monitor.
d.對機台(A)、加速感測元件(1)或是時間進行來做條件式的查詢顯示。 d. Perform conditional query display on the machine (A), acceleration sensing component (1) or time.
e.資料庫資料顯示表格:快速辨別出機台編號、感測器編號、時間、值域、快速複利葉值域,來做為使用者所要判斷的依據。 e. Database data display form: Quickly identify the machine number, sensor number, time, value range, and fast compounding leaf value range as the basis for the user to judge.
f.關閉程式。 f. Close the program.
而上述的檢測資料係由數據擷取模組(3)載入至資料庫伺服器(4)當中儲存而供查詢。接著,該網頁資料管理模組(5)與資料庫伺服器(4)連結,提供資料即時顯示、管理與查詢分析,當於進入網頁資料管理模組(5)顯示介面(51)時,可以選擇即時檢測資料顯示,而目前顯示為E-FFT圖表[如第九圖所示]。此圖表表示此振動物體的振動量位在接近於750Hz中,而藉此可以去監視機台(A)是否超出正常值域,如有異常現象便可立即停機檢測。倘若選擇歷史資料查詢畫面可以依照登入者的需求,去擷取特定時段(年月日)的 機器振動數據,如果想要更迅速查詢此機台(A)的是否有異常的狀況,便可轉至警告訊息頁面,來查詢在最近的時間此機台(A)是否有出現過異常的情況。 The above test data is loaded into the database server (4) by the data capture module (3) for storage. Then, the webpage data management module (5) is linked with the database server (4) to provide instant display, management and query analysis of the data. When entering the webpage data management module (5) display interface (51), Select the real-time detection data display, which is currently displayed as an E-FFT chart [as shown in Figure 9]. This chart shows that the vibration level of this vibrating object is close to 750 Hz, so that it can monitor whether the machine (A) is out of the normal range, and if there is an abnormal phenomenon, it can stop the detection immediately. If you select the historical data query screen, you can select a specific time period (year, month, and day) according to the needs of the registrant. Machine vibration data, if you want to query the machine (A) more quickly, you can go to the warning message page to check whether the machine (A) has abnormality in the most recent time. .
請參閱十~十一圖所示,進一步當使用者於遠端監控時,可經由行動裝置(B)下載有APP應用程式(6),主要供使用者透過行動裝置中的APP應用程式(6)連結網頁資料管理模組(5),而提供資料即時顯示圖表、查詢分析〔如第十一圖所示〕。其使用者只要開啟資料查詢程式,首先進入使用者頁面,登入使用者得帳號密碼之後,即刻轉至異常資料查詢頁面,使用者便可立即查詢此一機台近期的異常狀態,若想要監視此一機台目前的狀況,按下LIVE CHART此按鈕,就可以切換至即時圖表顯示,倘若想檢視此機台(A)是否要進行重大維修或替換,按下HISTORY CHART按鈕,即可轉換至歷史資料圖表去做分析和比對。 Please refer to the figure 10~11 to further download the APP application (6) via the mobile device (B) when the user is monitoring remotely, mainly for the user to use the APP application in the mobile device (6). ) Link the web page data management module (5) and provide information to display charts and query analysis in real time (as shown in Figure 11). The user only needs to open the data query program, first enter the user page, after logging in the user's account password, immediately go to the abnormal data query page, the user can immediately query the recent abnormal state of the machine, if you want to monitor The current status of this machine can be switched to the instant chart display by pressing the LIVE CHART button. If you want to check whether the machine (A) is to be repaired or replaced, press the HISTORY CHART button to switch to Historical data charts for analysis and comparison.
然而前述之實施例或圖式並非限定本發明之產品結構或使用方式,任何所屬技術領域中具有通常知識者之適當變化或修飾,皆應視為不脫離本發明之專利範疇。 However, the above-described embodiments or drawings are not intended to limit the structure or the use of the present invention, and any suitable variations or modifications of the invention will be apparent to those skilled in the art.
由上述之元件組成與實施說明可知,本發明與現有結構相較之下,本發明具有以下之優點: It can be seen from the above components and implementation description that the present invention has the following advantages as compared with the prior art:
1.本發明建立enhanced-FFT線上機台振動量測系統,利用單晶片建立即時機台振動檢測系統,並以enhanced-Fast Fourier Transform(E-FFT)方法進行機台振動訊號之頻譜分析。 1. The invention establishes an enhanced-FFT online machine vibration measuring system, establishes a real-time machine vibration detecting system by using a single chip, and performs spectrum analysis of the machine vibration signal by an enhanced-Fast Fourier Transform (E-FFT) method.
2.本發明建立enhanced-FFT線上機台振動量測系統,具有人機介面操作系統。 2. The invention establishes an enhanced-FFT online machine vibration measuring system with a human-machine interface operating system.
3.本發明建立enhanced-FFT線上機台振動量測系統,具有資料擷取端及顯示介面系統。 3. The invention establishes an enhanced-FFT online machine vibration measuring system, which has a data capturing end and a display interface system.
4.本發明建立enhanced-FFT線上機台振動量測系統,提供雲端資料庫管理系統。 4. The invention establishes an enhanced-FFT online machine vibration measurement system, and provides a cloud database management system.
5.本發明建立enhanced-FFT線上機台振動量測系統,提供APP線上及時顯示與查詢程式;藉此,利用物聯網的技術可應用於各類型機台或是裝置,以建構遠端感測、診斷、預警、維護之機制,可大幅降低機台維修成本,有效提升產業競爭力。 5. The invention establishes an enhanced-FFT online machine vibration measuring system, and provides an APP line timely display and query program; thereby, the technology of the Internet of Things can be applied to various types of machines or devices to construct remote sensing. The mechanism of diagnosis, early warning and maintenance can greatly reduce the maintenance cost of the machine and effectively enhance the industrial competitiveness.
綜上所述,本發明實施例確能達到所預期之使用功效,又其所揭露之具體構造,不僅未曾見諸於同類產品中,亦未曾公開於申請前,誠已完全符合專利法之規定與要求,爰依法提出發明專利之申請,懇請惠予審查,並賜准專利,則實感德便。 In summary, the embodiments of the present invention can achieve the expected use efficiency, and the specific structure disclosed therein has not been seen in similar products, nor has it been disclosed before the application, and has completely complied with the provisions of the Patent Law. And the request, the application for the invention of a patent in accordance with the law, please forgive the review, and grant the patent, it is really sensible.
(1)‧‧‧加速感測元件 (1) ‧‧‧Accelerated sensing components
(2)‧‧‧控制處理器 (2) ‧‧‧Control Processor
(3)‧‧‧數據擷取模組 (3) ‧‧‧Data Capture Module
(31)‧‧‧顯示介面 (31)‧‧‧Display interface
(4)‧‧‧資料庫伺服器 (4) ‧‧‧Database Server
(5)‧‧‧網頁資料管理模組 (5) ‧‧‧Web data management module
(51)‧‧‧顯示介面 (51)‧‧‧Display interface
(6)‧‧‧APP應用程式 (6) ‧‧‧APP application
(A)‧‧‧機台 (A)‧‧‧ Machines
(B)‧‧‧行動裝置 (B) ‧‧‧ mobile devices
Claims (8)
一種以enhanced-FFT線上機台振動量測方法,其主要以enhanced-FFT運算模型進行線上即時軸承振動的偵測與頻譜分析;其步驟如下:步驟(1)設定取樣頻率(f s )、取樣點數(N)、頻寬(τ),以及進行訊號取樣;步驟(2)執行FFT;步驟(3)決定主要頻譜的個數(M);步驟(4)f 1與f 2分別定義為最大振幅與次大振幅落點的頻率;步驟(5)檢查是否|f 1-f 2|<4△f,若是,設定τ=1然後至步驟(10),否則,至下一步驟;此步驟定義|f 1-f 2|<4△f意即最大振幅與次大振幅落點頻率之間的距離小於4倍的傅立葉基本頻率(△f),τ=1意即回收能量的頻寬設為1;步驟(6)檢查是否4△f |f 1-f 2|<6△f,若是,設定τ=2然後至步驟(10),否則,至下一步驟;此步驟定義4△f |f 1-f 2|<6△f意即最大振幅與次大振幅落點頻率之間的距離小於6倍大於4倍的傅立葉基本頻率(△f),τ=2意即回收能量的頻寬設為2;步驟(7)檢查是否6△f |f 1-f 2|<8△f,若是,設定τ=3然後至步驟(10),否則,至下一步驟;此步驟定義6△f |f 1-f 2|<8△f意即最大振幅與次大振幅落點頻率之間的距離小於8倍大於6倍的傅立葉基本頻率(△f),τ=3意即回收能量的頻寬設為3;步驟(8)檢查是否8△f |f 1-f 2|<10△f,若是,設定τ=4然後至步驟(10),否則,至下一步驟;此步驟定義8△f |f 1-f 2|<10△f意即最大振幅與次大振幅落點頻率之間的距離小於10倍大於8倍的傅立葉基本頻率(△f),τ=4意即回收能量的頻寬設為4; 步驟(9)設定τ=5,τ=5意即回收能量的頻寬設為5;步驟(10)計算頻率漂移量(△f k )、回復之振幅量(R.A.);步驟(11)排除已找到的最大振幅的頻率點f 1,設定M=M-1;步驟(12)檢查是否M=0,如果是,步驟停止,若否,重回至步驟(4)。 An enhanced-FFT online machine vibration measurement method, which mainly uses the enhanced-FFT operation model to perform online bearing vibration detection and spectrum analysis; the steps are as follows: Step (1) set sampling frequency ( f s ), sampling Point (N), bandwidth ( τ ), and signal sampling; step (2) performs FFT; step (3) determines the number of main spectra (M); step (4) f 1 and f 2 are defined as The frequency of the maximum amplitude and the second largest amplitude drop point; step (5) checks if | f 1 - f 2 | < 4 Δ f , and if so, sets τ =1 and then to step (10), otherwise, to the next step; Step definition | f 1 - f 2 |<4Δ f means that the distance between the maximum amplitude and the sub-large amplitude drop frequency is less than 4 times the Fourier fundamental frequency (Δ f ), and τ =1 means the bandwidth of the recovered energy Set to 1; step (6) check if 4△ f | f 1 - f 2 |<6△ f , if yes, set τ = 2 and then to step (10), otherwise, to the next step; this step defines 4△ f | f 1 - f 2 |<6△ f means that the distance between the maximum amplitude and the sub-large amplitude drop frequency is less than 6 times greater than 4 times the Fourier fundamental frequency (Δ f ), and τ = 2 means the frequency of energy recovery The width is set to 2; step (7) checks if 6△ f | f 1 - f 2 |<8Δ f , if yes, set τ = 3 and then to step (10), otherwise, to the next step; this step defines 6△ f | f 1 - f 2 |<8△ f means that the distance between the maximum amplitude and the sub-large amplitude drop frequency is less than 8 times greater than 6 times the Fourier fundamental frequency (Δ f ), and τ = 3 means the frequency of energy recovery The width is set to 3; step (8) checks if 8△ f | f 1 - f 2 |<10Δ f , if yes, set τ = 4 and then to step (10), otherwise, to the next step; this step defines 8△ f | f 1 - f 2 |<10△ f means that the distance between the maximum amplitude and the sub-large amplitude drop frequency is less than 10 times greater than 8 times the Fourier fundamental frequency (Δ f ), and τ = 4 means the frequency of energy recovery The width is set to 4; step (9) sets τ = 5, τ = 5 means that the bandwidth of the recovered energy is set to 5; step (10) calculates the frequency drift amount (Δ f k ), and the amplitude of the recovery (RA); Step (11) excludes the frequency point f 1 of the maximum amplitude found, sets M = M-1; step (12) checks if M = 0, and if so, the step stops, and if not, returns to step (4). 如申請專利範圍第1項所述之以enhanced-FFT線上機台振動量測方法,其中該方法所獲得之軸承振動的取樣信號,係由安裝於欲檢測機台上的加速感測元件所獲得。 The method for measuring vibration of an on-line machine in an enhanced-FFT according to the first aspect of the patent application, wherein the sampling signal of the bearing vibration obtained by the method is obtained by an acceleration sensing component mounted on the machine to be tested. . 如申請專利範圍第2項所述之以enhanced-FFT線上機台振動量測方法,其中由該方法所量測之結果經傳輸至遠端,而能提供資料即時顯示、管理與查詢分析者。 The invention relates to an enhanced-FFT online machine vibration measurement method as described in claim 2, wherein the result measured by the method is transmitted to the remote end, and the data display, management and query analyst can be provided. 如申請專利範圍第2項所述之以enhanced-FFT線上機台振動量測方法,其中進一步能藉由行動裝置下載APP應用程式經無線連結遠端,而提供資料即時顯示圖表、查詢分析者。 For example, the enhanced-FFT online machine vibration measurement method described in claim 2, wherein the APP application can be downloaded by the mobile device to wirelessly connect the remote end, and the data is provided to display the chart and query the analyst. 一種建立enhanced-FFT線上機台振動量測系統,係包含有如申請專利範圍第1項中所述之方法,其主要包含有:至少一加速感測元件,係對應安裝於欲檢測機台上,可偵測機台運作時之平穩度,及偵測機台之精準度是否產生異常的現象;一控制處理器,係與加速感測元件連結,且接收加速感測元件所感測之振動頻率,該控制處理器中建構有enhanced-FFT(E-FFT)運算模型,此運算模型用於實現線上即時軸承振動的偵測與頻譜分析;一數據擷取模組,係與控制處理器及連結,用以接收控制處理器所傳輸之振動頻譜資料,並判斷是否超過預警值,再將判斷後之檢測資料傳輸,進一步該數據擷取模組包含有一顯示介面,該顯示介面用來顯示檢測資料,以提供監 控機台/設備、歷史資料查詢及預警功能;一資料庫伺服器,係與數據擷取模組連結,且接收數據擷取模組所傳輸之檢測資料,並負責紀錄與管理;一網頁資料管理模組,係與資料庫伺服器連結,該網頁資料管理模組包含一顯示介面,主要提供資料即時顯示、管理與查詢分析者。 A method for establishing an enhanced-FFT online machine vibration measuring system, comprising the method as recited in claim 1, wherein the method further comprises: at least one acceleration sensing component, correspondingly mounted on the machine to be tested, It can detect the smoothness of the operation of the machine and detect whether the accuracy of the machine is abnormal. A control processor is connected with the acceleration sensing component and receives the vibration frequency sensed by the acceleration sensing component. The control processor is constructed with an enhanced-FFT (E-FFT) operation model, which is used for realizing online bearing vibration detection and spectrum analysis; a data acquisition module, a control processor and a connection, And the method for receiving the vibration spectrum data transmitted by the control processor, and determining whether the warning value is exceeded, and then transmitting the determined detection data, further the data acquisition module includes a display interface, and the display interface is used to display the detection data. To provide supervision Control machine/equipment, historical data query and early warning function; a database server is connected with the data capture module, and receives the test data transmitted by the data capture module, and is responsible for recording and management; The management module is linked to the database server. The web data management module includes a display interface, which mainly provides instant display, management and query analysis of the data. 如申請專利範圍第5項所述之建立enhanced-FFT線上機台振動量測系統,其中該系統進一步包含有一APP應用程式,該APP應用程式供下載於行動裝置中,且能無線連結網頁資料管理模組,可供使用者透過行動裝置中的APP應用程式連結網頁資料管理模組,而提供資料即時顯示圖表、查詢分析。 Establishing an enhanced-FFT online machine vibration measurement system as described in claim 5, wherein the system further includes an APP application for downloading in the mobile device and wirelessly linking the webpage data management The module allows users to link to the web data management module through the APP application in the mobile device, and provides information to display charts and query analysis in real time. 如申請專利範圍第6項所述之建立enhanced-FFT線上機台振動量測系統,其中該加速感測元件可採用量測加速度的加速規者。 The enhanced-FFT online machine vibration measuring system is established as described in claim 6, wherein the acceleration sensing element can adopt an acceleration gauge for measuring acceleration. 如申請專利範圍第6項所述之建立enhanced-FFT線上機台振動量測系統,其中該數據擷取模組、資料庫伺服器及網頁資料管理模組係採用分別獨立個別電腦,並透過網路加以連結,或整合在同一部電腦中之其一方式。 The establishment of the enhanced-FFT online machine vibration measurement system as described in claim 6 wherein the data acquisition module, the database server and the webpage data management module are respectively independent computers and A way to connect or integrate in the same computer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105107502A TWI586943B (en) | 2016-03-11 | 2016-03-11 | Enhanced-fft online machine vibration measurement system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105107502A TWI586943B (en) | 2016-03-11 | 2016-03-11 | Enhanced-fft online machine vibration measurement system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI586943B true TWI586943B (en) | 2017-06-11 |
TW201732238A TW201732238A (en) | 2017-09-16 |
Family
ID=59688075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105107502A TWI586943B (en) | 2016-03-11 | 2016-03-11 | Enhanced-fft online machine vibration measurement system and method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI586943B (en) |
Cited By (3)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110084127A (en) * | 2019-03-29 | 2019-08-02 | 南京航空航天大学 | A kind of magnetic suspension rotor vibration measurement method of view-based access control model |
CN111104721A (en) * | 2018-10-09 | 2020-05-05 | 汉科系统科技股份有限公司 | Intelligent management system and method for real-time analysis of equipment vibration information |
US11838419B2 (en) | 2021-01-15 | 2023-12-05 | Delta Electronics, Inc. | Method and system for monitoring industrial devices |
Families Citing this family (1)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI805093B (en) * | 2021-11-24 | 2023-06-11 | 台中精機廠股份有限公司 | User interface machine control system |
Citations (5)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4426641A (en) * | 1980-03-31 | 1984-01-17 | Hitachi, Ltd. | Method and apparatus for monitoring the shaft vibration of a rotary machine |
US4885707A (en) * | 1987-02-19 | 1989-12-05 | Dli Corporation | Vibration data collecting and processing apparatus and method |
WO2006043511A1 (en) * | 2004-10-18 | 2006-04-27 | Nsk Ltd. | Abnormality diagnosis system for machinery |
EP1405047B1 (en) * | 2001-07-09 | 2007-02-14 | Shell Internationale Researchmaatschappij B.V. | Vibration analysis for predictive maintenance in machinery |
US7928833B2 (en) * | 2006-09-29 | 2011-04-19 | Rockwell Automation Technologies, Inc. | Dynamic condition monitoring system with integrated web server |
-
2016
- 2016-03-11 TW TW105107502A patent/TWI586943B/en not_active IP Right Cessation
Patent Citations (5)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4426641A (en) * | 1980-03-31 | 1984-01-17 | Hitachi, Ltd. | Method and apparatus for monitoring the shaft vibration of a rotary machine |
US4885707A (en) * | 1987-02-19 | 1989-12-05 | Dli Corporation | Vibration data collecting and processing apparatus and method |
EP1405047B1 (en) * | 2001-07-09 | 2007-02-14 | Shell Internationale Researchmaatschappij B.V. | Vibration analysis for predictive maintenance in machinery |
WO2006043511A1 (en) * | 2004-10-18 | 2006-04-27 | Nsk Ltd. | Abnormality diagnosis system for machinery |
US7928833B2 (en) * | 2006-09-29 | 2011-04-19 | Rockwell Automation Technologies, Inc. | Dynamic condition monitoring system with integrated web server |
Cited By (3)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111104721A (en) * | 2018-10-09 | 2020-05-05 | 汉科系统科技股份有限公司 | Intelligent management system and method for real-time analysis of equipment vibration information |
CN110084127A (en) * | 2019-03-29 | 2019-08-02 | 南京航空航天大学 | A kind of magnetic suspension rotor vibration measurement method of view-based access control model |
US11838419B2 (en) | 2021-01-15 | 2023-12-05 | Delta Electronics, Inc. | Method and system for monitoring industrial devices |
Also Published As
Publication number | Publication date |
---|---|
TW201732238A (en) | 2017-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102017561B1 (en) | 2019-09-05 | Algorithm and method for detecting error data of machine based on machine-learning technique |
TWI586943B (en) | 2017-06-11 | Enhanced-fft online machine vibration measurement system and method |
US20200081054A1 (en) | 2020-03-12 | Power line issue diagnostic methods and apparatus using distributed analytics |
CN117270514B (en) | 2024-01-26 | Production process whole-flow fault detection method based on industrial Internet of things |
CN110614539B (en) | 2021-12-03 | Online real-time monitoring and analyzing method for state of spindle of numerical control machine tool |
CN107462425B (en) | 2019-10-11 | A fault prediction method and fault prediction platform for a vehicle-mounted equipment system |
KR102483811B1 (en) | 2023-01-04 | Abnormal status monitoring and controlling system for automated process |
CN108627794B (en) | 2020-09-29 | Intelligent instrument detection method based on deep learning |
US10876928B2 (en) | 2020-12-29 | Method and device to monitor and automatically report electric motor and transformer conditions |
CN113467433A (en) | 2021-10-01 | Method and device for detecting faults of mechanical equipment |
US20140058615A1 (en) | 2014-02-27 | Fleet anomaly detection system and method |
KR101953558B1 (en) | 2019-03-04 | Apparatus and Method for Fault Management of Smart Devices |
CN113254301A (en) | 2021-08-13 | Method and system for detecting running state of steel production equipment |
CN115468648A (en) | 2022-12-13 | Installation state detection method and device and computer readable storage medium |
US20150149122A1 (en) | 2015-05-28 | Handheld data collector and analyzer system |
CN119199456A (en) | 2024-12-27 | Semiconductor testing method, system, terminal and medium |
CN110259435B (en) | 2022-11-29 | Well condition change identification method based on oil pumping unit electrical parameters |
CN111562037B (en) | 2021-09-28 | Thermometer fault detection method and device |
WO2024120018A1 (en) | 2024-06-13 | Detection method, training method, electrical appliance, monitoring system, storage medium, and device |
CN116257019B (en) | 2023-08-04 | PLC (programmable logic controller) management method and system based on cloud |
CN118443219A (en) | 2024-08-06 | Liquid cooling server leakage detection false alarm analysis method and liquid cooling control system |
US11463032B2 (en) | 2022-10-04 | Detecting rotor anomalies by determining vibration trends during transient speed operation |
CN111272457A (en) | 2020-06-12 | Mechanical state detection method based on temperature data and electronic equipment |
TWI820612B (en) | 2023-11-01 | Method for detecting abnormities of stamping equipment,device,equipment and storage medium using the same |
JPWO2020129818A1 (en) | 2021-09-27 | Mechanical equipment diagnostic system, mechanical equipment diagnostic method, and mechanical equipment diagnostic program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
2021-03-11 | MM4A | Annulment or lapse of patent due to non-payment of fees |