電子裝置Electronic device
本發明大體而言係關於電子裝置,更具體而言係關於可提供資料及電力傳輸傳輸之裝置。The present invention relates generally to electronic devices, and more particularly to devices that provide data and power transmission.
集線器擴展了電子裝置之連接能力。實例為USB集線器,其允許諸如鍵盤、滑鼠、記憶體及數位相機之多個裝置連接至諸如膝上型電腦或行動電話之另一裝置之一USB埠。 電源組為電子裝置之行動電源。電源組可將電力供應至諸如膝上型電腦、行動電話及平板之電子裝置。電源組亦可為此等電子裝置之電池充電。 現代消費者往往攜載多於一個行動裝置,諸如一個行動電話及一個平板。因此,對其來說另外攜載集線器及電源組兩者將不方便。此外,集線器及電源組配有個別專用纜線,因此攜載集線器及電源組兩者致使攜載單獨纜線,對現代消費者造成不便。The hub expands the connectivity of the electronic device. An example is a USB hub that allows multiple devices such as a keyboard, mouse, memory, and digital camera to be connected to one of the other devices, such as a laptop or mobile phone. The power pack is the mobile power source of the electronic device. The power pack can supply power to electronic devices such as laptops, mobile phones, and tablets. The power pack can also charge the batteries of such electronic devices. Modern consumers often carry more than one mobile device, such as a mobile phone and a tablet. Therefore, it is inconvenient for it to carry both a hub and a power pack. In addition, the hub and the power pack are equipped with individual dedicated cables, so that both the carrying hub and the power pack cause the carrying of a separate cable, which is inconvenient for modern consumers.
在一或多項實施例中,提供裝置。裝置包括第一埠、第二埠、電池及電力控制單元。電力控制單元電連接至電池、第一埠及第二埠。電力控制單元經組態以基於來自電池之輸出而進行以下操作:將第一電力信號傳輸至第一埠且將第二電力信號傳輸至第二埠;或將由第一埠接收之第三電力信號傳輸至第二埠。 在一或多項實施例中,提供裝置。裝置包括第一埠、第二埠、電力控制單元、電池及集線器控制單元。電力控制單元電連接至第一埠及第二埠。電池電連接至電力控制單元。集線器控制單元電連接至第一埠、第二埠及電力控制單元。電力控制單元將第一電壓輸出至第一埠且將不同於第一電壓之第二電壓輸出至第二埠。In one or more embodiments, a device is provided. The device includes a first port, a second port, a battery, and a power control unit. The power control unit is electrically connected to the battery, the first port and the second port. The power control unit is configured to perform the following operations based on the output from the battery: transmitting the first power signal to the first port and transmitting the second power signal to the second port; or transmitting the third power signal received by the first port Transfer to the second page. In one or more embodiments, a device is provided. The device includes a first port, a second port, a power control unit, a battery, and a hub control unit. The power control unit is electrically connected to the first port and the second port. The battery is electrically connected to the power control unit. The hub control unit is electrically connected to the first port, the second port, and the power control unit. The power control unit outputs the first voltage to the first chirp and outputs a second voltage different from the first voltage to the second chirp.
電子裝置經常提供單個功能。舉例而言,集線器擴展了一個埠之連接能力。舉例而言,USB集線器允許多於一個裝置連接至一個USB埠。作為另一實例,包含電池之電源組可將電力供應至使用中之其他電子裝置。其亦可為其他電子裝置之內部電池(若存在一個),不管其他電子裝置是否在使用中。電源組可經由標準化埠(諸如USB埠)供應電力。電源組可經由非標準化埠供應電力。在本發明之一些實施例中,埠可同時攜載資料傳輸及電力傳輸。 經常期望具有提供多於一個單個功能之裝置。舉例而言,將集線器及電源組之功能組合至一個多功能裝置中將為有利的。多功能裝置可減少消費者必須攜載之裝置之數目同時提供相同位準之便利。此外,多功能裝置可減少消費者必須攜載以便使用不同單功能裝置之纜線之數目。在一些實施例中,與集線器之資料傳輸及與電源組之電力傳輸需要不同類型之纜線。在一些實施例中,多功能裝置將標準化介面用於資料及電力傳輸兩者,藉此減少消費者必須攜載之纜線之類型之數目同時其可仍享受相同或近似相同便利量。 圖1說明電子裝置10。電子裝置10包括埠101、埠102、埠103、埠104、電池20、啟動工具311及傳信單元321。 埠101至104中之每一者可連接至其他裝置。如圖1中所說明,可連接至電子裝置10之裝置包括但不限於裝置30、41、42、43、50及60。預期,電子裝置10根據本發明之一些其他實施例可包括除埠101至104外之多個埠。根據本發明之一些其他實施例,埠101至104中之一或多者可消除或省略。 充電器70亦可連接至電子裝置10。儘管圖1展示六個裝置30、41、42、43、50及60且充電器70可連接至電子裝置10,可連接至電子裝置10之其他數目個裝置亦為可能的,此取決於使用情景。在一些實施例中,僅一個裝置連接至電子裝置10。在一些實施例中,僅一個充電器連接至電子裝置10。在一些實施例中,兩個、三個、四個、五個、六個或更多裝置可連接至電子裝置10。在一些實施例中,除任何數目個裝置外,一或多個充電器亦可連接至電子裝置10。 埠101、102、103、104可為相同、相似或不同類型之埠。埠101、102、103、104可攜載資料傳輸、電力傳輸或兩者。在一些實施例中,埠101、102、103、104中之一些或全部可符合標準化規格,諸如通用串列匯流排規格(包括但不限於USB 1.0、USB 1.1、USB 2.0、USB 3.0、USB 3.1、USB 3.2、USB電池充電1.0、USB電池充電1.1、USB電池充電1.2、USB電力遞送(PD)版本1.0、USB PD版本2.0、USB PD版本3.0、USB C類型1.0、USB C類型1.1及未來版本);不同埠可符合相同標準化規格之不同版本。在一些實施例中,埠101、102、103、104中之一些或全部可為音訊-視覺介面,諸如VGA、HDMI、DVI、迷你DVI、微DVI及迷你顯示埠(MiniDP)。在一些實施例中,埠101、102、103、104可屬於專屬類型且具有可自訂功能性。在實施例中,埠101可為串流上行埠(upstream facing port,UFP),且埠102可為串流下行埠(downstream facing port,DFP),且反之亦然。在一些實施例中,埠101及102為USB匯流排,其中每一者包含(VBUS、C1/C2、D+/D-_1、D+/D-_1、SUB1/SUB2、USB3.0)之接腳。 在圖1中所說明之實施例中,裝置30可為主機裝置,諸如桌上型電腦、膝上型電腦、行動電話、智慧型電話、平板及可經由裝置30之埠31連接至埠101的其他裝置。裝置30亦包含內部電池32。裝置30可藉由內部電池32為其自身供電,或自外部電源接收電力。埠31可用於與電子裝置10之埠(諸如埠101)之資料傳輸及電力傳輸兩者。內部電池32例如經由埠31藉由外部電源可再充電。在一些實施例中,埠31為USB埠。 裝置41、42、43、50可連接至埠102、103及其他埠,且可用於資料傳輸及電力傳輸兩者。裝置41、42、43、50之實例包括但不限於記憶體、硬碟機、鍵盤、電腦滑鼠、指標、數位相機、閃光燈及通風扇。在一些實施例中,裝置41、42、43、50可具有支援相同或不同版本之USB介面。 裝置60可為外部顯示器,其可經由音訊-視覺介面或USB介面或另一標準化或專屬介面而連接至埠104。 充電器70可將電力供應至電子裝置10且經由電子裝置10供應至裝置41、42、43、50及60。充電器70可連接至以諸如110 V及220 V之電壓操作之AC/DC電力出口,或連接至其他電源。 啟動工具311可由電子裝置10之使用者控制以啟動特定功能。在一些實施例中,啟動工具311為按鈕,使用者可按壓按鈕以啟動電池20以將電力供應至連接至電子裝置10之裝置。啟動工具311可具有其他實體外觀,諸如開關、控制桿、手柄、光學/聲學/電/熱/氣味感測器。 傳信單元321指示電子裝置10之狀態。在一些實施例中,傳信單元321可為燈或發光二極體(LED)。在一些實施例中,傳信單元321可指示電池20的電量。例如,傳信單元321可經組態以用不同色彩或強度發光以指示電池20之不同電量。作為實例,傳信單元321可為單色LED (其比多色光源偏移),在其發光時,指示低電池電量。 根據本發明之實施例,裝置30為連接至埠101之智慧型電話,裝置41、42、43分別為鍵盤、滑鼠及揚聲器,裝置50為USB記憶卡,裝置60為高解析度外部顯示器60。在此實施例中,裝置41、42、43、50、60經由電子裝置10連接至裝置30之埠31,電子裝置10在此狀況下提供集線器之功能。裝置41、42、43、50、60可自智慧型電話30汲取電力,或若電池電量足夠且使用者藉由使用啟動工具311來啟動電池20,則自電池20汲取電力。電子裝置10因此亦提供電源組之功能。根據本發明之實施例,充電器70為連接至110 V室內AC電力出口(未展示)之電源配接器且另外連接至電子裝置10。在此實施例中,充電器70可將電力供應至裝置30、41、42、43、50、60且對電子裝置10之電池20進行充電。 為進一步描述電子裝置10之功能性,下文提供根據本發明之不同使用情景及不同實施例。 參考圖2A中所說明之使用情景。僅充電器70經由埠101連接至電子裝置10。充電器70可對電子裝置10之電池20進行充電。充電器70可在電池20為滿的情況下停止充電。 參考圖2B中所說明之使用情景。僅充電器70經由埠102連接至電子裝置10。充電器70可對電子裝置10之電池20進行充電且可在電池20為滿的情況下停止充電。自圖2A及圖2B將清楚埠101及102皆能夠進行電力傳輸。 參考圖2C,其描繪埠101及102兩者經連接之情景。裝置30及充電器70分別連接至埠101及埠102。充電器70可將電力供應至裝置30,或對裝置30之內部電池32進行充電,或進行兩者。充電器70可對電子裝置10之電池20進行充電。在一些實施例中,充電器70可同時將電力供應至裝置30且對電池20進行充電。在一些實施例中,充電器70可對電池20進行充電且裝置30透過其特有內部電池32進行操作。其他使用亦為可能的。 參考圖2D,其描繪埠101及102兩者經連接之情景。充電器70及裝置41分別連接至埠101及埠102。充電器70可將電力供應至裝置41。充電器70可對電子裝置10之電池20進行充電。在一些實施例中,充電器70可同時將電力供應至裝置41且對電池20進行充電。在一些實施例中,充電器70可將電力供應至裝置41而無需對電子裝置10之電池20進行充電。其他使用亦為可能的。 圖2E類似於圖2D,因此不重複可能操作條件。在一些實施例中,埠102及103可具有不同能力,支援不同標準,或支援相同標準之不同版本,因此可連接至埠103之裝置50可不連接至埠102或可在減少功能性的情況下連接至埠102。舉例而言,若埠102支援USB 3.0且埠103支援USB 2.0,則具有USB 3.0能力之裝置必須連接至埠102以便使用USB 3.0功能性。在一些實施例中,埠102支援USB PD而埠103不支援,在此狀況下用埠103不可能進行USB電力遞送。 圖2F可視為圖2D及2E中所描繪之情景組合之情景。充電器70可對電子裝置10之電池20進行充電。充電器70可將電力供應至裝置41。充電器70可將電力供應至裝置50。充電器70可對電子裝置10之電池20進行充電且將電力供應至裝置41、50。充電器70可將電力供應至裝置41、50而無需對電池20進行充電。 充電器70在圖2A至圖2F中所描繪之全部情景中連接至電子裝置10。充電器70可對電子裝置10之電池20進行充電,可將電力供應至連接至電子裝置10之裝置,或可同時進行兩者。在一些實施例中,電子裝置10可被視為在圖2A至圖2F中所描繪之情景中以「充電模式」操作。 將充電器70一直連接至電子裝置10並非必需的;圖3A至圖3C描繪例示性情景。 參考圖3A,其中僅裝置30連接至電子裝置10。在一些實施例中,裝置30為智慧型電話。若電池20之電量足夠,則裝置30可自電子裝置10接收電力。裝置30可透過其特有內部電池32進行操作而不管電池20是否具有足夠電力。電子裝置10之使用者可藉由傳信單元321知曉電池20之狀態。使用者可選擇藉由啟動工具311來啟動電子裝置10之充電功能,諸如藉由按壓該啟動工具來使電子裝置10將電力供應至裝置30。在一些實施例中,裝置30之內部電池32可將電力供應至電子裝置10之電池20。 圖3B及圖3C類似於圖3A,其中不同之處在於哪些裝置連接至電子裝置10及裝置連接至電子裝置10至哪些埠。圖3中所揭示之操作條件亦適用於圖3B及3C,可能具有在熟習此項技術者之水平內之必要修改。 在圖3A至圖3C中所描繪之情景中無任何充電器70連接至電子裝置10 。裝置30、41及50可自電子裝置10之電池20汲取電力。在一些實施例中,電子裝置10可被認為在圖3A至圖3C中所描繪之情景中以「電源組模式」操作。 圖4A及圖4B描繪電子裝置10之其他可能使用情景。 參考圖4A,其中裝置30連接至埠101且裝置41連接至埠102。根據本發明之實施例,裝置30可為包含埠31及內部電池32之主機裝置,諸如智慧型電話或平板。根據本發明之實施例,裝置41可為需要外部電源操作之周邊裝置。在一些實施例中,裝置41為USB記憶卡或鍵盤。在一些實施例中,除裝置41外之裝置連接至埠102。在圖4A中所描繪之實施例中,電子裝置10可擴展主機裝置30之埠31之連接能力。電子裝置10亦可藉由電池20將電力供應至主機裝置30及外圍裝置41。圖4A中所描繪之實施例不同於簡單集線器裝置,其中周邊裝置41必須自主機裝置30汲取電力。藉由消除對將來自主機裝置30之電力供應至周邊裝置41的需求,電子裝置10可節省主機裝置30之內部電池32之電力。藉由能夠將電力供應至主機裝置30及周邊裝置41兩者,電子裝置10可甚至在內部電池32含電量低時保持主機裝置30操作。 圖4B與圖4A之不同之處在於充電器70另外連接至電子裝置10。根據本發明之實施例,裝置30可為包含埠31及內部電池32之主機中之,諸如智慧型電話或平板。根據本發明之實施例,裝置41可為需要外部電源操作之周邊裝置。在一些實施例中,裝置41為USB記憶卡或鍵盤。在一些實施例中,除裝置41外之裝置連接至埠102。充電器70提供可供應電力至裝置30及41之電源之額外選擇。充電器70可對電子裝置10之電池20進行充電。 在圖4A及圖4B中所描繪之情景中,多於一個電源可用,諸如電子裝置10之電池20、裝置30之內部電池32及充電器70。圖5A說明根據本發明之實施例之用以判定使用哪一電源來對哪一裝置供電/充電之例示性方法。 參考圖5A。電子裝置10首先判定連接充電器還是外部電力供應器。若存在一者,則充電器/外部電力供應器將電力供應至連接至電子裝置10且可視情況對電子裝置10之電池20進行充電。自外部電力供應器汲取電力只要可能即具有節省主機裝置之內部電池及電子裝置10之電池20的益處,藉此增加主機可透過其特有內部電池運行之時間長度及電子裝置10之電池20可供應之電力之量。 若不存在任何充電器或外部電力供應器,則電子裝置10判定是否啟動其電池20 (藉助於例如啟動工具311)。若其未經啟動,則電子裝置10之充電未經啟動,且無其特有電源之裝置(諸如鍵盤或滑鼠)將不得不自具有其特有電源之裝置(諸如智慧型電話、膝上型電腦或平板)汲取電力。 若電池20經啟動,則電子裝置10判定電池20是否具有足夠電力。若狀況如此,則連接至電子裝置10之裝置可自電池20汲取電力。 若電池20經啟動但電池20不具有足夠電力,則電子裝置10之充電未經啟動,且無其特有電源之裝置(諸如鍵盤或滑鼠)將不得不自具有其特有電源之裝置(諸如智慧型電話、膝上型電腦或平板)汲取電力。 圖5B說明根據本發明之實施例之用以判定使用哪一電源來對哪一裝置供電/充電的例示性方法。 首先類似於圖5A判定連接至電子裝置10之充電器或外部電力供應器之存在。提早進行此判定允許較佳節省連接至電子裝置10之裝置之電池。 然後,電子裝置10判定電池20是否具有足夠電力。若電池不具有足夠電力,則無其特有電源之裝置(諸如鍵盤或滑鼠)將不得不自具有其特有電源之裝置(諸如智慧型電話、膝上型電腦或平板)汲取電力。在一些實施例中,傳信單元321將指示低電池電量,通知使用者此情況且提示使用者對電子裝置10之電池20進行充電。 若電池具有足夠電力,則電子裝置10判定是否啟動電子裝置10之充電功能(藉助於例如啟動工具311)。若該充電功能經啟動,則連接至電子裝置10之裝置可自電池20汲取電力。若該充電功能未經啟動,則無其特有電源之裝置(諸如鍵盤或滑鼠)將不得不自具有其特有電源之裝置(諸如智慧型電話、膝上型電腦或平板)汲取電力。 圖6說明根據本發明之一些實施例之電子裝置10之更詳細方塊圖。除埠101、102、103、104及電池20,電子裝置10包含集線器控制單元100及電力控制單元200。電池20連接至電力控制單元200。集線器控制單元100連接至埠101至104及電力控制單元200。電力控制單元200連接至電池20、集線器控制單元100以及埠101及102。在一些實施例中,電力控制單元200亦可連接至埠103及104。 集線器控制單元100在所連接埠之間提供資料傳輸。集線器控制單元100可提供集線器功能。集線器控制單元100可提供資料多工/解多工功能。在一些實施例中,集線器控制單元100基於標準化規格,諸如USB規格。 電力控制單元200。在所連接埠、電池及區塊之間提供電力傳輸在一些實施例中,電力控制單元200可在所連接埠、電池及區塊間發送及接收複數個相同、相似或不同電力信號。複數個電力信號可處於不同電壓,諸如0 V、1 V、2 V、3 V、4 V、5 V、6 V、7 V、8 V、9 V、10 V、11 V、12 V、13 V、14 V、15 V、16 V、17 V、18 V、19 V、20 V、超過20 V之任何合適電壓,及任何合適非整數電壓。複數個電力信號可具有任何合適量之電流或電力。複數個電力信號可處於不同電壓範圍中。在一些實施例中,電力控制單元200可提供資料傳輸。在一些實施例中,集線器控制單元100基於標準化規格,諸如USB規格及USB PD規格。根據本發明之實施例,電力控制單元200可自電池20接收一或多個電力信號且將所接收電力信號傳輸至所連接埠及區塊中之任一者。電力控制單元200可以各種不同電壓傳輸電力信號,諸如處於不同於自埠101、102或電池20接收之電力信號之電壓。電力控制單元200可偵測連接至電池20連接至之埠之電力信號。電力控制單元200可偵測電池20之狀態,諸如電池電量。 可參考圖6之實施例進一步闡釋圖2A、圖2B、圖2C、圖2D、圖2E、圖2F、圖2G、圖3A、圖3B、圖3C、圖4A及4B之使用情景之操作。 在圖2A之使用情景中,電力控制單元200可判定是否對電池20進行充電。若進行充電,則電力信號可經由埠102自充電器70流動至電力控制單元200,且接著電力控制單元200可將電力信號引導至電池20。在自埠101接收電力信號時,電力控制單元200可在將電力信號引導至電池20之前對該電力信號作出修改或改變。修改或改變可與任何合適電特性(諸如電壓、電流、電力、頻率、工作循環等)有關。在一些實施例中,電力控制單元200可判定電池20並非不得不被充電,在此狀況下,充電器70可選擇不輸出電力信號或電力控制單元200可切斷自埠101接收之電力信號。 圖2B之使用情景類似於圖2A之使用情景,惟除充電器70連接至埠102。由於埠101及102可具有類似能力,因此關於圖2A之上述闡釋亦適用於圖2B且因此不重複。 在圖2C之使用情景中,電力控制單元200可判定是否對電池20進行充電。若進行充電,則電力信號可經由埠101自充電器70流動至電力控制單元200,且接著電力控制單元200可將電力信號引導至電池20。在自埠102接收電力信號時,電力控制單元200可對電力信號之任何合適電特性(諸如電壓、電流、電力、頻率、工作循環等)作出修改或改變。在一些實施例中,電力控制單元200可判定電池20並非不得不被充電,在此狀況下,充電器70可選擇不輸出電力信號。在一些實施例中,電力控制單元200或裝置30可判定裝置30自充電器70接收電力。在此狀況下,電力控制單元200基於自充電器70接收之電力信號將電力信號傳輸至埠101。此外,電力控制單元200可修改自充電器70接收之電力信號之任何電特性且符合傳輸至埠101之電力信號之需求。在一些實施例中,除充電器70外或替代該充電器,電池20可將電力提供至裝置30。 圖2D之使用情景類似於圖2C之使用情景,惟除充電器70連接至埠101及裝置41而無需其特有電池連接至埠102。因此,電力控制單元200可另外判定將是否自電池20汲取電力以供應裝置41。 圖2E之使用情況類似於圖2D之使用情況。在一些實施例中,埠101、102、103具有不同規格或能力且因此埠101、102、103中之每一者可處置之電力信號之電特性不同。電力控制單元200將接著對所接收電力信號作出必要修改且接著傳輸經修改電力信號。 圖2F之使用情景與圖2D及圖2E不同之處在於多於一個裝置連接至電子裝置10。電力控制單元200可藉由例如自充電器70汲取更多電力或自電池20汲取額外電力或兩者來將多於一個電力信號輸出至不同裝置。 在圖2A至圖2G之情景中,電力控制單元200可判定是否自充電器70汲取電力,是否對電池20進行充電或自該電池汲取電力,及輸出具有符合連接至電子裝置10之裝置之電力供應要求之電特性之電力信號的方式。電力控制單元200之優勢為使用/充電電池20之靈活性以最佳利用電池且延長電池20之使用壽命。另一優勢為將電力供應至可具有不同電力供應要求之諸多裝置的能力。 電力控制單元200可使用不同方法來判定對電池20進行充電或自該電池汲取電力。在一些實施例中,電力控制單元200可偵測電池20中可用之電力之量。在一些實施例中,電力控制單元200可偵測電池20能夠輸出之電壓或電流之量。 圖3A至圖3C之情景無一者涉及充電器70。電力控制單元200判定電池20之電量,且供應具有可能不同電特性之電力信號以滿足連接至電子裝置10之不同裝置之需求及電子裝置10之埠之不同能力。在一些實施例中,諸如圖3A中所說明,電力控制單元200在判定是否自電池20汲取電力中檢查啟動工具311是否經觸發。 在圖4A之使用情景中,裝置30、41連接至電子裝置10。電力控制單元200可基於上文所描述之因素判定是否自電池20汲取電力。電力控制單元200可判定是否將電力供應至裝置30。電力控制單元200可判定是否讓裝置30將電力供應至裝置41或讓電池20將電力供應至裝置41;在一些實施例中,判定可為至少部分地基於圖5A及圖5B中所描述之方法。電力控制單元200可改變所接收電力信號之電特性。電力控制單元200可轉換所接收電力信號之電特性且將所轉換電力信號傳輸至記憶體20、集線器控制單元100或埠中之任一者。在一些實施例中,諸如圖1中所描繪之一者,其他裝置可連接至電子裝置10,且集線器控制單元100處置所連接裝置間之資料傳輸。 圖4B之使用情景與圖4A之使用情景不同之處在於充電器70另外連接至電子裝置10。基於上文所描述因素,電力控制單元200可判定是否使用電池20或對該電池進行充電,是否自裝置30汲取電力或對該裝置進行充電,是否自充電器70汲取電力,及使用哪一(些)電源來對裝置41進行充電。在一些實施例中,判定可至少基於圖5A及圖5B中所說明之方法。電力控制單元200可改變所接收電力信號之電特性。電力控制單元200可轉換所接收電力信號之電特性且將所轉換電力信號傳輸至記憶體20、集線器控制單元100或埠中之任一者。 電力控制單元200可使用不同方法來判定使用哪一(些)電源。在一些實施例中,電力控制單元200可偵測電池20之輸出之電特性。電池20可每當可用於節省儲存於電池20及裝置30之內部電池32中之電力時選擇來自充電器70之第一汲取電力。電力控制單元200亦可考慮使用者之輸入,諸如是否已觸碰啟動工具311。在一些實施例中,電力控制單元200可比較電池20之輸出之電壓與臨限值。在一些實施例中,電力控制單元200可比較電池20之輸出之電壓與由裝置30提供之電力信號之電壓。在一些實施例中,若電池20之輸出之電壓是否對於在埠中之一者處所接收之電力信號之電壓,則電力控制單元200可判定電池20具有足夠電力。在一些實施例中,若電池20之輸出之電壓與在埠中之一者處接收之電力信號之電壓之間的差在預定或自適應臨限值內,則電力控制單元200可判定電池20具有足夠電力。 圖7說明根據本發明之一些實施例之電子裝置。 電力控制單元200包含電力遞送控制單元210、電力遞送控制單元220、電壓轉換單元230、電壓轉換單元240、模式設定單元310、啟動工具311、監測器單元320、傳信單元321、偵測單元330、電壓設定單元340、切換控制單元350及開關模組360。熟習此項技術者將瞭解圖7中所展示之互連僅為例示性且非限制性。 電力遞送控制單元210連接至埠101且可判定是否且如何傳輸及接收信號,諸如資料信號及電力信號。電力遞送控制單元210可連接至集線器控制單元100且可將電力遞送至該集線器控制單元。電力遞送控制單元210可連接至開關模組360。電力遞送控制單元210可具有匯流排。匯流排可具有至少部分地匹配埠101之接腳的接腳。電力遞送控制單元210可支援標準化規格(可能具有不同版本)。在一些實施例中,電力遞送控制單元210可基於USB。在一些實施例中,電力遞送控制單元210可支援USB 3.0。在一些實施例中,電力遞送控制單元210可支援USB 3.0 C類型電力遞送(PD)。在一些實施例中,電力遞送控制單元210之匯流排可具有可連接至埠101之(VBUS、C1/C2、D+/D-_1、D+/D-_1、SUB1/SUB2)之接腳。 電力遞送控制單元220類似於電力遞送控制單元210且因此將不詳細進行論述。 電壓轉換單元230可連接至電池20。電壓轉換單元230可連接至開關模組360。電壓轉換單元230可連接至監測器單元320。電壓轉換單元230可接收電信號,諸如電力信號,至少一個電壓,且將電信號轉換成另一電壓。電壓轉換單元230可接收並傳輸在電壓範圍中之電信號。電壓範圍可為任何合適範圍。在一些實施例中,電壓範圍係自5V至20V。電壓轉換單元230可以固定標稱電壓(諸如5 V)操作;在此狀況下,電壓轉換單元230可提供除電壓轉換外之功能,諸如信號隔離及阻抗轉換。電壓轉換單元230可為轉換器或電壓調節器。在一些實施例中,電壓轉換單元230可為DC-DC轉換器,諸如降壓-升壓DC-DC轉換器。電壓轉換單元230之輸入/輸出電壓可基於由另一區塊(諸如,電壓設定單元340)供應之參數。 電壓轉換單元240可連接至開關模組360。電壓轉換單元240可連接至集線器控制單元100。在一些實施例中,電壓轉換單元240可對集線器控制單元100供電。電壓轉換單元240可接收電信號,諸如電力信號,至少一個電壓,且將電信號轉換成另一電壓。電壓轉換單元240可接收並傳輸在電壓範圍中之電信號。電壓範圍可為任何合適範圍。在一些實施例中,電壓範圍係自5V至20V。電壓轉換單元240可以固定標稱電壓(諸如5 V)操作;在此狀況下,電壓轉換單元240可提供除電壓轉換外之功能,諸如信號隔離及阻抗轉換。電壓轉換單元240可為轉換器或電壓調節器。在一些實施例中,電壓轉換單元240可為DC-DC轉換器,諸如降壓DC-DC轉換器。電壓轉換單元240之輸入/輸出電壓可基於由另一區塊(諸如,電壓設定單元340)供應之參數。 模式設定單元310可連接至啟動工具311。在一些實施例中,啟動工具311指示電池20之啟動。模式設定單元310將接著向切換控制單元350指示此啟動,該切換控制單元繼而組態開關模組360使得將電池20之輸出傳輸至埠中之任一者,諸如埠101、102。模式設定單元310可決定使用哪一(些)電源來對哪一(些)所連接裝置供電。模式設定單元310可經程式化或經組態以實踐圖5A及圖5B中所說明之方法。 監測器單元320可監測電池20之狀態。監測器單元320可監測電池20之電量。監測單元320可連接至傳信單元321以指示電池20之狀態或電量。監測器單元320可連接至切換控制單元350以影響進入或離開開關模組360之電力信號。在一些實施例中,若監測器單元320判定電池20不具有足夠電力,則切換控制單元350可組態開關模組360使得在電池20與埠101、102之間無任何直接或間接電連接。 偵測單元330可連接至電子裝置10之任何數目個埠,諸如埠101、埠102或兩個埠101、102。偵測單元330可連接至切換控制單元350以基於偵測單元330之輸出而組態電力信號。偵測單元330可偵測所連接埠處是否存在資料或電力信號。偵測單元330可偵測在所連接埠處存在之信號之電特性,諸如電壓、電流及電力。偵測單元330可偵測埠是否連接至其他裝置,且埠連接至哪些裝置。在一些實施例中,偵測單元330可偵測所連接裝置是否支援標準化規格(及哪一(些)版本),諸如USB PD。偵測單元330可判定所連接裝置之類型,諸如主機裝置、周邊裝置、自供電裝置、充電器等。偵測單元330可連接至電壓設定單元340且可回應於所偵測結果將不同輸出饋送至電壓設定單元340。 切換控制單元350連接至開關模組360。切換控制單元350可連接至輸出可影響電力控制單元200中之電力信號之特性及流動之其他區塊,諸如模式設定單元310、監測器單元320及偵測單元330。 開關模組360包括開關且由切換控制單元350控制及/或組態。開關模組360判定電信號在電力控制單元200中流動之方式。開關模組360可包含開關361 (S1)、開關362 (S2)、開關363 (S3)、開關364 (S4)、開關365 (Q1)及開關366 (Q2)。在一些實施例中,開關模組360可包含比較單元367,該比較單元比較耦接至其之信號之電特性。 S1可連接在埠101之VBUS接腳與電壓轉換單元240之間。S2可連接在埠101之VBUS接腳與電壓轉換單元240之間。S2可連接至S4。S3可連接在埠102之VBUS接腳與電壓轉換單元230之間。S3可連接至Q1。S4可連接在埠102之VBUS接腳與電壓轉換單元240之間。S4可連接至S2。Q1可連接在埠101之VBUS接腳與電壓轉換單元230之間。Q2可連接在電池20與電壓轉換單元240之間。比較單元367可連接在S1與電壓轉換單元240之間。在一些實施例中,比較單元367可比較來自S1之信號之電特性與來自電壓轉換單元240之信號。比較單元367可具有基於比較結果之輸出。 在一些實施例中,比較單元367可為電壓比較器。比較單元367可為運算放大器。比較單元367可為非對稱傳導裝置。 比較單元367可為二極體。在一些實施例中,陽極(正端子)可連接至S1,陰極(負端子)可連接至電壓轉換單元240。在一些實施例中,二極體可具有壓降,諸如0.7V。若二極體電壓高於電壓轉換單元240之端子處之電壓達壓降,則來自S1之電力信號可穿過該二極體在Q2閉合之實施例中,若來自S1之電壓高於電池20之電壓(在壓降存在之情況下,達壓降),則二極體將變成經正向加偏壓。換言之,二極體可判定是來自電池20還是埠101之VBUS接腳之電力信號到達電壓轉換單元240。換言之,二極體可判定哪一電源為電壓轉換單元240、電池20或連接至埠101之裝置供電。 可參考圖7之實施例進一步闡釋圖2A、圖2B、圖2C、圖2D、圖2E、圖2F、圖2G、圖3A、圖3B、圖3C、圖4A及圖4B之使用情景之操作。 在圖2A之使用情景中,Q1可閉合且充電器70可藉由電壓轉換單元230對電池20進行充電。在圖2B之使用情景中,S3可閉合且充電器70可藉由電壓轉換單元230對電池20進行充電。 在圖2C之使用情景中,Q1及S3可閉合。充電器70可藉由電壓轉換單元230對電池20進行充電。充電器70可對裝置30進行充電。電力遞送控制單元220可在充電器70之電力信號到達裝置30之前修改該電力信號。 在圖2D之使用情景中,Q1及S3可閉合。充電器70可藉由電壓轉換單元230對電池20進行充電。充電器70可對裝置30進行充電。電力遞送控制單元210或電力遞送控制單元220可在充電器70之電力信號到達裝置30之前修改該電力信號。 在圖2E之使用情景中,Q1及S3可閉合。充電器70可藉由電壓轉換單元230對電池20進行充電。充電器70可對裝置41供電。電力遞送控制單元210或電力遞送控制單元220可在充電器70之電力信號到達裝置41之前修改該電力信號。 在圖2F之使用情景中,Q1及S1可閉合。充電器70可藉由電壓轉換單元230對電池20進行充電。充電器70可藉由電壓轉換單元240及集線器控制單元100對裝置50供電。 在圖2G之使用情景中,Q1、S1及S3可閉合。關於圖2E及圖2F所描述之操作亦適用。 在圖3A之使用情景中,Q1可閉合。電池20可藉由電壓轉換單元230對裝置30進行充電。在一些實施例中,Q2及S2可閉合以使電池20藉由電壓轉換單元240對裝置30進行充電。由於電壓轉換單元230及電壓轉換單元240可具有不同輸出電壓範圍,因此開關模組360使得電子裝置10能夠以各種不同電壓要求對裝置進行充電。 在圖3B之使用情景中,S3可閉合。電池20可藉由電壓轉換單元230對裝置41進行充電。在一些實施例中,S4可閉合以使電池20藉由電壓轉換單元240對裝置41進行充電。此配置可使得電子裝置10能夠以各種不同電壓要求對裝置進行充電。 在圖3C之使用情景中,Q2可閉合。電池20可藉由電壓轉換單元240及集線器控制單元100對裝置41進行充電。 在圖4A之使用情景中,Q1、Q2及S4可閉合,且S1、S2及S3可斷開。此可使得電池20可藉由電壓轉換單元230對裝置30進行充電且藉由電壓轉換單元240對裝置41進行充電。此配置可使得電子裝置10能夠以各種不同電壓要求對裝置進行充電。在一些實施例中,電力控制單元200可決定使裝置30對裝置41供電,在此狀況下,Q1及S3可閉合且電壓轉換單元230可由電壓設定單元340撤銷啟動。 在圖4B之使用情景中,Q1、Q2及S3可閉合。充電器70可藉由電壓轉換單元230對電池20進行充電。充電器70可藉由電力遞送控制單元220對裝置41供電。充電器70可直接或藉由電力遞送控制單元210或電力遞送控制單元220對裝置30供電。S1可閉合以將電力信號自充電器70饋送至電壓轉換單元240。 本發明之實施例提供可組合集線器及電源組之功能之多功能裝置,從而賦予使用者更多便利。本發明之實施例提供用以在存在多於一個電源時判定使用哪一電源來對哪些裝置供電/進行充電的方法。本發明之實施例有助於節省多功能裝置之電池電力及自供電行動裝置之電池電量。根據本發明之實施例之多功能裝置可以不同電要求將電力供應至各種裝置。 如本文中所使用,術語「大約」、「實質上」、「實質」、及"約"被用於描述及考慮小變化。在結合事件或情形使用時,該等術語可係指其中事件或情形明確發生的情況以及其中事件或情形接近於發生的情況。舉例而言,當結合數值使用時,該等術語可係指小於或等於彼數值之±10%的變化範圍,諸如小於或等於±5%、小於或等於±4%、小於或等於±3%、小於或等於±2%、小於或等於±1%、小於或等於±0.5%、小於或等於±0.1%,或小於或等於±0.05%。舉例而言,若兩個數值之間的差小於或等於值之平均值之±10% (諸如小於或等於±5%、小於或等於±4%、小於或等於±3%、小於或等於±2%、小於或等於±1%、小於或等於±0.5%、小於或等於±0.1%,或小於或等於±0.05%),則該等值可被認為「實質上」或「約」相同。舉例而言,「實質上」平行可能係指小於或等於±10°之相對於0°的角度變化範圍,諸如小於或等於±5°、小於或等於±4°、小於或等於±3°、小於或等於±2°、小於或等於±1°、小於或等於±0.5°、小於或等於±0.1°,或小於或等於±0.05°。舉例而言,「實質上」垂直可係指小於或等於±10°之相對於90°的角度變化範圍,諸如小於或等於±5°、小於或等於±4°、小於或等於±3°、小於或等於±2°、小於或等於±1°、小於或等於±0.5°、小於或等於±0.1°,或小於或等於±0.05°。 若兩個表面之間的位移不大於5 µm,不大於2 µm,不大於1 µm,或不大於0.5 µm,則兩個表面可被認為共面或實質上共面。 如本文中所使用,術語「導電」、「導電」及「導電率」係指傳輸電流的能力。導電材料通常指示展現對電流流動之極少或零對抗的彼等材料。導電率之一個度量為西門子/米(S/m)。通常,導電材料為具有大於大約10
4S/m之導電率的材料,例如至少10
5S/m或至少10
6S/m。材料之導電率可有時隨溫度變化。除非另有規定,否則材料之導電率係在室溫下進行量測。 本文中所使用,除非上下文另有明確指示,否則單數術語「一(a)」、「一(an)」和「該」可包括複數對象。在一些實施例之描述中,提供在另一組件之「上」或「上方」之組件可囊括其中後一組件直接在前一組件上(例如,實體接觸)的狀況,以及其中一或多個介入組件可位於前一組件與後一組件之間的狀況。 雖然已參考本發明之特定實施例描述並說明本發明,但此等描述及說明並不限制本發明。熟習此項技術者可清楚地理解,在不背離如隨附申請專利範圍所界定之本發明之真實精神及範疇的情況下,可做出各種改變且可在實施例內替代等效組件。說明可不必按比例繪製。由於製造過程中之變數等等,因此本發明中之精巧呈現與實際裝置之間可存在差異。可存在本發明之未具體說明之其他實施例。說明書及圖式應視為說明性而非限制性。可進行修改以使特定情況、材料、物質組合物、方法或程序適應本發明之目的、精神及範疇。所有此等修改意欲屬於隨附申請專利範圍之範疇內。雖然已參考以特定次序執行之特定操作來描述本文中所揭示之方法,但可理解,可在不背離本發明之教示的情況下將此等操作組合、細分或重新排序以形成等效方法。因此,除非本文中特別指明,否則操作之次序及分組並非本發明的限制。
Electronic devices often provide a single function. For example, a hub extends a single connection. For example, a USB hub allows more than one device to be connected to a USB port. As another example, a power pack containing a battery can supply power to other electronic devices in use. It can also be the internal battery of another electronic device (if one exists), regardless of whether other electronic devices are in use. The power pack can be powered via a standardized port (such as a USB port). The power pack can supply power via a non-standardized turn. In some embodiments of the invention, the device can carry both data transmission and power transmission. It is often desirable to have a device that provides more than one single function. For example, it would be advantageous to combine the functions of a hub and a power pack into a multi-function device. Multi-function devices reduce the number of devices that consumers must carry while providing the same level of convenience. In addition, the multi-function device can reduce the number of cables that consumers must carry in order to use different single-function devices. In some embodiments, different types of cables are required for data transfer with the hub and for power transfer with the power pack. In some embodiments, the multi-function device uses a standardized interface for both data and power transmission, thereby reducing the number of types of cables that the consumer must carry while still enjoying the same or approximately the same amount of convenience. FIG. 1 illustrates an electronic device 10. The electronic device 10 includes a crucible 101, a crucible 102, a crucible 103, a crucible 104, a battery 20, an activation tool 311, and a signaling unit 321. Each of the ports 101 to 104 can be connected to other devices. As illustrated in FIG. 1, devices connectable to electronic device 10 include, but are not limited to, devices 30, 41, 42, 43, 50, and 60. It is contemplated that electronic device 10 may include multiple turns in addition to ports 101 through 104 in accordance with some other embodiments of the present invention. According to some other embodiments of the present invention, one or more of the ports 101 to 104 may be eliminated or omitted. The charger 70 can also be connected to the electronic device 10. Although FIG. 1 shows six devices 30, 41, 42, 43, 50, and 60 and the charger 70 can be connected to the electronic device 10, other numbers of devices that can be connected to the electronic device 10 are also possible, depending on the usage scenario. . In some embodiments, only one device is connected to the electronic device 10. In some embodiments, only one charger is connected to the electronic device 10. In some embodiments, two, three, four, five, six or more devices can be connected to the electronic device 10. In some embodiments, one or more chargers may be coupled to the electronic device 10 in addition to any number of devices.埠101, 102, 103, 104 may be the same, similar or different types of 埠. The ports 101, 102, 103, 104 can carry data transmission, power transmission, or both. In some embodiments, some or all of the ports 101, 102, 103, 104 may conform to standardized specifications, such as universal serial busbar specifications (including but not limited to USB 1. 0, USB 1. 1, USB 2. 0, USB 3. 0, USB 3. 1, USB 3. 2, USB battery charging 1. 0, USB battery charging 1. 1, USB battery charging 1. 2. USB Power Delivery (PD) version 1. 0, USB PD version 2. 0, USB PD version 3. 0, USB C type 1. 0, USB C type 1. 1 and future versions); different versions can conform to different versions of the same standardized specification. In some embodiments, some or all of the ports 101, 102, 103, 104 may be audio-visual interfaces such as VGA, HDMI, DVI, mini DVI, micro DVI, and mini display (MiniDP). In some embodiments, the ports 101, 102, 103, 104 may be of a proprietary type and have customizable functionality. In an embodiment, 埠101 may be an upstream facing port (UFP), and 埠102 may be a downstream facing port (DFP), and vice versa. In some embodiments, ports 101 and 102 are USB busses, each of which includes (VBUS, C1/C2, D+/D-_1, D+/D-_1, SUB1/SUB2, USB3. 0) pin. In the embodiment illustrated in FIG. 1, device 30 can be a host device such as a desktop computer, laptop, mobile phone, smart phone, tablet, and connectable to port 101 via device 31 Other devices. Device 30 also includes an internal battery 32. Device 30 can power itself for internal battery 32 or receive power from an external power source. The 埠 31 can be used for both data transmission and power transmission with the electronic device 10 (such as 埠 101). The internal battery 32 is rechargeable by, for example, an external power source via the crucible 31. In some embodiments, 埠 31 is a USB port. Devices 41, 42, 43, 50 can be coupled to ports 102, 103 and other ports and can be used for both data transmission and power transmission. Examples of devices 41, 42, 43, 50 include, but are not limited to, a memory, a hard drive, a keyboard, a computer mouse, a pointer, a digital camera, a flash, and a ventilation fan. In some embodiments, devices 41, 42, 43, 50 may have USB interfaces that support the same or different versions. Device 60 can be an external display that can be coupled to port 104 via an audio-visual interface or a USB interface or another standardized or proprietary interface. The charger 70 can supply power to the electronic device 10 and to the devices 41, 42, 43, 50, and 60 via the electronic device 10. The charger 70 can be connected to an AC/DC power outlet that operates at voltages such as 110 V and 220 V, or to other power sources. The launch tool 311 can be controlled by a user of the electronic device 10 to initiate a particular function. In some embodiments, the activation tool 311 is a button that a user can press to activate the battery 20 to supply power to the device connected to the electronic device 10. The launch tool 311 can have other physical appearances such as switches, levers, handles, optical/acoustic/electrical/thermal/odor sensors. The signaling unit 321 indicates the state of the electronic device 10. In some embodiments, the signaling unit 321 can be a light or a light emitting diode (LED). In some embodiments, the signaling unit 321 can indicate the amount of power of the battery 20. For example, the signaling unit 321 can be configured to illuminate with different colors or intensities to indicate different amounts of power of the battery 20. As an example, the signaling unit 321 can be a monochrome LED (which is offset from the multi-color source) that, when illuminated, indicates a low battery level. According to an embodiment of the present invention, the device 30 is a smart phone connected to the UI 101, the devices 41, 42, 43 are respectively a keyboard, a mouse and a speaker, the device 50 is a USB memory card, and the device 60 is a high-resolution external display 60. . In this embodiment, the devices 41, 42, 43, 50, 60 are connected to the top 31 of the device 30 via the electronic device 10, which in this case provides the functionality of a hub. The devices 41, 42, 43, 50, 60 can draw power from the smart phone 30, or if the battery is sufficiently charged and the user activates the battery 20 by using the activation tool 311, then power is drawn from the battery 20. The electronic device 10 thus also provides the functionality of a power pack. In accordance with an embodiment of the present invention, charger 70 is a power adapter that is coupled to a 110 V indoor AC power outlet (not shown) and is additionally coupled to electronic device 10. In this embodiment, the charger 70 can supply power to the devices 30, 41, 42, 43, 50, 60 and charge the battery 20 of the electronic device 10. To further describe the functionality of the electronic device 10, different usage scenarios and different embodiments in accordance with the present invention are provided below. Refer to the usage scenarios illustrated in Figure 2A. Only the charger 70 is connected to the electronic device 10 via the crucible 101. The charger 70 can charge the battery 20 of the electronic device 10. The charger 70 can stop charging when the battery 20 is full. Refer to the usage scenario illustrated in Figure 2B. Only the charger 70 is connected to the electronic device 10 via the port 102. The charger 70 can charge the battery 20 of the electronic device 10 and can stop charging if the battery 20 is full. It will be clear from FIGS. 2A and 2B that both 埠101 and 102 can perform power transmission. Referring to Figure 2C, a scenario in which both ports 101 and 102 are connected is depicted. Device 30 and charger 70 are coupled to port 101 and port 102, respectively. The charger 70 can supply power to the device 30, or charge the internal battery 32 of the device 30, or both. The charger 70 can charge the battery 20 of the electronic device 10. In some embodiments, the charger 70 can simultaneously supply power to the device 30 and charge the battery 20. In some embodiments, the charger 70 can charge the battery 20 and the device 30 operates through its unique internal battery 32. Other uses are also possible. Referring to Figure 2D, a scenario in which both 埠101 and 102 are connected is depicted. The charger 70 and the device 41 are connected to the port 101 and the port 102, respectively. The charger 70 can supply power to the device 41. The charger 70 can charge the battery 20 of the electronic device 10. In some embodiments, the charger 70 can simultaneously supply power to the device 41 and charge the battery 20. In some embodiments, the charger 70 can supply power to the device 41 without charging the battery 20 of the electronic device 10. Other uses are also possible. Figure 2E is similar to Figure 2D, so the possible operating conditions are not repeated. In some embodiments, ports 102 and 103 may have different capabilities, support different standards, or support different versions of the same standard, so device 50 connectable to port 103 may not be connected to port 102 or may be reduced in functionality. Connect to 埠102. For example, if 埠102 supports USB 3. 0 and 埠103 supports USB 2. 0, then has USB 3. A 0 capable device must be connected to 埠102 in order to use USB 3. 0 functionality. In some embodiments, the UI 102 supports USB PD and the UI 103 does not support, in which case USB power delivery is not possible with the UI 103. Figure 2F can be viewed as a scenario combination of the scenarios depicted in Figures 2D and 2E. The charger 70 can charge the battery 20 of the electronic device 10. The charger 70 can supply power to the device 41. The charger 70 can supply power to the device 50. The charger 70 can charge the battery 20 of the electronic device 10 and supply power to the devices 41, 50. The charger 70 can supply power to the devices 41, 50 without charging the battery 20. Charger 70 is coupled to electronic device 10 in all of the scenarios depicted in Figures 2A-2F. The charger 70 can charge the battery 20 of the electronic device 10, can supply power to the device connected to the electronic device 10, or can perform both at the same time. In some embodiments, electronic device 10 can be viewed as operating in "charging mode" in the scenarios depicted in Figures 2A-2F. It is not necessary to connect the charger 70 all the way to the electronic device 10; Figures 3A-3C depict an exemplary scenario. Referring to FIG. 3A, only device 30 is connected to electronic device 10. In some embodiments, device 30 is a smart phone. Device 30 may receive power from electronic device 10 if the battery 20 is sufficiently powered. Device 30 can operate through its unique internal battery 32 regardless of whether battery 20 has sufficient power. The user of the electronic device 10 can know the status of the battery 20 by the signaling unit 321 . The user can select to activate the charging function of the electronic device 10 by the activation tool 311, such as by pressing the activation tool to cause the electronic device 10 to supply power to the device 30. In some embodiments, internal battery 32 of device 30 can supply power to battery 20 of electronic device 10. 3B and 3C are similar to FIG. 3A in that which devices are connected to the electronic device 10 and to which devices the device is connected to. The operating conditions disclosed in Figure 3 also apply to Figures 3B and 3C, and may have the necessary modifications within the level of those skilled in the art. No charger 70 is connected to the electronic device 10 in the scenario depicted in Figures 3A-3C. Devices 30, 41, and 50 can draw power from battery 20 of electronic device 10. In some embodiments, electronic device 10 can be considered to operate in "power pack mode" in the scenarios depicted in Figures 3A-3C. 4A and 4B depict other possible usage scenarios for the electronic device 10. Referring to Figure 4A, device 30 is coupled to port 101 and device 41 is coupled to port 102. In accordance with an embodiment of the present invention, device 30 can be a host device including cassette 31 and internal battery 32, such as a smart phone or tablet. In accordance with an embodiment of the present invention, device 41 may be a peripheral device that requires external power operation. In some embodiments, device 41 is a USB memory card or keyboard. In some embodiments, a device other than device 41 is coupled to port 102. In the embodiment depicted in FIG. 4A, the electronic device 10 can extend the connectivity of the port 31 of the host device 30. The electronic device 10 can also supply power to the host device 30 and the peripheral device 41 by the battery 20. The embodiment depicted in FIG. 4A differs from a simple hub device in that peripheral device 41 must draw power from host device 30. The electronic device 10 can save power of the internal battery 32 of the host device 30 by eliminating the need to supply power from the host device 30 to the peripheral device 41. By being able to supply power to both the host device 30 and the peripheral device 41, the electronic device 10 can maintain the host device 30 operating even when the internal battery 32 contains low power. 4B differs from FIG. 4A in that the charger 70 is additionally connected to the electronic device 10. In accordance with an embodiment of the present invention, device 30 may be in a host including cassette 31 and internal battery 32, such as a smart phone or tablet. In accordance with an embodiment of the present invention, device 41 may be a peripheral device that requires external power operation. In some embodiments, device 41 is a USB memory card or keyboard. In some embodiments, a device other than device 41 is coupled to port 102. Charger 70 provides an additional option to supply power to devices 30 and 41. The charger 70 can charge the battery 20 of the electronic device 10. In the scenario depicted in Figures 4A and 4B, more than one power source is available, such as battery 20 of electronic device 10, internal battery 32 of device 30, and charger 70. FIG. 5A illustrates an exemplary method for determining which power source to use to power/charge a device in accordance with an embodiment of the present invention. Refer to Figure 5A. The electronic device 10 first determines whether the connection charger or the external power supply is connected. If there is one, the charger/external power supply supplies power to the electronic device 10 and optionally charges the battery 20 of the electronic device 10. The power drawn from the external power supply has the benefit of saving the internal battery of the host device and the battery 20 of the electronic device 10, thereby increasing the length of time that the host can operate through its unique internal battery and the battery 20 of the electronic device 10 is available. The amount of electricity. If there is no charger or external power supply, the electronic device 10 determines whether to activate its battery 20 (by means of, for example, the starter tool 311). If it is not activated, the charging of the electronic device 10 is not activated, and the device without its own power source (such as a keyboard or a mouse) will have to be from a device with its own power source (such as a smart phone, a laptop) Or tablet) draw power. If the battery 20 is activated, the electronic device 10 determines whether the battery 20 has sufficient power. If this is the case, the device connected to the electronic device 10 can draw power from the battery 20. If the battery 20 is activated but the battery 20 does not have sufficient power, the charging of the electronic device 10 is not activated, and a device without its own power source (such as a keyboard or a mouse) will have to be self-contained with its own power supply (such as wisdom). Type of phone, laptop or tablet) to draw power. FIG. 5B illustrates an exemplary method for determining which power source to use to power/charge which device in accordance with an embodiment of the present invention. First, the presence of a charger or an external power supply connected to the electronic device 10 is determined similarly to FIG. 5A. Performing this determination early allows for better savings in the battery of the device connected to the electronic device 10. Then, the electronic device 10 determines whether the battery 20 has sufficient power. If the battery does not have sufficient power, devices without their own power source (such as a keyboard or mouse) will have to draw power from devices with their own power source, such as smart phones, laptops or tablets. In some embodiments, the signaling unit 321 will indicate a low battery level, notify the user of the condition and prompt the user to charge the battery 20 of the electronic device 10. If the battery has sufficient power, the electronic device 10 determines whether to activate the charging function of the electronic device 10 (by means of, for example, the activation tool 311). If the charging function is activated, the device connected to the electronic device 10 can draw power from the battery 20. If the charging function is not activated, devices without their own power source (such as a keyboard or mouse) will have to draw power from a device with its own power source, such as a smart phone, laptop or tablet. FIG. 6 illustrates a more detailed block diagram of an electronic device 10 in accordance with some embodiments of the present invention. In addition to the ports 101, 102, 103, 104 and the battery 20, the electronic device 10 includes a hub control unit 100 and a power control unit 200. The battery 20 is connected to the power control unit 200. The hub control unit 100 is connected to the ports 101 to 104 and the power control unit 200. The power control unit 200 is connected to the battery 20, the hub control unit 100, and the ports 101 and 102. In some embodiments, power control unit 200 can also be coupled to ports 103 and 104. The hub control unit 100 provides data transfer between the connected ports. The hub control unit 100 can provide a hub function. The hub control unit 100 can provide data multiplexing/demultiplexing functions. In some embodiments, hub control unit 100 is based on standardized specifications, such as USB specifications. Power control unit 200. Providing Power Transfer Between Connected Batteries, Batteries, and Blocks In some embodiments, power control unit 200 can transmit and receive a plurality of identical, similar, or different power signals between connected ports, batteries, and blocks. Multiple power signals can be at different voltages, such as 0 V, 1 V, 2 V, 3 V, 4 V, 5 V, 6 V, 7 V, 8 V, 9 V, 10 V, 11 V, 12 V, 13 V, 14 V, 15 V, 16 V, 17 V, 18 V, 19 V, 20 V, any suitable voltage greater than 20 V, and any suitable non-integer voltage. The plurality of power signals can have any suitable amount of current or power. A plurality of power signals can be in different voltage ranges. In some embodiments, power control unit 200 can provide data transfer. In some embodiments, hub control unit 100 is based on standardized specifications, such as USB specifications and USB PD specifications. In accordance with an embodiment of the present invention, power control unit 200 may receive one or more power signals from battery 20 and transmit the received power signals to any of the connected ports and blocks. The power control unit 200 can transmit power signals at various different voltages, such as voltages that are different from the power signals received by the slaves 101, 102 or the battery 20. The power control unit 200 can detect a power signal connected to the battery to which the battery 20 is connected. The power control unit 200 can detect the status of the battery 20, such as battery power. The operation of the usage scenarios of FIGS. 2A, 2B, 2C, 2D, 2E, 2F, 2G, 3A, 3B, 3C, 4A, and 4B can be further explained with reference to the embodiment of FIG. 6. In the usage scenario of FIG. 2A, the power control unit 200 can determine whether to charge the battery 20. If charging is performed, the power signal may flow from the charger 70 to the power control unit 200 via the port 102, and then the power control unit 200 may direct the power signal to the battery 20. Upon receiving the power signal from the port 101, the power control unit 200 can make modifications or changes to the power signal before directing the power signal to the battery 20. Modifications or changes may be related to any suitable electrical characteristics such as voltage, current, power, frequency, duty cycle, and the like. In some embodiments, the power control unit 200 can determine that the battery 20 does not have to be charged, in which case the charger 70 can choose not to output a power signal or the power control unit 200 can cut off the power signal received from the battery 101. The usage scenario of Figure 2B is similar to the usage scenario of Figure 2A except that charger 70 is coupled to port 102. Since 埠101 and 102 can have similar capabilities, the above explanation with respect to FIG. 2A also applies to FIG. 2B and thus is not repeated. In the usage scenario of FIG. 2C, the power control unit 200 can determine whether to charge the battery 20. If charging is performed, the power signal may flow from the charger 70 to the power control unit 200 via the crucible 101, and then the power control unit 200 may direct the power signal to the battery 20. Upon receiving the power signal from the port 102, the power control unit 200 can make modifications or changes to any suitable electrical characteristics of the power signal, such as voltage, current, power, frequency, duty cycle, and the like. In some embodiments, power control unit 200 can determine that battery 20 is not having to be charged, in which case charger 70 can choose not to output a power signal. In some embodiments, power control unit 200 or device 30 may determine that device 30 receives power from charger 70. In this case, the power control unit 200 transmits the power signal to the UI 101 based on the power signal received from the charger 70. In addition, power control unit 200 can modify any electrical characteristics of the power signals received from charger 70 and meet the requirements of the power signals transmitted to port 101. In some embodiments, battery 20 can provide power to device 30 in addition to or instead of charger 70. The usage scenario of Figure 2D is similar to the usage scenario of Figure 2C except that charger 70 is coupled to port 101 and device 41 without the need for its unique battery to be connected to port 102. Accordingly, the power control unit 200 can additionally determine whether power will be drawn from the battery 20 to supply the device 41. The use of Figure 2E is similar to the use of Figure 2D. In some embodiments, the crucibles 101, 102, 103 have different specifications or capabilities and thus the electrical characteristics of the power signals that can be handled by each of the ports 101, 102, 103 are different. The power control unit 200 will then make the necessary modifications to the received power signal and then transmit the modified power signal. The use scenario of FIG. 2F differs from FIGS. 2D and 2E in that more than one device is coupled to the electronic device 10. The power control unit 200 can output more than one power signal to a different device by, for example, drawing more power from the charger 70 or extracting additional power from the battery 20 or both. In the scenario of FIGS. 2A-2G, the power control unit 200 can determine whether to draw power from the charger 70, whether to charge or draw power from the battery 20, and output power having a device compliant with the electronic device 10. The way in which the electrical signals of the required electrical characteristics are supplied. An advantage of the power control unit 200 is the flexibility of using/recharging the battery 20 to optimally utilize the battery and extend the useful life of the battery 20. Another advantage is the ability to supply power to a number of devices that can have different power supply requirements. The power control unit 200 can use different methods to determine whether to charge or draw power from the battery 20. In some embodiments, power control unit 200 can detect the amount of power available in battery 20. In some embodiments, power control unit 200 can detect the amount of voltage or current that battery 20 can output. None of the scenarios of Figures 3A through 3C relate to the charger 70. The power control unit 200 determines the amount of power of the battery 20 and supplies power signals having potentially different electrical characteristics to meet the needs of different devices connected to the electronic device 10 and the different capabilities of the electronic device 10. In some embodiments, such as illustrated in FIG. 3A, the power control unit 200 checks whether the launch tool 311 is triggered in determining whether to draw power from the battery 20. In the use scenario of Figure 4A, devices 30, 41 are coupled to electronic device 10. The power control unit 200 can determine whether to draw power from the battery 20 based on the factors described above. The power control unit 200 can determine whether power is supplied to the device 30. The power control unit 200 can determine whether to cause the device 30 to supply power to the device 41 or have the battery 20 supply power to the device 41; in some embodiments, the determination can be based, at least in part, on the methods described in Figures 5A and 5B. . The power control unit 200 can change the electrical characteristics of the received power signal. The power control unit 200 can convert the electrical characteristics of the received power signal and transmit the converted power signal to any of the memory 20, the hub control unit 100, or the port. In some embodiments, such as one depicted in FIG. 1, other devices can be coupled to the electronic device 10, and the hub control unit 100 handles the transfer of data between the connected devices. The usage scenario of FIG. 4B differs from the usage scenario of FIG. 4A in that the charger 70 is additionally coupled to the electronic device 10. Based on the factors described above, the power control unit 200 can determine whether to use or charge the battery 20, whether to draw power from or charge the device 30, whether to draw power from the charger 70, and which one to use ( Some) power supplies to charge device 41. In some embodiments, the determination can be based at least on the methods illustrated in Figures 5A and 5B. The power control unit 200 can change the electrical characteristics of the received power signal. The power control unit 200 can convert the electrical characteristics of the received power signal and transmit the converted power signal to any of the memory 20, the hub control unit 100, or the port. The power control unit 200 can use different methods to determine which power source(s) to use. In some embodiments, power control unit 200 can detect the electrical characteristics of the output of battery 20. Battery 20 can select the first draw power from charger 70 whenever it can be used to conserve power stored in battery 20 and internal battery 32 of device 30. The power control unit 200 can also take into account user input, such as whether the launch tool 311 has been touched. In some embodiments, power control unit 200 can compare the voltage and threshold of the output of battery 20. In some embodiments, power control unit 200 can compare the voltage of the output of battery 20 to the voltage of the power signal provided by device 30. In some embodiments, if the voltage of the output of battery 20 is for a voltage of a power signal received at one of the turns, power control unit 200 can determine that battery 20 has sufficient power. In some embodiments, the power control unit 200 can determine the battery 20 if the difference between the voltage of the output of the battery 20 and the voltage of the power signal received at one of the turns is within a predetermined or adaptive threshold. Have enough power. Figure 7 illustrates an electronic device in accordance with some embodiments of the present invention. The power control unit 200 includes a power delivery control unit 210, a power delivery control unit 220, a voltage conversion unit 230, a voltage conversion unit 240, a mode setting unit 310, an activation tool 311, a monitor unit 320, a signaling unit 321, and a detection unit 330. The voltage setting unit 340, the switching control unit 350, and the switch module 360. Those skilled in the art will appreciate that the interconnections shown in Figure 7 are merely illustrative and not limiting. The power delivery control unit 210 is coupled to the UI 101 and can determine whether and how to transmit and receive signals, such as data signals and power signals. The power delivery control unit 210 can be connected to the hub control unit 100 and can deliver power to the hub control unit. The power delivery control unit 210 can be coupled to the switch module 360. The power delivery control unit 210 can have a bus bar. The bus bar can have pins that at least partially match the pins of the cymbal 101. The power delivery control unit 210 can support standardized specifications (possibly with different versions). In some embodiments, the power delivery control unit 210 can be based on a USB. In some embodiments, the power delivery control unit 210 can support USB 3. 0. In some embodiments, the power delivery control unit 210 can support USB 3. 0 Type C Power Delivery (PD). In some embodiments, the bus bar of the power delivery control unit 210 can have pins that can be connected to (VBUS, C1/C2, D+/D-_1, D+/D-_1, SUB1/SUB2). Power delivery control unit 220 is similar to power delivery control unit 210 and will therefore not be discussed in detail. The voltage conversion unit 230 can be connected to the battery 20. The voltage conversion unit 230 can be connected to the switch module 360. The voltage conversion unit 230 can be connected to the monitor unit 320. The voltage conversion unit 230 can receive an electrical signal, such as a power signal, at least one voltage, and convert the electrical signal to another voltage. The voltage conversion unit 230 can receive and transmit electrical signals in a voltage range. The voltage range can be any suitable range. In some embodiments, the voltage range is from 5V to 20V. The voltage conversion unit 230 can operate with a fixed nominal voltage (such as 5 V); in this case, the voltage conversion unit 230 can provide functions other than voltage conversion, such as signal isolation and impedance conversion. The voltage conversion unit 230 can be a converter or a voltage regulator. In some embodiments, voltage conversion unit 230 can be a DC-DC converter, such as a buck-boost DC-DC converter. The input/output voltage of the voltage conversion unit 230 may be based on a parameter supplied by another block such as the voltage setting unit 340. The voltage conversion unit 240 can be connected to the switch module 360. The voltage conversion unit 240 can be connected to the hub control unit 100. In some embodiments, voltage conversion unit 240 can power hub control unit 100. The voltage conversion unit 240 can receive an electrical signal, such as a power signal, at least one voltage, and convert the electrical signal to another voltage. The voltage conversion unit 240 can receive and transmit electrical signals in a voltage range. The voltage range can be any suitable range. In some embodiments, the voltage range is from 5V to 20V. The voltage conversion unit 240 can operate with a fixed nominal voltage (such as 5 V); in this case, the voltage conversion unit 240 can provide functions other than voltage conversion, such as signal isolation and impedance conversion. The voltage conversion unit 240 can be a converter or a voltage regulator. In some embodiments, voltage conversion unit 240 can be a DC-DC converter, such as a step-down DC-DC converter. The input/output voltage of the voltage conversion unit 240 may be based on a parameter supplied by another block such as the voltage setting unit 340. The mode setting unit 310 can be connected to the startup tool 311. In some embodiments, the launch tool 311 indicates the activation of the battery 20. Mode setting unit 310 will then indicate this activation to switching control unit 350, which in turn configures switch module 360 to cause the output of battery 20 to be transmitted to any of the ports, such as ports 101, 102. Mode setting unit 310 can determine which power supply(s) to use to power which connected device(s). Mode setting unit 310 can be programmed or configured to practice the methods illustrated in Figures 5A and 5B. The monitor unit 320 can monitor the status of the battery 20. The monitor unit 320 can monitor the amount of power of the battery 20. The monitoring unit 320 can be connected to the signaling unit 321 to indicate the status or power of the battery 20. The monitor unit 320 can be coupled to the switching control unit 350 to affect the power signals entering or leaving the switch module 360. In some embodiments, if the monitor unit 320 determines that the battery 20 does not have sufficient power, the switching control unit 350 can configure the switch module 360 such that there is no direct or indirect electrical connection between the battery 20 and the ports 101, 102. The detection unit 330 can be connected to any number of turns of the electronic device 10, such as 埠101, 埠102 or two 埠101,102. The detecting unit 330 can be connected to the switching control unit 350 to configure the power signal based on the output of the detecting unit 330. The detecting unit 330 can detect whether there is a data or power signal at the connected port. The detecting unit 330 can detect electrical characteristics of signals existing at the connected ports, such as voltage, current, and power. The detecting unit 330 can detect whether the device is connected to other devices and to which devices. In some embodiments, the detection unit 330 can detect whether the connected device supports a standardized specification (and which version(s)), such as a USB PD. The detecting unit 330 can determine the type of the connected device, such as a host device, a peripheral device, a self-powered device, a charger, and the like. The detecting unit 330 can be connected to the voltage setting unit 340 and can feed different outputs to the voltage setting unit 340 in response to the detected result. The switching control unit 350 is connected to the switch module 360. The switching control unit 350 can be coupled to output other blocks that can affect the characteristics and flow of the power signals in the power control unit 200, such as the mode setting unit 310, the monitor unit 320, and the detecting unit 330. The switch module 360 includes a switch and is controlled and/or configured by the switch control unit 350. The switch module 360 determines the manner in which the electrical signals flow in the power control unit 200. The switch module 360 can include a switch 361 (S1), a switch 362 (S2), a switch 363 (S3), a switch 364 (S4), a switch 365 (Q1), and a switch 366 (Q2). In some embodiments, the switch module 360 can include a comparison unit 367 that compares the electrical characteristics of the signals coupled thereto. S1 can be connected between the VBUS pin of the crucible 101 and the voltage conversion unit 240. S2 can be connected between the VBUS pin of the crucible 101 and the voltage conversion unit 240. S2 can be connected to S4. S3 can be connected between the VBUS pin of the port 102 and the voltage conversion unit 230. S3 can be connected to Q1. S4 can be connected between the VBUS pin of the port 102 and the voltage conversion unit 240. S4 can be connected to S2. Q1 can be connected between the VBUS pin of the 埠101 and the voltage conversion unit 230. Q2 can be connected between the battery 20 and the voltage conversion unit 240. The comparison unit 367 can be connected between S1 and the voltage conversion unit 240. In some embodiments, comparison unit 367 can compare the electrical characteristics of the signal from S1 with the signal from voltage conversion unit 240. Comparison unit 367 can have an output based on the comparison. In some embodiments, comparison unit 367 can be a voltage comparator. Comparison unit 367 can be an operational amplifier. Comparison unit 367 can be an asymmetric conduction device. Comparison unit 367 can be a diode. In some embodiments, the anode (positive terminal) can be connected to S1 and the cathode (negative terminal) can be connected to voltage conversion unit 240. In some embodiments, the diode can have a voltage drop, such as 0. 7V. If the voltage of the diode is higher than the voltage at the terminal of the voltage conversion unit 240, the power signal from S1 can pass through the diode in the embodiment where Q2 is closed, if the voltage from S1 is higher than the battery 20 The voltage (in the presence of a voltage drop, the voltage drop), the diode will become positively biased. In other words, the diode can determine whether the power signal from the battery 20 or the VBUS pin of the 埠101 reaches the voltage conversion unit 240. In other words, the diode can determine which power source is supplying power to the voltage conversion unit 240, the battery 20, or the device connected to the port 101. The operation of the usage scenarios of FIGS. 2A, 2B, 2C, 2D, 2E, 2F, 2G, 3A, 3B, 3C, 4A, and 4B can be further explained with reference to the embodiment of FIG. In the use scenario of FIG. 2A, Q1 can be closed and the charger 70 can charge the battery 20 by the voltage conversion unit 230. In the use scenario of FIG. 2B, S3 can be closed and the charger 70 can charge the battery 20 by the voltage conversion unit 230. In the use scenario of Figure 2C, Q1 and S3 can be closed. The charger 70 can charge the battery 20 by the voltage conversion unit 230. Charger 70 can charge device 30. The power delivery control unit 220 may modify the power signal before the power signal of the charger 70 reaches the device 30. In the use scenario of Figure 2D, Q1 and S3 can be closed. The charger 70 can charge the battery 20 by the voltage conversion unit 230. Charger 70 can charge device 30. The power delivery control unit 210 or the power delivery control unit 220 may modify the power signal of the charger 70 before it reaches the device 30. In the use scenario of Figure 2E, Q1 and S3 can be closed. The charger 70 can charge the battery 20 by the voltage conversion unit 230. Charger 70 can power device 41. The power delivery control unit 210 or the power delivery control unit 220 may modify the power signal before the power signal of the charger 70 reaches the device 41. In the use scenario of Figure 2F, Q1 and S1 can be closed. The charger 70 can charge the battery 20 by the voltage conversion unit 230. The charger 70 can supply power to the device 50 by the voltage conversion unit 240 and the hub control unit 100. In the usage scenario of Figure 2G, Q1, S1, and S3 can be closed. The operations described with respect to Figures 2E and 2F are also applicable. In the use scenario of Figure 3A, Q1 can be closed. The battery 20 can charge the device 30 by the voltage conversion unit 230. In some embodiments, Q2 and S2 can be closed to cause battery 20 to charge device 30 by voltage conversion unit 240. Since the voltage conversion unit 230 and the voltage conversion unit 240 can have different output voltage ranges, the switch module 360 enables the electronic device 10 to charge the device with various different voltage requirements. In the use scenario of Figure 3B, S3 can be closed. The battery 20 can charge the device 41 by the voltage conversion unit 230. In some embodiments, S4 can be closed to cause battery 20 to charge device 41 by voltage conversion unit 240. This configuration can enable the electronic device 10 to charge the device at a variety of different voltage requirements. In the use scenario of Figure 3C, Q2 can be closed. The battery 20 can charge the device 41 by the voltage conversion unit 240 and the hub control unit 100. In the use scenario of Figure 4A, Q1, Q2, and S4 can be closed, and S1, S2, and S3 can be disconnected. This allows the battery 20 to charge the device 30 by the voltage conversion unit 230 and to charge the device 41 by the voltage conversion unit 240. This configuration can enable the electronic device 10 to charge the device at a variety of different voltage requirements. In some embodiments, power control unit 200 may decide to cause device 30 to power device 41, in which case Q1 and S3 may be closed and voltage conversion unit 230 may be deactivated by voltage setting unit 340. In the use scenario of Figure 4B, Q1, Q2, and S3 can be closed. The charger 70 can charge the battery 20 by the voltage conversion unit 230. The charger 70 can power the device 41 by the power delivery control unit 220. The charger 70 can power the device 30 directly or through the power delivery control unit 210 or the power delivery control unit 220. S1 can be closed to feed a power signal from the charger 70 to the voltage conversion unit 240. Embodiments of the present invention provide a multi-function device that combines the functions of a hub and a power pack to provide greater convenience to the user. Embodiments of the present invention provide a method for determining which power source to use to power/charge which devices when more than one power source is present. Embodiments of the present invention help to conserve battery power for multi-function devices and battery power for self-powered mobile devices. The multi-function device according to an embodiment of the present invention can supply power to various devices with different electrical requirements. As used herein, the terms "about", "substantially", "substantially", and "about" are used to describe and contemplate small variations. When used in connection with an event or circumstance, the terms may refer to a situation in which an event or circumstance occurs explicitly and where the event or circumstance is close to occurring. For example, when used in connection with a value, the terms may mean a range of variation less than or equal to ±10% of the value, such as less than or equal to ±5%, less than or equal to ±4%, less than or equal to ±3% Less than or equal to ±2%, less than or equal to ±1%, less than or equal to ±0. 5%, less than or equal to ±0. 1%, or less than or equal to ±0. 05%. For example, if the difference between two values is less than or equal to ±10% of the average of the values (such as less than or equal to ±5%, less than or equal to ±4%, less than or equal to ±3%, less than or equal to ± 2%, less than or equal to ±1%, less than or equal to ±0. 5%, less than or equal to ±0. 1%, or less than or equal to ±0. 05%), the equivalents can be considered to be "substantially" or "about" the same. For example, "substantially" parallel may refer to an angular variation range of less than or equal to ±10° with respect to 0°, such as less than or equal to ±5°, less than or equal to ±4°, less than or equal to ±3°, Less than or equal to ±2°, less than or equal to ±1°, less than or equal to ±0. 5°, less than or equal to ±0. 1°, or less than or equal to ±0. 05°. For example, "substantially" vertical may mean an angular variation range of less than or equal to ±10° with respect to 90°, such as less than or equal to ±5°, less than or equal to ±4°, less than or equal to ±3°, Less than or equal to ±2°, less than or equal to ±1°, less than or equal to ±0. 5°, less than or equal to ±0. 1°, or less than or equal to ±0. 05°. If the displacement between the two surfaces is not more than 5 μm, no more than 2 μm, no more than 1 μm, or no more than 0. At 5 μm, the two surfaces can be considered coplanar or substantially coplanar. As used herein, the terms "conducting", "conducting" and "conductivity" refer to the ability to transmit electrical current. Conductive materials generally indicate their materials exhibiting little or zero resistance to current flow. One measure of electrical conductivity is Siemens/meter (S/m). Typically, the electrically conductive material has greater than about 10 4 Material of conductivity of S/m, for example at least 10 5 S/m or at least 10 6 S/m. The conductivity of a material can sometimes vary with temperature. Unless otherwise specified, the conductivity of the material is measured at room temperature. As used herein, the singular terms "a", "an"," In the description of some embodiments, a component provided "on" or "above" another component may include a condition in which the latter component is directly on the previous component (eg, physical contact), and one or more of The intervention component can be located between the previous component and the latter component. The present invention has been described and illustrated with reference to the particular embodiments of the invention. It will be apparent to those skilled in the art that various changes can be made and the equivalent components can be substituted within the embodiments without departing from the true spirit and scope of the invention as defined by the appended claims. The description may not necessarily be drawn to scale. There may be differences between the delicate presentation of the present invention and the actual device due to variables in the manufacturing process and the like. Other embodiments of the invention not specifically illustrated may exist. The description and drawings are to be regarded as illustrative and not restrictive. Modifications may be made to adapt a particular situation, material, composition, method or procedure to the purpose, spirit and scope of the invention. All such modifications are intended to fall within the scope of the appended claims. Although the methods disclosed herein have been described with reference to specific operations that are performed in a particular order, it is understood that such operations can be combined, sub-sequenced, or re-ordered to form equivalent methods without departing from the teachings of the invention. Therefore, the order of operations and groupings are not limiting of the invention unless specifically indicated herein.
10 電子裝置 20 電池 30 裝置/智慧型電話 31 埠 32 內部電池 41 裝置/鍵盤 42 裝置/滑鼠 43 裝置/揚聲器 50 裝置/通用串列匯流排(USB)記憶卡 60 裝置/高解析度外部顯示器 70 充電器 100 集線器控制單元 101 埠 102 埠 103 埠 104 埠 200 電力控制單元 210 電力遞送控制單元 220 電力遞送控制單元 230 電壓轉換單元 240 電壓轉換單元 310 模式設定單元 311 啟動工具 320 監測器單元 321 傳信單元 330 偵測單元 340 電壓設定單元 350 切換控制單元 360 開關模組 361 開關(S1) 362 開關(S2) 363 開關(S3) 364 開關(S4) 365 開關(Q1) 366 開關(Q2) 367 比較單元 C1/C2 接腳 D+/D-_1 接腳 D+/D-_2 接腳 SUB1/SUB2 接腳 VBUS 接腳10 Electronics 20 Battery 30 Device / Smartphone 31 埠 32 Internal Battery 41 Device / Keyboard 42 Device / Mouse 43 Device / Speaker 50 Device / Universal Serial Bus (USB) Memory Card 60 Device / High Resolution External Display 70 Charger 100 Hub Control Unit 101 埠102 埠103 埠104 埠200 Power Control Unit 210 Power Delivery Control Unit 220 Power Delivery Control Unit 230 Voltage Conversion Unit 240 Voltage Conversion Unit 310 Mode Setting Unit 311 Start Tool 320 Monitor Unit 321 Signal unit 330 detecting unit 340 voltage setting unit 350 Switching control unit 360 Switching module 361 Switch (S1) 362 Switch (S2) 363 Switch (S3) 364 Switch (S4) 365 Switch (Q1) 366 Switch (Q2) 367 Comparing unit C1/C2 Pin D+/D-_1 Pin D+/D-_2 pin SUB1/SUB2 pin VBUS pin
當結合附圖閱讀時可自以下詳述描述最佳理解本發明之態樣。應注意,各種特徵可能未按比例繪製,且各種特徵的尺寸可出於論述的清楚起見而任意增大或減小。 圖1說明根據本發明之實施例之電子裝置。 圖2A、圖2B、圖2C、圖2D、圖2E及圖2F說明根據本發明之不同使用情景及不同實施例。 圖3A、圖3B及圖3C說明根據本發明之不同使用情景及不同實施例。 圖4A及圖4B說明根據本發明之不同使用情景及不同實施例。 圖5A及圖5B說明根據本發明之實施例之用於判定使用哪一電源來為哪一裝置供電/充電的方法。 圖6說明根據本發明之實施例之電子裝置。 圖7說明根據本發明之實施例之電子裝置。 貫穿圖式及詳細描述使用共同參考標號指示相同或類似元件。本發明自結合附圖進行之以下詳細描述將更顯而易見。The invention may be best understood from the following detailed description when read in conjunction with the drawings. It is noted that various features may not be drawn to scale, and the dimensions of the various features may be arbitrarily increased or reduced for clarity of the discussion. 1 illustrates an electronic device in accordance with an embodiment of the present invention. 2A, 2B, 2C, 2D, 2E, and 2F illustrate different usage scenarios and different embodiments in accordance with the present invention. 3A, 3B, and 3C illustrate different usage scenarios and different embodiments in accordance with the present invention. 4A and 4B illustrate different usage scenarios and different embodiments in accordance with the present invention. 5A and 5B illustrate a method for determining which power source to use to power/charge a device in accordance with an embodiment of the present invention. Figure 6 illustrates an electronic device in accordance with an embodiment of the present invention. Figure 7 illustrates an electronic device in accordance with an embodiment of the present invention. The use of common reference numerals indicates the same or similar elements throughout the drawings and the detailed description. The invention will be more apparent from the following detailed description.