US20030199974A1 - Annuloplasty apparatus and methods - Google Patents
- ️Thu Oct 23 2003
US20030199974A1 - Annuloplasty apparatus and methods - Google Patents
Annuloplasty apparatus and methods Download PDFInfo
-
Publication number
- US20030199974A1 US20030199974A1 US10/125,811 US12581102A US2003199974A1 US 20030199974 A1 US20030199974 A1 US 20030199974A1 US 12581102 A US12581102 A US 12581102A US 2003199974 A1 US2003199974 A1 US 2003199974A1 Authority
- US
- United States Prior art keywords
- implant
- wire
- valve
- annulus
- annuloplasty Prior art date
- 2002-04-18 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title description 31
- 239000007943 implant Substances 0.000 claims abstract description 127
- 230000008602 contraction Effects 0.000 claims description 4
- 230000000747 cardiac effect Effects 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims 6
- 238000010168 coupling process Methods 0.000 claims 6
- 238000005859 coupling reaction Methods 0.000 claims 6
- 210000004115 mitral valve Anatomy 0.000 abstract description 35
- 210000000591 tricuspid valve Anatomy 0.000 abstract description 13
- 230000002787 reinforcement Effects 0.000 abstract description 7
- 230000007246 mechanism Effects 0.000 description 46
- 238000013459 approach Methods 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 210000004369 blood Anatomy 0.000 description 11
- 239000008280 blood Substances 0.000 description 11
- 210000003041 ligament Anatomy 0.000 description 9
- 230000008439 repair process Effects 0.000 description 9
- 230000017531 blood circulation Effects 0.000 description 7
- 210000005240 left ventricle Anatomy 0.000 description 7
- 230000000712 assembly Effects 0.000 description 6
- 238000000429 assembly Methods 0.000 description 6
- 210000003709 heart valve Anatomy 0.000 description 5
- 238000002513 implantation Methods 0.000 description 5
- 208000007536 Thrombosis Diseases 0.000 description 4
- 230000010100 anticoagulation Effects 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 210000005246 left atrium Anatomy 0.000 description 4
- 208000005907 mitral valve insufficiency Diseases 0.000 description 4
- 210000005241 right ventricle Anatomy 0.000 description 4
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 4
- 206010027727 Mitral valve incompetence Diseases 0.000 description 3
- 230000004217 heart function Effects 0.000 description 3
- 210000005244 lower chamber Anatomy 0.000 description 3
- 229910001000 nickel titanium Inorganic materials 0.000 description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000012781 shape memory material Substances 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 230000000472 traumatic effect Effects 0.000 description 3
- 210000005243 upper chamber Anatomy 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 206010067171 Regurgitation Diseases 0.000 description 2
- 210000001765 aortic valve Anatomy 0.000 description 2
- 230000001746 atrial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000010339 dilation Effects 0.000 description 2
- 210000001174 endocardium Anatomy 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000002107 myocardial effect Effects 0.000 description 2
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical group [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 2
- -1 polytetrafluorethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 230000002980 postoperative effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 210000003102 pulmonary valve Anatomy 0.000 description 2
- 230000037390 scarring Effects 0.000 description 2
- FVIWGIYGBZLZSG-UHFFFAOYSA-N CCC1NC1C Chemical compound CCC1NC1C FVIWGIYGBZLZSG-UHFFFAOYSA-N 0.000 description 1
- 208000002330 Congenital Heart Defects Diseases 0.000 description 1
- 229920004934 Dacron® Polymers 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 208000034158 bleeding Diseases 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 238000013132 cardiothoracic surgery Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 208000016569 congenital mitral valve insufficiency Diseases 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000005831 heart abnormality Effects 0.000 description 1
- 210000002837 heart atrium Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000000004 hemodynamic effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 210000001147 pulmonary artery Anatomy 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 210000005245 right atrium Anatomy 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 238000011477 surgical intervention Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2442—Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
- A61F2/2451—Inserts in the coronary sinus for correcting the valve shape
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2442—Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
Definitions
- the invention relates to heart valve repair and particularly to annuloplasty apparatus and methods.
- the invention is especially useful in mitral valve annuloplasty procedures, which generally involve mitral insufficiency (e.g., regurgitation when the mitral valve does not properly close).
- Heart valves which allow blood to pass through the four chambers of the heart in one direction.
- the valves have either two or three cusps, flaps, or leaflets, which comprise fibrous tissue that attaches to the walls of the heart.
- the cusps open when the blood flow is flowing correctly and then close to form a tight seal to prevent backflow.
- the four chambers are known as the right and left atria (upper chambers) and right and left ventricles (lower chambers).
- the four valves that control blood flow are known as the tricuspid, mitral, pulmonary, and aortic valves.
- the tricuspid valve allows one-way flow of deoxygenated blood from the right upper chamber (right atrium) to the right lower chamber (right ventricle).
- the pulmonary valve allows one-way blood flow from the right ventricle to the pulmonary artery, which carries the deoxygenated blood to the lungs.
- the mitral valve also a one-way valve, allows oxygenated blood, which has returned to the left upper chamber (left atrium), to flow to the left lower chamber (left ventricle). When the left ventricle contracts, the oxygenated blood is pumped through the aortic valve to the aorta.
- mitral valve insufficiency also known as mitral regurgitation
- mitral regurgitation is a common cardiac abnormality where the mitral valve leaflets do not completely close when the left ventricle contracts. This allows blood to flow back into the left atrium, which then requires the heart to work harder as it must pump both the regular volume of blood and the blood that has regurgitated back into the left atrium. Obviously, if this insufficiency is not corrected, the added workload can eventually result in heart failure.
- valve replacement One option to correct valve defects is complete valve replacement. This intervention, however, is quite invasive and traumatic. There are more conservative surgical interventions that are less traumatic than implanting valvular prostheses. These approaches include valve leaflet repair, chordae tendinae shortening or replacement, and or valve annulus repair also known as annuloplasty. One example where annuloplasty procedures have been developed is in the field of mitral valve insufficiency correction.
- Mitral valve insufficiency typically results from a change in the size and shape of the mitral valve annulus.
- Mitral valve annuloplasty involves reestablishing the normal shape and size of the mitral valve annulus so that it can effect full closure of the valve leaflets.
- C-shaped bands or partial annuloplasty rings also have been developed. These devices can be attached solely to the posterior portion of the valve annulus which eliminates the need to attach material to the anterior portion of the annulus.
- the annulus is fibrous and generally does not require plication and/or reinforcement.
- the partial rings can preserve the normal function of the anterior portion of the annulus.
- Full and partial ring devices are disclosed, for example, in U.S. Pat. No. 3,656,185, which issued to Carpentier.
- the O'Connor patent discloses a plication approach, particularly suitable for use with an annuloplasty operation on heart valves (e.g., mitral or tricuspid valves).
- the approach involves a ligament, which can comprise a wide, flexible strip of expanded polytetrafluorethylene or similar material, and sutures to retain the ligament in place.
- the ligament has at least an end of constricted diameter and a needle attached thereto, or it can have two constricted ends and a needle attached to each of the ends. This construction permits the ligament to be drawn through an area of tissue to be plicated.
- a first end of the ligament is anchored, preferably with sewing of conventional sutures through the ligament, and the tissue is cinched along the length of the ligament to provide the desired amount of plication.
- the second end of the ligament is then likewise anchored in place, again preferably through the use of a suture sewn through the ligament.
- the Howanec patent describes a system that includes an elongate flexible band with a needle attached to one end of the band and a fit adjuster attached to the other end of the band.
- the needle is used to introduce the band into the atrioventricular groove (hereafter “AV groove”) and then pull a portion of the band out of the tissue.
- AV groove atrioventricular groove
- a fit adjuster is used to couple the exposed ends of the band and size and position the band in the annulus.
- the band is pulled to cinch the tissue in the AV groove until the valve annulus is reconfigured to an optimal shape, the band can be secured to the valve annulus with sutures and the exposed portions of the annuloplasty system removed.
- the Cox patent describes a system that comprises a combined annuloplasty ring implant, which has a rigid section and a flexible section.
- a needle is coupled to one end of the implant. The needle facilitates introducing the implant into the fatty pad of the AV groove, which surrounds the valve annulus, at one end of the posterior portion of the annulus and pulling one end portion of the implant out of the AV groove in the vicinity of the other end of the posterior portion of the annulus.
- the flexible section of the ring extends adjacent to the flexible posterior portion of the annulus, while the rigid section of the ring spans the substantially rigid inter-trigone section of the annulus.
- the flexible material is also elastic to accommodate the expansion and contraction of the annulus, in addition to flexing.
- the system further includes means for joining the ends of the ring, which are positioned along the inter-trigone section, after the needle is removed. Sutures can be added to secure the annuloplasty ring to the annulus, for example, along the inter-trigone section.
- annuloplasty ring and band recipients are required to undergo anticoagulation therapy for a minimum of several months post-operatively due to the high risk of prosthesis-induced thrombosis.
- anticoagulation therapy increases the risk of bleeding complications due to the inhibition of blood clot formation.
- the present invention involves annuloplasty systems that avoid problems and disadvantages of the prior art.
- the present invention involves an annuloplasty system for repairing a valve in a patient's heart.
- the system comprises a surgical implant, which includes a member having first and second end portions.
- the implant member further is configured and/or adapted to form a partial ring along a portion of one of the valve annulae of a patient's heart such as the mitral or tricuspid valve annulus.
- the implant member is axially elastic such that it can axially expand and contract and includes first and second anchors extending from the end portions of the implant member to anchor the implant in tissue such as the mitral or tricuspid valve annulus.
- the system can facilitate tissue plication (e.g., of the posterior annulus of the mitral valve or the anterior annulus of the tricuspid valve) and reinforcement of a valve annulus.
- the partial ring configuration may reduce or minimize the risk of stenosis as compared to more bulky systems using full rings. This configuration also can reduce the amount of prosthetic material that is exposed to blood flow, thus, minimizing or eliminating the requirement for post-operative anticoagulation. Further, since the ends are not joined, the surgeon need not place anything on the anterior portion of the annulus (in the case of mitral valve repair), which otherwise could obstruct flow intake.
- clips can be used in lieu of sutures to anchor or fasten the implant in the desired position. This eliminates cumbersome suturing approaches, simplifies implantation as compared to conventional methods, and facilitates minimally invasive (e.g., endoscopic) approaches to valve annuloplasty (e.g., mitral or tricuspid valve annuloplasty).
- minimally invasive e.g., endoscopic
- valve annuloplasty e.g., mitral or tricuspid valve annuloplasty
- the implant member has a small cross-sectional dimension, but it is curved to form an implant of much greater overall transverse dimension or diameter.
- the implant member can comprise a wire formed to have, for example, an undulating configuration adapted for implantation within the valve annulus.
- the implant wire with a wire diameter for example, can range from about 0.002 to 0.062 inches, yet have an overall transverse dimension (measured from peak to trough) of about 0.010 to 0.375 inches.
- the overall transverse dimension which also may be described as the width or amplitude of the undulating member, taken along a portion of the implant is about 5 to 10 times greater than the implant wire diameter.
- the curved wire construction of the present invention also can be configured to provide desirable flexibility so that the implant can comply with annulus flexure during normal cardiac function.
- the implant also can be configured to be axially elastic or compliant. With such axial elasticity, the implant can expand and contract to accommodate annulus expansion and contraction during relaxation (i.e., expansion) and contraction of the left ventricle.
- the implant member can comprise a wire formed to have a plurality of loops formed therein.
- Anchors or sutures can be attached to the loops and tissue to secure the implant member to the tissue.
- the wire diameter typically is about 0.002 to 0.062 inches and the diameter of the loops preferably range from about 0.010 to 0.050 inches.
- a needle can be releasably coupled to one end of the implant.
- the needle simplifies implant delivery and avoids the need for time-consuming suture procedures.
- FIG. 1A is a perspective view of an annuloplasty system constructed in accordance with the present invention.
- FIG. 1B is a longitudinal sectional view of the annuloplasty system depicted in FIG. 1.
- FIG. 1C is a variation of the annuloplasty system of FIG. 1.
- FIGS. 2A, 2B, 2 C, and 2 D diagrammatically show release of the implant illustrated in FIG. 1.
- FIG. 3A is a perspective view of the pivotally mounted retainer illustrated in longitudinal and transverse positions in FIGS. 2 A- 2 D.
- FIG. 3B is an end view taken along line 3 B- 3 B in FIG. 3A.
- FIG. 3C is a sectional view taken along line 3 C- 3 C in FIG. 3A.
- FIG. 4A and 4B depicts a straight and curved embodiment of the implant shown in FIG. 1A.
- FIGS. 5A, 5B, 5 C, 5 D, and 5 E diagrammatically illustrate a method using of the annuloplasty system of FIG. 1.
- FIGS. 6A, 6B, 6 C, 6 D, and 6 E diagrammatically illustrate another method of using the annuloplasty system of FIG. 1A.
- FIGS. 7A, 7B, 7 C, and 7 D diagrammatically illustrate a further method of using the annuloplasty system of FIG. 1A.
- FIG. 8A shows another annuloplasty system in accordance with principles of the present invention.
- FIG. 8B is a sectional view of the release mechanism of FIG. 8A taken along line 8 B- 8 B.
- FIG. 8C is a sectional view of taken along line 8 C- 8 C in FIG. 8B.
- FIG. 9 diagrammatically illustrates one juncture configuration between one of the surgical clips and the implant member of FIG. 8A.
- FIGS. 10A, 10B, 10 C, 10 D, and 10 E show a method of using the annuloplasty system of FIG. 8A.
- FIG. 11 is a perspective view of the delivery and release apparatus of FIG. 1 coupled to a self-closing clip such as the self-closing clip of FIG. 11.
- FIGS. 12A, 12B, 12 C, and 12 D diagrammatically illustrate the operation of one release apparatus for use with the system of FIGS. 1 or 11 .
- FIGS. 13A, 13B, 13 C, and 13 D diagrammatically illustrate the operation of another release apparatus for use with the system of FIG. 1 or 11 .
- FIGS. 14A, 14B, 14 C, and 14 D diagrammatically illustrate the operation of yet another release apparatus for use with the system of FIG. 1 or 11 .
- FIG. 1 illustrates an annuloplasty system 100 constructed in accordance with the principles of the invention.
- Annuloplasty system 100 generally comprises an implant member 102 , a flexible member 104 , and a needle 106 .
- system 100 also includes anchors or stoppers 112 (FIG. 1A) and 114 (FIG. 1B) and a release mechanism 108 to releasably couple the implant to the flexible member.
- the distal end of the implant member may have an enlarged portion 110 as shown in the drawings.
- a stopper or anchor 112 preferably in the form of a disc and preferably welded to the distal end of the implant member, may be provided adjacent to the enlarged portion 110 .
- another stopper or anchor 114 may be provided adjacent to the implant's proximal enlarged portion 116 as shown in FIG. 1B. Stopper or anchors 112 and 114 also may referred to as retainers. Stopper 114 will be described in further detail in the discussion of FIGS. 2 A- 2 D and 3 A- 3 C. Pledgets 118 and 120 (see e.g. FIG.
- TEFLON® polytetrafluoroethylene material or DACRON® synthetic polyester textile fiber
- DACRON® synthetic polyester textile fiber also may coupled to the implant adjacent to the stoppers to minimize or eliminate the risk of having the implant tear the tissue in which is it embedded.
- release mechanism 108 generally includes a plurality of arms or cables 122 , which releasably engage enlarged portion 116 of implant 102 , and a sleeve 124 that retains the arms 122 in a closed configuration such that enlarged portion 116 is locked or secured therein.
- Arms 122 have notches 126 and 128 (FIG. 2D) formed therein to form inner annular grooves 130 and 132 , respectively.
- Annular groove 130 holds or retains enlarged portion 116 and annular groove 132 holds or retains enlarged portion 134 , which is formed on the end of cable or wire 136 , which, in turn, is secured to needle 106 .
- a band 138 is fit into an outer annular channel 140 (FIG. 2C), which is formed by forming notches 142 in the outer surface of cables or arms 122 .
- Band 138 retains the portion of the bundle of cables or arms 122 adjacent thereto tightly together so that enlarged portion 134 remains secured therein.
- a flexible tubular member 104 is provided between needle 106 and release mechanism sleeve 124 .
- one end of tubular member receives one end of release mechanism sleeve 124 .
- Release mechanism sleeve 124 is sufficiently flexible so that it can slide within tubular member 104 as it is retracted or removed from the bundle of cables or arms 122 to release enlarged portion 116 and, thus, implant member 102 as will be described in more detail below.
- the other end of tubular member 104 together with the end of wire 136 is inserted in a recess 146 (FIG. 1B) formed in the needle and secured therein such as by swaging.
- FIG. 1C a variant of the system illustrated in FIG. 1B is shown where tubular member 104 is eliminated and the tubular sleeve 124 of the release mechanism 108 is directly coupled to the needle.
- a needle 106 ′ is formed with a deep recess 146 ′ so that release mechanism sleeve 124 can sufficiently slide into the recess and be sufficiently removed from the cable bundle to release enlarged portion 116 and, thus, implant 102 .
- FIGS. 2 A- 2 D sequentially depict release of implant member 102 , which in the illustrated embodiments includes straight portion 102 ( a ) and undulating portion 102 ( b ) the length of which is indicated in FIG. 2D with reference characters “a” and “b,” respectively.
- the surgeon or assistant can slide pledget 120 over needle 106 , tube 104 , and release mechanism 108 (FIG. 2A) so that it can be positioned adjacent to undulating portion 102 ( b ) of the implant prior to actuating release of the implant member (FIG. 2B).
- Sleeve 124 is retracted and drawn into tubular member 104 first releasing pivotally mounted stopper or anchor 114 , which also may be referred to as a retainer, so that it may pivot to a transverse position relative to the wire of which the illustrated implant comprises. As sleeve 124 is further retracted, it releases arms 122 of release mechanism 108 , which in turn release enlarged portion 116 of implant member 102 (FIG. 2D). Since sleeve 124 biases arms 122 , which normally assume the radially outward expanded configuration shown in FIG. 2D, to the closed configuration shown in FIGS. 2 A-C, the arms open as shown in FIG. 2D when sleeve 124 is retracted.
- proximal stopper or anchor 114 which also may be referred to as a retainer, is shown in further detail.
- Stopper 114 can be formed from a tube by removing two half tubular sections as shown in the drawings. One can remove one have tubular section along one section of the tube and another half tubular section along another section of the tube on the other side thereof as illustrated in FIGS. 3 A-C. As shown, surfaces 112 ( a ) and 112 ( b ) can be angled to simplify the material removal process in forming stopper 112 .
- undulating portion 102 ( b ) of implant 102 can comprise a wire, which is formed so that it is generally two-dimensional (flat or planar) and straight as previously shown prior to implantation.
- a curved, arc-shaped, or crescent shaped undulating wire member that is generally two-dimensional (flat or planar) can be used for implantation as shown in FIG. 4B.
- These configurations afford orientation stability when embedded in a mitral valve annulus, for example and as will be further described below, while minimizing the size or bulk of the implant. It is believed that the reduced valve implant bulk can reduce the risk of thrombosis.
- the undulating portion also may be formed so that it has two and three dimensional portions or so that is entirely three dimensional, the two dimensional variation is believed to offer optimal stability.
- the wire diameter can vary from application to application. For example, when applied to normal human mitral valves, it can range from about 0.002 to 0.062 inches, more preferably in the range of about 0.005 to 0.015 inches, and typically will be about 0.089 inches.
- the wire diameter range is the same when applied to tricuspid valves.
- the transverse dimension or width “W” (FIG. 2C) of the undulating member can range from about 0.010 to 0.375 inches and thus can be 5 to 10 times greater than the wire diameter.
- the implant length also can vary depending on the application. When used for mitral annuloplasty it is embedded in the annulus from one trigone to the other trigone. Therefore, its length ranges from about 25 to 85 mm when applied to normal adult human mitral valves. When applied to human tricuspid valves it is implanted along the posterior annulus and extends in a circumferential direction from trigone to trigone, and its length can be in the same ranges.
- the implant or implant wire preferably comprises a shape memory alloy or elastic material.
- shape memory material has thermal or stress relieved properties that enable it to return to a memory shape. When stress is applied to shape memory alloy material causing at least a portion of the material to be in its martensitic form, it will retain its new shape until the stress is relieved. Then it returns to its original, memory shape. On the other hand, when shape memory material is cooled to where it is in its martensitic form and then deformed, it retains the deformed shape until its temperature is increased so that the material becomes austenitic. Then it returns to its original, memory shape.
- One preferred shape memory material for the implant member is nitinol.
- the shape memory wire (e.g., nitinol) can be shape set into the undulating configuration by weaving the wire through a fixture having a row of rods and affixing the two ends of the nitinol wire under tension.
- the nitinol wire can be shape set by press molding using a mold with a crimped pattern.
- the heat treatment to permanently set the shape of the nitinol wire can be achieved by heat-treating in either a convection oven or bath at a temperature range of 100 to 600° C. for a duration of 2 to 20 minutes.
- the distal stopper can be welded to one end of the shape set imbedded wire.
- the retractable stopper is loaded onto the proximal end of the imbedded wire.
- a ball is formed onto the proximal end of the imbedded wire by welding.
- the release mechanism is assembled with a flexible member and a taper component to transition from the flexible member to the release mechanism.
- the release mechanism is attached to the ball of the imbedded wire at the proximal end and the retractable stopper is placed into its retracted position within the release mechanism component. Then, a needle is swaged onto the flexible member.
- annuloplasty system 100 for mitral valve annuloplasty is shown in accordance with the present invention.
- MV competent mitral valve
- the left ventricle then pumps the oxygenated blood to the rest of the body.
- the mitral valve comprises a pair of leaflets, the anterior leaflet (AL) and the posterior leaflet (PL) of which the latter is larger.
- the base of each leaflet is attached to the mitral valve annulus (MVA).
- the mitral valve annulus includes a posterior portion (PP) and an anterior portion (AP) also known as the inter-trigone section, which is a generally straight substantially rigid section.
- the posterior portion of the annulus is a flexible, curved section that encompasses a larger portion of the annulus circumference than the anterior portion.
- the right and left fibrous trigones (generally indicated with reference characters RT and LT) mark the end of the generally straight section (inter-trigone section) and define the intersection points between the posterior and anterior portions (PP, AP).
- the leaflets open and close in response to pressure differences on either side of thereof. However, when the leaflets do not fully close, regurgitation and valve insufficiency can result.
- One method to treat the insufficiency using the annuloplasty system of FIG. 1 will be described with reference to FIGS. 5 B- 5 E.
- needle 106 of annuloplasty system 100 is passed though the endocardium and the left atrial myocardial wall and into the right fibrous trigone (RT).
- the needle is then moved in a clockwise direction through the fibrous structure of mitral valve annulus toward the left fibrous trigone (LT).
- the needle is passed back through the left atrial myocardial wall from the epicardium and back through the endocardium at the left fibrous trigone (FIG. 5C).
- the needle is further drawn from the annulus until the release mechanism is fully withdrawn from the annulus and above the tissue surface. This preloads the implant wire and plicates the annulus.
- Pledget 120 is drawn over the needle and slid over the flexible member and release mechanism and then positioned between the undulating implant member and the release mechanism as described above.
- the surgeon withdraws sleeve 124 , thereby releasing implant member 102 from the release mechanism 108 , flexible member 104 , and needle 106 , and deploying proximal retainer or anchor 112 so that is opens to its active position as previously shown in FIGS. 2C and 2D and here in FIG. 5E where both retainers or anchors are firmly set at the fibrous trigones.
- the needle can be introduced through the left fibrous trigone and withdrawn from the right fibrous trigone.
- the undulating wire is fully embedded within the valve annulus with the anterior and posterior leaflets restored in a sealed configuration.
- the only non-embedded, blood contacting components are the anchors or retainers 112 and 114 , which are positioned at the two fibrous trigones (RT, LT). Due to the implant wire's undulating configuration, the wire can be elongated in the axial direction. In the elongated condition (partially in FIG. 5C and fully in FIG. 5D), the wire, which has shape memory to regain its original unloaded length, applies a recoil force to draw the two ends of the implant together in the axial direction.
- the shape memory force draws the annulus together resulting in tissue plication and a reduction in annulus size (FIG. 5C).
- the procedure generally provides annuloplasty plication and reinforcement, while maintaining annular compliance.
- FIGS. 6 A- 6 E a variation on the procedure described above is illustrated. This procedure is the same as that shown in FIGS. 5 A- 5 E with the exception that needle 106 is not drawn through the entire posterior annulus in a single pass. In this case, the surgeon makes multiple bites (see FIGS. 6B and 6C) with the needle to cover the distance of the posterior annulus. The procedure is completed in the same way as that described above (FIGS. 6D & E are the same as FIGS. 5D & E)
- FIGS. 7 A- 7 D a further variation on the procedures described above is illustrated.
- multiple undulated implants are used to span the length of the posterior annulus.
- two implants are used to span the annulus.
- the initial needle penetration occurs at either fibrous trigone.
- a needle bite length segment of wire is terminated with each needle bite resulting in the plication of discrete sections of the annulus.
- Subsequent wire segments are penetrated at and are linked to the terminating distal retainer 112 . In this manner, separate, but joined wire segments span the posterior annulus to the opposite fibrous trigone resulting in the plication of the entire posterior annulus and reduction in annular size.
- the implant member returns to its memory shape upon stress release (i.e., actuation of release mechanism 108 ).
- stress release i.e., actuation of release mechanism 108
- the tissue and pulling forces placed on the device to pull it into position cause it to axially expand.
- the release mechanism is actuated, thereby removing the pulling force and allowing the implant to axially contract toward its memory shape.
- the device can be designed to have thermal properties to return to its memory shape at a predetermined temperature. It can be deformed at a first temperature to generally remove or reduce the amplitude(s) or period(s) of the undulations and then inserted into the tissue. After insertion, its temperature rises to the predetermined temperature and it assumes its original, undulating memory configuration. As it returns to its memory shape, it axially contracts and decreases the circumferential dimension of the valve annulus.
- the wire can be flat.
- the undulations can have varying or changing amplitude or frequency.
- the radius of the crests and troughs also can vary from implant to implant or within a single implant.
- the implant wire can be a single length of wire as shown in the drawings or it can be made up of multiple lengths of wire joined together.
- the undulating implant can provide high strength and elasticity to material volume (or diameter) ratio.
- the implant configuration and construction can provide desirable elasticity that allows for physiological motion in the linear direction (annular dilatation) and planar surface. Since the undulating member can be self-terminating at the trigones, it does not require knot tying, connectors, or cutting.
- the implant can be less traumatic to the annular tissue as compared to other devices. For example, it does not require multiple suture passes.
- the implant configuration and placement also can minimize the amount of implant surface that comes into contact with blood flow.
- Annuloplasty system 200 generally comprises an implant member 202 , anchors comprising or in the form of surgical clips 204 coupled to ends of implant member 202 , flexible members or wires 206 , release mechanisms 208 , which releasably couple the flexible members to implant member 202 , and tissue piercing members or needles 210 , which are secured to the flexible members or wires 206 .
- Implant member 202 can be straight (not shown), or crescent or arc-shaped so as to form a partial ring as shown in FIG. 8A.
- Implant member 202 has a plurality of attachment loops 212 formed therein such as by folding the wire of which the implant comprises according to this embodiment.
- loops 212 may be separately formed and secured to implant member 202 by welding, soldering or other suitable process.
- the loops are equidistantly spaced from one another.
- each anchor-clip, release mechanism, flexible member and needle combination forms a tissue connector assembly 214 similar to tissue connector assemblies described in U.S. patent application Ser. Nos. 09/089,884 and 09/090,305 both filed Jun. 3, 1998 and Ser. Nos. 09/259,705 and 09/260,623 both filed Mar. 1, 2000 and International Application Nos. PCT/US99/12563 and PCT/US99/12566 both filed Jun. 3, 1999 and published under International Publication Nos. WO 99/62409 and WO 99/62406, all of which are hereby incorporated by reference herein. Although one tissue connector assembly configuration is shown herein, any other suitable assemblies described in the applications cited in the preceding sentence can be used.
- tissue connector assemblies having self-closing clips which can be characterized as having two end points, which tend to come closer together either by elasticity or so-called pseudoelasticity.
- a clip may be made by heat-treating a NiTi wire to a certain temperature and time to have a desired undeformed shape.
- the surgical clip generally comprises a wire, preferably, comprise shape memory alloy.
- each clips preferably has two end points, an unbiased closed configuration, the ability to be moved or biased to an open configuration, the tendency to return to the naturally closed memory configuration, which reduces the separation between the two end points as compared to the spaced end point orientation when the clip is in an open configuration.
- the clips disclosed in aforementioned U.S. and PCT patent applications describe a clip comprising a deformable wire made of a shape memory alloy, which clip can assume a U-shape when in the open configuration and one example of a suitable clip for this embodiment of the present invention.
- Such a clip may be deployed, for example, in the form of a single-arm clip assembly as shown in FIG. 8A and designated with reference numeral 214 and as generally described in the aforementioned U.S. patent application Ser. Nos. 09/089,884 and 09/090,305, and the section of International Application No. PCT/US99/12566 from page 10, line 10 through page 11, line 21, which section and accompanying FIG. 1 is hereby specifically incorporated by reference herein.
- the ends of the clip coil 204 ( b ) are constrained with the coil in compression to urge or bias clip wire 204 ( a ) into a generally U-shaped open configuration.
- a release mechanism 208 such as disclosed in aforementioned U.S. patent application Ser. No. 09/260,623 (or International Application No. PCT/US99/12566, which published on Dec. 9, 1999 under International Publication No. WO 99/62406 is provided so that clip wire 204 ( a ) can readily be released by squeezing the release mechanism with a surgical instrument.
- One suitable release mechanism is specifically described in International Application No. PCT/US99/12566 from page 25, line 12 through page 27, line 30 ending with the text “mechanism 23c” (but without the text “such as needle 17 as shown in FIG. 1” on line 27 of page 27) and the referenced figures are hereby incorporated by reference herein.
- a summary of such a release mechanism is provided below with reference to FIGS. 8B and 8C.
- release mechanism 208 generally comprises a plurality of substantially rigid strands, cables or wires 216 (which are the same as cables or strands 122 in FIG. 1B). Cables 208 can be metal and are arranged substantially parallel to one another and circularly about a longitudinal axis. The hidden end portions of the strands are coupled to tapered section “T,” which is coupled to piercing member a needle 210 . The strands can be coupled to rod 218 , which is fixed to the tapered section.
- End portions of the strands include notches, which form a chamber 220 for releasably receiving and/or holding enlarged portion “E 1 ” of the clip and/or fastener wire 204 ( a ) which also has and enlarged portion “E 2 ” at its other end to facilitate compression of coil 204 ( b ).
- the notches preferably are placed about 0.015 inches from the free ends of the strands, but this distance can vary depending upon the desired compression on the coil or spring 204 ( b ).
- a shrink wrap layer 222 preferably in the form of tubing, is provided around at lest the free end portions of the strands and the shrink wrap heated to compress against the strands and hold them in place against enlarged wire portion “E 1 ” to effectively hold the enlarged portion captive until the shrink wrap is squeezed, the strands displaced and the enlarged portion released.
- implant member 202 and the surgical clip can be formed from a single element or wire.
- a single wire forms the surgical clip and implant member 202 .
- clip wire 204 ( a ) is long enough to form implant member 202 . It can also form a similar clip wire at the other end of the implant as well.
- the wire can be passed through a washer 224 (FIG. 9) or similar device having a hole formed therethrough and the washer secured to the wire by swaging, for example.
- the washer is placed at a location along the wire to provide the desired compression of coil 204 ( b ).
- a clip having an enlarged portion E 2 can be used and the enlarged portion E 2 secured to the implant member 202 by any suitable means such as welding.
- the loops and the general curve shape of member 202 are made from the same piece of wire.
- the loops are formed by wrapping the wire around mandrels.
- the mandrels are arranged in the general curve shape, thus giving the appearance of loops superposed onto a general curve shape.
- Wire cross section diameters can range from about 0.002 to 0.062 inches.
- Loop diameters can range from about 0.010 to 0.050 inches.
- the radius of curvature of the overall implant member 202 , having loops formed therein, can range from about 0.25 to 1.25 inches, but can be made to any radius.
- the straight-line distance between the ends of the implant member 202 (between washers 224 ) ranges from about 0.5 to 2.5 inches.
- the length of the implant member (measured from washer 224 to washer 224 ) can range from about 0.75 to 3.0 inches.
- the profile is essentially the thickness of prosthetic material attached to the annulus. The smaller the diameter, the lower the profile. Lower profile may prevent nonphysiological blood flow, which can lead to undesirable hemodynamic effects, e.g., thrombosis, disruption of red blood cells, or slower tissue healing.
- the last loop is the one that abuts washer 224 , which is passed onto the multiloop member and crimped to act as a stopper for the coil 204 ( b ), which surrounds a portion of the wire that forms the implant member and surgical clip.
- the release mechanism 208 compresses the coil against washer or constraint 224 , which maintains the surgical clip in a U-shaped configuration.
- implant member 202 is implanted onto the mitral valve annulus of the target mitral valve such that the implant member or wire is attached to the surface of the annular tissue.
- the implant member or wire is secured along the posterior annulus with the ends of the implant member secured to the annulus at the two fibrous trigones.
- the surgeon first secures tissue connector assemblies 214 at the right and left fibrous trigones. This is accomplished by threading needles 210 into the fibrous structure of the annulus and then drawing the needles out from the annulus sufficiently so that anchors 204 extend out from the annulus at incisions “I.”
- a 5-0 needle can be used in this example.
- Release mechanisms 208 are squeezed to release the anchors 204 from the release mechanisms 208 , flexible members 206 , and needles 210 and allow anchors to close as shown in FIG. 10B.
- discrete or individual tissue connector assemblies 214 are passed through loops 212 (FIG. 10C) and released so that the clips or anchors 204 of the individual tissue connector assemblies close and secure the loops to the tissue as shown in FIG. 10D, which shows inserting clips 204 radially.
- the anchors or clips 204 can be inserted circumferentially as shown in FIG. 10E.
- the attachment loops provide elasticity and act as torsion springs.
- the spring properties generally provide elasticity.
- the implant having shape memory to regain its original unloaded length, applies a recoil force to draw the two ends together along the length of the implant.
- the shape memory force draws the annulus together resulting in tissue plication and a reduction in annulus size.
- the preloaded condition of the implant wire continues to provide a reinforcement force to prevent further dilation of the valve annulus.
- the elastic nature of the loops allow for the natural compliance and physiological motion of the annulus.
- the low profile characteristic of the implant as compared to conventional annuloplasty rings or bands reduces the amount or volume of prosthetic material that is exposed to blood flow. This can substantially reduce the need for post-operative anticoagulation therapy.
- annuloplasty system 200 has been described with self-closing clip type anchors, other surgical clips can be used as anchors such as that disclosed in U.S. Pat. No. 5,972,024, which issued to Northrop, III et al. Further, sutures can be used to form the anchors as will be discussed in more detail below.
- FIGS. 8 A-C Although a particular system embodiment having two clip anchors, release mechanisms, and delivery needles has been described and illustrated in FIGS. 8 A-C, variations of this system can be made within the scope of the invention.
- only one clip anchor, release mechanism, and delivery member may be used.
- the clip anchor with its release mechanism and delivery needle can be coupled to one end of the implant member as shown in FIG. 8A.
- the other end of the implant member can be constructed to end with one of the loops illustrated in FIG. 8A. That loop is then sutured to the tissue with conventional suture techniques.
- it can be secured to the tissue using a surgical clip such as any one of the clips described above.
- both clip anchors and their release mechanisms and delivery needles can be eliminated and both ends of the implant member constructed to end in a loop as described above. Both loops can then be fastened to the tissue using a suture or clip as described with respect to the previous example.
- the implant member can be a full ring and the loops secured to tissue thereunder.
- the tissue connector assembly 400 generally comprises a needle 106 , tubular flexible member 104 , clip or anchor 204 (all of which have been described above) and a remote release mechanism “R.”
- a remote release mechanism is especially advantageous where the operative space or field is limited such as in the case of valve annuloplasty.
- FIGS. 12 A- 12 D, 13 A- 13 D, and 14 A- 14 D Various remote release mechanisms in accordance with the invention are illustrated in FIGS. 12 A- 12 D, 13 A- 13 D, and 14 A- 14 D.
- the remote release mechanism “R” comprises a holding mechanism, such as the plurality of arms or wires 122 illustrated in FIGS. 2 A-D, and a sheath or tubular member for holding the holding mechanism closed, such as tubular member 124 illustrated in FIGS. 2 A-D and, therefore can be the same as release mechanism 108 .
- the holding mechanism or member(s) when constructed for holding a clip or anchor, can comprise multiple strands, cables or wires 122 having a radially outward bias as shown in FIGS. 12 A- 12 D, two halves 122 ′ of hypodermic tubing as shown in FIGS. 13 A- 13 D (with recesses 126 ′ for receiving the surgical clip and having an inner diameter less than the diameter of enlarged portion E 2 ), or one piece of hypodermic tubing 122 ′′ as shown in FIGS. 14 A- 14 D. That is the holding mechanism has recesses 126 , 126 ′, or 126 ′′ formed therein to receive and/or hold the enlarged end E 2 of the clip or anchor 204 .
- the strands 122 have notches 128 , as shown in FIGS. 2 A-D, to hold enlarged portion 134 .
- Sleeve 124 is retracted to release the holding mechanism and the clip or anchor 204 as shown in FIGS. 12D, 13D, and 14 D. The longer the sleeve, the more remotely one can actuate release of the clip.
- the hypodermic halves shown in FIGS. 13 A-D also have cut out portions that form arms 240 and collars 242 .
- Collars 242 surround wire 136 and have inner diameters less than the diameter of enlarged portion or ball 134 to secure halves 122 ′ to wire 136 . In this manner, the delivery apparatus can be readily removed, while leaving the clip or anchor at the desired site.
- the one-piece hypodermic tubing embodiment of FIGS. 14 A-D has a cut out to form a longitudinal opening for releasing a clip or anchor 204 from holding member 122 ′′.
- the tubing also has cut outs to form arm 240 ′ and collar 242 ′ having an inner diameter less than the diameter of enlarged portion or ball 134 to secure the tubing to wire 136 and facilitate removal of the delivery apparatus, while leaving the clip or anchor at the desired site.
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
An annuloplasty system for repairing a valve in a patient's heart comprises a surgical implant including a member having first and second end portions. The implant member further is configured and/or adapted to form a partial ring along a portion of one of the valve annulae of a patient's heart such as the mitral or tricuspid valve annulus. The implant member is axially elastic such that it can axially expand and contract and includes first and second anchors extending from the end portions of the implant member. The anchors are adapted to anchor the implant in tissue such as the mitral or tricuspid valve annulus. The system can facilitate tissue plication (e.g., of the posterior annulus of the mitral valve or the annulus of the tricuspid valve) and reinforcement of a valve annulus.
Description
-
FIELD OF THE INVENTION
-
The invention relates to heart valve repair and particularly to annuloplasty apparatus and methods. The invention is especially useful in mitral valve annuloplasty procedures, which generally involve mitral insufficiency (e.g., regurgitation when the mitral valve does not properly close).
BACKGROUND OF THE INVENTION
-
Essential to normal heart function are four heart valves, which allow blood to pass through the four chambers of the heart in one direction. The valves have either two or three cusps, flaps, or leaflets, which comprise fibrous tissue that attaches to the walls of the heart. The cusps open when the blood flow is flowing correctly and then close to form a tight seal to prevent backflow.
-
The four chambers are known as the right and left atria (upper chambers) and right and left ventricles (lower chambers). The four valves that control blood flow are known as the tricuspid, mitral, pulmonary, and aortic valves. In a normally functioning heart, the tricuspid valve allows one-way flow of deoxygenated blood from the right upper chamber (right atrium) to the right lower chamber (right ventricle). When the right ventricle contracts, the pulmonary valve allows one-way blood flow from the right ventricle to the pulmonary artery, which carries the deoxygenated blood to the lungs. The mitral valve, also a one-way valve, allows oxygenated blood, which has returned to the left upper chamber (left atrium), to flow to the left lower chamber (left ventricle). When the left ventricle contracts, the oxygenated blood is pumped through the aortic valve to the aorta.
-
Certain heart abnormalities result from heart valve defects, such as valvular insufficiency. For example, mitral valve insufficiency, also known as mitral regurgitation, is a common cardiac abnormality where the mitral valve leaflets do not completely close when the left ventricle contracts. This allows blood to flow back into the left atrium, which then requires the heart to work harder as it must pump both the regular volume of blood and the blood that has regurgitated back into the left atrium. Obviously, if this insufficiency is not corrected, the added workload can eventually result in heart failure.
-
One option to correct valve defects is complete valve replacement. This intervention, however, is quite invasive and traumatic. There are more conservative surgical interventions that are less traumatic than implanting valvular prostheses. These approaches include valve leaflet repair, chordae tendinae shortening or replacement, and or valve annulus repair also known as annuloplasty. One example where annuloplasty procedures have been developed is in the field of mitral valve insufficiency correction.
-
Mitral valve insufficiency typically results from a change in the size and shape of the mitral valve annulus. Mitral valve annuloplasty involves reestablishing the normal shape and size of the mitral valve annulus so that it can effect full closure of the valve leaflets.
-
There have been a number of annuloplasty approaches to repair the mitral annulus of a patient's heart. Dr. Norberto G. De Vega developed a procedure in the early 1970s. One laces a suture along the periphery of a compromised portion of the heart valve. The suture is drawn in a “purse string” manner to cinch the tissue and reduce the size of the valve opening. Then the suture ends are knotted. Although the procedure can reduce the size of the valve opening and improve valve efficiency, it is not free from drawbacks. One disadvantage of this approach is that the sutures can pull out of the tissue and “guitar sting” across the valve annulus. The purse string also may cause tissue bunching, which may distort the natural shape of the valve.
-
Other approaches to improve valve function (e.g., with the mitral or tricuspid valves) include tissue plication devices and reinforcement of the valve annulus with annuloplasty rings. These approaches also are claimed to reestablish the original annulus size and shape and/or prevent further annulus dilation.
-
Both rigid and flexible annuloplasty rings have been developed. Rigid rings, which generally tend to dictate the shape and contour of the mitral valve annulus, have been considered to somewhat compromise the natural flexibility of the annulus. Flexible annuloplasty rings emerged to provide some degree of compliance in the valve annulus so that the valve could maintain normal physiological motion throughout the cardiac cycle of a beating heart. This is in addition to providing annulus reinforcement. However, it is believed that among the drawbacks of these rings is that they may fold or crimp during implantation and thereby undesirably reduce the size of the valve (e.g., mitral) opening. Also, the sutures used to secure the ring may cause scarring and stiffening of the valve annulus and reduce annulus flexibility over time.
-
C-shaped bands or partial annuloplasty rings also have been developed. These devices can be attached solely to the posterior portion of the valve annulus which eliminates the need to attach material to the anterior portion of the annulus. The annulus is fibrous and generally does not require plication and/or reinforcement. Thus, the partial rings can preserve the normal function of the anterior portion of the annulus. Full and partial ring devices are disclosed, for example, in U.S. Pat. No. 3,656,185, which issued to Carpentier.
-
Other attempts to improve upon valve repair procedures, including the De Vega approach and the use of rigid, flexible, and partial rings, include that described in U.S. Pat. No. 5,450,860, which issued to O'Connor, U.S. Pat. No. 6,183,512B1, which issued to Howanec, Jr. et al., and U.S. Pat. No. 6,250,308B1, which issued to Cox.
-
The O'Connor patent discloses a plication approach, particularly suitable for use with an annuloplasty operation on heart valves (e.g., mitral or tricuspid valves). The approach involves a ligament, which can comprise a wide, flexible strip of expanded polytetrafluorethylene or similar material, and sutures to retain the ligament in place. The ligament has at least an end of constricted diameter and a needle attached thereto, or it can have two constricted ends and a needle attached to each of the ends. This construction permits the ligament to be drawn through an area of tissue to be plicated. Once in place, a first end of the ligament is anchored, preferably with sewing of conventional sutures through the ligament, and the tissue is cinched along the length of the ligament to provide the desired amount of plication. Once the tissue is correctly oriented, the second end of the ligament is then likewise anchored in place, again preferably through the use of a suture sewn through the ligament.
-
The Howanec patent describes a system that includes an elongate flexible band with a needle attached to one end of the band and a fit adjuster attached to the other end of the band. The needle is used to introduce the band into the atrioventricular groove (hereafter “AV groove”) and then pull a portion of the band out of the tissue. After the band is so implanted into the AV groove, a fit adjuster is used to couple the exposed ends of the band and size and position the band in the annulus. After the band is pulled to cinch the tissue in the AV groove until the valve annulus is reconfigured to an optimal shape, the band can be secured to the valve annulus with sutures and the exposed portions of the annuloplasty system removed.
-
The Cox patent describes a system that comprises a combined annuloplasty ring implant, which has a rigid section and a flexible section. A needle is coupled to one end of the implant. The needle facilitates introducing the implant into the fatty pad of the AV groove, which surrounds the valve annulus, at one end of the posterior portion of the annulus and pulling one end portion of the implant out of the AV groove in the vicinity of the other end of the posterior portion of the annulus. The flexible section of the ring extends adjacent to the flexible posterior portion of the annulus, while the rigid section of the ring spans the substantially rigid inter-trigone section of the annulus. Cox advances that with this procedure one need not suture the flexible section directly to the mitral valve annulus, thereby substantially eliminating scarring and stiffening of the annulus. In one example, the flexible material is also elastic to accommodate the expansion and contraction of the annulus, in addition to flexing. The system further includes means for joining the ends of the ring, which are positioned along the inter-trigone section, after the needle is removed. Sutures can be added to secure the annuloplasty ring to the annulus, for example, along the inter-trigone section.
-
Other plication and valve repair approaches are disclosed in PCT International Patent Application Nos. PCT/US01/42653 and PCT/US01/31709, which are co-owned by the assignee of the present invention and entitled “Minimally Invasive Annuloplasty Procedure and Apparatus” and “Minimally Invasive Valve Repair Procedure and Apparatus,” respectively. These approaches, in-part, address various inherent disadvantages with prior open heart surgical procedures as described, for example, by F. Maisano, et al. in their article entitled “The double-orifice technique as a standardized approach to treat mitral regurgitation due to severe myxomatous disease” which appeared in European Journal of Cardio-thoracic Surgery, Vol. 17 (2000) 201-205. Disadvantages associated with such open-heart procedures include cumbersome suture management, timely knot tying steps, pain, and long recovery time.
-
Generally, known annuloplasty ring and band recipients are required to undergo anticoagulation therapy for a minimum of several months post-operatively due to the high risk of prosthesis-induced thrombosis. However, anticoagulation therapy increases the risk of bleeding complications due to the inhibition of blood clot formation.
-
Applicants believe that there remains a need for improved valvular repair apparatus and methods.
SUMMARY OF THE INVENTION
-
The present invention involves annuloplasty systems that avoid problems and disadvantages of the prior art. The present invention involves an annuloplasty system for repairing a valve in a patient's heart. The system comprises a surgical implant, which includes a member having first and second end portions. The implant member further is configured and/or adapted to form a partial ring along a portion of one of the valve annulae of a patient's heart such as the mitral or tricuspid valve annulus. The implant member is axially elastic such that it can axially expand and contract and includes first and second anchors extending from the end portions of the implant member to anchor the implant in tissue such as the mitral or tricuspid valve annulus. The system can facilitate tissue plication (e.g., of the posterior annulus of the mitral valve or the anterior annulus of the tricuspid valve) and reinforcement of a valve annulus.
-
The partial ring configuration may reduce or minimize the risk of stenosis as compared to more bulky systems using full rings. This configuration also can reduce the amount of prosthetic material that is exposed to blood flow, thus, minimizing or eliminating the requirement for post-operative anticoagulation. Further, since the ends are not joined, the surgeon need not place anything on the anterior portion of the annulus (in the case of mitral valve repair), which otherwise could obstruct flow intake.
-
According to another aspect of the annuloplasty system, clips can be used in lieu of sutures to anchor or fasten the implant in the desired position. This eliminates cumbersome suturing approaches, simplifies implantation as compared to conventional methods, and facilitates minimally invasive (e.g., endoscopic) approaches to valve annuloplasty (e.g., mitral or tricuspid valve annuloplasty).
-
According to one embodiment of the invention, the implant member has a small cross-sectional dimension, but it is curved to form an implant of much greater overall transverse dimension or diameter. In this embodiment, the implant member can comprise a wire formed to have, for example, an undulating configuration adapted for implantation within the valve annulus. The implant wire with a wire diameter, for example, can range from about 0.002 to 0.062 inches, yet have an overall transverse dimension (measured from peak to trough) of about 0.010 to 0.375 inches. Preferably, the overall transverse dimension, which also may be described as the width or amplitude of the undulating member, taken along a portion of the implant is about 5 to 10 times greater than the implant wire diameter. This construction facilitates implant stability and proper implant orientation with respect to the annulus, while minimizing implant bulk, which, in turn, can reduce or eliminate the risk of prostheses induced thrombosis.
-
The curved wire construction of the present invention also can be configured to provide desirable flexibility so that the implant can comply with annulus flexure during normal cardiac function. The implant also can be configured to be axially elastic or compliant. With such axial elasticity, the implant can expand and contract to accommodate annulus expansion and contraction during relaxation (i.e., expansion) and contraction of the left ventricle.
-
According to a further embodiment of the invention, the implant member can comprise a wire formed to have a plurality of loops formed therein. Anchors or sutures can be attached to the loops and tissue to secure the implant member to the tissue. The wire diameter typically is about 0.002 to 0.062 inches and the diameter of the loops preferably range from about 0.010 to 0.050 inches. As the annulus is secured to the loops, it conforms to the implant shape, which can be configured to reshape the annulus toward or to its original size and shape to improve or correct cardiac function.
-
According to a further aspect of the invention, a needle can be releasably coupled to one end of the implant. The needle simplifies implant delivery and avoids the need for time-consuming suture procedures.
-
The above is a brief description of some deficiencies in the prior art and advantages of the present invention. Other features, advantages, and embodiments of the invention will be apparent to those skilled in the art from the following description, accompanying drawings, wherein, for purposes of illustration only, specific forms of the invention are set forth in detail.
BRIEF DESCRIPTION OF THE DRAWINGS
-
FIG. 1A is a perspective view of an annuloplasty system constructed in accordance with the present invention.
-
FIG. 1B is a longitudinal sectional view of the annuloplasty system depicted in FIG. 1.
-
FIG. 1C is a variation of the annuloplasty system of FIG. 1.
-
FIGS. 2A, 2B, 2C, and 2D diagrammatically show release of the implant illustrated in FIG. 1.
-
FIG. 3A is a perspective view of the pivotally mounted retainer illustrated in longitudinal and transverse positions in FIGS. 2A-2D.
-
FIG. 3B is an end view taken along
line3B-3B in FIG. 3A.
-
FIG. 3C is a sectional view taken along
line3C-3C in FIG. 3A.
-
FIGS. 4A and 4B depicts a straight and curved embodiment of the implant shown in FIG. 1A.
-
FIGS. 5A, 5B, 5C, 5D, and 5E diagrammatically illustrate a method using of the annuloplasty system of FIG. 1.
-
FIGS. 6A, 6B, 6C, 6D, and 6E diagrammatically illustrate another method of using the annuloplasty system of FIG. 1A.
-
FIGS. 7A, 7B, 7C, and 7D diagrammatically illustrate a further method of using the annuloplasty system of FIG. 1A.
-
FIG. 8A shows another annuloplasty system in accordance with principles of the present invention.
-
FIG. 8B is a sectional view of the release mechanism of FIG. 8A taken along
line8B-8B.
-
FIG. 8C is a sectional view of taken along line 8C-8C in FIG. 8B.
-
FIG. 9 diagrammatically illustrates one juncture configuration between one of the surgical clips and the implant member of FIG. 8A.
-
FIGS. 10A, 10B, 10C, 10D, and 10E show a method of using the annuloplasty system of FIG. 8A.
-
FIG. 11 is a perspective view of the delivery and release apparatus of FIG. 1 coupled to a self-closing clip such as the self-closing clip of FIG. 11.
-
FIGS. 12A, 12B, 12C, and 12D diagrammatically illustrate the operation of one release apparatus for use with the system of FIGS. 1 or 11.
-
FIGS. 13A, 13B, 13C, and 13D diagrammatically illustrate the operation of another release apparatus for use with the system of FIG. 1 or 11.
-
FIGS. 14A, 14B, 14C, and 14D diagrammatically illustrate the operation of yet another release apparatus for use with the system of FIG. 1 or 11.
DESCRIPTION OF THE SPECIFIC EMBODIMENTS
-
Referring to the drawings wherein like numerals indicate like elements, FIG. 1 illustrates an
annuloplasty system100 constructed in accordance with the principles of the invention.
Annuloplasty system100 generally comprises an
implant member102, a
flexible member104, and a
needle106. In the illustrated embodiment,
system100 also includes anchors or stoppers 112 (FIG. 1A) and 114 (FIG. 1B) and a
release mechanism108 to releasably couple the implant to the flexible member.
-
The distal end of the implant member may have an
enlarged portion110 as shown in the drawings. A stopper or
anchor112, preferably in the form of a disc and preferably welded to the distal end of the implant member, may be provided adjacent to the
enlarged portion110. Similarly, another stopper or
anchor114 may be provided adjacent to the implant's proximal
enlarged portion116 as shown in FIG. 1B. Stopper or anchors 112 and 114 also may referred to as retainers.
Stopper114 will be described in further detail in the discussion of FIGS. 2A-2D and 3A-3C.
Pledgets118 and 120 (see e.g. FIG. 2B), which may comprise any suitable material such as TEFLON® polytetrafluoroethylene material or DACRON® synthetic polyester textile fiber, also may coupled to the implant adjacent to the stoppers to minimize or eliminate the risk of having the implant tear the tissue in which is it embedded.
-
Referring to FIG. 1B,
release mechanism108 generally includes a plurality of arms or
cables122, which releasably engage
enlarged portion116 of
implant102, and a
sleeve124 that retains the
arms122 in a closed configuration such that
enlarged portion116 is locked or secured therein.
Arms122 have
notches126 and 128 (FIG. 2D) formed therein to form inner
annular grooves130 and 132, respectively.
Annular groove130 holds or retains
enlarged portion116 and
annular groove132 holds or retains
enlarged portion134, which is formed on the end of cable or
wire136, which, in turn, is secured to
needle106. A
band138 is fit into an outer annular channel 140 (FIG. 2C), which is formed by forming
notches142 in the outer surface of cables or
arms122.
Band138 retains the portion of the bundle of cables or
arms122 adjacent thereto tightly together so that
enlarged portion134 remains secured therein.
-
A
flexible tubular member104 is provided between
needle106 and
release mechanism sleeve124. Specifically, one end of tubular member receives one end of
release mechanism sleeve124.
Release mechanism sleeve124 is sufficiently flexible so that it can slide within
tubular member104 as it is retracted or removed from the bundle of cables or
arms122 to release
enlarged portion116 and, thus,
implant member102 as will be described in more detail below. The other end of
tubular member104, together with the end of
wire136 is inserted in a recess 146 (FIG. 1B) formed in the needle and secured therein such as by swaging.
-
Referring to FIG. 1C, a variant of the system illustrated in FIG. 1B is shown where
tubular member104 is eliminated and the
tubular sleeve124 of the
release mechanism108 is directly coupled to the needle. In this embodiment a
needle106′ is formed with a
deep recess146′ so that
release mechanism sleeve124 can sufficiently slide into the recess and be sufficiently removed from the cable bundle to release
enlarged portion116 and, thus,
implant102.
-
Returning to the embodiment of FIGS. 1A and 1B, FIGS. 2A-2D sequentially depict release of
implant member102, which in the illustrated embodiments includes straight portion 102(a) and undulating portion 102(b) the length of which is indicated in FIG. 2D with reference characters “a” and “b,” respectively. After the implant member is positioned in the desired location, the surgeon or assistant can slide
pledget120 over
needle106,
tube104, and release mechanism 108 (FIG. 2A) so that it can be positioned adjacent to undulating portion 102(b) of the implant prior to actuating release of the implant member (FIG. 2B).
Sleeve124 is retracted and drawn into
tubular member104 first releasing pivotally mounted stopper or
anchor114, which also may be referred to as a retainer, so that it may pivot to a transverse position relative to the wire of which the illustrated implant comprises. As
sleeve124 is further retracted, it releases
arms122 of
release mechanism108, which in turn release
enlarged portion116 of implant member 102 (FIG. 2D). Since
sleeve124
biases arms122, which normally assume the radially outward expanded configuration shown in FIG. 2D, to the closed configuration shown in FIGS. 2A-C, the arms open as shown in FIG. 2D when
sleeve124 is retracted.
-
Referring to FIGS. 3A-C, proximal stopper or
anchor114, which also may be referred to as a retainer, is shown in further detail.
Stopper114 can be formed from a tube by removing two half tubular sections as shown in the drawings. One can remove one have tubular section along one section of the tube and another half tubular section along another section of the tube on the other side thereof as illustrated in FIGS. 3A-C. As shown, surfaces 112(a) and 112(b) can be angled to simplify the material removal process in forming
stopper112.
-
Although a particular implant configuration has been shown, other configurations can be used without departing from the scope of the invention. Referring to FIG. 4A, undulating portion 102(b) of
implant102 can comprise a wire, which is formed so that it is generally two-dimensional (flat or planar) and straight as previously shown prior to implantation. Alternatively, a curved, arc-shaped, or crescent shaped undulating wire member that is generally two-dimensional (flat or planar) can be used for implantation as shown in FIG. 4B. These configurations afford orientation stability when embedded in a mitral valve annulus, for example and as will be further described below, while minimizing the size or bulk of the implant. It is believed that the reduced valve implant bulk can reduce the risk of thrombosis. Although the undulating portion also may be formed so that it has two and three dimensional portions or so that is entirely three dimensional, the two dimensional variation is believed to offer optimal stability.
-
The wire diameter can vary from application to application. For example, when applied to normal human mitral valves, it can range from about 0.002 to 0.062 inches, more preferably in the range of about 0.005 to 0.015 inches, and typically will be about 0.089 inches. The wire diameter range is the same when applied to tricuspid valves. The transverse dimension or width “W” (FIG. 2C) of the undulating member can range from about 0.010 to 0.375 inches and thus can be 5 to 10 times greater than the wire diameter. The implant length also can vary depending on the application. When used for mitral annuloplasty it is embedded in the annulus from one trigone to the other trigone. Therefore, its length ranges from about 25 to 85 mm when applied to normal adult human mitral valves. When applied to human tricuspid valves it is implanted along the posterior annulus and extends in a circumferential direction from trigone to trigone, and its length can be in the same ranges.
-
The implant or implant wire preferably comprises a shape memory alloy or elastic material. As is well known in the art, shape memory material has thermal or stress relieved properties that enable it to return to a memory shape. When stress is applied to shape memory alloy material causing at least a portion of the material to be in its martensitic form, it will retain its new shape until the stress is relieved. Then it returns to its original, memory shape. On the other hand, when shape memory material is cooled to where it is in its martensitic form and then deformed, it retains the deformed shape until its temperature is increased so that the material becomes austenitic. Then it returns to its original, memory shape. One preferred shape memory material for the implant member is nitinol.
-
The shape memory wire (e.g., nitinol) can be shape set into the undulating configuration by weaving the wire through a fixture having a row of rods and affixing the two ends of the nitinol wire under tension. Alternatively, the nitinol wire can be shape set by press molding using a mold with a crimped pattern. The heat treatment to permanently set the shape of the nitinol wire can be achieved by heat-treating in either a convection oven or bath at a temperature range of 100 to 600° C. for a duration of 2 to 20 minutes. In assembling the system the distal stopper can be welded to one end of the shape set imbedded wire. The retractable stopper is loaded onto the proximal end of the imbedded wire. A ball is formed onto the proximal end of the imbedded wire by welding. The release mechanism is assembled with a flexible member and a taper component to transition from the flexible member to the release mechanism. The release mechanism is attached to the ball of the imbedded wire at the proximal end and the retractable stopper is placed into its retracted position within the release mechanism component. Then, a needle is swaged onto the flexible member.
-
Referring to FIGS. 5A-5D, an exemplary method of using
annuloplasty system100 for mitral valve annuloplasty is shown in accordance with the present invention. As noted above, a competent mitral valve (MV) allows one-way flow of oxygenated blood that has entered the left atrium from the lungs to enter the left ventricle. The left ventricle then pumps the oxygenated blood to the rest of the body.
-
Referring to FIG. 5A, the mitral valve (MV) comprises a pair of leaflets, the anterior leaflet (AL) and the posterior leaflet (PL) of which the latter is larger. The base of each leaflet is attached to the mitral valve annulus (MVA). The mitral valve annulus includes a posterior portion (PP) and an anterior portion (AP) also known as the inter-trigone section, which is a generally straight substantially rigid section. The posterior portion of the annulus is a flexible, curved section that encompasses a larger portion of the annulus circumference than the anterior portion. The right and left fibrous trigones (generally indicated with reference characters RT and LT) mark the end of the generally straight section (inter-trigone section) and define the intersection points between the posterior and anterior portions (PP, AP).
-
The leaflets open and close in response to pressure differences on either side of thereof. However, when the leaflets do not fully close, regurgitation and valve insufficiency can result. One method to treat the insufficiency using the annuloplasty system of FIG. 1 will be described with reference to FIGS. 5B-5E.
-
Referring to FIG. 5B,
needle106 of
annuloplasty system100 is passed though the endocardium and the left atrial myocardial wall and into the right fibrous trigone (RT). The needle is then moved in a clockwise direction through the fibrous structure of mitral valve annulus toward the left fibrous trigone (LT). At the left fibrous trigone (LT), the needle is passed back through the left atrial myocardial wall from the epicardium and back through the endocardium at the left fibrous trigone (FIG. 5C). The needle is further drawn from the annulus until the release mechanism is fully withdrawn from the annulus and above the tissue surface. This preloads the implant wire and plicates the annulus.
Pledget120 is drawn over the needle and slid over the flexible member and release mechanism and then positioned between the undulating implant member and the release mechanism as described above. The surgeon withdraws
sleeve124, thereby releasing
implant member102 from the
release mechanism108,
flexible member104, and
needle106, and deploying proximal retainer or
anchor112 so that is opens to its active position as previously shown in FIGS. 2C and 2D and here in FIG. 5E where both retainers or anchors are firmly set at the fibrous trigones. Alternatively, the needle can be introduced through the left fibrous trigone and withdrawn from the right fibrous trigone.
-
Referring to FIG. 5E, the undulating wire is fully embedded within the valve annulus with the anterior and posterior leaflets restored in a sealed configuration. The only non-embedded, blood contacting components are the anchors or
retainers112 and 114, which are positioned at the two fibrous trigones (RT, LT). Due to the implant wire's undulating configuration, the wire can be elongated in the axial direction. In the elongated condition (partially in FIG. 5C and fully in FIG. 5D), the wire, which has shape memory to regain its original unloaded length, applies a recoil force to draw the two ends of the implant together in the axial direction. In the implanted condition where the undulating wire is stressed to an elongated configuration by threading through the tissue, the shape memory force draws the annulus together resulting in tissue plication and a reduction in annulus size (FIG. 5C). In sum, the procedure generally provides annuloplasty plication and reinforcement, while maintaining annular compliance.
-
Referring to FIGS. 6A-6E, a variation on the procedure described above is illustrated. This procedure is the same as that shown in FIGS. 5A-5E with the exception that needle 106 is not drawn through the entire posterior annulus in a single pass. In this case, the surgeon makes multiple bites (see FIGS. 6B and 6C) with the needle to cover the distance of the posterior annulus. The procedure is completed in the same way as that described above (FIGS. 6D & E are the same as FIGS. 5D & E)
-
Referring to FIGS. 7A-7D, a further variation on the procedures described above is illustrated. In this procedure, multiple undulated implants are used to span the length of the posterior annulus. In this example, two implants are used to span the annulus. The initial needle penetration occurs at either fibrous trigone. A needle bite length segment of wire is terminated with each needle bite resulting in the plication of discrete sections of the annulus. Subsequent wire segments are penetrated at and are linked to the terminating
distal retainer112. In this manner, separate, but joined wire segments span the posterior annulus to the opposite fibrous trigone resulting in the plication of the entire posterior annulus and reduction in annular size.
-
In the embodiments described above, the implant member returns to its memory shape upon stress release (i.e., actuation of release mechanism 108). As the implant is inserted, the tissue and pulling forces placed on the device to pull it into position cause it to axially expand. Once in position, the release mechanism is actuated, thereby removing the pulling force and allowing the implant to axially contract toward its memory shape.
-
Alternatively, the device can be designed to have thermal properties to return to its memory shape at a predetermined temperature. It can be deformed at a first temperature to generally remove or reduce the amplitude(s) or period(s) of the undulations and then inserted into the tissue. After insertion, its temperature rises to the predetermined temperature and it assumes its original, undulating memory configuration. As it returns to its memory shape, it axially contracts and decreases the circumferential dimension of the valve annulus.
-
Although particular configurations have been illustrated, other configurations can be used without departing from the scope of the invention. For example, the wire can be flat. The undulations can have varying or changing amplitude or frequency. The radius of the crests and troughs also can vary from implant to implant or within a single implant. Further, the implant wire can be a single length of wire as shown in the drawings or it can be made up of multiple lengths of wire joined together.
-
The undulating implant can provide high strength and elasticity to material volume (or diameter) ratio. The implant configuration and construction can provide desirable elasticity that allows for physiological motion in the linear direction (annular dilatation) and planar surface. Since the undulating member can be self-terminating at the trigones, it does not require knot tying, connectors, or cutting. The implant can be less traumatic to the annular tissue as compared to other devices. For example, it does not require multiple suture passes. The implant configuration and placement also can minimize the amount of implant surface that comes into contact with blood flow.
-
Referring to FIG. 8A, another embodiment of the invention is shown and generally indicated with
reference numeral200.
Annuloplasty system200 generally comprises an
implant member202, anchors comprising or in the form of
surgical clips204 coupled to ends of
implant member202, flexible members or
wires206,
release mechanisms208, which releasably couple the flexible members to implant
member202, and tissue piercing members or needles 210, which are secured to the flexible members or
wires206.
- Implant member
202 can be straight (not shown), or crescent or arc-shaped so as to form a partial ring as shown in FIG. 8A.
Implant member202 has a plurality of
attachment loops212 formed therein such as by folding the wire of which the implant comprises according to this embodiment. Alternatively,
loops212 may be separately formed and secured to implant
member202 by welding, soldering or other suitable process. Preferably, the loops are equidistantly spaced from one another.
-
With the exception of one of the surgical clip ends being secured to
implant member202, each anchor-clip, release mechanism, flexible member and needle combination forms a
tissue connector assembly214 similar to tissue connector assemblies described in U.S. patent application Ser. Nos. 09/089,884 and 09/090,305 both filed Jun. 3, 1998 and Ser. Nos. 09/259,705 and 09/260,623 both filed Mar. 1, 2000 and International Application Nos. PCT/US99/12563 and PCT/US99/12566 both filed Jun. 3, 1999 and published under International Publication Nos. WO 99/62409 and WO 99/62406, all of which are hereby incorporated by reference herein. Although one tissue connector assembly configuration is shown herein, any other suitable assemblies described in the applications cited in the preceding sentence can be used.
-
The applications cited in the previous paragraph describe tissue connector assemblies having self-closing clips, which can be characterized as having two end points, which tend to come closer together either by elasticity or so-called pseudoelasticity. Such a clip may be made by heat-treating a NiTi wire to a certain temperature and time to have a desired undeformed shape. The surgical clip generally comprises a wire, preferably, comprise shape memory alloy. In the present invention, each clips preferably has two end points, an unbiased closed configuration, the ability to be moved or biased to an open configuration, the tendency to return to the naturally closed memory configuration, which reduces the separation between the two end points as compared to the spaced end point orientation when the clip is in an open configuration.
-
The clips disclosed in aforementioned U.S. and PCT patent applications describe a clip comprising a deformable wire made of a shape memory alloy, which clip can assume a U-shape when in the open configuration and one example of a suitable clip for this embodiment of the present invention.
-
Such a clip may be deployed, for example, in the form of a single-arm clip assembly as shown in FIG. 8A and designated with
reference numeral214 and as generally described in the aforementioned U.S. patent application Ser. Nos. 09/089,884 and 09/090,305, and the section of International Application No. PCT/US99/12566 from page 10, line 10 through
page11, line 21, which section and accompanying FIG. 1 is hereby specifically incorporated by reference herein.
-
The ends of the clip coil 204(b) are constrained with the coil in compression to urge or bias clip wire 204(a) into a generally U-shaped open configuration.
-
A
release mechanism208, such as disclosed in aforementioned U.S. patent application Ser. No. 09/260,623 (or International Application No. PCT/US99/12566, which published on Dec. 9, 1999 under International Publication No. WO 99/62406 is provided so that clip wire 204(a) can readily be released by squeezing the release mechanism with a surgical instrument. One suitable release mechanism is specifically described in International Application No. PCT/US99/12566 from page 25,
line12 through page 27, line 30 ending with the text “mechanism 23c” (but without the text “such as needle 17 as shown in FIG. 1” on line 27 of page 27) and the referenced figures are hereby incorporated by reference herein. A summary of such a release mechanism is provided below with reference to FIGS. 8B and 8C.
-
Referring to FIGS. 8B and 8C,
release mechanism208 generally comprises a plurality of substantially rigid strands, cables or wires 216 (which are the same as cables or
strands122 in FIG. 1B).
Cables208 can be metal and are arranged substantially parallel to one another and circularly about a longitudinal axis. The hidden end portions of the strands are coupled to tapered section “T,” which is coupled to piercing member a
needle210. The strands can be coupled to rod 218, which is fixed to the tapered section. End portions of the strands include notches, which form a
chamber220 for releasably receiving and/or holding enlarged portion “E1” of the clip and/or fastener wire 204(a) which also has and enlarged portion “E2” at its other end to facilitate compression of coil 204(b). According to International Application No. PCT/US99/12566, supra, the notches preferably are placed about 0.015 inches from the free ends of the strands, but this distance can vary depending upon the desired compression on the coil or spring 204(b). A
shrink wrap layer222, preferably in the form of tubing, is provided around at lest the free end portions of the strands and the shrink wrap heated to compress against the strands and hold them in place against enlarged wire portion “E1” to effectively hold the enlarged portion captive until the shrink wrap is squeezed, the strands displaced and the enlarged portion released.
-
Referring to FIG. 9,
implant member202 and the surgical clip can be formed from a single element or wire. In the embodiment shown in FIG. 8A, a single wire forms the surgical clip and
implant member202. When using a surgical clip such as shown in FIG. 8B, there is no enlarged portion E2. Rather, clip wire 204(a) is long enough to form
implant member202. It can also form a similar clip wire at the other end of the implant as well. In place of enlarged portion E2, the wire can be passed through a washer 224 (FIG. 9) or similar device having a hole formed therethrough and the washer secured to the wire by swaging, for example. The washer is placed at a location along the wire to provide the desired compression of coil 204(b). On the other hand, a clip having an enlarged portion E2 can be used and the enlarged portion E2 secured to the
implant member202 by any suitable means such as welding.
-
According to one method of making the device, the loops and the general curve shape of
member202 are made from the same piece of wire. The loops are formed by wrapping the wire around mandrels. The mandrels are arranged in the general curve shape, thus giving the appearance of loops superposed onto a general curve shape. Wire cross section diameters can range from about 0.002 to 0.062 inches. Loop diameters can range from about 0.010 to 0.050 inches. The radius of curvature of the
overall implant member202, having loops formed therein, can range from about 0.25 to 1.25 inches, but can be made to any radius. The straight-line distance between the ends of the implant member 202 (between washers 224) ranges from about 0.5 to 2.5 inches. The length of the implant member (measured from
washer224 to washer 224) can range from about 0.75 to 3.0 inches. The profile is essentially the thickness of prosthetic material attached to the annulus. The smaller the diameter, the lower the profile. Lower profile may prevent nonphysiological blood flow, which can lead to undesirable hemodynamic effects, e.g., thrombosis, disruption of red blood cells, or slower tissue healing. When the surgical clip is made from the same piece of wire as the multilooped member, the last loop is the one that abuts
washer224, which is passed onto the multiloop member and crimped to act as a stopper for the coil 204(b), which surrounds a portion of the wire that forms the implant member and surgical clip. The
release mechanism208 compresses the coil against washer or
constraint224, which maintains the surgical clip in a U-shaped configuration.
-
Referring to FIGS. 10A-10D, an exemplary mitral valve annuloplasty method using
annuloplasty system200 will be described. In general,
implant member202 is implanted onto the mitral valve annulus of the target mitral valve such that the implant member or wire is attached to the surface of the annular tissue. In this mitral valve annuloplasty example, the implant member or wire is secured along the posterior annulus with the ends of the implant member secured to the annulus at the two fibrous trigones.
-
Referring to FIG. 10A, the surgeon first secures
tissue connector assemblies214 at the right and left fibrous trigones. This is accomplished by threading
needles210 into the fibrous structure of the annulus and then drawing the needles out from the annulus sufficiently so that
anchors204 extend out from the annulus at incisions “I.” A 5-0 needle can be used in this example.
Release mechanisms208 are squeezed to release the
anchors204 from the
release mechanisms208,
flexible members206, and needles 210 and allow anchors to close as shown in FIG. 10B.
-
Then discrete or individual
tissue connector assemblies214 are passed through loops 212 (FIG. 10C) and released so that the clips or anchors 204 of the individual tissue connector assemblies close and secure the loops to the tissue as shown in FIG. 10D, which shows inserting
clips204 radially. According to a variation on the described method, the anchors or
clips204 can be inserted circumferentially as shown in FIG. 10E.
-
The attachment loops provide elasticity and act as torsion springs. The spring properties generally provide elasticity. In the deployed condition, the implant, having shape memory to regain its original unloaded length, applies a recoil force to draw the two ends together along the length of the implant. In the implanted condition where the implant wire is loaded to an elongated configuration, the shape memory force draws the annulus together resulting in tissue plication and a reduction in annulus size. The preloaded condition of the implant wire continues to provide a reinforcement force to prevent further dilation of the valve annulus. Furthermore, the elastic nature of the loops allow for the natural compliance and physiological motion of the annulus.
-
The low profile characteristic of the implant as compared to conventional annuloplasty rings or bands reduces the amount or volume of prosthetic material that is exposed to blood flow. This can substantially reduce the need for post-operative anticoagulation therapy.
-
Although
annuloplasty system200 has been described with self-closing clip type anchors, other surgical clips can be used as anchors such as that disclosed in U.S. Pat. No. 5,972,024, which issued to Northrop, III et al. Further, sutures can be used to form the anchors as will be discussed in more detail below.
-
Although a particular system embodiment having two clip anchors, release mechanisms, and delivery needles has been described and illustrated in FIGS. 8A-C, variations of this system can be made within the scope of the invention. For example, only one clip anchor, release mechanism, and delivery member may be used. In this case, the clip anchor with its release mechanism and delivery needle can be coupled to one end of the implant member as shown in FIG. 8A. The other end of the implant member can be constructed to end with one of the loops illustrated in FIG. 8A. That loop is then sutured to the tissue with conventional suture techniques. Alternatively, it can be secured to the tissue using a surgical clip such as any one of the clips described above.
-
In yet a further case, both clip anchors and their release mechanisms and delivery needles can be eliminated and both ends of the implant member constructed to end in a loop as described above. Both loops can then be fastened to the tissue using a suture or clip as described with respect to the previous example.
-
In another variation, the implant member can be a full ring and the loops secured to tissue thereunder.
-
Referring to FIG. 11, an alternative tissue connector assembly suitable for use with
system200 to secure the implant member ends and/or loops to the valve tissue is shown. The
tissue connector assembly400 generally comprises a
needle106, tubular
flexible member104, clip or anchor 204 (all of which have been described above) and a remote release mechanism “R.” Although the squeeze actuated
release mechanism208 is very effective, a remote release mechanism is especially advantageous where the operative space or field is limited such as in the case of valve annuloplasty. Various remote release mechanisms in accordance with the invention are illustrated in FIGS. 12A-12D, 13A-13D, and 14A-14D. Generally, the remote release mechanism “R” comprises a holding mechanism, such as the plurality of arms or
wires122 illustrated in FIGS. 2A-D, and a sheath or tubular member for holding the holding mechanism closed, such as
tubular member124 illustrated in FIGS. 2A-D and, therefore can be the same as
release mechanism108.
-
More specifically, when constructed for holding a clip or anchor, the holding mechanism or member(s) can comprise multiple strands, cables or
wires122 having a radially outward bias as shown in FIGS. 12A-12D, two
halves122′ of hypodermic tubing as shown in FIGS. 13A-13D (with
recesses126′ for receiving the surgical clip and having an inner diameter less than the diameter of enlarged portion E2), or one piece of
hypodermic tubing122″ as shown in FIGS. 14A-14D. That is the holding mechanism has
recesses126, 126′, or 126″ formed therein to receive and/or hold the enlarged end E2 of the clip or
anchor204. In the embodiment of FIGS. 12A-D, the
strands122 have
notches128, as shown in FIGS. 2A-D, to hold
enlarged portion134.
Sleeve124 is retracted to release the holding mechanism and the clip or
anchor204 as shown in FIGS. 12D, 13D, and 14D. The longer the sleeve, the more remotely one can actuate release of the clip.
-
The hypodermic halves shown in FIGS. 13A-D, also have cut out portions that form
arms240 and
collars242.
Collars242
surround wire136 and have inner diameters less than the diameter of enlarged portion or
ball134 to secure
halves122′ to wire 136. In this manner, the delivery apparatus can be readily removed, while leaving the clip or anchor at the desired site.
-
The one-piece hypodermic tubing embodiment of FIGS. 14A-D, has a cut out to form a longitudinal opening for releasing a clip or anchor 204 from holding
member122″. The tubing also has cut outs to form
arm240′ and
collar242′ having an inner diameter less than the diameter of enlarged portion or
ball134 to secure the tubing to wire 136 and facilitate removal of the delivery apparatus, while leaving the clip or anchor at the desired site.
-
While the invention has been described with reference to specific embodiments, the invention by no means is limited to the specific embodiments illustrated and described herein. It is recognized that departures from the disclosed embodiments may be made within the scope of the invention and that obvious modifications will occur to a person skilled in the art. Accordingly, all suitable modifications and equivalents may be resorted to to the extent that they fill within the scope of the invention and claims appended hereto.
Claims (11)
1. An annuloplasty system for repairing a valve in a patient's heart, said annuloplasty system comprising a surgical implant including a member having first and second end portions, said member further being adapted to form a partial ring along a portion of one of the valve annulae of a patient's heart, said member being axially elastic, said implant further including first and second anchors extending from the end portions of the implant member and adapted to anchor the implant to the valve annulus.
2. The annuloplasty system of
claim 1wherein said implant member comprises at least one spring element that allows axial extension and contraction of the implant.
3. The annuloplasty system of
claim 1wherein said implant comprises a wire having a diameter and a plurality of curves, the transverse dimension of said implant being about five to ten times greater than the diameter of said wire.
4. The annuloplasty system of
claim 1wherein said implant comprises wire having an undulating configuration.
5. The annuloplasty system of
claim 4wherein one of said anchors is pivotally coupled to said implant.
6. The annuloplasty system of
claim 4further including a flexible member having a first end secured to said needle and a second end releasably coupled to said first end portion of said implant.
7. The annuloplasty system of
claim 6further including a coupling, said coupling releasably coupling the second end of said flexible member and the first end portion of said implant.
8. The annuloplasty system of
claim 3wherein said implant wire is formed with a plurality of loops.
9. The annuloplasty system of
claim 8wherein said loops form spring elements.
10. The annuloplasty system of
claim 1further including a flexible member having a first end secured to said needle and a second end releasably coupled to said first end portion of said implant member.
11. An annuloplasty system for repairing a valve in a patient's heart, said annuloplasty system comprising a surgical implant, a needle, a flexible member, a coupling, said implant being coupled to said coupling, said coupling being secured to said flexible member, and said flexible member being secured to said needle, said implant including a wire member adapted to form a partial ring along a portion of one of the valve annulae of a patient's heart and being axially elastic such that it can axially expand and contract in response to cardiac movement, said implant wire member having a plurality of curves formed therein.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/125,811 US20030199974A1 (en) | 2002-04-18 | 2002-04-18 | Annuloplasty apparatus and methods |
PCT/US2003/012073 WO2003088875A1 (en) | 2002-04-18 | 2003-04-18 | Annuloplasty apparatus and methods |
AU2003228586A AU2003228586A1 (en) | 2002-04-18 | 2003-04-18 | Annuloplasty apparatus and methods |
US10/985,768 US20050065601A1 (en) | 2002-04-18 | 2004-11-10 | Annuloplasty apparatus and methods |
US12/880,823 US8167933B2 (en) | 2002-04-18 | 2010-09-13 | Annuloplasty apparatus and methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/125,811 US20030199974A1 (en) | 2002-04-18 | 2002-04-18 | Annuloplasty apparatus and methods |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/985,768 Continuation US20050065601A1 (en) | 2002-04-18 | 2004-11-10 | Annuloplasty apparatus and methods |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030199974A1 true US20030199974A1 (en) | 2003-10-23 |
Family
ID=29214854
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/125,811 Abandoned US20030199974A1 (en) | 2002-04-18 | 2002-04-18 | Annuloplasty apparatus and methods |
US10/985,768 Abandoned US20050065601A1 (en) | 2002-04-18 | 2004-11-10 | Annuloplasty apparatus and methods |
US12/880,823 Expired - Fee Related US8167933B2 (en) | 2002-04-18 | 2010-09-13 | Annuloplasty apparatus and methods |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/985,768 Abandoned US20050065601A1 (en) | 2002-04-18 | 2004-11-10 | Annuloplasty apparatus and methods |
US12/880,823 Expired - Fee Related US8167933B2 (en) | 2002-04-18 | 2010-09-13 | Annuloplasty apparatus and methods |
Country Status (3)
Country | Link |
---|---|
US (3) | US20030199974A1 (en) |
AU (1) | AU2003228586A1 (en) |
WO (1) | WO2003088875A1 (en) |
Cited By (202)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030125755A1 (en) * | 1998-06-03 | 2003-07-03 | Laurent Schaller | Tissue connector apparatus and methods |
US20030220686A1 (en) * | 2002-03-27 | 2003-11-27 | Pietro Arru | Prosthesis for annuloplasty comprising a perforated element |
US20030233142A1 (en) * | 2002-06-13 | 2003-12-18 | Guided Delivery Systems, Inc. | Devices and methods for heart valve repair |
US20040050393A1 (en) * | 2002-09-12 | 2004-03-18 | Steve Golden | Anastomosis apparatus and methods |
US20040148021A1 (en) * | 2002-08-29 | 2004-07-29 | Cartledge Richard G. | Implantable devices for controlling the internal circumference of an anatomic orifice or lumen |
US20040162611A1 (en) * | 2001-08-24 | 2004-08-19 | Salvador Marquez | Method of implanting a self-molding annuloplasty ring |
US20050055089A1 (en) * | 2000-09-20 | 2005-03-10 | Ample Medical, Inc. | Devices, systems, and methods for reshaping a heart valve annulus |
US6939365B1 (en) * | 2002-12-20 | 2005-09-06 | Arbor Surgical Technologies, Inc. | Fixturing assembly |
US20050288782A1 (en) * | 2004-06-29 | 2005-12-29 | Shahram Moaddeb | Cardiac valve implant with energy absorbing material |
US20060015002A1 (en) * | 2004-07-15 | 2006-01-19 | Micardia Corporation | Shape memory devices and methods for reshaping heart anatomy |
US20060015178A1 (en) * | 2004-07-15 | 2006-01-19 | Shahram Moaddeb | Implants and methods for reshaping heart valves |
US20060025858A1 (en) * | 2004-07-27 | 2006-02-02 | Alameddine Abdallah K | Mitral valve ring for treatment of mitral valve regurgitation |
US20060241748A1 (en) * | 2005-03-25 | 2006-10-26 | Lee Leonard Y | Methods and apparatus for controlling the internal circumference of an anatomic orifice or lumen |
US20060259135A1 (en) * | 2005-04-20 | 2006-11-16 | The Cleveland Clinic Foundation | Apparatus and method for replacing a cardiac valve |
US20060274472A1 (en) * | 2003-12-15 | 2006-12-07 | Kenichi Saito | Noise filter mounting structure |
WO2006019521A3 (en) * | 2004-07-15 | 2006-12-21 | Micardia Corp | Shape memory devices and methods for reshaping heart anatomy |
US20070016287A1 (en) * | 2005-03-25 | 2007-01-18 | Cartledge Richard G | Methods and apparatus for controlling the internal circumference of an anatomic orifice or lumen |
US20070038296A1 (en) * | 2005-07-15 | 2007-02-15 | Cleveland Clinic | Apparatus and method for remodeling a cardiac valve annulus |
US20070055368A1 (en) * | 2005-09-07 | 2007-03-08 | Richard Rhee | Slotted annuloplasty ring |
US20070162112A1 (en) * | 2005-12-28 | 2007-07-12 | Sorin Biomedica Cardio | Annuloplasty prosthesis with an auxetic structure |
US20070239272A1 (en) * | 2003-05-20 | 2007-10-11 | Navia Jose L | Apparatus and methods for repair of a cardiac valve |
US20070244556A1 (en) * | 2006-04-12 | 2007-10-18 | Medtronic Vascular, Inc. | Annuloplasty Device Having a Helical Anchor and Methods for its Use |
US20080051840A1 (en) * | 2006-07-05 | 2008-02-28 | Micardia Corporation | Methods and systems for cardiac remodeling via resynchronization |
WO2008027665A1 (en) * | 2005-08-31 | 2008-03-06 | Medtronic Vascular, Inc. | Device for treating mitral valve regurgitation |
US20080132981A1 (en) * | 2006-11-30 | 2008-06-05 | Medtronic, Inc. | Implantable medical device including a conductive fixation element |
US7402134B2 (en) | 2004-07-15 | 2008-07-22 | Micardia Corporation | Magnetic devices and methods for reshaping heart anatomy |
US20080183285A1 (en) * | 2004-06-29 | 2008-07-31 | Micardia Corporation | Adjustable cardiac valve implant with selective dimensional adjustment |
US20080262609A1 (en) * | 2006-12-05 | 2008-10-23 | Valtech Cardio, Ltd. | Segmented ring placement |
US20080288060A1 (en) * | 2004-07-06 | 2008-11-20 | Baker Medical Research Institute | Treating Valvular Insufficiency |
US20090053980A1 (en) * | 2007-08-23 | 2009-02-26 | Saint-Gobain Abrasives, Inc. | Optimized CMP Conditioner Design for Next Generation Oxide/Metal CMP |
US20090149872A1 (en) * | 2005-03-17 | 2009-06-11 | Amir Gross | Mitral valve treatment techniques |
US20090264995A1 (en) * | 2008-04-16 | 2009-10-22 | Subramanian Valavanur A | Transvalvular intraannular band for valve repair |
US7666193B2 (en) | 2002-06-13 | 2010-02-23 | Guided Delivery Sytems, Inc. | Delivery devices and methods for heart valve repair |
US7722643B2 (en) | 1999-03-01 | 2010-05-25 | Medtronic, Inc. | Tissue connector apparatus and methods |
US7744611B2 (en) | 2000-10-10 | 2010-06-29 | Medtronic, Inc. | Minimally invasive valve repair procedure and apparatus |
US7753922B2 (en) | 2003-09-04 | 2010-07-13 | Guided Delivery Systems, Inc. | Devices and methods for cardiac annulus stabilization and treatment |
US7753858B2 (en) | 2002-06-13 | 2010-07-13 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US7753924B2 (en) | 2003-09-04 | 2010-07-13 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US7758637B2 (en) | 2003-02-06 | 2010-07-20 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US20110004297A1 (en) * | 2006-01-20 | 2011-01-06 | Boston Scientific Scimed, Inc. | Translumenal apparatus, system, and method |
US20110022168A1 (en) * | 2009-01-22 | 2011-01-27 | Cartledge Richard G | Post-operative adjustment tool, minimally invasive attachment apparatus, and adjustable tricuspid ring |
US7879047B2 (en) | 2003-12-10 | 2011-02-01 | Medtronic, Inc. | Surgical connection apparatus and methods |
US7883538B2 (en) | 2002-06-13 | 2011-02-08 | Guided Delivery Systems Inc. | Methods and devices for termination |
US7896892B2 (en) | 2000-03-31 | 2011-03-01 | Medtronic, Inc. | Multiple bias surgical fastener |
US20110066231A1 (en) * | 2007-01-03 | 2011-03-17 | Cartledge Richard G | Implantable devices for controlling the size and shape of an anatomical structure or lumen |
US7927371B2 (en) | 2005-07-15 | 2011-04-19 | The Cleveland Clinic Foundation | Apparatus and method for reducing cardiac valve regurgitation |
US7938840B2 (en) | 1999-04-05 | 2011-05-10 | Medtronic, Inc. | Apparatus and methods for anastomosis |
US7942927B2 (en) | 2004-03-15 | 2011-05-17 | Baker Medical Research Institute | Treating valve failure |
US7963973B2 (en) | 1998-06-03 | 2011-06-21 | Medtronic, Inc. | Multiple loop tissue connector apparatus and methods |
US8021421B2 (en) | 2003-08-22 | 2011-09-20 | Medtronic, Inc. | Prosthesis heart valve fixturing device |
US8029519B2 (en) | 2003-08-22 | 2011-10-04 | Medtronic, Inc. | Eversion apparatus and methods |
US8066766B2 (en) | 2002-06-13 | 2011-11-29 | Guided Delivery Systems Inc. | Methods and devices for termination |
US8105345B2 (en) | 2002-10-04 | 2012-01-31 | Medtronic, Inc. | Anastomosis apparatus and methods |
US8118822B2 (en) | 1999-03-01 | 2012-02-21 | Medtronic, Inc. | Bridge clip tissue connector apparatus and methods |
US8142493B2 (en) | 2003-12-23 | 2012-03-27 | Mitralign, Inc. | Method of heart valve repair |
US20120078355A1 (en) * | 2008-12-22 | 2012-03-29 | Yuval Zipory | Deployment techniques for annuloplasty ring and over-wire rotation tool |
US8177836B2 (en) | 2008-03-10 | 2012-05-15 | Medtronic, Inc. | Apparatus and methods for minimally invasive valve repair |
US8211124B2 (en) | 2003-07-25 | 2012-07-03 | Medtronic, Inc. | Sealing clip, delivery systems, and methods |
US20120198835A1 (en) * | 2008-10-13 | 2012-08-09 | GM Global Technology Operations LLC | Active material wire actuators having reinforced structural connectors |
US8287555B2 (en) | 2003-02-06 | 2012-10-16 | Guided Delivery Systems, Inc. | Devices and methods for heart valve repair |
US8353956B2 (en) | 2009-02-17 | 2013-01-15 | Valtech Cardio, Ltd. | Actively-engageable movement-restriction mechanism for use with an annuloplasty structure |
US8382829B1 (en) | 2008-03-10 | 2013-02-26 | Mitralign, Inc. | Method to reduce mitral regurgitation by cinching the commissure of the mitral valve |
US8394114B2 (en) | 2003-09-26 | 2013-03-12 | Medtronic, Inc. | Surgical connection apparatus and methods |
US8406901B2 (en) | 2006-04-27 | 2013-03-26 | Medtronic, Inc. | Sutureless implantable medical device fixation |
US8460371B2 (en) | 2002-10-21 | 2013-06-11 | Mitralign, Inc. | Method and apparatus for performing catheter-based annuloplasty using local plications |
US8500802B2 (en) | 2005-04-08 | 2013-08-06 | Medtronic, Inc. | Two-piece prosthetic valves with snap-in connection and methods for use |
US8518060B2 (en) | 2009-04-09 | 2013-08-27 | Medtronic, Inc. | Medical clip with radial tines, system and method of using same |
US8529583B1 (en) | 1999-09-03 | 2013-09-10 | Medtronic, Inc. | Surgical clip removal apparatus |
CN103547236A (en) * | 2010-12-22 | 2014-01-29 | 佛多斯大学医学研究中心 | Annuloplasty Ring System |
US8641727B2 (en) | 2002-06-13 | 2014-02-04 | Guided Delivery Systems, Inc. | Devices and methods for heart valve repair |
US8668704B2 (en) | 2009-04-24 | 2014-03-11 | Medtronic, Inc. | Medical clip with tines, system and method of using same |
US8758372B2 (en) | 2002-08-29 | 2014-06-24 | St. Jude Medical, Cardiology Division, Inc. | Implantable devices for controlling the size and shape of an anatomical structure or lumen |
US8790367B2 (en) | 2008-02-06 | 2014-07-29 | Guided Delivery Systems Inc. | Multi-window guide tunnel |
US8795298B2 (en) | 2008-10-10 | 2014-08-05 | Guided Delivery Systems Inc. | Tether tensioning devices and related methods |
US20140243894A1 (en) * | 2013-02-26 | 2014-08-28 | Mitralign, Inc. | Devices and Methods for Percutaneous Tricuspid Valve Repair |
US8821569B2 (en) | 2006-04-29 | 2014-09-02 | Medtronic, Inc. | Multiple component prosthetic heart valve assemblies and methods for delivering them |
US8845723B2 (en) | 2007-03-13 | 2014-09-30 | Mitralign, Inc. | Systems and methods for introducing elements into tissue |
US8858622B2 (en) | 2000-09-20 | 2014-10-14 | Mvrx, Inc. | Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools |
US8864822B2 (en) | 2003-12-23 | 2014-10-21 | Mitralign, Inc. | Devices and methods for introducing elements into tissue |
US8911461B2 (en) | 2007-03-13 | 2014-12-16 | Mitralign, Inc. | Suture cutter and method of cutting suture |
US8940044B2 (en) | 2011-06-23 | 2015-01-27 | Valtech Cardio, Ltd. | Closure element for use with an annuloplasty structure |
US8951286B2 (en) | 2005-07-05 | 2015-02-10 | Mitralign, Inc. | Tissue anchor and anchoring system |
US8979923B2 (en) | 2002-10-21 | 2015-03-17 | Mitralign, Inc. | Tissue fastening systems and methods utilizing magnetic guidance |
US8992606B2 (en) | 2010-03-19 | 2015-03-31 | Xavier Ruyra Baliarda | Prosthetic device for repairing a mitral valve |
US9011530B2 (en) | 2008-12-22 | 2015-04-21 | Valtech Cardio, Ltd. | Partially-adjustable annuloplasty structure |
US9011520B2 (en) | 2009-10-29 | 2015-04-21 | Valtech Cardio, Ltd. | Tissue anchor for annuloplasty device |
US9119719B2 (en) | 2009-05-07 | 2015-09-01 | Valtech Cardio, Ltd. | Annuloplasty ring with intra-ring anchoring |
US9155622B2 (en) | 2013-08-14 | 2015-10-13 | Sorin Group Italia S.R.L. | Apparatus and method for chordal replacement |
US9168137B2 (en) | 2008-04-16 | 2015-10-27 | Heart Repair Technologies, Inc. | Transvalvular intraannular band for aortic valve repair |
US9180008B2 (en) | 2012-02-29 | 2015-11-10 | Valcare, Inc. | Methods, devices, and systems for percutaneously anchoring annuloplasty rings |
US9180007B2 (en) | 2009-10-29 | 2015-11-10 | Valtech Cardio, Ltd. | Apparatus and method for guide-wire based advancement of an adjustable implant |
US9192472B2 (en) | 2008-06-16 | 2015-11-24 | Valtec Cardio, Ltd. | Annuloplasty devices and methods of delivery therefor |
US9220906B2 (en) | 2012-03-26 | 2015-12-29 | Medtronic, Inc. | Tethered implantable medical device deployment |
US20160022471A1 (en) * | 2013-03-15 | 2016-01-28 | Fabian Hermann Urban Füglister | Tongue deformation implant |
US9265608B2 (en) | 2011-11-04 | 2016-02-23 | Valtech Cardio, Ltd. | Implant having multiple rotational assemblies |
US9277994B2 (en) | 2008-12-22 | 2016-03-08 | Valtech Cardio, Ltd. | Implantation of repair chords in the heart |
US9339197B2 (en) | 2012-03-26 | 2016-05-17 | Medtronic, Inc. | Intravascular implantable medical device introduction |
US9351648B2 (en) | 2012-08-24 | 2016-05-31 | Medtronic, Inc. | Implantable medical device electrode assembly |
US9358112B2 (en) | 2001-04-24 | 2016-06-07 | Mitralign, Inc. | Method and apparatus for catheter-based annuloplasty using local plications |
US20160158008A1 (en) * | 2008-12-22 | 2016-06-09 | Valtech Cardio, Ltd. | Implantation of repair chords in the heart |
US9402721B2 (en) | 2011-06-01 | 2016-08-02 | Valcare, Inc. | Percutaneous transcatheter repair of heart valves via trans-apical access |
US9427215B2 (en) | 2007-02-05 | 2016-08-30 | St. Jude Medical, Cardiology Division, Inc. | Minimally invasive system for delivering and securing an annular implant |
US9433503B2 (en) | 2010-08-04 | 2016-09-06 | Valcare, Inc. | Percutaneous transcatheter repair of heart valves |
US9468526B2 (en) | 2008-04-16 | 2016-10-18 | Heart Repair Technologies, Inc. | Percutaneous transvalvular intraannular band for mitral valve repair |
US9492657B2 (en) | 2006-11-30 | 2016-11-15 | Medtronic, Inc. | Method of implanting a medical device including a fixation element |
US9610162B2 (en) | 2013-12-26 | 2017-04-04 | Valtech Cardio, Ltd. | Implantation of flexible implant |
US9616197B2 (en) | 2009-01-20 | 2017-04-11 | Ancora Heart, Inc. | Anchor deployment devices and related methods |
US9615925B2 (en) | 2008-04-16 | 2017-04-11 | Heart Repair Technologies, Inc. | Transvalvular intraanular band for ischemic and dilated cardiomyopathy |
US9622861B2 (en) | 2009-12-02 | 2017-04-18 | Valtech Cardio, Ltd. | Tool for actuating an adjusting mechanism |
US9636106B2 (en) | 2008-10-10 | 2017-05-02 | Ancora Heart, Inc. | Termination devices and related methods |
US9713530B2 (en) | 2008-12-22 | 2017-07-25 | Valtech Cardio, Ltd. | Adjustable annuloplasty devices and adjustment mechanisms therefor |
US9717421B2 (en) | 2012-03-26 | 2017-08-01 | Medtronic, Inc. | Implantable medical device delivery catheter with tether |
US9724192B2 (en) | 2011-11-08 | 2017-08-08 | Valtech Cardio, Ltd. | Controlled steering functionality for implant-delivery tool |
US9730793B2 (en) | 2012-12-06 | 2017-08-15 | Valtech Cardio, Ltd. | Techniques for guide-wire based advancement of a tool |
US9775982B2 (en) | 2010-12-29 | 2017-10-03 | Medtronic, Inc. | Implantable medical device fixation |
US9833625B2 (en) | 2012-03-26 | 2017-12-05 | Medtronic, Inc. | Implantable medical device delivery with inner and outer sheaths |
US9839519B2 (en) | 2012-02-29 | 2017-12-12 | Valcare, Inc. | Percutaneous annuloplasty system with anterior-posterior adjustment |
US9854982B2 (en) | 2012-03-26 | 2018-01-02 | Medtronic, Inc. | Implantable medical device deployment within a vessel |
US9861350B2 (en) | 2010-09-03 | 2018-01-09 | Ancora Heart, Inc. | Devices and methods for anchoring tissue |
US9883943B2 (en) | 2006-12-05 | 2018-02-06 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
US9918840B2 (en) | 2011-06-23 | 2018-03-20 | Valtech Cardio, Ltd. | Closed band for percutaneous annuloplasty |
US9937044B2 (en) | 2013-06-25 | 2018-04-10 | Mitralign, Inc. | Percutaneous valve repair by reshaping and resizing right ventricle |
US9949829B2 (en) | 2002-06-13 | 2018-04-24 | Ancora Heart, Inc. | Delivery devices and methods for heart valve repair |
US9949828B2 (en) | 2012-10-23 | 2018-04-24 | Valtech Cardio, Ltd. | Controlled steering functionality for implant-delivery tool |
US9968452B2 (en) | 2009-05-04 | 2018-05-15 | Valtech Cardio, Ltd. | Annuloplasty ring delivery cathethers |
US10010315B2 (en) | 2015-03-18 | 2018-07-03 | Mitralign, Inc. | Tissue anchors and percutaneous tricuspid valve repair using a tissue anchor |
US10058321B2 (en) | 2015-03-05 | 2018-08-28 | Ancora Heart, Inc. | Devices and methods of visualizing and determining depth of penetration in cardiac tissue |
US10098737B2 (en) | 2009-10-29 | 2018-10-16 | Valtech Cardio, Ltd. | Tissue anchor for annuloplasty device |
US10112045B2 (en) | 2010-12-29 | 2018-10-30 | Medtronic, Inc. | Implantable medical device fixation |
US10136985B2 (en) | 2014-07-17 | 2018-11-27 | Millipede, Inc. | Method of reconfiguring a mitral valve annulus |
US10166100B2 (en) | 2013-03-15 | 2019-01-01 | Valcare, Inc. | Systems and methods for delivery of annuloplasty rings |
US10172621B2 (en) | 2007-09-21 | 2019-01-08 | Mvrx, Inc. | Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools |
US10195030B2 (en) | 2014-10-14 | 2019-02-05 | Valtech Cardio, Ltd. | Leaflet-restraining techniques |
US10201423B2 (en) | 2015-03-11 | 2019-02-12 | Mvrx, Inc. | Devices, systems, and methods for reshaping a heart valve annulus |
US10219902B2 (en) | 2005-03-25 | 2019-03-05 | Mvrx, Inc. | Devices, systems, and methods for reshaping a heart valve anulus, including the use of a bridge implant having an adjustable bridge stop |
US10226342B2 (en) | 2016-07-08 | 2019-03-12 | Valtech Cardio, Ltd. | Adjustable annuloplasty device with alternating peaks and troughs |
US10231831B2 (en) | 2009-12-08 | 2019-03-19 | Cardiovalve Ltd. | Folding ring implant for heart valve |
US10258466B2 (en) | 2015-02-13 | 2019-04-16 | Millipede, Inc. | Valve replacement using moveable restrains and angled struts |
US10278818B2 (en) | 2015-12-10 | 2019-05-07 | Mvrx, Inc. | Devices, systems, and methods for reshaping a heart valve annulus |
US10299793B2 (en) | 2013-10-23 | 2019-05-28 | Valtech Cardio, Ltd. | Anchor magazine |
CN109843185A (en) * | 2016-08-16 | 2019-06-04 | 波士顿科学国际有限公司 | Heart valve regurgitation anchoring piece and means of delivery |
US10335275B2 (en) | 2015-09-29 | 2019-07-02 | Millipede, Inc. | Methods for delivery of heart valve devices using intravascular ultrasound imaging |
US10376266B2 (en) | 2012-10-23 | 2019-08-13 | Valtech Cardio, Ltd. | Percutaneous tissue anchor techniques |
US10449333B2 (en) | 2013-03-14 | 2019-10-22 | Valtech Cardio, Ltd. | Guidewire feeder |
US10456259B2 (en) | 2008-04-16 | 2019-10-29 | Heart Repair Technologies, Inc. | Transvalvular intraannular band for mitral valve repair |
US10470882B2 (en) | 2008-12-22 | 2019-11-12 | Valtech Cardio, Ltd. | Closure element for use with annuloplasty structure |
US10485435B2 (en) | 2012-03-26 | 2019-11-26 | Medtronic, Inc. | Pass-through implantable medical device delivery catheter with removeable distal tip |
US10543088B2 (en) | 2012-09-14 | 2020-01-28 | Boston Scientific Scimed, Inc. | Mitral valve inversion prostheses |
US10548731B2 (en) | 2017-02-10 | 2020-02-04 | Boston Scientific Scimed, Inc. | Implantable device and delivery system for reshaping a heart valve annulus |
US10555813B2 (en) | 2015-11-17 | 2020-02-11 | Boston Scientific Scimed, Inc. | Implantable device and delivery system for reshaping a heart valve annulus |
JP2020506010A (en) * | 2017-02-08 | 2020-02-27 | 4テック インコーポレイテッド | Implantable force gauge |
US10667914B2 (en) | 2016-11-18 | 2020-06-02 | Ancora Heart, Inc. | Myocardial implant load sharing device and methods to promote LV function |
US10682232B2 (en) | 2013-03-15 | 2020-06-16 | Edwards Lifesciences Corporation | Translation catheters, systems, and methods of use thereof |
US10702274B2 (en) | 2016-05-26 | 2020-07-07 | Edwards Lifesciences Corporation | Method and system for closing left atrial appendage |
US10751182B2 (en) | 2015-12-30 | 2020-08-25 | Edwards Lifesciences Corporation | System and method for reshaping right heart |
US10765514B2 (en) | 2015-04-30 | 2020-09-08 | Valtech Cardio, Ltd. | Annuloplasty technologies |
US10792152B2 (en) | 2011-06-23 | 2020-10-06 | Valtech Cardio, Ltd. | Closed band for percutaneous annuloplasty |
US10813751B2 (en) | 2013-05-22 | 2020-10-27 | Valcare, Inc. | Transcatheter prosthetic valve for mitral or tricuspid valve replacement |
US10828160B2 (en) | 2015-12-30 | 2020-11-10 | Edwards Lifesciences Corporation | System and method for reducing tricuspid regurgitation |
US10835221B2 (en) | 2017-11-02 | 2020-11-17 | Valtech Cardio, Ltd. | Implant-cinching devices and systems |
US10849755B2 (en) | 2012-09-14 | 2020-12-01 | Boston Scientific Scimed, Inc. | Mitral valve inversion prostheses |
US10874850B2 (en) | 2018-09-28 | 2020-12-29 | Medtronic, Inc. | Impedance-based verification for delivery of implantable medical devices |
US10874388B2 (en) | 2017-11-30 | 2020-12-29 | Boston Scientific Scimed, Inc. | Connected anchor delivery systems and methods for valve repair |
US10918373B2 (en) | 2013-08-31 | 2021-02-16 | Edwards Lifesciences Corporation | Devices and methods for locating and implanting tissue anchors at mitral valve commissure |
US10925610B2 (en) | 2015-03-05 | 2021-02-23 | Edwards Lifesciences Corporation | Devices for treating paravalvular leakage and methods use thereof |
US10980973B2 (en) | 2015-05-12 | 2021-04-20 | Ancora Heart, Inc. | Device and method for releasing catheters from cardiac structures |
US11013599B2 (en) | 2008-04-16 | 2021-05-25 | Heart Repair Technologies, Inc. | Percutaneous transvalvular intraannular band for mitral valve repair |
US11020228B2 (en) | 2017-08-17 | 2021-06-01 | Boston Scientific Scimed, Inc. | Anchor delivery system and methods for valve repair |
US11033391B2 (en) | 2016-12-22 | 2021-06-15 | Heart Repair Technologies, Inc. | Percutaneous delivery systems for anchoring an implant in a cardiac valve annulus |
US11045627B2 (en) | 2017-04-18 | 2021-06-29 | Edwards Lifesciences Corporation | Catheter system with linear actuation control mechanism |
US11058417B2 (en) | 2013-06-28 | 2021-07-13 | Valcare, Inc. | Device, system, and method to secure an article to a tissue |
US11083579B2 (en) | 2008-04-16 | 2021-08-10 | Heart Repair Technologies, Inc. | Transvalvular intraanular band and chordae cutting for ischemic and dilated cardiomyopathy |
US11103349B2 (en) | 2016-08-15 | 2021-08-31 | Valcare, Inc. | Devices and methods for the treatment of heart valve insufficiencies |
US11123191B2 (en) | 2018-07-12 | 2021-09-21 | Valtech Cardio Ltd. | Annuloplasty systems and locking tools therefor |
US11135062B2 (en) | 2017-11-20 | 2021-10-05 | Valtech Cardio Ltd. | Cinching of dilated heart muscle |
US11259924B2 (en) | 2006-12-05 | 2022-03-01 | Valtech Cardio Ltd. | Implantation of repair devices in the heart |
US11331475B2 (en) | 2019-05-07 | 2022-05-17 | Medtronic, Inc. | Tether assemblies for medical device delivery systems |
US11395648B2 (en) | 2012-09-29 | 2022-07-26 | Edwards Lifesciences Corporation | Plication lock delivery system and method of use thereof |
US11534300B2 (en) | 2018-12-03 | 2022-12-27 | Valcare, Inc. | Stabilizing and adjusting tool for controlling a minimally invasive mitral / tricuspid valve repair system |
US11576779B2 (en) | 2017-03-17 | 2023-02-14 | Valcare, Inc. | Mitral or tricuspid repair systems with multi-directional anchors |
US11654017B2 (en) | 2013-05-24 | 2023-05-23 | Valcare, Inc. | Heart and peripheral vascular valve replacement in conjunction with a support ring |
US11653910B2 (en) | 2010-07-21 | 2023-05-23 | Cardiovalve Ltd. | Helical anchor implantation |
US11660190B2 (en) | 2007-03-13 | 2023-05-30 | Edwards Lifesciences Corporation | Tissue anchors, systems and methods, and devices |
US11666442B2 (en) | 2018-01-26 | 2023-06-06 | Edwards Lifesciences Innovation (Israel) Ltd. | Techniques for facilitating heart valve tethering and chord replacement |
US11672524B2 (en) | 2019-07-15 | 2023-06-13 | Ancora Heart, Inc. | Devices and methods for tether cutting |
US11779458B2 (en) | 2016-08-10 | 2023-10-10 | Cardiovalve Ltd. | Prosthetic valve with leaflet connectors |
US11779463B2 (en) | 2018-01-24 | 2023-10-10 | Edwards Lifesciences Innovation (Israel) Ltd. | Contraction of an annuloplasty structure |
US11793628B2 (en) | 2019-07-15 | 2023-10-24 | Valcare, Inc. | Transcatheter bio-prosthesis member and support structure |
US11801135B2 (en) | 2015-02-05 | 2023-10-31 | Cardiovalve Ltd. | Techniques for deployment of a prosthetic valve |
US11819411B2 (en) | 2019-10-29 | 2023-11-21 | Edwards Lifesciences Innovation (Israel) Ltd. | Annuloplasty and tissue anchor technologies |
US11844691B2 (en) | 2013-01-24 | 2023-12-19 | Cardiovalve Ltd. | Partially-covered prosthetic valves |
US11937795B2 (en) | 2016-02-16 | 2024-03-26 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
US11969348B2 (en) | 2011-12-12 | 2024-04-30 | Edwards Lifesciences Corporation | Cardiac valve replacement |
US12023247B2 (en) | 2020-05-20 | 2024-07-02 | Edwards Lifesciences Corporation | Reducing the diameter of a cardiac valve annulus with independent control over each of the anchors that are launched into the annulus |
US12029646B2 (en) | 2017-08-03 | 2024-07-09 | Cardiovalve Ltd. | Prosthetic heart valve |
US12035898B2 (en) | 2005-04-22 | 2024-07-16 | Edwards Lifesciences Corporation | Catheter-based tissue remodeling devices and methods |
US12053379B2 (en) | 2016-08-01 | 2024-08-06 | Cardiovalve Ltd. | Minimally-invasive delivery systems |
US12053380B2 (en) | 2014-07-30 | 2024-08-06 | Cardiovalve Ltd. | Anchoring of a prosthetic valve |
US12090048B2 (en) | 2017-08-03 | 2024-09-17 | Cardiovalve Ltd. | Prosthetic heart valve |
US12138165B2 (en) | 2011-06-23 | 2024-11-12 | Edwards Lifesciences Innovation (Israel) Ltd. | Annuloplasty implants |
US12151100B2 (en) | 2019-05-07 | 2024-11-26 | Medtronic, Inc. | Tether assemblies for medical device delivery systems |
US12208006B2 (en) | 2019-09-25 | 2025-01-28 | Edwards Lifesciences Corporation | Constricting a cardiac valve annulus using a cord that has a loop portion and a single second portion |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7883539B2 (en) | 1997-01-02 | 2011-02-08 | Edwards Lifesciences Llc | Heart wall tension reduction apparatus and method |
US6332893B1 (en) | 1997-12-17 | 2001-12-25 | Myocor, Inc. | Valve to myocardium tension members device and method |
ITPC20000013A1 (en) * | 2000-04-13 | 2000-07-13 | Paolo Ferrazzi | INTROVENTRICULAR DEVICE AND RELATED METHOD FOR THE TREATMENT AND CORRECTION OF MYOCARDIOPATHIES. |
US6723038B1 (en) | 2000-10-06 | 2004-04-20 | Myocor, Inc. | Methods and devices for improving mitral valve function |
US6976995B2 (en) * | 2002-01-30 | 2005-12-20 | Cardiac Dimensions, Inc. | Fixed length anchor and pull mitral valve device and method |
US7201771B2 (en) | 2001-12-27 | 2007-04-10 | Arbor Surgical Technologies, Inc. | Bioprosthetic heart valve |
US6764510B2 (en) | 2002-01-09 | 2004-07-20 | Myocor, Inc. | Devices and methods for heart valve treatment |
US7959674B2 (en) | 2002-07-16 | 2011-06-14 | Medtronic, Inc. | Suture locking assembly and method of use |
US7155273B2 (en) * | 2002-07-29 | 2006-12-26 | Taylor Geoffrey L | Blanching response pressure sore detector apparatus and method |
US7112219B2 (en) | 2002-11-12 | 2006-09-26 | Myocor, Inc. | Devices and methods for heart valve treatment |
US7556647B2 (en) | 2003-10-08 | 2009-07-07 | Arbor Surgical Technologies, Inc. | Attachment device and methods of using the same |
US8211169B2 (en) | 2005-05-27 | 2012-07-03 | Medtronic, Inc. | Gasket with collar for prosthetic heart valves and methods for using them |
US7967857B2 (en) | 2006-01-27 | 2011-06-28 | Medtronic, Inc. | Gasket with spring collar for prosthetic heart valves and methods for making and using them |
US7699892B2 (en) | 2006-04-12 | 2010-04-20 | Medtronic Vascular, Inc. | Minimally invasive procedure for implanting an annuloplasty device |
US20070244555A1 (en) * | 2006-04-12 | 2007-10-18 | Medtronic Vascular, Inc. | Annuloplasty Device Having a Helical Anchor and Methods for its Use |
US8523939B1 (en) | 2006-06-12 | 2013-09-03 | Cardica, Inc. | Method and apparatus for heart valve surgery |
WO2008043044A2 (en) * | 2006-10-04 | 2008-04-10 | Ndo Surgical, Inc. | Devices and methods for endoluminal gastric restriction tissue manipulation, and drug delivery |
US7972370B2 (en) * | 2008-04-24 | 2011-07-05 | Medtronic Vascular, Inc. | Stent graft system and method of use |
CA2723810C (en) | 2008-05-07 | 2015-06-30 | Guided Delivery Systems, Inc. | Deflectable guide |
US8163010B1 (en) | 2008-06-03 | 2012-04-24 | Cardica, Inc. | Staple-based heart valve treatment |
US8337390B2 (en) | 2008-07-30 | 2012-12-25 | Cube S.R.L. | Intracardiac device for restoring the functional elasticity of the cardiac structures, holding tool for the intracardiac device, and method for implantation of the intracardiac device in the heart |
US8926697B2 (en) | 2011-06-23 | 2015-01-06 | Valtech Cardio, Ltd. | Closed band for percutaneous annuloplasty |
US8734484B2 (en) | 2009-04-21 | 2014-05-27 | Medtronic, Inc. | System and method for closure of an internal opening in tissue, such as a trans-apical access opening |
US8690939B2 (en) | 2009-10-29 | 2014-04-08 | Valtech Cardio, Ltd. | Method for guide-wire based advancement of a rotation assembly |
US8277502B2 (en) * | 2009-10-29 | 2012-10-02 | Valtech Cardio, Ltd. | Tissue anchor for annuloplasty device |
US8790394B2 (en) | 2010-05-24 | 2014-07-29 | Valtech Cardio, Ltd. | Adjustable artificial chordeae tendineae with suture loops |
US8496671B1 (en) | 2010-06-16 | 2013-07-30 | Cardica, Inc. | Mitral valve treatment |
WO2012158189A1 (en) | 2011-05-17 | 2012-11-22 | Boston Scientific Scimed, Inc. | Annuloplasty ring with anchors fixed by curing polymer |
WO2012158258A1 (en) | 2011-05-17 | 2012-11-22 | Boston Scientific Scimed, Inc. | Annuloplasty ring with piercing wire and segmented wire lumen |
WO2012158187A1 (en) | 2011-05-17 | 2012-11-22 | Boston Scientific Scimed, Inc. | Corkscrew annuloplasty device |
DE102013206132B4 (en) * | 2012-04-11 | 2019-10-31 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | Active material wire actuators with reinforced structural fasteners |
US9687346B2 (en) | 2013-03-14 | 2017-06-27 | Edwards Lifesciences Corporation | Multi-stranded heat set annuloplasty rings |
WO2015006575A1 (en) * | 2013-07-10 | 2015-01-15 | Medtronic Inc. | Helical coil mitral valve annuloplasty systems and methods |
EP3232941B1 (en) | 2014-12-19 | 2023-11-08 | Meacor, Inc. | Surgical system |
US20200146854A1 (en) | 2016-05-16 | 2020-05-14 | Elixir Medical Corporation | Methods and devices for heart valve repair |
CA2943319C (en) * | 2016-09-28 | 2017-08-01 | Bombardier Transportation Gmbh | Containment device for a laser head and associated manufacturing method |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4595007A (en) * | 1983-03-14 | 1986-06-17 | Ethicon, Inc. | Split ring type tissue fastener |
US4990152A (en) * | 1988-10-12 | 1991-02-05 | Inbae Yoon | Applicator device housing multiple elastic ligatures in series and for dilating and applying elastic ligatures onto anatomical tissue |
US5026379A (en) * | 1989-12-05 | 1991-06-25 | Inbae Yoon | Multi-functional instruments and stretchable ligating and occluding devices |
US5100418A (en) * | 1987-05-14 | 1992-03-31 | Inbae Yoon | Suture tie device system and applicator therefor |
US5171250A (en) * | 1987-05-14 | 1992-12-15 | Inbae Yoon | Surgical clips and surgical clip applicator and cutting and transection device |
US5219358A (en) * | 1991-08-29 | 1993-06-15 | Ethicon, Inc. | Shape memory effect surgical needles |
US5356424A (en) * | 1993-02-05 | 1994-10-18 | American Cyanamid Co. | Laparoscopic suturing device |
US5499990A (en) * | 1992-05-23 | 1996-03-19 | Forschungszentrum Karlsruhe Gmbh | Suturing instrument |
US5582616A (en) * | 1994-08-05 | 1996-12-10 | Origin Medsystems, Inc. | Surgical helical fastener with applicator |
US5820631A (en) * | 1996-08-01 | 1998-10-13 | Nr Medical, Inc. | Device and method for suturing tissue adjacent to a blood vessel |
US5830221A (en) * | 1996-09-20 | 1998-11-03 | United States Surgical Corporation | Coil fastener applier |
US5891130A (en) * | 1992-11-13 | 1999-04-06 | Target Therapeutics, Inc. | Axially detachable embolic coil assembly |
US5895394A (en) * | 1996-09-24 | 1999-04-20 | Aesculap Ag & Co. Kg | Surgical Applicator for U-shaped clips |
US5984917A (en) * | 1995-06-07 | 1999-11-16 | Ep Technologies, Inc. | Device and method for remote insertion of a closed loop |
US5989242A (en) * | 1995-06-26 | 1999-11-23 | Trimedyne, Inc. | Therapeutic appliance releasing device |
US5989268A (en) * | 1997-10-28 | 1999-11-23 | Boston Scientific Corporation | Endoscopic hemostatic clipping device |
US6074401A (en) * | 1997-01-09 | 2000-06-13 | Coalescent Surgical, Inc. | Pinned retainer surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery |
US6143004A (en) * | 1998-08-18 | 2000-11-07 | Atrion Medical Products, Inc. | Suturing device |
US6149658A (en) * | 1997-01-09 | 2000-11-21 | Coalescent Surgical, Inc. | Sutured staple surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery |
US6514265B2 (en) * | 1999-03-01 | 2003-02-04 | Coalescent Surgical, Inc. | Tissue connector apparatus with cable release |
US20030074012A1 (en) * | 2000-10-10 | 2003-04-17 | Coalescent Surgical, Inc. | Minimally invasive annuloplasty procedure and apparatus |
US6551332B1 (en) * | 2000-03-31 | 2003-04-22 | Coalescent Surgical, Inc. | Multiple bias surgical fastener |
US6607541B1 (en) * | 1998-06-03 | 2003-08-19 | Coalescent Surgical, Inc. | Tissue connector apparatus and methods |
US6613059B2 (en) * | 1999-03-01 | 2003-09-02 | Coalescent Surgical, Inc. | Tissue connector apparatus and methods |
US6641593B1 (en) * | 1998-06-03 | 2003-11-04 | Coalescent Surgical, Inc. | Tissue connector apparatus and methods |
Family Cites Families (93)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1087186A (en) * | 1909-03-22 | 1914-02-17 | Socrates Scholfield | Illustrative educational device. |
US1167014A (en) * | 1915-06-25 | 1916-01-04 | William R O'brien | Veterinary surgical instrument. |
US3082426A (en) * | 1960-06-17 | 1963-03-26 | George Oliver Halsted | Surgical stapling device |
US3570497A (en) * | 1969-01-16 | 1971-03-16 | Gerald M Lemole | Suture apparatus and methods |
US3638654A (en) * | 1969-07-11 | 1972-02-01 | Uche Akuba | Suturing instrument |
US4006747A (en) * | 1975-04-23 | 1977-02-08 | Ethicon, Inc. | Surgical method |
US4140125A (en) * | 1976-02-25 | 1979-02-20 | Med-Pro, Ltd. | Surgical tape device |
US4073179A (en) * | 1976-06-01 | 1978-02-14 | Codman & Shurtleff, Inc. | Clip removing device |
SU577022A1 (en) * | 1976-06-25 | 1977-10-30 | Всесоюзный Научно-Исследовательский Институт Клинической И Экспериментальной Хирургии | Cardiac valve prosthesis |
US4243048A (en) * | 1976-09-21 | 1981-01-06 | Jim Zegeer | Biopsy device |
DE2658478C2 (en) * | 1976-12-23 | 1978-11-30 | Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen | Vascular clips for surgical use |
US4185636A (en) * | 1977-12-29 | 1980-01-29 | Albert Einstein College Of Medicine Of Yeshiva University | Suture organizer, prosthetic device holder, and related surgical procedures |
US4366819A (en) * | 1980-11-17 | 1983-01-04 | Kaster Robert L | Anastomotic fitting |
US4809695A (en) * | 1981-10-21 | 1989-03-07 | Owen M. Gwathmey | Suturing assembly and method |
US4492229A (en) * | 1982-09-03 | 1985-01-08 | Grunwald Ronald P | Suture guide holder |
US5190546A (en) * | 1983-10-14 | 1993-03-02 | Raychem Corporation | Medical devices incorporating SIM alloy elements |
DE3413744C2 (en) * | 1984-04-12 | 1986-08-28 | Richard Wolf Gmbh, 7134 Knittlingen | Applicator for knotting sewing threads |
DE3507109A1 (en) * | 1985-03-01 | 1986-09-04 | Naučno-issledovatel'skij institut chirurgii imeni A.V. Višnevskogo Akademii medicinskich nauk SSSR, Moskau/Moskva | HEART VALVE PROSTHESIS |
US4637380A (en) * | 1985-06-24 | 1987-01-20 | Orejola Wilmo C | Surgical wound closures |
US4730615A (en) * | 1986-03-03 | 1988-03-15 | Pfizer Hospital Products Group, Inc. | Sternum closure device |
FR2596978A1 (en) * | 1986-04-10 | 1987-10-16 | Peters | BONE FIXING PLATE, PROVIDED WITH SUTURE WIRES |
US4719924A (en) * | 1986-09-09 | 1988-01-19 | C. R. Bard, Inc. | Small diameter steerable guidewire with adjustable tip |
US4732151A (en) * | 1986-10-08 | 1988-03-22 | Patent Research & Development Corp. | Low trauma suturing |
US4719917A (en) * | 1987-02-17 | 1988-01-19 | Minnesota Mining And Manufacturing Company | Surgical staple |
US5437680A (en) * | 1987-05-14 | 1995-08-01 | Yoon; Inbae | Suturing method, apparatus and system for use in endoscopic procedures |
US4890615B1 (en) * | 1987-11-05 | 1993-11-16 | Linvatec Corporation | Arthroscopic suturing instrument |
US5002562A (en) * | 1988-06-03 | 1991-03-26 | Oberlander Michael A | Surgical clip |
US4901721A (en) * | 1988-08-02 | 1990-02-20 | Hakki Samir I | Suturing device |
US4994069A (en) * | 1988-11-02 | 1991-02-19 | Target Therapeutics | Vaso-occlusion coil and method |
FR2640131B1 (en) * | 1988-12-12 | 1991-03-29 | Ethnor | LIGATURE ASSEMBLY FOR ENDOSCOPIC SURGERY, LIGATURE AND LIGATURE HANDLING INSTRUMENT FOR SUCH ASSEMBLY |
US4899744A (en) * | 1988-12-15 | 1990-02-13 | Tatsuo Fujitsuka | Apparatus for anastomosing digestive tract |
US4997439A (en) * | 1989-01-26 | 1991-03-05 | Chen Fusen H | Surgical closure or anastomotic device |
US4983176A (en) * | 1989-03-06 | 1991-01-08 | University Of New Mexico | Deformable plastic surgical clip |
US5178634A (en) * | 1989-03-31 | 1993-01-12 | Wilson Ramos Martinez | Aortic valved tubes for human implants |
US5192294A (en) * | 1989-05-02 | 1993-03-09 | Blake Joseph W Iii | Disposable vascular punch |
US5002550A (en) * | 1989-06-06 | 1991-03-26 | Mitek Surgical Products, Inc. | Suture anchor installation tool |
US5632746A (en) * | 1989-08-16 | 1997-05-27 | Medtronic, Inc. | Device or apparatus for manipulating matter |
US4991567A (en) * | 1990-01-16 | 1991-02-12 | Mccuen Ii Brooks W | Micro-iris retractor |
US5002563A (en) * | 1990-02-22 | 1991-03-26 | Raychem Corporation | Sutures utilizing shape memory alloys |
US5290289A (en) * | 1990-05-22 | 1994-03-01 | Sanders Albert E | Nitinol spinal instrumentation and method for surgically treating scoliosis |
US5088692A (en) * | 1990-09-04 | 1992-02-18 | Weiler Raywood C | Heavy duty staple remover |
US5100421A (en) * | 1991-02-05 | 1992-03-31 | Cyprus Endosurgical Tools, Inc. | Christoudias curved needle suture assembly |
US5584803A (en) * | 1991-07-16 | 1996-12-17 | Heartport, Inc. | System for cardiac procedures |
US5707362A (en) * | 1992-04-15 | 1998-01-13 | Yoon; Inbae | Penetrating instrument having an expandable anchoring portion for triggering protrusion of a safety member and/or retraction of a penetrating member |
US5387227A (en) * | 1992-09-10 | 1995-02-07 | Grice; O. Drew | Method for use of a laparo-suture needle |
US5383904A (en) * | 1992-10-13 | 1995-01-24 | United States Surgical Corporation | Stiffened surgical device |
US5382259A (en) * | 1992-10-26 | 1995-01-17 | Target Therapeutics, Inc. | Vasoocclusion coil with attached tubular woven or braided fibrous covering |
CA2102084A1 (en) * | 1992-11-09 | 1994-05-10 | Howard C. Topel | Surgical cutting instrument for coring tissue affixed thereto |
US5807393A (en) * | 1992-12-22 | 1998-09-15 | Ethicon Endo-Surgery, Inc. | Surgical tissue treating device with locking mechanism |
US6346074B1 (en) * | 1993-02-22 | 2002-02-12 | Heartport, Inc. | Devices for less invasive intracardiac interventions |
US5797960A (en) * | 1993-02-22 | 1998-08-25 | Stevens; John H. | Method and apparatus for thoracoscopic intracardiac procedures |
US6010531A (en) * | 1993-02-22 | 2000-01-04 | Heartport, Inc. | Less-invasive devices and methods for cardiac valve surgery |
US5282825A (en) * | 1993-06-02 | 1994-02-01 | Muck Kin C | Surgical ligaturing and animal restraining device |
EP0673229A4 (en) * | 1993-08-25 | 1996-09-11 | Life Surgery Inc | Surgical ligation clip. |
US5486187A (en) * | 1994-01-04 | 1996-01-23 | Schenck; Robert R. | Anastomosis device and method |
CA2143560C (en) * | 1994-03-02 | 2007-01-16 | Mark Fogelberg | Sterile occlusion fasteners and instrument and method for their placement |
US5486197A (en) * | 1994-03-24 | 1996-01-23 | Ethicon, Inc. | Two-piece suture anchor with barbs |
JP3526609B2 (en) * | 1994-03-31 | 2004-05-17 | テルモ株式会社 | Suture instrument |
US5715987A (en) * | 1994-04-05 | 1998-02-10 | Tracor Incorporated | Constant width, adjustable grip, staple apparatus and method |
US5601571A (en) * | 1994-05-17 | 1997-02-11 | Moss; Gerald | Surgical fastener implantation device |
US5881943A (en) * | 1994-06-17 | 1999-03-16 | Heartport, Inc. | Surgical anastomosis apparatus and method thereof |
US5593424A (en) * | 1994-08-10 | 1997-01-14 | Segmed, Inc. | Apparatus and method for reducing and stabilizing the circumference of a vascular structure |
US5720755A (en) * | 1995-01-18 | 1998-02-24 | Dakov; Pepi | Tubular suturing device and methods of use |
US5904697A (en) * | 1995-02-24 | 1999-05-18 | Heartport, Inc. | Devices and methods for performing a vascular anastomosis |
US5591179A (en) * | 1995-04-19 | 1997-01-07 | Applied Medical Resources Corporation | Anastomosis suturing device and method |
US6013084A (en) * | 1995-06-30 | 2000-01-11 | Target Therapeutics, Inc. | Stretch resistant vaso-occlusive coils (II) |
US5601600A (en) * | 1995-09-08 | 1997-02-11 | Conceptus, Inc. | Endoluminal coil delivery system having a mechanical release mechanism |
US5709693A (en) * | 1996-02-20 | 1998-01-20 | Cardiothoracic System, Inc. | Stitcher |
US5792217A (en) * | 1996-06-28 | 1998-08-11 | Medtronic, Inc. | Temporary bipolar heart wire |
US6024748A (en) * | 1996-07-23 | 2000-02-15 | United States Surgical Corporation | Singleshot anastomosis instrument with detachable loading unit and method |
US5707380A (en) * | 1996-07-23 | 1998-01-13 | United States Surgical Corporation | Anastomosis instrument and method |
SE509389C2 (en) * | 1996-07-24 | 1999-01-18 | Solem Jan Otto | Device for connecting the end of a first blood vessel to the side of a second blood vessel |
US5868763A (en) * | 1996-09-16 | 1999-02-09 | Guidant Corporation | Means and methods for performing an anastomosis |
IL119911A (en) * | 1996-12-25 | 2001-03-19 | Niti Alloys Tech Ltd | Surgical clip |
US6022367A (en) * | 1997-06-18 | 2000-02-08 | United States Surgical | Surgical apparatus for forming a hole in a blood vessel |
US6001110A (en) * | 1997-06-20 | 1999-12-14 | Boston Scientific Corporation | Hemostatic clips |
ES2335252T3 (en) * | 1997-06-27 | 2010-03-23 | The Trustees Of Columbia University In The City Of New York | APPARATUS FOR THE REPAIR OF VALVES OF THE CIRCULATORY SYSTEM. |
US6193734B1 (en) * | 1998-01-23 | 2001-02-27 | Heartport, Inc. | System for performing vascular anastomoses |
US6176864B1 (en) * | 1998-03-09 | 2001-01-23 | Corvascular, Inc. | Anastomosis device and method |
US6945980B2 (en) * | 1998-06-03 | 2005-09-20 | Medtronic, Inc. | Multiple loop tissue connector apparatus and methods |
US6250308B1 (en) * | 1998-06-16 | 2001-06-26 | Cardiac Concepts, Inc. | Mitral valve annuloplasty ring and method of implanting |
CA2360587A1 (en) * | 1999-01-15 | 2000-07-20 | Darin C. Gittings | Methods and devices for forming vascular anastomoses |
US6350269B1 (en) * | 1999-03-01 | 2002-02-26 | Apollo Camera, L.L.C. | Ligation clip and clip applier |
US6695859B1 (en) * | 1999-04-05 | 2004-02-24 | Coalescent Surgical, Inc. | Apparatus and methods for anastomosis |
US6183512B1 (en) * | 1999-04-16 | 2001-02-06 | Edwards Lifesciences Corporation | Flexible annuloplasty system |
US6179849B1 (en) * | 1999-06-10 | 2001-01-30 | Vascular Innovations, Inc. | Sutureless closure for connecting a bypass graft to a target vessel |
US7192442B2 (en) * | 1999-06-30 | 2007-03-20 | Edwards Lifesciences Ag | Method and device for treatment of mitral insufficiency |
US6179840B1 (en) * | 1999-07-23 | 2001-01-30 | Ethicon, Inc. | Graft fixation device and method |
US6682540B1 (en) * | 1999-11-05 | 2004-01-27 | Onux Medical, Inc. | Apparatus and method for placing multiple sutures |
US6524338B1 (en) * | 2000-08-25 | 2003-02-25 | Steven R. Gundry | Method and apparatus for stapling an annuloplasty band in-situ |
US8627992B2 (en) * | 2002-12-16 | 2014-01-14 | Edrich Health Technologies, Inc. | Endovascular stapler |
US7182769B2 (en) * | 2003-07-25 | 2007-02-27 | Medtronic, Inc. | Sealing clip, delivery systems, and methods |
US20050043749A1 (en) * | 2003-08-22 | 2005-02-24 | Coalescent Surgical, Inc. | Eversion apparatus and methods |
-
2002
- 2002-04-18 US US10/125,811 patent/US20030199974A1/en not_active Abandoned
-
2003
- 2003-04-18 AU AU2003228586A patent/AU2003228586A1/en not_active Abandoned
- 2003-04-18 WO PCT/US2003/012073 patent/WO2003088875A1/en not_active Application Discontinuation
-
2004
- 2004-11-10 US US10/985,768 patent/US20050065601A1/en not_active Abandoned
-
2010
- 2010-09-13 US US12/880,823 patent/US8167933B2/en not_active Expired - Fee Related
Patent Citations (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4595007A (en) * | 1983-03-14 | 1986-06-17 | Ethicon, Inc. | Split ring type tissue fastener |
US5100418A (en) * | 1987-05-14 | 1992-03-31 | Inbae Yoon | Suture tie device system and applicator therefor |
US5171250A (en) * | 1987-05-14 | 1992-12-15 | Inbae Yoon | Surgical clips and surgical clip applicator and cutting and transection device |
US4990152A (en) * | 1988-10-12 | 1991-02-05 | Inbae Yoon | Applicator device housing multiple elastic ligatures in series and for dilating and applying elastic ligatures onto anatomical tissue |
US5026379A (en) * | 1989-12-05 | 1991-06-25 | Inbae Yoon | Multi-functional instruments and stretchable ligating and occluding devices |
US5219358A (en) * | 1991-08-29 | 1993-06-15 | Ethicon, Inc. | Shape memory effect surgical needles |
US5499990A (en) * | 1992-05-23 | 1996-03-19 | Forschungszentrum Karlsruhe Gmbh | Suturing instrument |
US5891130A (en) * | 1992-11-13 | 1999-04-06 | Target Therapeutics, Inc. | Axially detachable embolic coil assembly |
US6190373B1 (en) * | 1992-11-13 | 2001-02-20 | Scimed Life Systems, Inc. | Axially detachable embolic coil assembly |
US5356424A (en) * | 1993-02-05 | 1994-10-18 | American Cyanamid Co. | Laparoscopic suturing device |
US5964772A (en) * | 1994-08-05 | 1999-10-12 | Origin Medsystems, Inc. | Applicator for attaching fasteners to tissue |
US5824008A (en) * | 1994-08-05 | 1998-10-20 | Origin Medsystems, Inc. | System for applying fasteners to tissue |
US5810882A (en) * | 1994-08-05 | 1998-09-22 | Origin Medsystems, Inc. | Surgical helical fastener with applicator and method of use |
US6296656B1 (en) * | 1994-08-05 | 2001-10-02 | Origin Medsystems, Inc. | Surgical helical fastener with applicator |
US5582616A (en) * | 1994-08-05 | 1996-12-10 | Origin Medsystems, Inc. | Surgical helical fastener with applicator |
US6132438A (en) * | 1995-06-07 | 2000-10-17 | Ep Technologies, Inc. | Devices for installing stasis reducing means in body tissue |
US5984917A (en) * | 1995-06-07 | 1999-11-16 | Ep Technologies, Inc. | Device and method for remote insertion of a closed loop |
US5989242A (en) * | 1995-06-26 | 1999-11-23 | Trimedyne, Inc. | Therapeutic appliance releasing device |
US5820631A (en) * | 1996-08-01 | 1998-10-13 | Nr Medical, Inc. | Device and method for suturing tissue adjacent to a blood vessel |
US5830221A (en) * | 1996-09-20 | 1998-11-03 | United States Surgical Corporation | Coil fastener applier |
US5895394A (en) * | 1996-09-24 | 1999-04-20 | Aesculap Ag & Co. Kg | Surgical Applicator for U-shaped clips |
US6149658A (en) * | 1997-01-09 | 2000-11-21 | Coalescent Surgical, Inc. | Sutured staple surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery |
US6074401A (en) * | 1997-01-09 | 2000-06-13 | Coalescent Surgical, Inc. | Pinned retainer surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery |
US5989268A (en) * | 1997-10-28 | 1999-11-23 | Boston Scientific Corporation | Endoscopic hemostatic clipping device |
US6607541B1 (en) * | 1998-06-03 | 2003-08-19 | Coalescent Surgical, Inc. | Tissue connector apparatus and methods |
US6641593B1 (en) * | 1998-06-03 | 2003-11-04 | Coalescent Surgical, Inc. | Tissue connector apparatus and methods |
US6143004A (en) * | 1998-08-18 | 2000-11-07 | Atrion Medical Products, Inc. | Suturing device |
US6514265B2 (en) * | 1999-03-01 | 2003-02-04 | Coalescent Surgical, Inc. | Tissue connector apparatus with cable release |
US6613059B2 (en) * | 1999-03-01 | 2003-09-02 | Coalescent Surgical, Inc. | Tissue connector apparatus and methods |
US6551332B1 (en) * | 2000-03-31 | 2003-04-22 | Coalescent Surgical, Inc. | Multiple bias surgical fastener |
US20030074012A1 (en) * | 2000-10-10 | 2003-04-17 | Coalescent Surgical, Inc. | Minimally invasive annuloplasty procedure and apparatus |
Cited By (417)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7963973B2 (en) | 1998-06-03 | 2011-06-21 | Medtronic, Inc. | Multiple loop tissue connector apparatus and methods |
US20030125755A1 (en) * | 1998-06-03 | 2003-07-03 | Laurent Schaller | Tissue connector apparatus and methods |
US7763040B2 (en) * | 1998-06-03 | 2010-07-27 | Medtronic, Inc. | Tissue connector apparatus and methods |
US8118822B2 (en) | 1999-03-01 | 2012-02-21 | Medtronic, Inc. | Bridge clip tissue connector apparatus and methods |
US8353921B2 (en) | 1999-03-01 | 2013-01-15 | Medtronic, Inc | Tissue connector apparatus and methods |
US7892255B2 (en) | 1999-03-01 | 2011-02-22 | Medtronic, Inc. | Tissue connector apparatus and methods |
US7722643B2 (en) | 1999-03-01 | 2010-05-25 | Medtronic, Inc. | Tissue connector apparatus and methods |
US7938840B2 (en) | 1999-04-05 | 2011-05-10 | Medtronic, Inc. | Apparatus and methods for anastomosis |
US8211131B2 (en) | 1999-04-05 | 2012-07-03 | Medtronic, Inc. | Apparatus and methods for anastomosis |
US8529583B1 (en) | 1999-09-03 | 2013-09-10 | Medtronic, Inc. | Surgical clip removal apparatus |
US7896892B2 (en) | 2000-03-31 | 2011-03-01 | Medtronic, Inc. | Multiple bias surgical fastener |
US8353092B2 (en) | 2000-03-31 | 2013-01-15 | Medtronic, Inc. | Multiple bias surgical fastener |
US8956407B2 (en) | 2000-09-20 | 2015-02-17 | Mvrx, Inc. | Methods for reshaping a heart valve annulus using a tensioning implant |
US8858622B2 (en) | 2000-09-20 | 2014-10-14 | Mvrx, Inc. | Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools |
US20050055089A1 (en) * | 2000-09-20 | 2005-03-10 | Ample Medical, Inc. | Devices, systems, and methods for reshaping a heart valve annulus |
US7744611B2 (en) | 2000-10-10 | 2010-06-29 | Medtronic, Inc. | Minimally invasive valve repair procedure and apparatus |
US7914544B2 (en) | 2000-10-10 | 2011-03-29 | Medtronic, Inc. | Minimally invasive valve repair procedure and apparatus |
US9358112B2 (en) | 2001-04-24 | 2016-06-07 | Mitralign, Inc. | Method and apparatus for catheter-based annuloplasty using local plications |
US7063722B2 (en) * | 2001-08-24 | 2006-06-20 | Edwards Lifesciences, Llc | Method of implanting a self-molding annuloplasty ring |
US20040162611A1 (en) * | 2001-08-24 | 2004-08-19 | Salvador Marquez | Method of implanting a self-molding annuloplasty ring |
US7220277B2 (en) | 2002-03-27 | 2007-05-22 | Sorin Biomedica Cardio S.P.A. | Prosthesis for annuloplasty comprising a perforated element |
US20030220686A1 (en) * | 2002-03-27 | 2003-11-27 | Pietro Arru | Prosthesis for annuloplasty comprising a perforated element |
US9636107B2 (en) | 2002-06-13 | 2017-05-02 | Ancora Heart, Inc. | Devices and methods for heart valve repair |
US9072513B2 (en) | 2002-06-13 | 2015-07-07 | Guided Delivery Systems Inc. | Methods and devices for termination |
US9226825B2 (en) | 2002-06-13 | 2016-01-05 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US9468528B2 (en) | 2002-06-13 | 2016-10-18 | Guided Delivery Systems, Inc. | Devices and methods for heart valve repair |
US9949829B2 (en) | 2002-06-13 | 2018-04-24 | Ancora Heart, Inc. | Delivery devices and methods for heart valve repair |
US7666193B2 (en) | 2002-06-13 | 2010-02-23 | Guided Delivery Sytems, Inc. | Delivery devices and methods for heart valve repair |
US10898328B2 (en) | 2002-06-13 | 2021-01-26 | Ancora Heart, Inc. | Devices and methods for heart valve repair |
US8066766B2 (en) | 2002-06-13 | 2011-11-29 | Guided Delivery Systems Inc. | Methods and devices for termination |
US6986775B2 (en) | 2002-06-13 | 2006-01-17 | Guided Delivery Systems, Inc. | Devices and methods for heart valve repair |
US7753858B2 (en) | 2002-06-13 | 2010-07-13 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US10092402B2 (en) | 2002-06-13 | 2018-10-09 | Ancora Heart, Inc. | Devices and methods for heart valve repair |
US8287557B2 (en) | 2002-06-13 | 2012-10-16 | Guided Delivery Systems, Inc. | Methods and devices for termination |
US10624741B2 (en) | 2002-06-13 | 2020-04-21 | Ancora Heart, Inc. | Delivery devices and methods for heart valve repair |
US7883538B2 (en) | 2002-06-13 | 2011-02-08 | Guided Delivery Systems Inc. | Methods and devices for termination |
US8641727B2 (en) | 2002-06-13 | 2014-02-04 | Guided Delivery Systems, Inc. | Devices and methods for heart valve repair |
US20030233142A1 (en) * | 2002-06-13 | 2003-12-18 | Guided Delivery Systems, Inc. | Devices and methods for heart valve repair |
US20070299543A1 (en) * | 2002-08-29 | 2007-12-27 | Mitralsolutions, Inc. | Implantable devices for controlling the internal circumference of an anatomic orifice or lumen |
US8882830B2 (en) | 2002-08-29 | 2014-11-11 | StJude Medical, Cardiology Division, Inc. | Implantable devices for controlling the internal circumference of an anatomic orifice or lumen |
US20040148021A1 (en) * | 2002-08-29 | 2004-07-29 | Cartledge Richard G. | Implantable devices for controlling the internal circumference of an anatomic orifice or lumen |
US20080109076A1 (en) * | 2002-08-29 | 2008-05-08 | Mitralsolutions, Inc. | Methods for controlling the internal circumference of an anatomic orifice or lumen |
US20050149114A1 (en) * | 2002-08-29 | 2005-07-07 | Cartledge Richard G. | Apparatus for implanting surgical devices for controlling the internal circumference of an anatomic orifice or lumen |
US7175660B2 (en) | 2002-08-29 | 2007-02-13 | Mitralsolutions, Inc. | Apparatus for implanting surgical devices for controlling the internal circumference of an anatomic orifice or lumen |
US8945210B2 (en) | 2002-08-29 | 2015-02-03 | StJude Medical, Cardiology Division, Inc. | Implantable devices for controlling the internal circumference of an anatomic orifice or lumen |
US7297150B2 (en) | 2002-08-29 | 2007-11-20 | Mitralsolutions, Inc. | Implantable devices for controlling the internal circumference of an anatomic orifice or lumen |
US8758372B2 (en) | 2002-08-29 | 2014-06-24 | St. Jude Medical, Cardiology Division, Inc. | Implantable devices for controlling the size and shape of an anatomical structure or lumen |
US8673001B2 (en) | 2002-08-29 | 2014-03-18 | StJude Medical, Cardiology Division, Inc. | Methods for controlling the internal circumference of an anatomic orifice or lumen |
US7455690B2 (en) | 2002-08-29 | 2008-11-25 | Mitralsolutions, Inc. | Methods for controlling the internal circumference of an anatomic orifice or lumen |
US7976556B2 (en) | 2002-09-12 | 2011-07-12 | Medtronic, Inc. | Anastomosis apparatus and methods |
US8066724B2 (en) | 2002-09-12 | 2011-11-29 | Medtronic, Inc. | Anastomosis apparatus and methods |
US20040050393A1 (en) * | 2002-09-12 | 2004-03-18 | Steve Golden | Anastomosis apparatus and methods |
US8105345B2 (en) | 2002-10-04 | 2012-01-31 | Medtronic, Inc. | Anastomosis apparatus and methods |
US8298251B2 (en) | 2002-10-04 | 2012-10-30 | Medtronic, Inc. | Anastomosis apparatus and methods |
US8979923B2 (en) | 2002-10-21 | 2015-03-17 | Mitralign, Inc. | Tissue fastening systems and methods utilizing magnetic guidance |
US10028833B2 (en) | 2002-10-21 | 2018-07-24 | Mitralign, Inc. | Tissue fastening systems and methods utilizing magnetic guidance |
US8460371B2 (en) | 2002-10-21 | 2013-06-11 | Mitralign, Inc. | Method and apparatus for performing catheter-based annuloplasty using local plications |
US10595991B2 (en) | 2002-12-20 | 2020-03-24 | Medtronic, Inc. | Heart valve assemblies |
US6939365B1 (en) * | 2002-12-20 | 2005-09-06 | Arbor Surgical Technologies, Inc. | Fixturing assembly |
US8025695B2 (en) | 2002-12-20 | 2011-09-27 | Medtronic, Inc. | Biologically implantable heart valve system |
US8460373B2 (en) | 2002-12-20 | 2013-06-11 | Medtronic, Inc. | Method for implanting a heart valve within an annulus of a patient |
US8623080B2 (en) | 2002-12-20 | 2014-01-07 | Medtronic, Inc. | Biologically implantable prosthesis and methods of using the same |
US7981153B2 (en) | 2002-12-20 | 2011-07-19 | Medtronic, Inc. | Biologically implantable prosthesis methods of using |
US9333078B2 (en) | 2002-12-20 | 2016-05-10 | Medtronic, Inc. | Heart valve assemblies |
US8287555B2 (en) | 2003-02-06 | 2012-10-16 | Guided Delivery Systems, Inc. | Devices and methods for heart valve repair |
US7758637B2 (en) | 2003-02-06 | 2010-07-20 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US20070239272A1 (en) * | 2003-05-20 | 2007-10-11 | Navia Jose L | Apparatus and methods for repair of a cardiac valve |
US8512403B2 (en) | 2003-05-20 | 2013-08-20 | The Cleveland Clinic Foundation | Annuloplasty ring with wing members for repair of a cardiac valve |
US7914576B2 (en) | 2003-05-20 | 2011-03-29 | The Cleveland Clinic Foundation | Apparatus and methods for repair of a cardiac valve |
US8480733B2 (en) | 2003-05-20 | 2013-07-09 | The Cleveland Clinic Foundation | Apparatus and methods for repair of a cardiac valve |
US20110153009A1 (en) * | 2003-05-20 | 2011-06-23 | The Cleveland Clinic Foundation | Apparatus and methods for repair of a cardiac valve |
US8211124B2 (en) | 2003-07-25 | 2012-07-03 | Medtronic, Inc. | Sealing clip, delivery systems, and methods |
US8747463B2 (en) | 2003-08-22 | 2014-06-10 | Medtronic, Inc. | Methods of using a prosthesis fixturing device |
US8029519B2 (en) | 2003-08-22 | 2011-10-04 | Medtronic, Inc. | Eversion apparatus and methods |
US8021421B2 (en) | 2003-08-22 | 2011-09-20 | Medtronic, Inc. | Prosthesis heart valve fixturing device |
US8343173B2 (en) | 2003-09-04 | 2013-01-01 | Guided Delivery Systems Inc. | Delivery devices and methods for heart valve repair |
US7922762B2 (en) | 2003-09-04 | 2011-04-12 | Guided Delivery Systems Inc. | Devices and methods for cardiac annulus stabilization and treatment |
US7753924B2 (en) | 2003-09-04 | 2010-07-13 | Guided Delivery Systems, Inc. | Delivery devices and methods for heart valve repair |
US7753922B2 (en) | 2003-09-04 | 2010-07-13 | Guided Delivery Systems, Inc. | Devices and methods for cardiac annulus stabilization and treatment |
US8394114B2 (en) | 2003-09-26 | 2013-03-12 | Medtronic, Inc. | Surgical connection apparatus and methods |
US7879047B2 (en) | 2003-12-10 | 2011-02-01 | Medtronic, Inc. | Surgical connection apparatus and methods |
US20060274472A1 (en) * | 2003-12-15 | 2006-12-07 | Kenichi Saito | Noise filter mounting structure |
US8864822B2 (en) | 2003-12-23 | 2014-10-21 | Mitralign, Inc. | Devices and methods for introducing elements into tissue |
US8142493B2 (en) | 2003-12-23 | 2012-03-27 | Mitralign, Inc. | Method of heart valve repair |
US7942927B2 (en) | 2004-03-15 | 2011-05-17 | Baker Medical Research Institute | Treating valve failure |
US7396364B2 (en) | 2004-06-29 | 2008-07-08 | Micardia Corporation | Cardiac valve implant with energy absorbing material |
US7713298B2 (en) | 2004-06-29 | 2010-05-11 | Micardia Corporation | Methods for treating cardiac valves with adjustable implants |
US7722668B2 (en) | 2004-06-29 | 2010-05-25 | Micardia Corporation | Cardiac valve implant with energy absorbing material |
US20050288783A1 (en) * | 2004-06-29 | 2005-12-29 | Emanuel Shaoulian | Methods for treating cardiac valves using magnetic fields |
US7377941B2 (en) | 2004-06-29 | 2008-05-27 | Micardia Corporation | Adjustable cardiac valve implant with selective dimensional adjustment |
US20050288782A1 (en) * | 2004-06-29 | 2005-12-29 | Shahram Moaddeb | Cardiac valve implant with energy absorbing material |
US20080215145A1 (en) * | 2004-06-29 | 2008-09-04 | Micardia Corporation | Cardiac valve implant with energy absorbing material |
US20080183285A1 (en) * | 2004-06-29 | 2008-07-31 | Micardia Corporation | Adjustable cardiac valve implant with selective dimensional adjustment |
US20050288780A1 (en) * | 2004-06-29 | 2005-12-29 | Rhee Richard S | Adjustable cardiac valve implant with selective dimensional adjustment |
EP1765226A2 (en) * | 2004-06-29 | 2007-03-28 | Micardia Corporation | Adjustable cardiac valve implant with selective dimensional adjustment |
JP2008504876A (en) * | 2004-06-29 | 2008-02-21 | ミカーディア コーポレーション | Heart valve implant (implant) with selectively adjustable dimensions |
WO2006012013A3 (en) * | 2004-06-29 | 2006-12-28 | Micardia Corp | Adjustable cardiac valve implant with selective dimensional adjustment |
EP1765226A4 (en) * | 2004-06-29 | 2009-01-21 | Micardia Corp | Adjustable cardiac valve implant with selective dimensional adjustment |
US7510577B2 (en) | 2004-06-29 | 2009-03-31 | Micardia Corporation | Adjustable cardiac valve implant with ferromagnetic material |
US20050288777A1 (en) * | 2004-06-29 | 2005-12-29 | Rhee Richard S | Thermal conductor for adjustable cardiac valve implant |
US20080288060A1 (en) * | 2004-07-06 | 2008-11-20 | Baker Medical Research Institute | Treating Valvular Insufficiency |
US7285087B2 (en) | 2004-07-15 | 2007-10-23 | Micardia Corporation | Shape memory devices and methods for reshaping heart anatomy |
WO2006019521A3 (en) * | 2004-07-15 | 2006-12-21 | Micardia Corp | Shape memory devices and methods for reshaping heart anatomy |
JP2008506458A (en) * | 2004-07-15 | 2008-03-06 | ミカルディア・コーポレーション | Magnetic apparatus and method for reshaping heart anatomy |
US7594887B2 (en) | 2004-07-15 | 2009-09-29 | Micardia Corporation | Shape memory devices and methods for reshaping heart anatomy |
US20080039681A1 (en) * | 2004-07-15 | 2008-02-14 | Micardia Corporation | Shape memory devices and methods for reshaping heart anatomy |
US7402134B2 (en) | 2004-07-15 | 2008-07-22 | Micardia Corporation | Magnetic devices and methods for reshaping heart anatomy |
US20060015002A1 (en) * | 2004-07-15 | 2006-01-19 | Micardia Corporation | Shape memory devices and methods for reshaping heart anatomy |
US20060015178A1 (en) * | 2004-07-15 | 2006-01-19 | Shahram Moaddeb | Implants and methods for reshaping heart valves |
EP1788983A2 (en) * | 2004-07-19 | 2007-05-30 | Ample Medical, Inc. | Devices, systems, and methods for reshaping a heart valve annulus |
EP1788983A4 (en) * | 2004-07-19 | 2011-09-07 | Ample Medical Inc | Devices, systems, and methods for reshaping a heart valve annulus |
EP3238663A1 (en) * | 2004-07-19 | 2017-11-01 | MVRx, Inc. | Devices and systems for reshaping a heart valve annulus |
US8574290B2 (en) | 2004-07-27 | 2013-11-05 | Abdallah K. Alameddine | Mitral valve ring for treatment of mitral valve regurgitation |
US8012202B2 (en) * | 2004-07-27 | 2011-09-06 | Alameddine Abdallah K | Mitral valve ring for treatment of mitral valve regurgitation |
US20060025858A1 (en) * | 2004-07-27 | 2006-02-02 | Alameddine Abdallah K | Mitral valve ring for treatment of mitral valve regurgitation |
US9526613B2 (en) | 2005-03-17 | 2016-12-27 | Valtech Cardio Ltd. | Mitral valve treatment techniques |
US10561498B2 (en) | 2005-03-17 | 2020-02-18 | Valtech Cardio, Ltd. | Mitral valve treatment techniques |
US11497605B2 (en) * | 2005-03-17 | 2022-11-15 | Valtech Cardio Ltd. | Mitral valve treatment techniques |
US20200155312A1 (en) * | 2005-03-17 | 2020-05-21 | Valtech Cardio, Ltd. | Mitral valve treatment techniques |
US8608797B2 (en) | 2005-03-17 | 2013-12-17 | Valtech Cardio Ltd. | Mitral valve treatment techniques |
US20090149872A1 (en) * | 2005-03-17 | 2009-06-11 | Amir Gross | Mitral valve treatment techniques |
US10398437B2 (en) | 2005-03-25 | 2019-09-03 | Mvrx, Inc. | Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools |
US10219902B2 (en) | 2005-03-25 | 2019-03-05 | Mvrx, Inc. | Devices, systems, and methods for reshaping a heart valve anulus, including the use of a bridge implant having an adjustable bridge stop |
US8864823B2 (en) | 2005-03-25 | 2014-10-21 | StJude Medical, Cardiology Division, Inc. | Methods and apparatus for controlling the internal circumference of an anatomic orifice or lumen |
US20060241748A1 (en) * | 2005-03-25 | 2006-10-26 | Lee Leonard Y | Methods and apparatus for controlling the internal circumference of an anatomic orifice or lumen |
US20070016287A1 (en) * | 2005-03-25 | 2007-01-18 | Cartledge Richard G | Methods and apparatus for controlling the internal circumference of an anatomic orifice or lumen |
US9492276B2 (en) | 2005-03-25 | 2016-11-15 | St. Jude Medical, Cardiology Division, Inc. | Methods and apparatus for controlling the internal circumference of an anatomic orifice or lumen |
US8500802B2 (en) | 2005-04-08 | 2013-08-06 | Medtronic, Inc. | Two-piece prosthetic valves with snap-in connection and methods for use |
US20060259135A1 (en) * | 2005-04-20 | 2006-11-16 | The Cleveland Clinic Foundation | Apparatus and method for replacing a cardiac valve |
US12035898B2 (en) | 2005-04-22 | 2024-07-16 | Edwards Lifesciences Corporation | Catheter-based tissue remodeling devices and methods |
US9259218B2 (en) | 2005-07-05 | 2016-02-16 | Mitralign, Inc. | Tissue anchor and anchoring system |
US9814454B2 (en) | 2005-07-05 | 2017-11-14 | Mitralign, Inc. | Tissue anchor and anchoring system |
US8951286B2 (en) | 2005-07-05 | 2015-02-10 | Mitralign, Inc. | Tissue anchor and anchoring system |
US8951285B2 (en) | 2005-07-05 | 2015-02-10 | Mitralign, Inc. | Tissue anchor, anchoring system and methods of using the same |
US10695046B2 (en) | 2005-07-05 | 2020-06-30 | Edwards Lifesciences Corporation | Tissue anchor and anchoring system |
US20070038296A1 (en) * | 2005-07-15 | 2007-02-15 | Cleveland Clinic | Apparatus and method for remodeling a cardiac valve annulus |
US7927371B2 (en) | 2005-07-15 | 2011-04-19 | The Cleveland Clinic Foundation | Apparatus and method for reducing cardiac valve regurgitation |
WO2008027665A1 (en) * | 2005-08-31 | 2008-03-06 | Medtronic Vascular, Inc. | Device for treating mitral valve regurgitation |
US20070055368A1 (en) * | 2005-09-07 | 2007-03-08 | Richard Rhee | Slotted annuloplasty ring |
US8034103B2 (en) | 2005-12-28 | 2011-10-11 | Sorin Biomedica Cardio S.R.L. | Annuloplasty prosthesis with an auxetic structure |
US20070162112A1 (en) * | 2005-12-28 | 2007-07-12 | Sorin Biomedica Cardio | Annuloplasty prosthesis with an auxetic structure |
US20110004297A1 (en) * | 2006-01-20 | 2011-01-06 | Boston Scientific Scimed, Inc. | Translumenal apparatus, system, and method |
US20070244556A1 (en) * | 2006-04-12 | 2007-10-18 | Medtronic Vascular, Inc. | Annuloplasty Device Having a Helical Anchor and Methods for its Use |
US8406901B2 (en) | 2006-04-27 | 2013-03-26 | Medtronic, Inc. | Sutureless implantable medical device fixation |
US8821569B2 (en) | 2006-04-29 | 2014-09-02 | Medtronic, Inc. | Multiple component prosthetic heart valve assemblies and methods for delivering them |
US20080051840A1 (en) * | 2006-07-05 | 2008-02-28 | Micardia Corporation | Methods and systems for cardiac remodeling via resynchronization |
US7877142B2 (en) | 2006-07-05 | 2011-01-25 | Micardia Corporation | Methods and systems for cardiac remodeling via resynchronization |
US20080132981A1 (en) * | 2006-11-30 | 2008-06-05 | Medtronic, Inc. | Implantable medical device including a conductive fixation element |
US7765012B2 (en) | 2006-11-30 | 2010-07-27 | Medtronic, Inc. | Implantable medical device including a conductive fixation element |
US9492657B2 (en) | 2006-11-30 | 2016-11-15 | Medtronic, Inc. | Method of implanting a medical device including a fixation element |
US20090259307A1 (en) * | 2006-12-05 | 2009-10-15 | Valtech Cardio, Ltd. | Segmented ring placement |
US10363137B2 (en) | 2006-12-05 | 2019-07-30 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
US11259924B2 (en) | 2006-12-05 | 2022-03-01 | Valtech Cardio Ltd. | Implantation of repair devices in the heart |
US8926695B2 (en) | 2006-12-05 | 2015-01-06 | Valtech Cardio, Ltd. | Segmented ring placement |
US9883943B2 (en) | 2006-12-05 | 2018-02-06 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
US9872769B2 (en) | 2006-12-05 | 2018-01-23 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
US9974653B2 (en) | 2006-12-05 | 2018-05-22 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
US20080262609A1 (en) * | 2006-12-05 | 2008-10-23 | Valtech Cardio, Ltd. | Segmented ring placement |
US7988725B2 (en) | 2006-12-05 | 2011-08-02 | Valtech Cardio, Ltd. | Segmented ring placement |
US10357366B2 (en) | 2006-12-05 | 2019-07-23 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
US9351830B2 (en) | 2006-12-05 | 2016-05-31 | Valtech Cardio, Ltd. | Implant and anchor placement |
US11344414B2 (en) | 2006-12-05 | 2022-05-31 | Valtech Cardio Ltd. | Implantation of repair devices in the heart |
US9326857B2 (en) | 2007-01-03 | 2016-05-03 | St. Jude Medical, Cardiology Division, Inc. | Implantable devices for controlling the size and shape of an anatomical structure or lumen |
US20110066231A1 (en) * | 2007-01-03 | 2011-03-17 | Cartledge Richard G | Implantable devices for controlling the size and shape of an anatomical structure or lumen |
US9107750B2 (en) | 2007-01-03 | 2015-08-18 | St. Jude Medical, Cardiology Division, Inc. | Implantable devices for controlling the size and shape of an anatomical structure or lumen |
US20110208295A1 (en) * | 2007-01-03 | 2011-08-25 | Cartledge Richard G | Implantable devices for controlling the size and shape of an anatomical structure or lumen |
US9427215B2 (en) | 2007-02-05 | 2016-08-30 | St. Jude Medical, Cardiology Division, Inc. | Minimally invasive system for delivering and securing an annular implant |
US8911461B2 (en) | 2007-03-13 | 2014-12-16 | Mitralign, Inc. | Suture cutter and method of cutting suture |
US9358111B2 (en) | 2007-03-13 | 2016-06-07 | Mitralign, Inc. | Tissue anchors, systems and methods, and devices |
US8845723B2 (en) | 2007-03-13 | 2014-09-30 | Mitralign, Inc. | Systems and methods for introducing elements into tissue |
US11660190B2 (en) | 2007-03-13 | 2023-05-30 | Edwards Lifesciences Corporation | Tissue anchors, systems and methods, and devices |
US9750608B2 (en) | 2007-03-13 | 2017-09-05 | Mitralign, Inc. | Systems and methods for introducing elements into tissue |
US20090053980A1 (en) * | 2007-08-23 | 2009-02-26 | Saint-Gobain Abrasives, Inc. | Optimized CMP Conditioner Design for Next Generation Oxide/Metal CMP |
US10172621B2 (en) | 2007-09-21 | 2019-01-08 | Mvrx, Inc. | Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools |
US12082813B2 (en) | 2008-02-06 | 2024-09-10 | Ancora Heart, Inc. | Multi-window guide tunnel |
US9706996B2 (en) | 2008-02-06 | 2017-07-18 | Ancora Heart, Inc. | Multi-window guide tunnel |
US8790367B2 (en) | 2008-02-06 | 2014-07-29 | Guided Delivery Systems Inc. | Multi-window guide tunnel |
US10542987B2 (en) | 2008-02-06 | 2020-01-28 | Ancora Heart, Inc. | Multi-window guide tunnel |
US10543091B2 (en) | 2008-03-10 | 2020-01-28 | Edwards Lifesciences Corporation | Method to reduce mitral regurgitation by cinching the commissure of the mitral valve |
US9370424B2 (en) | 2008-03-10 | 2016-06-21 | Mitralign, Inc. | Method to reduce mitral regurgitation by cinching the commissure of the mitral valve |
US11660191B2 (en) | 2008-03-10 | 2023-05-30 | Edwards Lifesciences Corporation | Method to reduce mitral regurgitation |
US9603709B2 (en) | 2008-03-10 | 2017-03-28 | Mitralign, Inc. | Method to reduce mitral regurgitation by cinching the commissure of the mitral valve |
US8382829B1 (en) | 2008-03-10 | 2013-02-26 | Mitralign, Inc. | Method to reduce mitral regurgitation by cinching the commissure of the mitral valve |
US8177836B2 (en) | 2008-03-10 | 2012-05-15 | Medtronic, Inc. | Apparatus and methods for minimally invasive valve repair |
US11013599B2 (en) | 2008-04-16 | 2021-05-25 | Heart Repair Technologies, Inc. | Percutaneous transvalvular intraannular band for mitral valve repair |
US8262725B2 (en) * | 2008-04-16 | 2012-09-11 | Cardiovascular Technologies, Llc | Transvalvular intraannular band for valve repair |
US11083579B2 (en) | 2008-04-16 | 2021-08-10 | Heart Repair Technologies, Inc. | Transvalvular intraanular band and chordae cutting for ischemic and dilated cardiomyopathy |
US20090264995A1 (en) * | 2008-04-16 | 2009-10-22 | Subramanian Valavanur A | Transvalvular intraannular band for valve repair |
US9468526B2 (en) | 2008-04-16 | 2016-10-18 | Heart Repair Technologies, Inc. | Percutaneous transvalvular intraannular band for mitral valve repair |
US12201526B2 (en) | 2008-04-16 | 2025-01-21 | Heart Repair Technologies, Inc. | Percutaneous transvalvular intraannular band for mitral valve repair |
US9585753B2 (en) | 2008-04-16 | 2017-03-07 | Heart Repair Technologies, Inc. | Transvalvular intraannular band for valve repair |
US10238488B2 (en) | 2008-04-16 | 2019-03-26 | Heart Repair Technologies, Inc. | Percutaneous transvalvular intraannular band for mitral valve repair |
US10456259B2 (en) | 2008-04-16 | 2019-10-29 | Heart Repair Technologies, Inc. | Transvalvular intraannular band for mitral valve repair |
US10219903B2 (en) | 2008-04-16 | 2019-03-05 | Heart Repair Technologies, Inc. | Transvalvular intraanular band and chordae cutting for ischemic and dilated cardiomyopathy |
US9168137B2 (en) | 2008-04-16 | 2015-10-27 | Heart Repair Technologies, Inc. | Transvalvular intraannular band for aortic valve repair |
US9615925B2 (en) | 2008-04-16 | 2017-04-11 | Heart Repair Technologies, Inc. | Transvalvular intraanular band for ischemic and dilated cardiomyopathy |
US9192472B2 (en) | 2008-06-16 | 2015-11-24 | Valtec Cardio, Ltd. | Annuloplasty devices and methods of delivery therefor |
EP3628362A1 (en) | 2008-06-16 | 2020-04-01 | Valtech Cardio, Ltd. | Annuloplasty devices and methods of delivery therefor |
US9636106B2 (en) | 2008-10-10 | 2017-05-02 | Ancora Heart, Inc. | Termination devices and related methods |
US8795298B2 (en) | 2008-10-10 | 2014-08-05 | Guided Delivery Systems Inc. | Tether tensioning devices and related methods |
US20120198835A1 (en) * | 2008-10-13 | 2012-08-09 | GM Global Technology Operations LLC | Active material wire actuators having reinforced structural connectors |
US9022682B2 (en) * | 2008-10-13 | 2015-05-05 | GM Global Technology Operations LLC | Active material wire actuators having reinforced structural connectors |
US20160158008A1 (en) * | 2008-12-22 | 2016-06-09 | Valtech Cardio, Ltd. | Implantation of repair chords in the heart |
US9277994B2 (en) | 2008-12-22 | 2016-03-08 | Valtech Cardio, Ltd. | Implantation of repair chords in the heart |
US11116634B2 (en) | 2008-12-22 | 2021-09-14 | Valtech Cardio Ltd. | Annuloplasty implants |
US9011530B2 (en) | 2008-12-22 | 2015-04-21 | Valtech Cardio, Ltd. | Partially-adjustable annuloplasty structure |
US10470882B2 (en) | 2008-12-22 | 2019-11-12 | Valtech Cardio, Ltd. | Closure element for use with annuloplasty structure |
US9662209B2 (en) | 2008-12-22 | 2017-05-30 | Valtech Cardio, Ltd. | Contractible annuloplasty structures |
US9636224B2 (en) * | 2008-12-22 | 2017-05-02 | Valtech Cardio, Ltd. | Deployment techniques for annuloplasty ring and over-wire rotation tool |
US10856986B2 (en) | 2008-12-22 | 2020-12-08 | Valtech Cardio, Ltd. | Adjustable annuloplasty devices and adjustment mechanisms therefor |
US10517719B2 (en) * | 2008-12-22 | 2019-12-31 | Valtech Cardio, Ltd. | Implantation of repair devices in the heart |
US9713530B2 (en) | 2008-12-22 | 2017-07-25 | Valtech Cardio, Ltd. | Adjustable annuloplasty devices and adjustment mechanisms therefor |
US12138168B2 (en) | 2008-12-22 | 2024-11-12 | Edwards Lifesciences Innovation (Israel) Ltd. | Adjustable annuloplasty devices and adjustment mechanisms therefor |
US20120078355A1 (en) * | 2008-12-22 | 2012-03-29 | Yuval Zipory | Deployment techniques for annuloplasty ring and over-wire rotation tool |
US10625047B2 (en) | 2009-01-20 | 2020-04-21 | Ancora Heart, Inc. | Anchor deployment devices and related methods |
US9616197B2 (en) | 2009-01-20 | 2017-04-11 | Ancora Heart, Inc. | Anchor deployment devices and related methods |
US20110196480A1 (en) * | 2009-01-22 | 2011-08-11 | Cartledge Richard G | Post-operative adjustment tool, minimally invasive attachment apparatus, and adjustable tricuspid ring |
US8808371B2 (en) | 2009-01-22 | 2014-08-19 | St. Jude Medical, Cardiology Division, Inc. | Post-operative adjustment tool, minimally invasive attachment apparatus, and adjustable tricuspid ring |
US8778021B2 (en) | 2009-01-22 | 2014-07-15 | St. Jude Medical, Cardiology Division, Inc. | Post-operative adjustment tool, minimally invasive attachment apparatus, and adjustable tricuspid ring |
US20110022168A1 (en) * | 2009-01-22 | 2011-01-27 | Cartledge Richard G | Post-operative adjustment tool, minimally invasive attachment apparatus, and adjustable tricuspid ring |
US11202709B2 (en) | 2009-02-17 | 2021-12-21 | Valtech Cardio Ltd. | Actively-engageable movement-restriction mechanism for use with an annuloplasty structure |
US8353956B2 (en) | 2009-02-17 | 2013-01-15 | Valtech Cardio, Ltd. | Actively-engageable movement-restriction mechanism for use with an annuloplasty structure |
US10350068B2 (en) | 2009-02-17 | 2019-07-16 | Valtech Cardio, Ltd. | Actively-engageable movement-restriction mechanism for use with an annuloplasty structure |
US9561104B2 (en) | 2009-02-17 | 2017-02-07 | Valtech Cardio, Ltd. | Actively-engageable movement-restriction mechanism for use with an annuloplasty structure |
US8518060B2 (en) | 2009-04-09 | 2013-08-27 | Medtronic, Inc. | Medical clip with radial tines, system and method of using same |
US8668704B2 (en) | 2009-04-24 | 2014-03-11 | Medtronic, Inc. | Medical clip with tines, system and method of using same |
US11076958B2 (en) | 2009-05-04 | 2021-08-03 | Valtech Cardio, Ltd. | Annuloplasty ring delivery catheters |
US9968452B2 (en) | 2009-05-04 | 2018-05-15 | Valtech Cardio, Ltd. | Annuloplasty ring delivery cathethers |
US11185412B2 (en) | 2009-05-04 | 2021-11-30 | Valtech Cardio Ltd. | Deployment techniques for annuloplasty implants |
US10548729B2 (en) | 2009-05-04 | 2020-02-04 | Valtech Cardio, Ltd. | Deployment techniques for annuloplasty ring and over-wire rotation tool |
US11844665B2 (en) | 2009-05-04 | 2023-12-19 | Edwards Lifesciences Innovation (Israel) Ltd. | Deployment techniques for annuloplasty structure |
US11766327B2 (en) | 2009-05-04 | 2023-09-26 | Edwards Lifesciences Innovation (Israel) Ltd. | Implantation of repair chords in the heart |
US9474606B2 (en) | 2009-05-04 | 2016-10-25 | Valtech Cardio, Ltd. | Over-wire implant contraction methods |
US9937042B2 (en) | 2009-05-07 | 2018-04-10 | Valtech Cardio, Ltd. | Multiple anchor delivery tool |
US9119719B2 (en) | 2009-05-07 | 2015-09-01 | Valtech Cardio, Ltd. | Annuloplasty ring with intra-ring anchoring |
US10856987B2 (en) | 2009-05-07 | 2020-12-08 | Valtech Cardio, Ltd. | Multiple anchor delivery tool |
US11723774B2 (en) | 2009-05-07 | 2023-08-15 | Edwards Lifesciences Innovation (Israel) Ltd. | Multiple anchor delivery tool |
US9592122B2 (en) | 2009-05-07 | 2017-03-14 | Valtech Cardio, Ltd | Annuloplasty ring with intra-ring anchoring |
US11617652B2 (en) | 2009-10-29 | 2023-04-04 | Edwards Lifesciences Innovation (Israel) Ltd. | Apparatus and method for guide-wire based advancement of an adjustable implant |
US12097118B2 (en) | 2009-10-29 | 2024-09-24 | Edwards Lifesciences Innovation (Israel) Ltd. | Tissue anchor for heart implant |
US10751184B2 (en) | 2009-10-29 | 2020-08-25 | Valtech Cardio, Ltd. | Apparatus and method for guide-wire based advancement of an adjustable implant |
US11141271B2 (en) | 2009-10-29 | 2021-10-12 | Valtech Cardio Ltd. | Tissue anchor for annuloplasty device |
US9414921B2 (en) | 2009-10-29 | 2016-08-16 | Valtech Cardio, Ltd. | Tissue anchor for annuloplasty device |
US9968454B2 (en) | 2009-10-29 | 2018-05-15 | Valtech Cardio, Ltd. | Techniques for guide-wire based advancement of artificial chordae |
US10098737B2 (en) | 2009-10-29 | 2018-10-16 | Valtech Cardio, Ltd. | Tissue anchor for annuloplasty device |
US9011520B2 (en) | 2009-10-29 | 2015-04-21 | Valtech Cardio, Ltd. | Tissue anchor for annuloplasty device |
US9180007B2 (en) | 2009-10-29 | 2015-11-10 | Valtech Cardio, Ltd. | Apparatus and method for guide-wire based advancement of an adjustable implant |
US11602434B2 (en) | 2009-12-02 | 2023-03-14 | Edwards Lifesciences Innovation (Israel) Ltd. | Systems and methods for tissue adjustment |
US10492909B2 (en) | 2009-12-02 | 2019-12-03 | Valtech Cardio, Ltd. | Tool for actuating an adjusting mechanism |
US9622861B2 (en) | 2009-12-02 | 2017-04-18 | Valtech Cardio, Ltd. | Tool for actuating an adjusting mechanism |
US10548726B2 (en) | 2009-12-08 | 2020-02-04 | Cardiovalve Ltd. | Rotation-based anchoring of an implant |
US10231831B2 (en) | 2009-12-08 | 2019-03-19 | Cardiovalve Ltd. | Folding ring implant for heart valve |
US11839541B2 (en) | 2009-12-08 | 2023-12-12 | Cardiovalve Ltd. | Prosthetic heart valve with upper skirt |
US11351026B2 (en) | 2009-12-08 | 2022-06-07 | Cardiovalve Ltd. | Rotation-based anchoring of an implant |
US10660751B2 (en) | 2009-12-08 | 2020-05-26 | Cardiovalve Ltd. | Prosthetic heart valve with upper skirt |
US11141268B2 (en) | 2009-12-08 | 2021-10-12 | Cardiovalve Ltd. | Prosthetic heart valve with upper and lower skirts |
US8992606B2 (en) | 2010-03-19 | 2015-03-31 | Xavier Ruyra Baliarda | Prosthetic device for repairing a mitral valve |
US11653910B2 (en) | 2010-07-21 | 2023-05-23 | Cardiovalve Ltd. | Helical anchor implantation |
US9433503B2 (en) | 2010-08-04 | 2016-09-06 | Valcare, Inc. | Percutaneous transcatheter repair of heart valves |
US9861350B2 (en) | 2010-09-03 | 2018-01-09 | Ancora Heart, Inc. | Devices and methods for anchoring tissue |
CN103547236A (en) * | 2010-12-22 | 2014-01-29 | 佛多斯大学医学研究中心 | Annuloplasty Ring System |
US9775982B2 (en) | 2010-12-29 | 2017-10-03 | Medtronic, Inc. | Implantable medical device fixation |
US9844659B2 (en) | 2010-12-29 | 2017-12-19 | Medtronic, Inc. | Implantable medical device fixation |
US10173050B2 (en) | 2010-12-29 | 2019-01-08 | Medtronic, Inc. | Implantable medical device fixation |
US10112045B2 (en) | 2010-12-29 | 2018-10-30 | Medtronic, Inc. | Implantable medical device fixation |
US10835737B2 (en) | 2010-12-29 | 2020-11-17 | Medtronic, Inc. | Implantable medical device fixation |
US10118026B2 (en) | 2010-12-29 | 2018-11-06 | Medtronic, Inc. | Implantable medical device fixation |
US12157003B2 (en) | 2010-12-29 | 2024-12-03 | Medtronic, Inc. | Implantable medical device fixation |
US10779945B2 (en) | 2011-06-01 | 2020-09-22 | Valcare, Inc. | Percutaneous transcatheter repair of heart valves via trans-apical access |
US9402721B2 (en) | 2011-06-01 | 2016-08-02 | Valcare, Inc. | Percutaneous transcatheter repair of heart valves via trans-apical access |
US9918840B2 (en) | 2011-06-23 | 2018-03-20 | Valtech Cardio, Ltd. | Closed band for percutaneous annuloplasty |
US10792152B2 (en) | 2011-06-23 | 2020-10-06 | Valtech Cardio, Ltd. | Closed band for percutaneous annuloplasty |
US8940044B2 (en) | 2011-06-23 | 2015-01-27 | Valtech Cardio, Ltd. | Closure element for use with an annuloplasty structure |
US12138165B2 (en) | 2011-06-23 | 2024-11-12 | Edwards Lifesciences Innovation (Israel) Ltd. | Annuloplasty implants |
US9775709B2 (en) | 2011-11-04 | 2017-10-03 | Valtech Cardio, Ltd. | Implant having multiple adjustable mechanisms |
US11197759B2 (en) | 2011-11-04 | 2021-12-14 | Valtech Cardio Ltd. | Implant having multiple adjusting mechanisms |
US9265608B2 (en) | 2011-11-04 | 2016-02-23 | Valtech Cardio, Ltd. | Implant having multiple rotational assemblies |
US10363136B2 (en) | 2011-11-04 | 2019-07-30 | Valtech Cardio, Ltd. | Implant having multiple adjustment mechanisms |
US11857415B2 (en) | 2011-11-08 | 2024-01-02 | Edwards Lifesciences Innovation (Israel) Ltd. | Controlled steering functionality for implant-delivery tool |
US10568738B2 (en) | 2011-11-08 | 2020-02-25 | Valtech Cardio, Ltd. | Controlled steering functionality for implant-delivery tool |
US9724192B2 (en) | 2011-11-08 | 2017-08-08 | Valtech Cardio, Ltd. | Controlled steering functionality for implant-delivery tool |
US11969348B2 (en) | 2011-12-12 | 2024-04-30 | Edwards Lifesciences Corporation | Cardiac valve replacement |
US10722363B2 (en) | 2012-02-29 | 2020-07-28 | Valcare, Inc. | Methods, devices, and systems for percutaneously anchoring annuloplasty rings |
US11571307B2 (en) | 2012-02-29 | 2023-02-07 | Valcare, Inc. | Methods, devices, and systems for percutaneously anchoring annuloplasty rings |
US9839519B2 (en) | 2012-02-29 | 2017-12-12 | Valcare, Inc. | Percutaneous annuloplasty system with anterior-posterior adjustment |
US11298230B2 (en) | 2012-02-29 | 2022-04-12 | Valcare, Inc. | Percutaneous annuloplasty system with anterior-posterior adjustment |
US9814576B2 (en) | 2012-02-29 | 2017-11-14 | Valcare, Inc. | Methods, devices, and systems for percutaneously anchoring annuloplasty rings |
US12115069B2 (en) | 2012-02-29 | 2024-10-15 | Valcare Medical, Inc. | Percutaneous annuloplasty system with anterior-posterior adjustment |
US9180008B2 (en) | 2012-02-29 | 2015-11-10 | Valcare, Inc. | Methods, devices, and systems for percutaneously anchoring annuloplasty rings |
US9833625B2 (en) | 2012-03-26 | 2017-12-05 | Medtronic, Inc. | Implantable medical device delivery with inner and outer sheaths |
US9854982B2 (en) | 2012-03-26 | 2018-01-02 | Medtronic, Inc. | Implantable medical device deployment within a vessel |
US9717421B2 (en) | 2012-03-26 | 2017-08-01 | Medtronic, Inc. | Implantable medical device delivery catheter with tether |
US9220906B2 (en) | 2012-03-26 | 2015-12-29 | Medtronic, Inc. | Tethered implantable medical device deployment |
US9339197B2 (en) | 2012-03-26 | 2016-05-17 | Medtronic, Inc. | Intravascular implantable medical device introduction |
US10485435B2 (en) | 2012-03-26 | 2019-11-26 | Medtronic, Inc. | Pass-through implantable medical device delivery catheter with removeable distal tip |
US9351648B2 (en) | 2012-08-24 | 2016-05-31 | Medtronic, Inc. | Implantable medical device electrode assembly |
US10849755B2 (en) | 2012-09-14 | 2020-12-01 | Boston Scientific Scimed, Inc. | Mitral valve inversion prostheses |
US10543088B2 (en) | 2012-09-14 | 2020-01-28 | Boston Scientific Scimed, Inc. | Mitral valve inversion prostheses |
US11395648B2 (en) | 2012-09-29 | 2022-07-26 | Edwards Lifesciences Corporation | Plication lock delivery system and method of use thereof |
US10893939B2 (en) | 2012-10-23 | 2021-01-19 | Valtech Cardio, Ltd. | Controlled steering functionality for implant delivery tool |
US11890190B2 (en) | 2012-10-23 | 2024-02-06 | Edwards Lifesciences Innovation (Israel) Ltd. | Location indication system for implant-delivery tool |
US9949828B2 (en) | 2012-10-23 | 2018-04-24 | Valtech Cardio, Ltd. | Controlled steering functionality for implant-delivery tool |
US10376266B2 (en) | 2012-10-23 | 2019-08-13 | Valtech Cardio, Ltd. | Percutaneous tissue anchor techniques |
US11344310B2 (en) | 2012-10-23 | 2022-05-31 | Valtech Cardio Ltd. | Percutaneous tissue anchor techniques |
US9730793B2 (en) | 2012-12-06 | 2017-08-15 | Valtech Cardio, Ltd. | Techniques for guide-wire based advancement of a tool |
US11583400B2 (en) | 2012-12-06 | 2023-02-21 | Edwards Lifesciences Innovation (Israel) Ltd. | Techniques for guided advancement of a tool |
US10610360B2 (en) | 2012-12-06 | 2020-04-07 | Valtech Cardio, Ltd. | Techniques for guide-wire based advancement of a tool |
US11844691B2 (en) | 2013-01-24 | 2023-12-19 | Cardiovalve Ltd. | Partially-covered prosthetic valves |
US11793505B2 (en) | 2013-02-26 | 2023-10-24 | Edwards Lifesciences Corporation | Devices and methods for percutaneous tricuspid valve repair |
US10130356B2 (en) | 2013-02-26 | 2018-11-20 | Mitralign, Inc. | Devices and methods for percutaneous tricuspid valve repair |
US9724084B2 (en) * | 2013-02-26 | 2017-08-08 | Mitralign, Inc. | Devices and methods for percutaneous tricuspid valve repair |
US20140243894A1 (en) * | 2013-02-26 | 2014-08-28 | Mitralign, Inc. | Devices and Methods for Percutaneous Tricuspid Valve Repair |
US10918374B2 (en) | 2013-02-26 | 2021-02-16 | Edwards Lifesciences Corporation | Devices and methods for percutaneous tricuspid valve repair |
US10449333B2 (en) | 2013-03-14 | 2019-10-22 | Valtech Cardio, Ltd. | Guidewire feeder |
US12156981B2 (en) | 2013-03-14 | 2024-12-03 | Edwards Lifesciences Innovation (Israel) Ltd. | Guidewire feeder |
US11534583B2 (en) | 2013-03-14 | 2022-12-27 | Valtech Cardio Ltd. | Guidewire feeder |
US10166100B2 (en) | 2013-03-15 | 2019-01-01 | Valcare, Inc. | Systems and methods for delivery of annuloplasty rings |
US20160022471A1 (en) * | 2013-03-15 | 2016-01-28 | Fabian Hermann Urban Füglister | Tongue deformation implant |
US10531979B2 (en) * | 2013-03-15 | 2020-01-14 | Fabian Hermann Urban Füglister | Tongue deformation implant |
US11382749B2 (en) | 2013-03-15 | 2022-07-12 | Valcare, Inc. | Systems and methods for delivery of annuloplasty rings |
US10682232B2 (en) | 2013-03-15 | 2020-06-16 | Edwards Lifesciences Corporation | Translation catheters, systems, and methods of use thereof |
US11890194B2 (en) | 2013-03-15 | 2024-02-06 | Edwards Lifesciences Corporation | Translation catheters, systems, and methods of use thereof |
US10813751B2 (en) | 2013-05-22 | 2020-10-27 | Valcare, Inc. | Transcatheter prosthetic valve for mitral or tricuspid valve replacement |
US11617647B2 (en) | 2013-05-22 | 2023-04-04 | Valcare, Inc. | Transcatheter prosthetic valve for mitral or tricuspid valve replacement |
US11654018B2 (en) | 2013-05-24 | 2023-05-23 | Valcare, Inc. | Heart and peripheral vascular valve replacement in conjunction with a support ring |
US11654017B2 (en) | 2013-05-24 | 2023-05-23 | Valcare, Inc. | Heart and peripheral vascular valve replacement in conjunction with a support ring |
US9999507B2 (en) | 2013-06-25 | 2018-06-19 | Mitralign, Inc. | Percutaneous valve repair by reshaping and resizing right ventricle |
US9937044B2 (en) | 2013-06-25 | 2018-04-10 | Mitralign, Inc. | Percutaneous valve repair by reshaping and resizing right ventricle |
US11224422B2 (en) | 2013-06-28 | 2022-01-18 | Valcare, Inc. | Device, system, and method to secure an article to a tissue |
US11806009B2 (en) | 2013-06-28 | 2023-11-07 | Valcare, Inc. | Device, system, and method to secure an article to a tissue |
US11191536B2 (en) | 2013-06-28 | 2021-12-07 | Valcare, Inc. | Device, system, and method to secure an article to a tissue |
US11058417B2 (en) | 2013-06-28 | 2021-07-13 | Valcare, Inc. | Device, system, and method to secure an article to a tissue |
US9155622B2 (en) | 2013-08-14 | 2015-10-13 | Sorin Group Italia S.R.L. | Apparatus and method for chordal replacement |
US9700413B2 (en) | 2013-08-14 | 2017-07-11 | Sorin Group Italia, S.r.l. | Apparatus and method for chordal replacement |
US11744573B2 (en) | 2013-08-31 | 2023-09-05 | Edwards Lifesciences Corporation | Devices and methods for locating and implanting tissue anchors at mitral valve commissure |
US10918373B2 (en) | 2013-08-31 | 2021-02-16 | Edwards Lifesciences Corporation | Devices and methods for locating and implanting tissue anchors at mitral valve commissure |
US11766263B2 (en) | 2013-10-23 | 2023-09-26 | Edwards Lifesciences Innovation (Israel) Ltd. | Anchor magazine |
US10299793B2 (en) | 2013-10-23 | 2019-05-28 | Valtech Cardio, Ltd. | Anchor magazine |
US11065001B2 (en) | 2013-10-23 | 2021-07-20 | Valtech Cardio, Ltd. | Anchor magazine |
US10973637B2 (en) | 2013-12-26 | 2021-04-13 | Valtech Cardio, Ltd. | Implantation of flexible implant |
US10265170B2 (en) | 2013-12-26 | 2019-04-23 | Valtech Cardio, Ltd. | Implantation of flexible implant |
US9610162B2 (en) | 2013-12-26 | 2017-04-04 | Valtech Cardio, Ltd. | Implantation of flexible implant |
US10136985B2 (en) | 2014-07-17 | 2018-11-27 | Millipede, Inc. | Method of reconfiguring a mitral valve annulus |
US12023235B2 (en) | 2014-07-17 | 2024-07-02 | Boston Scientific Scimed, Inc. | Adjustable endolumenal implant for reshaping the mitral valve annulus |
US10695160B2 (en) | 2014-07-17 | 2020-06-30 | Boston Scientific Scimed, Inc. | Adjustable endolumenal implant for reshaping the mitral valve annulus |
US12053380B2 (en) | 2014-07-30 | 2024-08-06 | Cardiovalve Ltd. | Anchoring of a prosthetic valve |
US10195030B2 (en) | 2014-10-14 | 2019-02-05 | Valtech Cardio, Ltd. | Leaflet-restraining techniques |
US11071628B2 (en) | 2014-10-14 | 2021-07-27 | Valtech Cardio, Ltd. | Leaflet-restraining techniques |
US11801135B2 (en) | 2015-02-05 | 2023-10-31 | Cardiovalve Ltd. | Techniques for deployment of a prosthetic valve |
US11918462B2 (en) | 2015-02-13 | 2024-03-05 | Boston Scientific Scimed, Inc. | Valve replacement using moveable restraints and angled struts |
US10258466B2 (en) | 2015-02-13 | 2019-04-16 | Millipede, Inc. | Valve replacement using moveable restrains and angled struts |
US12102316B2 (en) | 2015-03-05 | 2024-10-01 | Ancora Heart, Inc. | Devices and methods of visualizing and determining depth of penetration in cardiac tissue |
US10980529B2 (en) | 2015-03-05 | 2021-04-20 | Ancora Heart, Inc. | Devices and methods of visualizing and determining depth of penetration in cardiac tissue |
US10058321B2 (en) | 2015-03-05 | 2018-08-28 | Ancora Heart, Inc. | Devices and methods of visualizing and determining depth of penetration in cardiac tissue |
US10925610B2 (en) | 2015-03-05 | 2021-02-23 | Edwards Lifesciences Corporation | Devices for treating paravalvular leakage and methods use thereof |
US11083578B2 (en) | 2015-03-11 | 2021-08-10 | Mvrx, Inc. | Devices, systems, and methods for reshaping a heart valve annulus |
US10201423B2 (en) | 2015-03-11 | 2019-02-12 | Mvrx, Inc. | Devices, systems, and methods for reshaping a heart valve annulus |
US10010315B2 (en) | 2015-03-18 | 2018-07-03 | Mitralign, Inc. | Tissue anchors and percutaneous tricuspid valve repair using a tissue anchor |
US12138164B2 (en) | 2015-04-30 | 2024-11-12 | Edwards Lifesciences Innovation (Israel) Ltd. | Annuloplasty technologies |
US11020227B2 (en) | 2015-04-30 | 2021-06-01 | Valtech Cardio, Ltd. | Annuloplasty technologies |
US10765514B2 (en) | 2015-04-30 | 2020-09-08 | Valtech Cardio, Ltd. | Annuloplasty technologies |
US11964112B2 (en) | 2015-05-12 | 2024-04-23 | Ancora Heart, Inc. | Device and method for releasing catheters from cardiac structures |
US10980973B2 (en) | 2015-05-12 | 2021-04-20 | Ancora Heart, Inc. | Device and method for releasing catheters from cardiac structures |
US10335275B2 (en) | 2015-09-29 | 2019-07-02 | Millipede, Inc. | Methods for delivery of heart valve devices using intravascular ultrasound imaging |
US10555813B2 (en) | 2015-11-17 | 2020-02-11 | Boston Scientific Scimed, Inc. | Implantable device and delivery system for reshaping a heart valve annulus |
US10799354B2 (en) | 2015-12-10 | 2020-10-13 | Mvrx, Inc. | Devices, systems, and methods for reshaping a heart valve annulus |
US10278818B2 (en) | 2015-12-10 | 2019-05-07 | Mvrx, Inc. | Devices, systems, and methods for reshaping a heart valve annulus |
US11793639B2 (en) | 2015-12-10 | 2023-10-24 | Mvrx, Inc. | Devices, systems and methods for reshaping a heart valve annulus |
US11660192B2 (en) | 2015-12-30 | 2023-05-30 | Edwards Lifesciences Corporation | System and method for reshaping heart |
US10751182B2 (en) | 2015-12-30 | 2020-08-25 | Edwards Lifesciences Corporation | System and method for reshaping right heart |
US11890193B2 (en) | 2015-12-30 | 2024-02-06 | Edwards Lifesciences Corporation | System and method for reducing tricuspid regurgitation |
US10828160B2 (en) | 2015-12-30 | 2020-11-10 | Edwards Lifesciences Corporation | System and method for reducing tricuspid regurgitation |
US11937795B2 (en) | 2016-02-16 | 2024-03-26 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
US10702274B2 (en) | 2016-05-26 | 2020-07-07 | Edwards Lifesciences Corporation | Method and system for closing left atrial appendage |
US11540835B2 (en) | 2016-05-26 | 2023-01-03 | Edwards Lifesciences Corporation | Method and system for closing left atrial appendage |
US10959845B2 (en) | 2016-07-08 | 2021-03-30 | Valtech Cardio, Ltd. | Adjustable annuloplasty device with alternating peaks and troughs |
US10226342B2 (en) | 2016-07-08 | 2019-03-12 | Valtech Cardio, Ltd. | Adjustable annuloplasty device with alternating peaks and troughs |
US12102533B2 (en) | 2016-07-08 | 2024-10-01 | Edwards Lifesciences Innovation (Israel) Ltd. | Adjustable annuloplasty device with alternating peaks and troughs |
US12053379B2 (en) | 2016-08-01 | 2024-08-06 | Cardiovalve Ltd. | Minimally-invasive delivery systems |
US11779458B2 (en) | 2016-08-10 | 2023-10-10 | Cardiovalve Ltd. | Prosthetic valve with leaflet connectors |
US11103349B2 (en) | 2016-08-15 | 2021-08-31 | Valcare, Inc. | Devices and methods for the treatment of heart valve insufficiencies |
JP2019524339A (en) * | 2016-08-16 | 2019-09-05 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | Heart valve regurgitation anchor and carrier |
US12208005B2 (en) | 2016-08-16 | 2025-01-28 | Boston Scientific Scimed, Inc. | Heart valve regurgitation anchor and delivery tool |
US10702384B2 (en) | 2016-08-16 | 2020-07-07 | Boston Scientific Scimed, Inc. | Heart valve regurgitation anchor and delivery tool |
CN109843185A (en) * | 2016-08-16 | 2019-06-04 | 波士顿科学国际有限公司 | Heart valve regurgitation anchoring piece and means of delivery |
US11596516B2 (en) | 2016-08-16 | 2023-03-07 | Boston Scientific Scimed, Inc. | Heart valve regurgitation anchor and delivery tool |
US10667914B2 (en) | 2016-11-18 | 2020-06-02 | Ancora Heart, Inc. | Myocardial implant load sharing device and methods to promote LV function |
US11986391B2 (en) | 2016-12-22 | 2024-05-21 | Heart Repair Technologies, Inc. | Percutaneous delivery systems for anchoring an implant in a cardiac valve annulus |
US11033391B2 (en) | 2016-12-22 | 2021-06-15 | Heart Repair Technologies, Inc. | Percutaneous delivery systems for anchoring an implant in a cardiac valve annulus |
JP2020506010A (en) * | 2017-02-08 | 2020-02-27 | 4テック インコーポレイテッド | Implantable force gauge |
US10548731B2 (en) | 2017-02-10 | 2020-02-04 | Boston Scientific Scimed, Inc. | Implantable device and delivery system for reshaping a heart valve annulus |
US11576779B2 (en) | 2017-03-17 | 2023-02-14 | Valcare, Inc. | Mitral or tricuspid repair systems with multi-directional anchors |
US11045627B2 (en) | 2017-04-18 | 2021-06-29 | Edwards Lifesciences Corporation | Catheter system with linear actuation control mechanism |
US11883611B2 (en) | 2017-04-18 | 2024-01-30 | Edwards Lifesciences Corporation | Catheter system with linear actuation control mechanism |
US12029646B2 (en) | 2017-08-03 | 2024-07-09 | Cardiovalve Ltd. | Prosthetic heart valve |
US12064347B2 (en) | 2017-08-03 | 2024-08-20 | Cardiovalve Ltd. | Prosthetic heart valve |
US12090048B2 (en) | 2017-08-03 | 2024-09-17 | Cardiovalve Ltd. | Prosthetic heart valve |
US11020228B2 (en) | 2017-08-17 | 2021-06-01 | Boston Scientific Scimed, Inc. | Anchor delivery system and methods for valve repair |
US10835221B2 (en) | 2017-11-02 | 2020-11-17 | Valtech Cardio, Ltd. | Implant-cinching devices and systems |
US11832784B2 (en) | 2017-11-02 | 2023-12-05 | Edwards Lifesciences Innovation (Israel) Ltd. | Implant-cinching devices and systems |
US11135062B2 (en) | 2017-11-20 | 2021-10-05 | Valtech Cardio Ltd. | Cinching of dilated heart muscle |
US10874388B2 (en) | 2017-11-30 | 2020-12-29 | Boston Scientific Scimed, Inc. | Connected anchor delivery systems and methods for valve repair |
US12082802B2 (en) | 2017-11-30 | 2024-09-10 | Boston Scientific Scimed, Inc. | Connected anchor delivery systems and methods for valve repair |
US11779463B2 (en) | 2018-01-24 | 2023-10-10 | Edwards Lifesciences Innovation (Israel) Ltd. | Contraction of an annuloplasty structure |
US11666442B2 (en) | 2018-01-26 | 2023-06-06 | Edwards Lifesciences Innovation (Israel) Ltd. | Techniques for facilitating heart valve tethering and chord replacement |
US11890191B2 (en) | 2018-07-12 | 2024-02-06 | Edwards Lifesciences Innovation (Israel) Ltd. | Fastener and techniques therefor |
US11123191B2 (en) | 2018-07-12 | 2021-09-21 | Valtech Cardio Ltd. | Annuloplasty systems and locking tools therefor |
US10874850B2 (en) | 2018-09-28 | 2020-12-29 | Medtronic, Inc. | Impedance-based verification for delivery of implantable medical devices |
US11534300B2 (en) | 2018-12-03 | 2022-12-27 | Valcare, Inc. | Stabilizing and adjusting tool for controlling a minimally invasive mitral / tricuspid valve repair system |
US11931567B2 (en) | 2019-05-07 | 2024-03-19 | Medtronic, Inc. | Tether assemblies for medical device delivery systems |
US12151100B2 (en) | 2019-05-07 | 2024-11-26 | Medtronic, Inc. | Tether assemblies for medical device delivery systems |
US11331475B2 (en) | 2019-05-07 | 2022-05-17 | Medtronic, Inc. | Tether assemblies for medical device delivery systems |
US11672524B2 (en) | 2019-07-15 | 2023-06-13 | Ancora Heart, Inc. | Devices and methods for tether cutting |
US11793628B2 (en) | 2019-07-15 | 2023-10-24 | Valcare, Inc. | Transcatheter bio-prosthesis member and support structure |
US12208006B2 (en) | 2019-09-25 | 2025-01-28 | Edwards Lifesciences Corporation | Constricting a cardiac valve annulus using a cord that has a loop portion and a single second portion |
US11819411B2 (en) | 2019-10-29 | 2023-11-21 | Edwards Lifesciences Innovation (Israel) Ltd. | Annuloplasty and tissue anchor technologies |
US12023247B2 (en) | 2020-05-20 | 2024-07-02 | Edwards Lifesciences Corporation | Reducing the diameter of a cardiac valve annulus with independent control over each of the anchors that are launched into the annulus |
Also Published As
Publication number | Publication date |
---|---|
WO2003088875A1 (en) | 2003-10-30 |
US20110004298A1 (en) | 2011-01-06 |
US8167933B2 (en) | 2012-05-01 |
AU2003228586A1 (en) | 2003-11-03 |
US20050065601A1 (en) | 2005-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8167933B2 (en) | 2012-05-01 | Annuloplasty apparatus and methods |
CN111970996B (en) | 2024-04-09 | Heart valve sealing device and delivery device therefor |
EP3793483B1 (en) | 2023-09-20 | Devices for heart valve repair |
KR102563189B1 (en) | 2023-08-02 | Heart valve sealing device and delivery device therefor |
EP2293739B1 (en) | 2016-12-28 | Heart valve repair device |
US7316706B2 (en) | 2008-01-08 | Tensioning device, system, and method for treating mitral valve regurgitation |
JP7423613B2 (en) | 2024-01-29 | Spring and coil devices for papillary muscle access and ventricular remodeling |
US7485142B2 (en) | 2009-02-03 | Implantation system for annuloplasty rings |
US6406420B1 (en) | 2002-06-18 | Methods and devices for improving cardiac function in hearts |
US20050107871A1 (en) | 2005-05-19 | Apparatus and methods for valve repair |
JP7423614B2 (en) | 2024-01-29 | Ventricular remodeling using coil devices |
CN112190300A (en) | 2021-01-08 | Gripping assembly for a fixation device |
WO2005055811A2 (en) | 2005-06-23 | Methods and apparatus for mitral valve repair |
US11191656B2 (en) | 2021-12-07 | Methods and devices for heart valve repair |
CN111568607A (en) | 2020-08-25 | Pipe fitting for valve leaflet catching ring and valve leaflet catching ring |
CN112437650B (en) | 2024-05-28 | Annuloplasty prosthetic device and method of making same |
US20220280318A1 (en) | 2022-09-08 | Methods and devices for heart valve repair |
WO2020159819A1 (en) | 2020-08-06 | Tension device for ventricular remodeling and treatment of heart failure |
US20240315846A1 (en) | 2024-09-26 | Tissue compression anchors |
WO2024172835A1 (en) | 2024-08-22 | Clip delivery catheter with helical multi-lumen extrusion for improved gripper actuation and methods of making and using same |
CN119053301A (en) | 2024-11-29 | Heart valve repair device and delivery device therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
2002-11-08 | AS | Assignment |
Owner name: COALESCENT SURGICAL, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, ANDREW;FUNG, NORMAN;NGUYEN, JOHN D.;AND OTHERS;REEL/FRAME:013476/0415;SIGNING DATES FROM 20020905 TO 20021002 |
2004-09-14 | AS | Assignment |
Owner name: MEDTRONIC, INC., MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COALESCENT SURGICAL, INC.;REEL/FRAME:015134/0906 Effective date: 20040910 Owner name: MEDTRONIC, INC.,MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:COALESCENT SURGICAL, INC.;REEL/FRAME:015134/0906 Effective date: 20040910 |
2005-03-07 | STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |