US20120095371A1 - Ultrasound transducer and cooling thereof - Google Patents
- ️Thu Apr 19 2012
US20120095371A1 - Ultrasound transducer and cooling thereof - Google Patents
Ultrasound transducer and cooling thereof Download PDFInfo
-
Publication number
- US20120095371A1 US20120095371A1 US13/049,022 US201113049022A US2012095371A1 US 20120095371 A1 US20120095371 A1 US 20120095371A1 US 201113049022 A US201113049022 A US 201113049022A US 2012095371 A1 US2012095371 A1 US 2012095371A1 Authority
- US
- United States Prior art keywords
- transducer
- ultrasonic
- catheter
- power beam
- unfocused Prior art date
- 2010-10-18 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 41
- 238000002604 ultrasonography Methods 0.000 title description 28
- 230000000694 effects Effects 0.000 claims abstract description 61
- 239000012530 fluid Substances 0.000 claims abstract description 54
- 238000002679 ablation Methods 0.000 claims abstract description 24
- 239000007788 liquid Substances 0.000 claims description 30
- 230000017531 blood circulation Effects 0.000 claims description 18
- 238000005086 pumping Methods 0.000 claims description 18
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 15
- 239000011780 sodium chloride Substances 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 238000012546 transfer Methods 0.000 claims description 8
- 238000005452 bending Methods 0.000 claims description 4
- 238000009954 braiding Methods 0.000 claims description 4
- 230000017525 heat dissipation Effects 0.000 claims description 4
- 230000007246 mechanism Effects 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 3
- 210000001519 tissue Anatomy 0.000 description 103
- 238000011282 treatment Methods 0.000 description 71
- 239000000463 material Substances 0.000 description 40
- 210000001367 artery Anatomy 0.000 description 27
- 238000010438 heat treatment Methods 0.000 description 27
- 210000005036 nerve Anatomy 0.000 description 27
- 210000004204 blood vessel Anatomy 0.000 description 25
- 238000000034 method Methods 0.000 description 22
- 238000000576 coating method Methods 0.000 description 20
- 210000002808 connective tissue Anatomy 0.000 description 20
- 238000010586 diagram Methods 0.000 description 16
- 230000003685 thermal hair damage Effects 0.000 description 15
- 239000008280 blood Substances 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 12
- 210000004369 blood Anatomy 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 12
- 230000001965 increasing effect Effects 0.000 description 12
- 239000002245 particle Substances 0.000 description 12
- 210000001604 vasa vasorum Anatomy 0.000 description 12
- 230000000903 blocking effect Effects 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 10
- 239000000919 ceramic Substances 0.000 description 10
- 230000006378 damage Effects 0.000 description 9
- 238000003384 imaging method Methods 0.000 description 9
- 230000001603 reducing effect Effects 0.000 description 9
- 210000002254 renal artery Anatomy 0.000 description 9
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 230000008660 renal denervation Effects 0.000 description 8
- 230000002889 sympathetic effect Effects 0.000 description 8
- 102000008186 Collagen Human genes 0.000 description 7
- 108010035532 Collagen Proteins 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 7
- 210000001715 carotid artery Anatomy 0.000 description 7
- 229920001436 collagen Polymers 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 208000007536 Thrombosis Diseases 0.000 description 5
- 210000004027 cell Anatomy 0.000 description 5
- 210000000981 epithelium Anatomy 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 5
- 230000010412 perfusion Effects 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 210000002700 urine Anatomy 0.000 description 5
- 206010002329 Aneurysm Diseases 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 210000003038 endothelium Anatomy 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 210000002751 lymph Anatomy 0.000 description 4
- 210000002307 prostate Anatomy 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 241000826860 Trapezium Species 0.000 description 3
- 210000000577 adipose tissue Anatomy 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000012377 drug delivery Methods 0.000 description 3
- 238000002592 echocardiography Methods 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 230000001678 irradiating effect Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 230000007170 pathology Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 210000003708 urethra Anatomy 0.000 description 3
- ZMHWQAHZKUPENF-UHFFFAOYSA-N 1,2-dichloro-3-(4-chlorophenyl)benzene Chemical compound C1=CC(Cl)=CC=C1C1=CC=CC(Cl)=C1Cl ZMHWQAHZKUPENF-UHFFFAOYSA-N 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- 241000692870 Inachis io Species 0.000 description 2
- 206010028851 Necrosis Diseases 0.000 description 2
- 206010056677 Nerve degeneration Diseases 0.000 description 2
- 208000002193 Pain Diseases 0.000 description 2
- 208000031481 Pathologic Constriction Diseases 0.000 description 2
- 208000004983 Phantom Limb Diseases 0.000 description 2
- 206010056238 Phantom pain Diseases 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 210000000709 aorta Anatomy 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000002872 contrast media Substances 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 239000002305 electric material Substances 0.000 description 2
- 230000000763 evoking effect Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000002262 irrigation Effects 0.000 description 2
- 238000003973 irrigation Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 210000001365 lymphatic vessel Anatomy 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000017074 necrotic cell death Effects 0.000 description 2
- 230000001338 necrotic effect Effects 0.000 description 2
- 210000000944 nerve tissue Anatomy 0.000 description 2
- 208000004296 neuralgia Diseases 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 210000000578 peripheral nerve Anatomy 0.000 description 2
- 150000003071 polychlorinated biphenyls Chemical class 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 208000037803 restenosis Diseases 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 210000000278 spinal cord Anatomy 0.000 description 2
- 230000036262 stenosis Effects 0.000 description 2
- 208000037804 stenosis Diseases 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 238000009210 therapy by ultrasound Methods 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- HOPMUCXYRNOABF-UHFFFAOYSA-N 1,2,3,4-tetrachloro-5-(2,3,5-trichlorophenyl)benzene Chemical compound ClC1=CC(Cl)=C(Cl)C(C=2C(=C(Cl)C(Cl)=C(Cl)C=2)Cl)=C1 HOPMUCXYRNOABF-UHFFFAOYSA-N 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 206010003658 Atrial Fibrillation Diseases 0.000 description 1
- 239000005552 B01AC04 - Clopidogrel Substances 0.000 description 1
- 239000005528 B01AC05 - Ticlopidine Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 208000010228 Erectile Dysfunction Diseases 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 206010019695 Hepatic neoplasm Diseases 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 201000008450 Intracranial aneurysm Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 229910005883 NiSi Inorganic materials 0.000 description 1
- 229930012538 Paclitaxel Natural products 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 206010047139 Vasoconstriction Diseases 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 238000002583 angiography Methods 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000002785 anti-thrombosis Effects 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 208000007474 aortic aneurysm Diseases 0.000 description 1
- 206010003119 arrhythmia Diseases 0.000 description 1
- 230000003143 atherosclerotic effect Effects 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 210000000941 bile Anatomy 0.000 description 1
- 230000023555 blood coagulation Effects 0.000 description 1
- 230000008081 blood perfusion Effects 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 210000001175 cerebrospinal fluid Anatomy 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 229960003009 clopidogrel Drugs 0.000 description 1
- GKTWGGQPFAXNFI-HNNXBMFYSA-N clopidogrel Chemical compound C1([C@H](N2CC=3C=CSC=3CC2)C(=O)OC)=CC=CC=C1Cl GKTWGGQPFAXNFI-HNNXBMFYSA-N 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000002091 elastography Methods 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 229920005570 flexible polymer Polymers 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 210000002837 heart atrium Anatomy 0.000 description 1
- 210000005003 heart tissue Anatomy 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 210000003090 iliac artery Anatomy 0.000 description 1
- 201000001881 impotence Diseases 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000030214 innervation Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 230000001926 lymphatic effect Effects 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000004089 microcirculation Effects 0.000 description 1
- 230000004220 muscle function Effects 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 230000008035 nerve activity Effects 0.000 description 1
- 210000004126 nerve fiber Anatomy 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 229960001592 paclitaxel Drugs 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 230000001732 thrombotic effect Effects 0.000 description 1
- 229960005001 ticlopidine Drugs 0.000 description 1
- PHWBOXQYWZNQIN-UHFFFAOYSA-N ticlopidine Chemical compound ClC1=CC=CC=C1CN1CC(C=CS2)=C2CC1 PHWBOXQYWZNQIN-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 210000001186 vagus nerve Anatomy 0.000 description 1
- 230000025033 vasoconstriction Effects 0.000 description 1
- 210000001631 vena cava inferior Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/32—Surgical cutting instruments
- A61B17/320068—Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
- A61B17/22012—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
- A61B17/2202—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being inside patient's body at the distal end of the catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0092—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin using ultrasonic, sonic or infrasonic vibrations, e.g. phonophoresis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N7/02—Localised ultrasound hyperthermia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N7/02—Localised ultrasound hyperthermia
- A61N7/022—Localised ultrasound hyperthermia intracavitary
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00106—Sensing or detecting at the treatment site ultrasonic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B17/22004—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
- A61B2017/22005—Effects, e.g. on tissue
- A61B2017/22007—Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing
- A61B2017/22008—Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing used or promoted
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22051—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22081—Treatment of vulnerable plaque
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/378—Surgical systems with images on a monitor during operation using ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N2007/0078—Ultrasound therapy with multiple treatment transducers
Definitions
- the present invention relates to an ultrasound transducer device and cooling thereof and, more particularly, but not exclusively to the cooling of such a transducer device within a small vessel which may be filled with fluid, such as a blood vessel or other body lumen.
- Sverdlik et al in PCT/IL2008/000234, filed Feb. 21, 2008 disclose a method of using ultrasonic energy for surgical procedures.
- ultrasonic heating is carried out of at least a portion of the blood vessel wall having the abnormality.
- a parameter is monitored relating to a property of at least a portion of the heated portion of the blood vessel wall; and heating is stopped when the monitored parameter changes by a predetermined factor or after the monitored parameter changes at a slow enough rate.
- Magerie and Peacock in EP 1769759 disclose an air backed ultrasonic transducer. Specifically they disclose an ultrasound transducer mounted onto a delivery member, such as the elongate body of a catheter shaft, without a support structure bridging between a separation area between the transducer and the shaft. Mounting flanges extend from either end of the transducer and are mounted at first and second locations along the catheter shaft such that the transducer is not in mechanical contact with the catheter shaft between those mounting locations to provide for air backing between the transducer and the catheter shaft so as to isolate ultrasound transmission radially away from the catheter shaft and toward the tissue surrounding the shaft. In Maguire and Peacock, sealing of the transducer ensures that body fluids such as blood do not displace the air.
- An ultrasound transducer can in principle be used to provide a high power ultrasound beam that can ablate tissues.
- the transformation of electrical energy into ultrasound is inefficient and considerable heat is generated at the transducer.
- the heat needs to be safely dissipated without causing damage to the blood vessel itself, and standard heat sink structures cannot be used in blood flow because heat exchange fins can damage platelets and cause clotting.
- the transducer may be expected to heat the artery wall as well as the more distant features it is intended to ablate.
- ultrasound transducers are typically ceramics with piezoelectric properties. Ceramics have low thermal conductivity and thus operation at high power causes relatively large heat differentials across the transducer which often causes cracking.
- the present embodiments may provide a transducer which carries out tissue ablation using an unfocused beam from an extended surface of the transducer.
- the beam heats surrounding fluid and sets up a chimney effect which then serves to cool the transducer surface.
- the use of higher frequencies, in excess of 8 Megahertz, allows for thinner transducers to be used, which reduces the likelihood that large heat differentials will form or cause cracking.
- the thicknesses used are between 100-200 microns, and higher energies result from the higher frequencies used.
- the ultrasonic energy may be focused or unfocussed.
- an ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies and an extensive surface for beam emanation, the device configured to produce an unfocused power beam for tissue ablation, the unfocused power beam being produced by vibration over the body of the transducer and emanating from said extensive surface, whereby the extensive surface becomes subject to convective cooling when immersed in a fluid by a chimney effect set up by said unfocused beam.
- the device may be mounted on a PCB, wherein trenches are constructed in the PCB for fluid flow to enhance said cooling.
- the device may comprise a pump unit for actively pumping liquid around said transducer.
- said ultrasonic transducer device comprises a piezoelectric element and wherein said vibratable body is a body of said piezoelectric element.
- the device may comprise an gas-filled gap between said transducer and said PCB.
- said gas-filled gap is unsealed and wherein surface tension retains air within said gap when said device is immersed in fluid.
- the device may comprise conductive connections to the PCB across the gas-filled gap, wherein said conductive connections provide thermal linkage between said transducer and said PCB, thereby enabling the PCB to act as an additional heat dissipation surface for said device.
- the device may be located at a circumferential wall of a catheter or at the end of said catheter, and thermally connected to a heat sink that is located within the catheter and/or at the circumferential wall of the catheter or in the blood flow.
- the device may be located at a circumferential wall of a catheter or at the end of said catheter, and wherein saline is pumped down the catheter to provide additional fluid flow around the transducer and/or around the heat sink.
- the device may comprise a temperature sensor located in association with said transducer.
- said temperature sensor is located downstream of said transducer in a flow direction of liquid in a vessel within which said device is placed, thereby to measure temperature of liquid that has passed said extensive surface.
- the device may comprise a controller for providing said power beam in a duty cycle, said controller being configured to modify said duty cycle and/or applied power in response to changes in temperature indicated by said temperature sensor.
- said controller is configured to modify said duty cycle to control said surface to remain within a range of 40° C. to 50° C., or at 44° C.
- the device may be controllable to stop said power beam when a temperature sensed by said sensor reaches or exceeds a predetermined safety threshold.
- the device may be located at the end of a catheter, and may comprise a temperature sensor located in association with said transducer, wherein saline is pumped down the catheter to provide fluid flow around the transducer and wherein a rate of pumping is controlled according to changes in temperature sensed by said temperature sensor.
- said controller is configured to modify said rate of pumping to control said surface to remain within a range of 40° C. to 50° C., or at 44° C.
- said power beam is provided at a frequency of at least 8 Megahertz, and said vibratable body has a thickness not exceeding 0.3 millimeters, thereby to increase heat transfer from the element.
- An embodiment may comprise a distancing mechanism for positioning said transducer at least a minimal distance away from the cavity wall.
- An embodiment may comprise a controllable valve openable into a body lumen for controlling fluid flow about said device.
- An embodiment may comprise a thermoelectric, or Tec, cooler device to actively enhance cooling.
- the device may include metal channels in a PCB, to allow liquid flow to cool the device.
- a distancing device may distance the transducers from a vessel wall, to allow liquid flow in between the device and wall, both for cooling the device and the wall. In this way the vessel wall is not damaged by the ultrasound beam.
- an ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies and a surface for beam emanation, the device configured to produce an unfocused power beam over an extent of said surface for tissue ablation, the unfocused power beam being at a frequency of at least 8 Megahertz.
- the device may have a thickness below 0.3 millimeters or a thickness of 0.15 millimeters, thereby to increase heat transfer from the element.
- an ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies, the device configured to produce a focused power beam for tissue ablation, the focused power beam being produced by vibration over the body of the transducer whereby a surface of said transducer becomes subject to convective cooling when immersed in a fluid by a chimney effect set up by said focused beam.
- an ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies and an extensive surface for beam emanation, the device configured to produce an unfocused power beam for tissue ablation, the unfocused power beam being produced by vibration over the body of the transducer and emanating from said extensive surface, the device further comprising a heatsink thermally coupled to said body for dissipating heat from said device.
- said heatsink comprises braiding along a wall of a catheter to which said device is attached.
- an ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies and an extensive surface for beam emanation, the device configured to produce an unfocused power beam for tissue ablation, the unfocused power beam being produced by vibration over the body of the transducer and emanating from said extensive surface, the device further comprising a thermo-electric cooler device thermally coupled to said body for cooling said body.
- an ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies and an extensive surface for beam emanation, the device configured to produce an unfocused power beam for tissue ablation, the unfocused power beam being produced by vibration over the body of the transducer and emanating from said extensive surface, the body being mounted on a printed circuit board, and the printed circuit board having channels therein for allowing fluid flow to cool said body.
- an ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies and an extensive surface for beam emanation, the device configured to produce an unfocused power beam for tissue ablation, the unfocused power beam being produced by vibration over the body of the transducer and emanating from said extensive surface, further comprising a pump for pumping fluid around said device to cool said device.
- An embodiment may be attached to a catheter and said pump may be located within said catheter.
- an ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies and an extensive surface for beam emanation, the device configured to produce an unfocused power beam for tissue ablation, the unfocused power beam being produced by vibration over the body of the transducer and emanating from said extensive surface, the device being insertable into vessels where flow is present, and further comprising a flow directing structure for directing said flow present in the vessel over the vibratable body and/or the heat sink in order to cool said device.
- said flow-directing structure comprises a balloon.
- said flow directing structure comprises a shaft and a bending zone on the shaft, the bending zone directing said flow.
- Implementation of the method and/or system of embodiments of the invention can involve performing or completing selected tasks manually, automatically, or a combination thereof. This refers in particular to tasks involving control of the ultrasonic system.
- selected tasks may be implemented by hardware, by software or by firmware or by a combination thereof using an operating system.
- a data processor such as a computing platform for executing a plurality of instructions.
- the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile storage, for example, a magnetic hard-disk and/or removable media, for storing instructions and/or data.
- a network connection is provided as well.
- a display and/or a user input device such as a keyboard or mouse are optionally provided as well.
- FIG. 1 is a simplified schematic diagram of a first embodiment of an ultrasound transducer providing a power beam over a surface extent according to the present invention
- FIG. 2 is a simplified schematic diagram illustrating the chimney effect set up by the ultrasound beam shown in FIG. 1 ;
- FIG. 3 is a simplified diagram showing variations of a PCB on which to mount the ultrasound transducer, the PCB having channels in various configurations for improving fluid flow around the transducer, according to embodiments of the present invention
- FIG. 4 is a simplified diagram illustrating an ultrasonic transducer in a catheter centered in a vessel or cavity using a balloon, according to embodiments of the present invention
- FIG. 5 is a simplified diagram illustrating an ultrasonic transducer in a catheter centered in a vessel or cavity using a coiled placing wire, according to embodiments of the present invention
- FIG. 6 is a simplified diagram illustrating an ultrasonic transducer in a catheter centered in a vessel or cavity using a placing net, according to embodiments of the present invention
- FIG. 7 is a simplified diagram illustrating an ultrasonic transducer located in a window in the circumferential wall of a catheter, according to embodiments of the present invention.
- FIG. 8 is a simplified block diagram illustrating a catheter and the control and operating elements that together with the catheter form an ablation system for use in embodiments of the present invention
- FIG. 9 is a simplified flow chart illustrating a duty cycle control loop for controlling the duty cycle based on measured temperature, according to embodiments of the present invention.
- FIG. 10 is a simplified schematic diagram illustrating a flow control device for controlling blood flow around the transducer, according to embodiments of the present invention.
- FIG. 11 is a simplified graph showing correlation between increase of voltage and increase in temperature during operation of the power ultrasound beam according to embodiments of the present invention.
- FIG. 12 is a simplified block diagram illustrating a variation of the device of FIG. 1 in which a thermo-electric cooler and a heat sink are used on a transducer, the transducer being mounted at a window of a catheter, according to embodiments of the present invention
- FIGS. 13A and 13B are simplified schematic diagrams illustrating variant rectangular and other shapes shown in cross section, of a piezoelectric element for the transducer of FIG. 1 ;
- FIG. 14 is a simplified diagram showing cylinder-based shapes shown in three dimensions of a piezoelectric element for the transducer of FIG. 1 ;
- FIG. 15A is a side view of a series of piezoelectric elements mounted on a single mounting according to an embodiment of the present invention.
- FIG. 15B is a view from above of an arrangement of piezoelectric elements mounted in two rows according to embodiments of the present invention.
- FIG. 16 is a simplified schematic diagram that illustrates a series of angles and positions in relation to a body vessel and a catheter, in which the transducer can be placed by navigation;
- FIG. 17 is a histology slide using H&E stain, and showing the thermal effect in a pig carotid artery;
- FIG. 18 is a histology slide using H&E stain, and showing the thermal effect in a pig renal artery;
- FIG. 19 is a histology slide wherein analysis and marking of the thermal damage area to a pig Carotid Artery is made by a trained pathologist;
- FIG. 20 is a histology slide wherein analysis and marking of the thermal damage area to a pig Renal Artery is made by a trained pathologist;
- FIG. 21 is a histology slide showing analysis and marking of the blocked Vasa-Vasorum, with arrows placed by a trained pathologist in a pig Carotid Artery Vasa-Vasorum in the adventitia;
- FIG. 22 shows two histology slides with analysis and marking of the thermal damage, or nerve degeneration area, made by trained pathologist, for a pig renal artery, and nerves in adventitia.
- the present embodiments comprise an ultrasound transducer device and cooling thereof and, more particularly, but not exclusively to the cooling of such a transducer device within a small vessel which may be filled with fluid.
- the present embodiments may provide a transducer which carries out tissue ablation using an ultrasound beam, for example an unfocussed beam produced over the body of the transducer and emanating from an extensive surface of the transducer, as opposed to prior art focused beams which are produced in tightly defined spots.
- the beam heats surrounding fluid opposite the extensive surface and sets up a chimney effect which provides convective cooling to the transducer extensive surface.
- the transducer may be mounted on a PCB and trenches may be constructed in the PCB for fluid flow to enhance the cooling effect.
- pumping methods may be used to enhance the flow of liquid around the transducer.
- An embodiment uses an airbacked transducer in which surface tension is used to retain the air in position. Thus the transducer does not need to be sealed. Connections to the PCB across the airgap may use heat conductive materials to ensure that the PCB is in thermal contact with the transducer and thus enabling the PCB to act as an additional heat dissipation surface. A metal channel may be provided in the PCB.
- the transducer may be located on a catheter, either at a window in the side wall of the catheter or at the distal tip of the catheter.
- the transducer may be thermally connected to a heat sink that is located wholly or partly within the catheter.
- the heat sink can, in some embodiments, evacuate the heat to the surroundings or to cooling liquids such as blood.
- saline may be pumped down the catheter to provide additional fluid flow around the transducer and/or the heat sink, and the heat sink can be part of the shaft of the catheter as will be explained in greater detail below.
- the transducer may provide a power beam and a measuring beam and a method is provided for measuring increases in temperature and stopping operation or changing the duty cycle or/and applied power if overheating is detected.
- the power beam may be provided at frequencies at or in excess of 20 Megahertz, and using piezoelectric transducers which are below two millimeters in thickness, to avoid problems with cracking due to thermally induced stress within the transducer.
- FIG. 1 illustrates an ultrasonic transducer device 10 for producing ultrasonic beams.
- Device 10 comprises a body 12 which is vibratable at ultrasonic frequencies by an input electrical signal, and a surface 14 which extends over the body, for beam emanation.
- the device may produce an unfocused power beam, indicated by arrows 16 , for tissue ablation or like purposes that require relatively high power.
- the unfocused power beam is produced by vibration over the body 12 of the transducer and emanates from over an extent of the surface.
- the beam heats fluid opposite the surface and because the heating effect occurs over the surface extent it sets up a chimney effect in the fluid. The extent of the surface thus becomes subject to convective cooling when immersed in a fluid and producing the power beam.
- FIG. 2 is a simplified schematic diagram illustrating the chimney effect.
- Liquid up against the hot surface 14 above the transducer body 12 is heated by the beam and its density is reduced causing it to be displaced by lower density cooler fluid.
- the displacement is in the direction of arrows 18 , typically in a direction normal to the surface 12 being heated as long as the heating effect is over a surface extent. If the heating is point heating then the chimney effect is not set up. Cooler liquid is thus sucked in from the sides as indicated by arrows 20 .
- the ultrasonic transducer device itself may be a piezoelectric element, which vibrates in response to electrical input and which produces an electrical output when itself vibrated.
- Connection mountings 26 on the PCB are used to mount the transducer.
- the connection mountings allow a gap 28 to be formed between the transducer and the PCB.
- the PCB can be connected to a conductive heat pad or other heat dissipating mechanism.
- the gap 28 may be air-filled, and may be sealed to retain the air when the device is immersed in liquid.
- the sealing can attenuate the ultrasonic energy and thus, in an alternative embodiment the gap may be unsealed.
- surface tension may retain air within the gap when the device is immersed in fluid.
- the conductive connections 26 to the PCB across the airgap 28 may provide thermal conductivity as well as electrical conductivity, thereby enabling the PCB 22 to act as an additional heat dissipation surface.
- FIG. 3 shows four exemplary structures 22 . 1 , 22 . 2 , 22 . 3 and 22 . 4 , for the PCB.
- the PCBs 22 . 1 . . . 22 . 4 include trenches 24 .
- the transducer is mounted between connection mountings 26 , and the trenches 24 thus pass underneath the transducer to allow fluid flow under the transducer to assist with cooling.
- the transducer is operated in blood vessels such as arteries where there is significant fluid flow.
- blood vessels such as arteries where there is significant fluid flow.
- a pumping mechanism or pumping unit may be provided for actively pumping liquid around the transducer.
- even arteries may require some augmentation to the fluid flow via artificial pumping.
- the transducer device 10 is typically inserted into a body vessel using a catheter 40 , and in use is located at a window in the catheter, which window is in these cases on the circumferential wall close to the distal end of the catheter.
- the device could be placed on the distal end itself of the catheter.
- the transducer device may be thermally connected to a heat sink that is located within the catheter.
- a heat sink typically cooling fins cannot be used in blood flow due to the danger of breaking platelets and causing thrombus, or blood clots.
- the heat sink may be retained wholly within the catheter.
- Saline may be pumped down the catheter to provide fluid flow around the transducer and around the heatsink.
- Braiding may be provided in the catheter, say using copper stripes or stainless still braiding, to use the entire length of the catheter as a heat sink surface.
- a spring 44 keeps the catheter centered with respect to the wall.
- the spring may be made of Nitinol, a shape memory alloy which can be inserted flat and then when attaining a pre-set temperature reassumes its remembered shape.
- a placing net is used to position the catheter with respect to the wall.
- Distancing the transducer from the vessel wall ensures that the transducer does not directly heat the vessel wall. Furthermore the distance allows for fluid flow around the transducer and thus allows the chimney effect to occur. Furthermore the distance allows for blood flow at the wall of the vessel thus allowing the epithelium cells at the wall of the blood vessel to be cooled by the flow of blood and thus not be damaged by the heating effect of the ultrasound beam. Damaged epithelium cells are a future risk for the blood vessel. In general the thermal damage effect that the ultrasound beam uses is the denaturation of collagen, which occurs at around 55° C. The blood flow is generally sufficient to ensure that the epithelium layer does not reach this temperature.
- FIG. 7 shows a transducer 70 mounted in a window 72 of a catheter.
- the chimney effect around the transducer can have the additional effect of sucking in injected medication or staining substances from the catheter through the window 72 , thus improving injection efficiency.
- a temperature sensor may be provided with the transducer. Typically, the sensor is placed just downstream of the transducer in the blood flow direction. Thus the temperature that is measured is that of liquid that has just passed the transducer surface, and increasing measured temperature may be taken as an indicator of overheating in the transducer.
- FIG. 8 is a simplified block diagram of a system according to an embodiment of the present invention.
- the system 110 may contain an acoustic transducer 112 , a power supply unit 114 , a control unit 116 , a pumping or circulation unit, shown as perfusion unit 118 , a balloon control unit 120 , temperature sensor 121 , and a navigating shaft 122 .
- the navigating unit allows the acoustic element to navigate to the location or locations at which it is needed.
- the balloon control unit controls a balloon for supporting the lumen as needed and centering the catheter as discussed.
- the perfusion unit provides injection substances as necessary.
- Controller 116 may vary the duty cycle of the power ultrasound beam in accordance with the temperature measured at temperature sensor 121 .
- Controller 116 may provide the power beam in a duty cycle and/or just by controlling a level of applied power.
- the duty cycle and/or applied power may be increased if the temperature falls, kept the same if the temperature remains constant and decreased if the temperature rises.
- the duty cycle and/or applied power may for example be controlled to keep transducer surface 14 within a range of 40° C. to 50° C., or at 44° C., or at other temperatures as deemed appropriate.
- the controller 116 may stop the power beam when the temperature sensed by sensor 121 reaches or exceeds a predetermined safety threshold.
- the transducer is located in a window or at the end of a catheter, and the temperature sensor is used to control a rate at which cooling saline is pumped down the catheter to provide fluid flow around the transducer.
- FIG. 10 in which a transducer 124 is mounted at a window of catheter 126 .
- a valve flow control device 128 sits around the catheter and can be opened or closed to change the blood flow around the transducer.
- contrast agents or medicines may be injected via the catheter and these too may provide an auxiliary role of helping to cool the transducer.
- FIG. 11 shows temperature measurements in the upper graph against voltage in the lower graph for a transducer according to the present embodiments.
- FIG. 11 shows a graph of real time measurements of voltage and temperature in the renal area. The relation between the applied voltage and the temperature can easily be observed.
- Heat in the transducer is directly proportional to voltage.
- heat is directly proportional to the reciprocal of impedance and to the efficiency subtracted from unity.
- Heat is additionally proportional to the liquid flow over the transducer surface.
- the blood flow rate may be calibrated with the heating and cooling effects. Thus it may be possible to turn on the transducer, check the temperature, check the flow rate, and then use a calibration table to provide the correct cooling.
- FIG. 12 is a simplified diagram illustrating an embodiment of the present transducer device in which additional cooling elements are provided.
- a transducer 134 Located at window 130 of catheter 132 , a transducer 134 is connected to a thermoelectric or peltier cooler 136 which in turn is connected to a heat sink 138 .
- Typical dimensions for the construction are 0.8 mm overall, wherein 0.5 mm is the thickness of the heat sink.
- the TEC and ⁇ or the heat sink may be placed in the axial direction of the catheter or as part of the catheter shaft. It is noted that if attempting to use high power ultrasound over the entire body of a piezoelectric element, there is a problem with breakage of the transducer due to thermal differences within the element. Ceramics generally have low thermal conductivity.
- the present embodiments avoid the above problem by using relatively high frequencies, in the range of 8 or 10 to 40 MHz, which permits the use of thinner ceramics, so that the issue of thermal differences does not arise, or at least does not lead to breakage of the elements.
- a frequency range of 10-40 MHz provides heating effects over a range of millimeters, and has been used for imaging but not at high power for ablation.
- the thinner ceramics are less than 0.25 mm in thickness and an example uses 0.15 mm.
- control may be achieved by managing either the duty cycle or the applied power.
- Imaging has used unfocused beams but at low power, whereas ablation has used high power beams which have always been at lower frequencies and focused.
- Imaging uses short pulses followed by gaps to listen to the echo.
- Ablation uses continuous or long bursts in a duty cycle. Imaging to follow the results may be carried out during the gaps in the duty cycle.
- the duty cycle can be changed as part of a control loop to maintain the correct temperature at the transducer surface.
- Imaging can be used to obtain the face of the vessel or lumen wall and thus to provide a further control loop to make sure that the transducer is kept away from the wall.
- the present embodiments relate generally to devices, parameters and methods for the treatment of tissue using ultrasonic waves in particular for heating, at a target area such as in the wall of a tube or cavity, located in the living body.
- the treatment may involve excitation using high power acoustic energy.
- the ultrasonic effect is achieved in such a way that there is control over the heated target tissue volume and location.
- a controlled volume of tissue between the ultrasonic element and the target tissue is not treated. This distal effect may be achieved without the need of mechanical contact with the cavity walls.
- Detailed application of the above includes the ability to cause moderate thermal damage within a controlled volume at the outer side of a cavity wall without damaging the inner side of the vessel, the inner side including different types of epithelium.
- the treatment method may be applied by creating a gradient of different temperatures in the tissue by the combined effects of: heating the tissue with high power ultrasound and cooling of the tissue using conduction and convection.
- the convection could be of natural fluid, for example blood flow, or by artificial injection of cooling liquid, for example cold saline injection. Additional temperature effects that are widely elaborated in other sources may also simultaneously influence the temperature gradient, for example—blood flow or capillary blood perfusion.
- the heating control is performed by controlling the parameters of the ultrasonic field and the transmission protocol, including: transmission frequency, power, duty cycle and duration, as will be described in greater detail herein.
- the treatment is controlled by feedback from the tissue using an echo received from the tissue during the treatment. Specifically, at high temperatures above 55° C. an irreversible change is created in the collagen fibers in the tissue; this change may be monitored using the ultrasonic echo from the tissue, which allows mapping of the damaged tissue area.
- the ultrasonic transmission is applied at high power, high frequency and for more than one second.
- Heating of the tissue in the ultrasonic field is performed by absorption of the acoustic energy in a process of dissipation of mechanical energy.
- the absorption and influence of the energy on the tissue includes inter alia the following effects: a heating effect, a mechanical effect, a pressure effect, a sub-pressure and a cavitation effect.
- the cooling effect is achieved by liquid flow in the vessel or fluid present (for example blood, urine, lymphatic liquid, bile) or liquid active ejection.
- liquid flow in the vessel or fluid present for example blood, urine, lymphatic liquid, bile
- liquid active ejection for example blood, urine, lymphatic liquid, bile
- the present embodiments may provide the possibility of transmitting the energy to a second side of a wall without touching the wall, for example a cavity or lumen wall. By not touching it is possible to increase protection for both the elements and the non target tissue by allowing fluid to flow on the cavity walls and on the transducer surface.
- the liquid provides for cooling.
- the present embodiments may also allow for easier operation by not restricting the transducer location.
- the present embodiments may transmit a non-focused acoustic field to reach the target tissue.
- An advantage of not having to focus the field is that there is no need to control the tissue distance from the transducer.
- renal denervation may be carried out simply by allowing the catheter to transmit a wide, high power acoustic field from a nonspecific location in the artery to a distal nonspecific location of the renal nerve.
- Alternative embodiments may provide a focused beam at higher power.
- Embodiments of the invention may allow ejection of materials into the treated area or to an upstream area therefrom in a way that the materials are inserted into the vessel, say through the vasa-vasorum or the adventitia lymph capillary.
- the embodiments described herein allow sampling of the voltage created on the ultrasonic element due to echoes from the tissue and processing the data in such a way that the treated tissue is monitored.
- Echo sampling and recording and or processing for measurement and monitoring can be performed simultaneously with the treatment.
- Such simultaneous treatment and analysis can increase the level of control of the treatment in real time and help ensure achievement of the desired results.
- the following information may be monitored from the echoes received within a vessel:
- the data analysis method may include echo intensity, backscatter, spectral signature mapping, elastography, classification according to classification matrix of tissues, and the ultrasonic effect.
- the control unit may use the above data and analysis for increasing the treatment, or reducing the treatment, or stopping the treatment, or providing indications regarding the treatment stage, or providing indications to stop or to continue the treatment.
- a therapeutic catheter with an ultrasonic transducer may allow for transmission to the vessel from the inner side.
- An ultrasonic transducer may be placed in proximity to a wall, with an internal catheter and transmission to the outer side of the wall. In the case of limbs one transducer can be placed externally on the outside of the skin and another in a blood vessel.
- An endoscope system may include an ultrasonic element in its tip.
- the endoscope may be inserted through the skin and ultrasonic transmission may be provided to the outer side of the cavity.
- the fluid control methods may include one or more of the following implementations:
- a restrictor around the transducer may involve: placing the transducer at a different location in the vessel, and controlling the flow;
- a restrictor near the transducer may again involve placing the transducer at a different location in the vessel, and controlling the flow;
- a restrictor in front of (upstream of) the transducer may involve blocking the flow upstream in order to load the vasa-vasorum with liquid and particles.
- the method may involve blocking the flow downstream of the transducer to allow drug delivery specifically to the treated area;
- the restrictor may be one or more of the following: a balloon, a wire, nets, or a thin plastic sheet.
- Injecting vasoconstriction materials into the blood and in this way reducing the perfusion and heat evacuation from the tissue, or injecting or evoking micro-bubbles and increasing the heating by increasing absorption of the ultrasonic energy, or the evoked micro-bubbles may be produced by use of an additional separate transducer.
- Micro-bubble transportation through the cell membrane may be increased using the acoustic treatment, and may achieve a multiplied effect.
- the tissue may be cooled before treatment in order to protect and or control the treated area and non-treated area.
- the ultrasonic field and/or the level of perfusion can be controlled and manipulated by influencing the body system in general.
- Possible target tissues for the device include one or more of the following and their nearby tissues to douse cavities: arteries, veins, lymph vessels, intestine, esophagus, CNS, urine lumen, gall bladder lumen, Stomach, and Tear Trough.
- Blood vessel wall pathology For example for an atherosclerotic lesion
- Treatment of tissue near the urine lumen wall for example prostate treatment
- Treatment of tissue far from the urine lumen wall for example prostate cancer.
- phantom pain treatment in which, the target tissue is nerve tissue in the limbs.
- the catheter cavity may be located in a limb artery.
- the purpose of the treatment may be reducing phantom pain innervations by denerving the injured nerve.
- An additional example of treatment is renal denervation.
- the target is the renal nerves.
- the catheter cavity is located in the renal artery.
- the purpose is to reduce pressure on the heart for high blood pressure patients.
- the frequency, power and acoustic beam as per the data and results hereinbelow treat the nerves without or with minimal damage to the artery.
- the attenuation is smaller in the fatty tissue around the nerves than in the nerves themselves at the device frequencies, which increases the selectiveness of the treatment.
- lymphocytes occurring in one or more of: lymphocytes, macrophages, smooth muscle cells, fibroblasts, endothelial cells, and neurons;
- Reduced change in the tissue activity including: reducing smooth muscle function, reducing or blocking nerve activity, reducing or blocking the generation of the heart beat potential to the heart muscles;
- Biochemical changing in the tissues may include: reducing or preventing plate connection to collagen, and changes of material diffusion through the cell walls.
- the device may be operated using typical parameters for acoustic transmission as follows:
- Transmission duration (total time): 1-120 seconds.
- the ultrasonic elements transfer the energy to the target tissue, and may also be used as sensors for receiving reflections from the tissue.
- the ultrasonic element may also be used as a jet evacuator of fluids for cooling or/and for drug delivery.
- the ultrasonic element can be used as a microbubble evacuator.
- the ultrasonic element typically includes one or more ultrasonic transducers including a piezoelectric material 24 or a MEMS element—see FIGS. 2 and 3 . Electrodes may provide power to the transducer.
- the housing 30 protects the assembly, and an electrical connection may be provided between the electrodes and the catheter wires.
- the transducer element 124 may, as mentioned by a piezo-electric elements or a MEMS element.
- a PIEZO-electric transducer element may typically be made from PIEZO-electric material, for example: PZT ceramics, PIEZO-electric quartz.
- FIG. 14A illustrates a series of shapes where the depth cross-section is rectangular as shown in element 133 .
- Element 135 is rectangular as seen from above.
- Element 137 is a hexagon.
- Element 139 is an irregular quadrilateral.
- Element 140 is a flattened circle.
- Element 142 is a trapezium.
- Element 144 is a bullet shape.
- Element 146 is a trapezium having a shorter dimension between its parallel sides than the trapezium of element 142 .
- Element 148 is a comb shape having a narrow tooth at a first end followed by three wider teeth.
- Element 150 is a “W” shape, again with a narrow tooth projection at a first end.
- FIG. 14B illustrates a closed ring shaped element 152 and an open ring shaped element 154 .
- FIG. 14C illustrates four variations on a cylindrical element.
- Element 156 is a filled cylinder.
- Element 158 is a cylinder with a removable sector.
- Element 160 is a hollow cylinder having an opening 161 in the lower wall, and element 162 is a hollow cylinder having an open part of the cylinder wall along its length.
- the element 112 (as shown in FIG. 8 ) may be spherical.
- the transducer described above does not necessarily include a focal point for the ultrasonic beam.
- the beam can reach various targets without requiring a precise distance between the element and the target, as will be described in greater detail below.
- Possible construction of the transducer may comprise regular coating methods for piezo elements, and coating materials including one or more of: silver, Ni, gold, copper, or carbon nano-tubes.
- Additional coating of the electrodes may improve one or more of the following: the electric conductivity, the acoustic matching, the acoustic reflection or the acoustic amplification.
- the additional coating may use any of a variety of materials including polymers, glass and metals.
- the PIEZO-electric material may for example comprise: PIEZO-electric ceramics and/or PIEZO-electric quartz.
- An embodiment as discussed hereinbelow with cooling methods may allow the design to use high hardness ceramics, which have advantages of being of high efficiency, and being small and cheap.
- the acoustic element can also be implemented using MEMS.
- More than one acoustic element can be implemented, for example:
- FIG. 15A is a side view showing five piezoelectric elements 170 mounted on a curved PCB 172 .
- FIG. 15B is a view from above showing two rows of piezoelectric elements 174 and 176 .
- the housing can made from one or more of the following materials: metals, ceramics, PZT, PIEZO-electric ceramics, glass, polymers or carbons.
- the housing may provide an angiogram directional projection for better placing of the element.
- the housing may further be shaped to provide focusing or to affect fluid flow within the lumen around the element.
- the housing may be designed to provide relatively high heat transfer from the element in order to avoid overheating.
- the heat conductance is a function of shape and of the material used, however standard cooling fins cannot be used in the blood stream as they may cause platelets to break, thus causing blood clots.
- the housing can include acoustic damping materials, such as tungsten, or alternatively may be designed to provide an acoustic amplifying effect. As per the discussion above, typically some of the piezoelectric surface is damped and some is provided with acoustic amplification.
- a drug delivery capsule may be provided to inject materials into the bloodstream as required by the procedure.
- the printed circuit may comprise materials such as hard polymers, flexible polymers, glass-fiber and carbon fiber. Alternatively, the printed circuit may be printed directly on the housing.
- connection to the acoustic element may use any of wire soldering, paste soldering process, conductive gluing and wire bonding.
- the connection is preferably both a good heat conductor and a good electrical conductor.
- the circuit itself may include vias of copper or other metals for higher heat transfer.
- One or more printed materials may be provided on the board, including: copper, metals, polymers, and intermediate materials.
- Coatings such as metals, PZT, chemical coatings, isolation coatings, hydrophilic coatings and hydrophobic coatings may be used on different parts of the PCB or housing.
- the acoustic transducer may be connected to the control unit 116 using different kinds of wires including: coax wire, twisted pair, and fiber optic cable.
- the acoustic transducer and the catheter may be coated with different coatings including: an isolation coating, a praline, NiSi, hydrophobic coating, hydrophilic coating, or any kind of biocompatible coating,
- an air pocket may be maintained between the PCB and the piezoelectric element.
- Air pockets may be formed by the use of trenches in the PCB structure as illustrated with reference to FIG. 3 . or by providing a mounting as shown in FIG. 1 where a gap is defined between the piezoelectric element and the PCB.
- Hydrophobic coatings including praline, may be used to enhance the surface tension effect in order to prevent the water medium from penetrating into the air volume.
- the coating may cover the entire air bubble surrounding or part of it and prevent water from penetrating in.
- the air bubble does not need to be maintained indefinitely. It is sufficient that it is retained for the duration of the ultrasound procedure.
- the ultrasonic element may use different anti-resonance values for the working frequency when available. For example one anti- resonance may be used for moderate heating of the tissue, another for power heating of the tissue and yet another for monitoring.
- the device may be able to provide an injection jet to the tissue, may provide for increasing fluid flow under the element, say to improve cooling, may evoke micro-bubbles, and may monitor the heating effect and or any injection.
- the measurement system may include doppler analysis and the heat treatment may use focused or unfocused ultrasound.
- the navigation unit 122 may allow the acoustic element to reach the desired location.
- the navigation unit may further have some auxiliary functions. For example it may deliver the power to the element from the control unit, record measurements from the element and even deliver the measurements to the control unit 116 .
- the navigation unit may further be involved in heat absorption or transfer from the transducer to the ambient or to the surrounding liquids by providing an additional heat exchange surface extending from the catheter.
- the navigation unit may also mechanically hold and place the ultrasonic elements in different locations and at different desired angles, as per FIG. 16 .
- a ring configuration 180 may be used, or an angle configuration 182 , or a cylindrical configuration 184 or a side configuration 186 or a front configuration 188 , each in relation to the catheter.
- the navigation unit may include an external navigated control unit.
- a placing unit may include a balloon, a placing wire or a net or the like.
- a heat sink function may including cooling the ultrasonic unit using outside fluid including: blood, urine or CSF.
- the function may include increasing the heat evacuation by pumping fluid over or from the acoustic unit surface.
- the function may involve increasing the heat evacuation using internal or external heat conductive material, including: blood passivation coating, or printed coating, or may include increasing the heat evacuation using an internal or external heat conductive balloon.
- Heat evacuation may be increased by using an internal or external heat conductive balloon with heat conduction material.
- the control unit 116 may provide various kinds of closed loop control and indications on the treatments.
- the control unit may receive signals from echoes from the tissue.
- the echo may indicate the area and treatment effect, or the echo can indicate the distance from the cavity wall to the transducer device.
- the sensor may be a temperature sensor, which may indirectly sense the temperature of the transducer by measuring fluid that has just passed the sensor.
- the temperature may indicate the treatment efficiency, or efficiency of cooling of the cavity, or the cooling or heating of the transducer.
- a power sensor can indicate the output treatment energy.
- a blood pressure sensor or other like sensors may be provided to indicate reaction to the treatment.
- a flow sensor can monitor fluid flow in the region of the treatment.
- Closed loop effects which do not require the control unit may also be used, as known to the skilled person, for example a coating material on the transducer surface may be provided that attaches to particles or other materials that come from the treated tissue.
- the attachment may be used to control the ultrasonic process by making changes to the transducer frequency during operation.
- Materials that can be inserted into the target tissue volume include restenosis prevention materials, for treatment of blood vessels, and materials that are used in drug eluting stents, such as sirolimus, and paclitaxel.
- Other materials can be used, say in drug exuding and eluding balloons, and may include materials that are used for bio-degradable stents, anti-Inflammatory materials, medications that may be better presented locally to the tissue than systemically, anti-thrombotic materials, such as Heparin, Aspirin, Ticlopidine, and Clopidogrel, and materials that can cause damage or death to target tissues.
- anti-thrombotic materials such as Heparin, Aspirin, Ticlopidine, and Clopidogrel
- materials that can cause damage or death to target tissues may be supplied for renal denervation.
- materials that may help in blocking of the tissue micro-circulation in heating such as polymers that undergo cross linking, or soluble collagen, or material that may increase the ultrasonic heating of the tissue, such as micro-bubbles that cause higher energy absorption, may be used, or in the latter case generated on site.
- Micro-bubble transportation through the cells membrane can be increased using the acoustic treatment, and achieve a multiplicative effect.
- any kind of medication can be applied.
- the transducer may be positioned on a catheter inside blood-vessels or blood cavities. Ultrasonic irradiation of the target tissue from inside the vessel lumen or cavity outwards may then be provided. Cooling of the piezoelectric element may be achieved by making the design sufficiently conductive and then using blood flow or flow of a fluid from an external source, such as saline that is irrigated into the blood vessel.
- an external source such as saline that is irrigated into the blood vessel.
- the transducer may be positioned on a catheter inside tissue canals or cavities of body fluids in the body, such as the urethra or urinary bladder, or in the spinal cord or brain ventricles (CNS fluid). Ultrasonic irradiation of the target tissue from inside the canal/cavity outwards may then be provided.
- the transducer may alternatively be positioned on the tip of an endoscope or like device.
- the endoscope is inserted through a small hole in the skin, and the ultrasonic transducer is positioned on or near the target tissue.
- the endoscope tip may for example be positioned inside a balloon like device.
- the cooling fluid flows inside the balloon.
- the balloon is positioned next to the treatment tissue location.
- the ultrasonic transducer irradiates the target tissue through the balloon wall.
- the balloon may be positioned on the skin and not inserted through it.
- the treatment target may be near the skin.
- the ultrasonic transducer may be positioned at a location that allows ultrasonic irradiation of the target tissue. Irrigation of required material in a liquid form may be provided into the blood vessels or lymphatic vessels that supply the perfusion or lymphatic capillaries of the target tissue volume, for example the artery vasa-vasorum.
- the method may involve waiting a known time constant for the required material to reach the target tissue.
- micro-bubbles may be detected using ultrasound and sub-harmonic imaging. Micro-bubbles may also improve heating of the target tissue under ultrasonic energy, due to higher absorption of the ultrasonic energy in the tissue volume where they are located.
- Applying a thermal effect in the tissue may cause the capillaries to be blocked mechanically or by blood coagulation.
- Ultrasound energy applies mechanical force on particles that are present in a liquid, when there is a difference in the acoustic impedance, which is a function of the density multiplied by the speed of sound, between the particles and the liquid.
- the applied force then pushes particles along the direction of the traveling ultrasonic waves.
- the mechanical force phenomenon can be used to ensure that required substances arrive at the treatment site.
- the ultrasonic transducer may be positioned in a tissue liquid cavity such as a blood vessel, near the target tissue, while ensuring a liquid spacing between the target tissue and the ultrasonic transducer irradiating face.
- a control loop can be used to ensure that the transducer does not touch the vessel wall and damage epithelium cells.
- the required material may be released into the tissue liquid cavity in a way that will cause some of the particles to enter the spacing between the target tissue and the ultrasonic transducer irradiating face.
- One way of doing this is to coat the face of the ultrasonic transducer with the required material, such that the operation of the ultrasonic transducer may cause particles of the required material to be released into the surrounding liquid.
- micro-bubbles may be added to the required material fluid in order to detect the material presence in the target tissue.
- Micro-bubbles may be detected using ultrasound and sub-harmonic imaging.
- Yet another possibility is to activate the ultrasonic transducer so as to apply force on the required material particles to push the particles into the blood vessel wall near the ultrasonic transducer irradiating face, using the pushing effect mentioned above.
- Another possibility is to apply the ultrasonic energy in short high power pulses with long separations between each pulse. This may apply mechanical force, as per the phenomenon discussed above, to the particles to push them into the tissue wall, without heating the tissue wall extensively.
- activation of the captured required material can be achieved by applying additional ultrasonic energy or some other kind of external energy such as a magnetic field on Ferro-electric particles, or an ultrasonic shock-wave to the particles
- the present embodiments may be used for the treatment of renal denervation.
- the transducer is simply positioned at 1, 2 or more treatment points, and there is no need for tip manipulation or accurate positioning.
- the total energizing duration may be between 2 seconds and 2 minutes at each point.
- Real-time feedback of treatment progress may be provided.
- the advantages of ultrasonic treatment include directional, localized and remote target tissue effects with minimal damage to other closer tissues, possibly reducing pain, preservation of endothelium and elastic lamina structure and function, so that there is no post treatment stenosis, or at least reduced post treatment stenosis, the avoidance of any mechanical contact on the blood vessel wall, and overall a more robust treatment effect due to real-time feedback.
- Plaque thrombosis All relevant arteries Artery media decrease and adventitia 11. Tetanic limb muscle Limb arteries or Peripheral motor tonus decrease veins nerves 12. Atrial fibrillation Right atria Pulmonary prevention vain insertion 13. Cardiac arrhythmia Coronary arteries Cardiac tissue prevention pathology 14. Liver tumor necrosis Inferior vena cava Tumor 15. None-malignant Urethra Sick prostate prostate treatment tissue 16. Malignant prostate Urethra Sick prostate treatment tissue 17. Artery aneurysms All relevant arteries Aneurysm wall stabilization 18. Aortic aneurysms Aorta Aneurysm wall stabilization 19. Berry aneurysms Brain arteries Aneurysm wall sealing 20. Erectile dysfunction Internal Iliac Artery media treatment and adventitia 11.
- the ultrasonic transducer 1.1.1. Very small: 1.5 ⁇ 8 [mm] 1.1.2. Very thin: 0.8 [mm] 1.1.3. Very high ultrasonic intensity output: 100 [W/cm ⁇ circumflex over ( ) ⁇ 2] 1.1.4. Relatively high work frequencies: 10-25 [MHz]. 1.1.5. Biocompatible coating: Perylene 1.2. The catheter 1.2.1. Ultrasonic transducer cooling: vessel blood/liquid flow + catheter breading as heat sink 1.2.2. Very flexible treatment tip: 10 mm stiff length. (Pass through 8 Fr “hokey-stick” guide catheter) 1.2.3. Precise and easy torque following 1.2.4. Standard 0.014 OTW 1.2.5. Relatively small diameter: 6 Fr 1.3.
- Distancing fixture 1.3.1. Distancing transducer face from artery wall to prevent contact damage, with minimal mechanical forces on artery wall 2.
- Technology functionality 2.1. Non-focused ultrasonic beam-like ultrasonic emission 2.1.1. Simple anatomic 2.1.2. Big treatment volume cross-section, the size of the transducer face (differing from focused ultrasound with small treatment volume) 2.1.3. Relatively even spread of ultrasonic energy in beam cross-section (No need to precise anatomic positioning like in focused ultrasound) 2.2. Treatment maneuverability and directionality 2.2.1. Simple maneuvering with nearly 1:1 torquability.
- FIGS. 17-22 illustrate experimental results following use of the device.
- FIG. 17 is a histology slide, using H&E stain, and showing the thermal effect in a pig carotid artery.
- the border of the thermal effect region in the tissue is marked with a dashed line and noted as “Thermal Damage”.
- the setup used was an ultrasonic catheter from inside the blood vessel.
- FIG. 18 is a histology slide, using H&E stain, and showing the thermal effect in a pig renal artery.
- the border of the thermal effect region in the tissue is marked with a dashed line and noted as “Thermal”.
- a necrotic nerve inside the thermal effect region is marked with an arrow and “necrotic nerve” text.
- the setup involved an ultrasonic catheter from inside the blood vessel.
- the embodiments cause thermal damage in target tissues far from the lumen internal wall, while causing no thermal damage in the lumen wall internal layer.
- the reason for this effect is that the ultrasonic energy heats the artery wall all along the beam, but the blood flow in the lumen cools the tissue that is close to the blood flow, thus the endothelium wall never heats sufficiently to be damaged. It is possible to find a setting for the treatment parameters so to cause heating above 55C of the tissues far from the blood flow, while the temperature of the intima layer is kept below 55C.
- FIGS. 19 and 20 are histology slides wherein analysis and marking of the thermal damage area to a pig Carotid Artery and a Pig Renal Artery respectively, is made by a trained pathologist.
- Heating the adventitia or media can cause blocking of the flow inside the small capillaries (called Vasa-Vasorum) in the blood vessel media and adventitia, for example by mechanical crimping due to the shrinking of the connective tissue due to collagen denaturation, or due to thrombotic blocking by a thrombus that is formed in the Vasa-Vasorum because of the thermal damage (the blood flow in these vessels is very low so it can not cool the blood vessel).
- Vasa-Vasorum small capillaries
- Heating the adventitia or media can cause blocking of the flow inside the small capillaries (called Vasa-Vasorum) in the blood vessel media and adventitia, for example by mechanical crimping due to the shrinking of the connective tissue due to collagen denaturation, or due to thrombotic blocking by a thrombus that is formed in the Vasa-Vasorum because of the thermal damage (the blood flow in these vessels is very low so it can not cool the blood vessel).
- FIG. 21 illustrates exemplary results for the above.
- a histology slide shows analysis and marking of the blocked Vasa-Vasorum with arrows placed by a trained pathologist in a pig Carotid Artery Vasa-Vasorum in the adventitia.
- the treatment is intended to provide extensive thermal damage to specific target tissues while keeping nearby tissues undamaged.
- the ultrasonic energy absorption is different for different kinds of tissue and, and furthermore, the content of collagen fibers may differ.
- FIG. 22 illustrates two histology slides with analysis and marking of the thermal damage, or nerve degeneration area made by a trained pathologist, for a pig renal artery, and nerves in adventitia.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Mechanical Engineering (AREA)
- Radiology & Medical Imaging (AREA)
- Dentistry (AREA)
- Dermatology (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Vascular Medicine (AREA)
- Surgical Instruments (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
An ultrasonic transducer device for producing ultrasonic beams comprises a body vibratable at ultrasonic frequencies and an extensive surface for beam emanation, the device configured to produce an unfocused, or alternatively a focused, power beam for tissue ablation, the power beam being produced by vibration over the body of the transducer and emanating from the extent of the surface, whereby the extensive surface becomes subject to convective cooling when immersed in a fluid by a chimney effect set up by said unfocused beam.
Description
-
RELATIONSHIP TO EXISTING APPLICATIONS
-
This application claims the benefit of priority under 35 USC 119(e) of U.S. Provisional Patent Application No. 61/393,947 filed Oct. 18, 2010, the contents of which are incorporated herein by reference in their entirety.
FIELD AND BACKGROUND OF THE INVENTION
-
The present invention relates to an ultrasound transducer device and cooling thereof and, more particularly, but not exclusively to the cooling of such a transducer device within a small vessel which may be filled with fluid, such as a blood vessel or other body lumen.
-
Sverdlik et al, in PCT/IL2008/000234, filed Feb. 21, 2008 disclose a method of using ultrasonic energy for surgical procedures. In a procedure for stabilizing blood vessel wall abnormality, ultrasonic heating is carried out of at least a portion of the blood vessel wall having the abnormality. A parameter is monitored relating to a property of at least a portion of the heated portion of the blood vessel wall; and heating is stopped when the monitored parameter changes by a predetermined factor or after the monitored parameter changes at a slow enough rate.
-
Maguire and Peacock, in EP 1769759 disclose an air backed ultrasonic transducer. Specifically they disclose an ultrasound transducer mounted onto a delivery member, such as the elongate body of a catheter shaft, without a support structure bridging between a separation area between the transducer and the shaft. Mounting flanges extend from either end of the transducer and are mounted at first and second locations along the catheter shaft such that the transducer is not in mechanical contact with the catheter shaft between those mounting locations to provide for air backing between the transducer and the catheter shaft so as to isolate ultrasound transmission radially away from the catheter shaft and toward the tissue surrounding the shaft. In Maguire and Peacock, sealing of the transducer ensures that body fluids such as blood do not displace the air.
-
An ultrasound transducer can in principle be used to provide a high power ultrasound beam that can ablate tissues. However the transformation of electrical energy into ultrasound is inefficient and considerable heat is generated at the transducer. The heat needs to be safely dissipated without causing damage to the blood vessel itself, and standard heat sink structures cannot be used in blood flow because heat exchange fins can damage platelets and cause clotting. In general the transducer may be expected to heat the artery wall as well as the more distant features it is intended to ablate.
-
Furthermore, ultrasound transducers are typically ceramics with piezoelectric properties. Ceramics have low thermal conductivity and thus operation at high power causes relatively large heat differentials across the transducer which often causes cracking.
SUMMARY OF THE INVENTION
-
The present embodiments may provide a transducer which carries out tissue ablation using an unfocused beam from an extended surface of the transducer. The beam heats surrounding fluid and sets up a chimney effect which then serves to cool the transducer surface.
-
The use of higher frequencies, in excess of 8 Megahertz, allows for thinner transducers to be used, which reduces the likelihood that large heat differentials will form or cause cracking. The thicknesses used are between 100-200 microns, and higher energies result from the higher frequencies used. The ultrasonic energy may be focused or unfocussed.
-
According to one aspect of the present invention there is provided an ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies and an extensive surface for beam emanation, the device configured to produce an unfocused power beam for tissue ablation, the unfocused power beam being produced by vibration over the body of the transducer and emanating from said extensive surface, whereby the extensive surface becomes subject to convective cooling when immersed in a fluid by a chimney effect set up by said unfocused beam.
-
The device may be mounted on a PCB, wherein trenches are constructed in the PCB for fluid flow to enhance said cooling.
-
The device may comprise a pump unit for actively pumping liquid around said transducer.
-
In an embodiment, said ultrasonic transducer device comprises a piezoelectric element and wherein said vibratable body is a body of said piezoelectric element.
-
The device may comprise an gas-filled gap between said transducer and said PCB.
-
In an embodiment, said gas-filled gap is unsealed and wherein surface tension retains air within said gap when said device is immersed in fluid.
-
The device may comprise conductive connections to the PCB across the gas-filled gap, wherein said conductive connections provide thermal linkage between said transducer and said PCB, thereby enabling the PCB to act as an additional heat dissipation surface for said device.
-
The device may be located at a circumferential wall of a catheter or at the end of said catheter, and thermally connected to a heat sink that is located within the catheter and/or at the circumferential wall of the catheter or in the blood flow.
-
The device may be located at a circumferential wall of a catheter or at the end of said catheter, and wherein saline is pumped down the catheter to provide additional fluid flow around the transducer and/or around the heat sink.
-
The device may comprise a temperature sensor located in association with said transducer.
-
In an embodiment, said temperature sensor is located downstream of said transducer in a flow direction of liquid in a vessel within which said device is placed, thereby to measure temperature of liquid that has passed said extensive surface.
-
The device may comprise a controller for providing said power beam in a duty cycle, said controller being configured to modify said duty cycle and/or applied power in response to changes in temperature indicated by said temperature sensor.
-
In an embodiment, said controller is configured to modify said duty cycle to control said surface to remain within a range of 40° C. to 50° C., or at 44° C.
-
The device may be controllable to stop said power beam when a temperature sensed by said sensor reaches or exceeds a predetermined safety threshold.
-
The device may be located at the end of a catheter, and may comprise a temperature sensor located in association with said transducer, wherein saline is pumped down the catheter to provide fluid flow around the transducer and wherein a rate of pumping is controlled according to changes in temperature sensed by said temperature sensor.
-
In an embodiment, said controller is configured to modify said rate of pumping to control said surface to remain within a range of 40° C. to 50° C., or at 44° C.
-
In an embodiment, said power beam is provided at a frequency of at least 8 Megahertz, and said vibratable body has a thickness not exceeding 0.3 millimeters, thereby to increase heat transfer from the element.
-
An embodiment may comprise a distancing mechanism for positioning said transducer at least a minimal distance away from the cavity wall.
-
An embodiment may comprise a controllable valve openable into a body lumen for controlling fluid flow about said device.
-
An embodiment may comprise a thermoelectric, or Tec, cooler device to actively enhance cooling.
-
The device may include metal channels in a PCB, to allow liquid flow to cool the device.
-
A distancing device may distance the transducers from a vessel wall, to allow liquid flow in between the device and wall, both for cooling the device and the wall. In this way the vessel wall is not damaged by the ultrasound beam.
-
According to a further aspect of the present invention there is provided an ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies and a surface for beam emanation, the device configured to produce an unfocused power beam over an extent of said surface for tissue ablation, the unfocused power beam being at a frequency of at least 8 Megahertz.
-
The device may have a thickness below 0.3 millimeters or a thickness of 0.15 millimeters, thereby to increase heat transfer from the element.
-
According to a further aspect of the present invention there is provided an ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies, the device configured to produce a focused power beam for tissue ablation, the focused power beam being produced by vibration over the body of the transducer whereby a surface of said transducer becomes subject to convective cooling when immersed in a fluid by a chimney effect set up by said focused beam.
-
According to a yet further aspect of the present invention there is provided an ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies and an extensive surface for beam emanation, the device configured to produce an unfocused power beam for tissue ablation, the unfocused power beam being produced by vibration over the body of the transducer and emanating from said extensive surface, the device further comprising a heatsink thermally coupled to said body for dissipating heat from said device.
-
In an embodiment, said heatsink comprises braiding along a wall of a catheter to which said device is attached.
-
According to a further aspect of the present invention there is provided an ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies and an extensive surface for beam emanation, the device configured to produce an unfocused power beam for tissue ablation, the unfocused power beam being produced by vibration over the body of the transducer and emanating from said extensive surface, the device further comprising a thermo-electric cooler device thermally coupled to said body for cooling said body.
-
According to a further aspect of the present invention there is provided an ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies and an extensive surface for beam emanation, the device configured to produce an unfocused power beam for tissue ablation, the unfocused power beam being produced by vibration over the body of the transducer and emanating from said extensive surface, the body being mounted on a printed circuit board, and the printed circuit board having channels therein for allowing fluid flow to cool said body.
-
According to a further aspect of the present invention there is provided an ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies and an extensive surface for beam emanation, the device configured to produce an unfocused power beam for tissue ablation, the unfocused power beam being produced by vibration over the body of the transducer and emanating from said extensive surface, further comprising a pump for pumping fluid around said device to cool said device.
-
An embodiment may be attached to a catheter and said pump may be located within said catheter.
-
According to a further aspect of the present invention there is provided an ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies and an extensive surface for beam emanation, the device configured to produce an unfocused power beam for tissue ablation, the unfocused power beam being produced by vibration over the body of the transducer and emanating from said extensive surface, the device being insertable into vessels where flow is present, and further comprising a flow directing structure for directing said flow present in the vessel over the vibratable body and/or the heat sink in order to cool said device.
-
In an embodiment, said flow-directing structure comprises a balloon.
-
In an embodiment, said flow directing structure comprises a shaft and a bending zone on the shaft, the bending zone directing said flow.
-
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The materials, methods, and examples provided herein are illustrative only and not intended to be limiting.
-
The word “exemplary” is used herein to mean “serving as an example, instance or illustration”. Any embodiment described as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments and/or to exclude the incorporation of features from other embodiments.
-
The word “optionally” is used herein to mean “is provided in some embodiments and not provided in other embodiments”. Any particular embodiment of the invention may include a plurality of “optional” features unless such features conflict.
-
Implementation of the method and/or system of embodiments of the invention can involve performing or completing selected tasks manually, automatically, or a combination thereof. This refers in particular to tasks involving control of the ultrasonic system.
-
Moreover, according to actual instrumentation and equipment of embodiments of the method and/or system of the invention, selected tasks may be implemented by hardware, by software or by firmware or by a combination thereof using an operating system.
-
For example, hardware for performing selected tasks according to embodiments of the invention may be implemented as a chip or a circuit. As software, selected tasks according to embodiments of the invention could be implemented as a plurality of software instructions being executed by a computer using any suitable operating system. In an exemplary embodiment of the invention, one or more tasks according to exemplary embodiments of method and/or system as described herein are performed by a data processor, such as a computing platform for executing a plurality of instructions. Optionally, the data processor includes a volatile memory for storing instructions and/or data and/or a non-volatile storage, for example, a magnetic hard-disk and/or removable media, for storing instructions and/or data. Optionally, a network connection is provided as well. A display and/or a user input device such as a keyboard or mouse are optionally provided as well.
BRIEF DESCRIPTION OF THE DRAWINGS
-
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
-
The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in order to provide what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
-
In the drawings:
- FIG. 1
is a simplified schematic diagram of a first embodiment of an ultrasound transducer providing a power beam over a surface extent according to the present invention;
- FIG. 2
is a simplified schematic diagram illustrating the chimney effect set up by the ultrasound beam shown in
FIG. 1;
- FIG. 3
is a simplified diagram showing variations of a PCB on which to mount the ultrasound transducer, the PCB having channels in various configurations for improving fluid flow around the transducer, according to embodiments of the present invention;
- FIG. 4
is a simplified diagram illustrating an ultrasonic transducer in a catheter centered in a vessel or cavity using a balloon, according to embodiments of the present invention;
- FIG. 5
is a simplified diagram illustrating an ultrasonic transducer in a catheter centered in a vessel or cavity using a coiled placing wire, according to embodiments of the present invention;
- FIG. 6
is a simplified diagram illustrating an ultrasonic transducer in a catheter centered in a vessel or cavity using a placing net, according to embodiments of the present invention;
- FIG. 7
is a simplified diagram illustrating an ultrasonic transducer located in a window in the circumferential wall of a catheter, according to embodiments of the present invention;
- FIG. 8
is a simplified block diagram illustrating a catheter and the control and operating elements that together with the catheter form an ablation system for use in embodiments of the present invention;
- FIG. 9
is a simplified flow chart illustrating a duty cycle control loop for controlling the duty cycle based on measured temperature, according to embodiments of the present invention;
- FIG. 10
is a simplified schematic diagram illustrating a flow control device for controlling blood flow around the transducer, according to embodiments of the present invention;
- FIG. 11
is a simplified graph showing correlation between increase of voltage and increase in temperature during operation of the power ultrasound beam according to embodiments of the present invention;
- FIG. 12
is a simplified block diagram illustrating a variation of the device of
FIG. 1in which a thermo-electric cooler and a heat sink are used on a transducer, the transducer being mounted at a window of a catheter, according to embodiments of the present invention;
- FIGS. 13A and 13B
are simplified schematic diagrams illustrating variant rectangular and other shapes shown in cross section, of a piezoelectric element for the transducer of
FIG. 1;
- FIG. 14
is a simplified diagram showing cylinder-based shapes shown in three dimensions of a piezoelectric element for the transducer of
FIG. 1;
- FIG. 15A
is a side view of a series of piezoelectric elements mounted on a single mounting according to an embodiment of the present invention;
- FIG. 15B
is a view from above of an arrangement of piezoelectric elements mounted in two rows according to embodiments of the present invention;
- FIG. 16
is a simplified schematic diagram that illustrates a series of angles and positions in relation to a body vessel and a catheter, in which the transducer can be placed by navigation;
- FIG. 17
is a histology slide using H&E stain, and showing the thermal effect in a pig carotid artery;
- FIG. 18
is a histology slide using H&E stain, and showing the thermal effect in a pig renal artery;
- FIG. 19
is a histology slide wherein analysis and marking of the thermal damage area to a pig Carotid Artery is made by a trained pathologist;
- FIG. 20
is a histology slide wherein analysis and marking of the thermal damage area to a pig Renal Artery is made by a trained pathologist;
- FIG. 21
is a histology slide showing analysis and marking of the blocked Vasa-Vasorum, with arrows placed by a trained pathologist in a pig Carotid Artery Vasa-Vasorum in the adventitia; and
- FIG. 22
shows two histology slides with analysis and marking of the thermal damage, or nerve degeneration area, made by trained pathologist, for a pig renal artery, and nerves in adventitia.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
-
The present embodiments comprise an ultrasound transducer device and cooling thereof and, more particularly, but not exclusively to the cooling of such a transducer device within a small vessel which may be filled with fluid.
-
The present embodiments may provide a transducer which carries out tissue ablation using an ultrasound beam, for example an unfocussed beam produced over the body of the transducer and emanating from an extensive surface of the transducer, as opposed to prior art focused beams which are produced in tightly defined spots. The beam heats surrounding fluid opposite the extensive surface and sets up a chimney effect which provides convective cooling to the transducer extensive surface.
-
The transducer may be mounted on a PCB and trenches may be constructed in the PCB for fluid flow to enhance the cooling effect. In addition pumping methods may be used to enhance the flow of liquid around the transducer.
-
An embodiment uses an airbacked transducer in which surface tension is used to retain the air in position. Thus the transducer does not need to be sealed. Connections to the PCB across the airgap may use heat conductive materials to ensure that the PCB is in thermal contact with the transducer and thus enabling the PCB to act as an additional heat dissipation surface. A metal channel may be provided in the PCB.
-
The transducer may be located on a catheter, either at a window in the side wall of the catheter or at the distal tip of the catheter. In such a case the transducer may be thermally connected to a heat sink that is located wholly or partly within the catheter. The heat sink can, in some embodiments, evacuate the heat to the surroundings or to cooling liquids such as blood. In addition, saline may be pumped down the catheter to provide additional fluid flow around the transducer and/or the heat sink, and the heat sink can be part of the shaft of the catheter as will be explained in greater detail below.
-
The transducer may provide a power beam and a measuring beam and a method is provided for measuring increases in temperature and stopping operation or changing the duty cycle or/and applied power if overheating is detected.
-
The power beam may be provided at frequencies at or in excess of 20 Megahertz, and using piezoelectric transducers which are below two millimeters in thickness, to avoid problems with cracking due to thermally induced stress within the transducer.
-
The principles and operation of an apparatus and method according to the present invention may be better understood with reference to the drawings and accompanying description.
-
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
-
Reference is now made to
FIG. 1, which illustrates an
ultrasonic transducer device10 for producing ultrasonic beams.
Device10 comprises a
body12 which is vibratable at ultrasonic frequencies by an input electrical signal, and a
surface14 which extends over the body, for beam emanation. The device may produce an unfocused power beam, indicated by
arrows16, for tissue ablation or like purposes that require relatively high power. The unfocused power beam is produced by vibration over the
body12 of the transducer and emanates from over an extent of the surface. The beam heats fluid opposite the surface and because the heating effect occurs over the surface extent it sets up a chimney effect in the fluid. The extent of the surface thus becomes subject to convective cooling when immersed in a fluid and producing the power beam.
-
Reference is made to
FIG. 2which is a simplified schematic diagram illustrating the chimney effect. Liquid up against the
hot surface14 above the
transducer body12 is heated by the beam and its density is reduced causing it to be displaced by lower density cooler fluid. The displacement is in the direction of
arrows18, typically in a direction normal to the
surface12 being heated as long as the heating effect is over a surface extent. If the heating is point heating then the chimney effect is not set up. Cooler liquid is thus sucked in from the sides as indicated by
arrows20.
-
Returning to
FIG. 1, and the device may be mounted on a
PCB22. The ultrasonic transducer device itself may be a piezoelectric element, which vibrates in response to electrical input and which produces an electrical output when itself vibrated.
- Connection mountings
26 on the PCB are used to mount the transducer. The connection mountings allow a
gap28 to be formed between the transducer and the PCB. As will be explained in greater detail below, the PCB can be connected to a conductive heat pad or other heat dissipating mechanism.
-
The
gap28 may be air-filled, and may be sealed to retain the air when the device is immersed in liquid. However the sealing can attenuate the ultrasonic energy and thus, in an alternative embodiment the gap may be unsealed. In such an embodiment, surface tension may retain air within the gap when the device is immersed in fluid.
-
The
conductive connections26 to the PCB across the
airgap28 may provide thermal conductivity as well as electrical conductivity, thereby enabling the
PCB22 to act as an additional heat dissipation surface.
-
Reference is now made to
FIG. 3, which shows four exemplary structures 22.1, 22.2, 22.3 and 22.4, for the PCB. As shown in
FIG. 3, the PCBs 22.1 . . . 22.4 include
trenches24. In the PCB 22.1, the transducer is mounted between
connection mountings26, and the
trenches24 thus pass underneath the transducer to allow fluid flow under the transducer to assist with cooling.
-
In many cases the transducer is operated in blood vessels such as arteries where there is significant fluid flow. However other body vessels may have little or no natural flow within them, in which case a pumping mechanism or pumping unit may be provided for actively pumping liquid around the transducer. In some cases, even arteries may require some augmentation to the fluid flow via artificial pumping.
-
Referring generally to
FIGS. 4, 5 and 6, the
transducer device10 is typically inserted into a body vessel using a
catheter40, and in use is located at a window in the catheter, which window is in these cases on the circumferential wall close to the distal end of the catheter. Alternatively the device could be placed on the distal end itself of the catheter.
-
Pumping of saline down the catheter may provide the artificial pumping referred to above. The transducer device may be thermally connected to a heat sink that is located within the catheter. Typically cooling fins cannot be used in blood flow due to the danger of breaking platelets and causing thrombus, or blood clots. Thus the heat sink may be retained wholly within the catheter. Saline may be pumped down the catheter to provide fluid flow around the transducer and around the heatsink.
-
Braiding may be provided in the catheter, say using copper stripes or stainless still braiding, to use the entire length of the catheter as a heat sink surface.
-
In
FIG. 4, the catheter is held in place in the middle of the vessel away from the wall by a
balloon42. In
FIG. 5a
spring44 keeps the catheter centered with respect to the wall. The spring may be made of Nitinol, a shape memory alloy which can be inserted flat and then when attaining a pre-set temperature reassumes its remembered shape. In
FIG. 6a placing net is used to position the catheter with respect to the wall.
-
Distancing the transducer from the vessel wall ensures that the transducer does not directly heat the vessel wall. Furthermore the distance allows for fluid flow around the transducer and thus allows the chimney effect to occur. Furthermore the distance allows for blood flow at the wall of the vessel thus allowing the epithelium cells at the wall of the blood vessel to be cooled by the flow of blood and thus not be damaged by the heating effect of the ultrasound beam. Damaged epithelium cells are a future risk for the blood vessel. In general the thermal damage effect that the ultrasound beam uses is the denaturation of collagen, which occurs at around 55° C. The blood flow is generally sufficient to ensure that the epithelium layer does not reach this temperature.
-
Reference is now made to
FIG. 7, which shows a
transducer70 mounted in a
window72 of a catheter. The chimney effect around the transducer can have the additional effect of sucking in injected medication or staining substances from the catheter through the
window72, thus improving injection efficiency.
-
A temperature sensor may be provided with the transducer. Typically, the sensor is placed just downstream of the transducer in the blood flow direction. Thus the temperature that is measured is that of liquid that has just passed the transducer surface, and increasing measured temperature may be taken as an indicator of overheating in the transducer.
-
Reference is now made to
FIG. 8, which is a simplified block diagram of a system according to an embodiment of the present invention. In
FIG. 8, the
system110 may contain an
acoustic transducer112, a
power supply unit114, a
control unit116, a pumping or circulation unit, shown as
perfusion unit118, a
balloon control unit120,
temperature sensor121, and a navigating
shaft122.
-
The navigating unit allows the acoustic element to navigate to the location or locations at which it is needed. The balloon control unit controls a balloon for supporting the lumen as needed and centering the catheter as discussed. The perfusion unit provides injection substances as necessary.
-
Reference is now made to
FIG. 9which is a simplified flow chart to illustrate how the
controller116 may vary the duty cycle of the power ultrasound beam in accordance with the temperature measured at
temperature sensor121.
Controller116 may provide the power beam in a duty cycle and/or just by controlling a level of applied power. The duty cycle and/or applied power may be increased if the temperature falls, kept the same if the temperature remains constant and decreased if the temperature rises. The duty cycle and/or applied power may for example be controlled to keep
transducer surface14 within a range of 40° C. to 50° C., or at 44° C., or at other temperatures as deemed appropriate.
-
The
controller116 may stop the power beam when the temperature sensed by
sensor121 reaches or exceeds a predetermined safety threshold.
-
As explained above, in one embodiment the transducer is located in a window or at the end of a catheter, and the temperature sensor is used to control a rate at which cooling saline is pumped down the catheter to provide fluid flow around the transducer.
-
As well as controlling the pumping of saline from the catheter, it is also possible to control the blood flow rate within the vessel, for example using a balloon valve. Reference is now made to
FIG. 10in which a
transducer124 is mounted at a window of
catheter126. A valve
flow control device128 sits around the catheter and can be opened or closed to change the blood flow around the transducer.
-
As well as saline, contrast agents or medicines may be injected via the catheter and these too may provide an auxiliary role of helping to cool the transducer.
-
Reference is now made to
FIG. 11, which shows temperature measurements in the upper graph against voltage in the lower graph for a transducer according to the present embodiments. Specifically,
FIG. 11shows a graph of real time measurements of voltage and temperature in the renal area. The relation between the applied voltage and the temperature can easily be observed.
-
In addition in the temperature graph falls in temperature for example at t=350[sec]; 600[sec]; 1150[sec] are seen. These drops are due to cold (25[° C.]) saline injection. Use of cold saline is an additional method of cooling that may be used.
-
Heat in the transducer is directly proportional to voltage. In addition the heat is directly proportional to the reciprocal of impedance and to the efficiency subtracted from unity. Heat is additionally proportional to the liquid flow over the transducer surface. The above may be expressed algebraically as:
-
heat↑αV↑/Z*(1-eff) and heat↑αflow↓.
-
The blood flow rate may be calibrated with the heating and cooling effects. Thus it may be possible to turn on the transducer, check the temperature, check the flow rate, and then use a calibration table to provide the correct cooling.
-
Reference is now made to
FIG. 12, which is a simplified diagram illustrating an embodiment of the present transducer device in which additional cooling elements are provided. Located at
window130 of
catheter132, a
transducer134 is connected to a thermoelectric or peltier cooler 136 which in turn is connected to a
heat sink138. Typical dimensions for the construction are 0.8 mm overall, wherein 0.5 mm is the thickness of the heat sink. Alternatively, the TEC and\or the heat sink may be placed in the axial direction of the catheter or as part of the catheter shaft. It is noted that if attempting to use high power ultrasound over the entire body of a piezoelectric element, there is a problem with breakage of the transducer due to thermal differences within the element. Ceramics generally have low thermal conductivity.
-
The present embodiments avoid the above problem by using relatively high frequencies, in the range of 8 or 10 to 40 MHz, which permits the use of thinner ceramics, so that the issue of thermal differences does not arise, or at least does not lead to breakage of the elements. Specifically, a frequency range of 10-40 MHz provides heating effects over a range of millimeters, and has been used for imaging but not at high power for ablation. The thinner ceramics are less than 0.25 mm in thickness and an example uses 0.15 mm.
-
As mentioned with reference to
FIG. 9, control may be achieved by managing either the duty cycle or the applied power.
-
To date, imaging has used unfocused beams but at low power, whereas ablation has used high power beams which have always been at lower frequencies and focused. Imaging uses short pulses followed by gaps to listen to the echo. Ablation uses continuous or long bursts in a duty cycle. Imaging to follow the results may be carried out during the gaps in the duty cycle.
-
As mentioned above, the duty cycle can be changed as part of a control loop to maintain the correct temperature at the transducer surface.
-
Imaging can be used to obtain the face of the vessel or lumen wall and thus to provide a further control loop to make sure that the transducer is kept away from the wall.
-
The present embodiments are now considered in greater detail. The present embodiments relate generally to devices, parameters and methods for the treatment of tissue using ultrasonic waves in particular for heating, at a target area such as in the wall of a tube or cavity, located in the living body. The treatment may involve excitation using high power acoustic energy.
-
The ultrasonic effect is achieved in such a way that there is control over the heated target tissue volume and location. Preferably, a controlled volume of tissue between the ultrasonic element and the target tissue, is not treated. This distal effect may be achieved without the need of mechanical contact with the cavity walls.
-
Detailed application of the above includes the ability to cause moderate thermal damage within a controlled volume at the outer side of a cavity wall without damaging the inner side of the vessel, the inner side including different types of epithelium.
-
The treatment method may be applied by creating a gradient of different temperatures in the tissue by the combined effects of: heating the tissue with high power ultrasound and cooling of the tissue using conduction and convection. The convection could be of natural fluid, for example blood flow, or by artificial injection of cooling liquid, for example cold saline injection. Additional temperature effects that are widely elaborated in other sources may also simultaneously influence the temperature gradient, for example—blood flow or capillary blood perfusion.
-
The heating control is performed by controlling the parameters of the ultrasonic field and the transmission protocol, including: transmission frequency, power, duty cycle and duration, as will be described in greater detail herein.
-
The treatment is controlled by feedback from the tissue using an echo received from the tissue during the treatment. Specifically, at high temperatures above 55° C. an irreversible change is created in the collagen fibers in the tissue; this change may be monitored using the ultrasonic echo from the tissue, which allows mapping of the damaged tissue area.
-
It is also possible to increase or\and to add effects by ejection of fluids into the treated area or at an upstream area in such a way that the ejected fluid is inserted into the vessel, typically through the vasa-vasorum or the adventitia lymph capillary.
-
Nevertheless, it is possible to control the flow in the vessel at different locations using different devices, for example a balloon opening in the vessel and again changing the treated effects in the tissue.
-
Typically, the ultrasonic transmission is applied at high power, high frequency and for more than one second. Heating of the tissue in the ultrasonic field is performed by absorption of the acoustic energy in a process of dissipation of mechanical energy. The absorption and influence of the energy on the tissue includes inter alia the following effects: a heating effect, a mechanical effect, a pressure effect, a sub-pressure and a cavitation effect.
-
Simultaneously with the transmission the cooling effect is achieved by liquid flow in the vessel or fluid present (for example blood, urine, lymphatic liquid, bile) or liquid active ejection.
-
The present embodiments may provide the possibility of transmitting the energy to a second side of a wall without touching the wall, for example a cavity or lumen wall. By not touching it is possible to increase protection for both the elements and the non target tissue by allowing fluid to flow on the cavity walls and on the transducer surface. The liquid provides for cooling. The present embodiments may also allow for easier operation by not restricting the transducer location.
-
The present embodiments may transmit a non-focused acoustic field to reach the target tissue. An advantage of not having to focus the field is that there is no need to control the tissue distance from the transducer. For example renal denervation may be carried out simply by allowing the catheter to transmit a wide, high power acoustic field from a nonspecific location in the artery to a distal nonspecific location of the renal nerve.
-
Alternative embodiments may provide a focused beam at higher power.
-
Embodiments of the invention may allow ejection of materials into the treated area or to an upstream area therefrom in a way that the materials are inserted into the vessel, say through the vasa-vasorum or the adventitia lymph capillary.
-
The embodiments described herein allow sampling of the voltage created on the ultrasonic element due to echoes from the tissue and processing the data in such a way that the treated tissue is monitored.
-
Echo sampling and recording and or processing for measurement and monitoring can be performed simultaneously with the treatment. Such simultaneous treatment and analysis can increase the level of control of the treatment in real time and help ensure achievement of the desired results.
-
More specifically, the following information may be monitored from the echoes received within a vessel:
-
wall distance from the transducer,
-
vessel layer (media, adventitia, peri-adventitia) position,
-
thermal effect in the tissue location and
-
area of the thermal effect.
-
The data analysis method may include echo intensity, backscatter, spectral signature mapping, elastography, classification according to classification matrix of tissues, and the ultrasonic effect.
-
The control unit may use the above data and analysis for increasing the treatment, or reducing the treatment, or stopping the treatment, or providing indications regarding the treatment stage, or providing indications to stop or to continue the treatment.
-
A therapeutic catheter with an ultrasonic transducer may allow for transmission to the vessel from the inner side.
-
An ultrasonic transducer may be placed in proximity to a wall, with an internal catheter and transmission to the outer side of the wall. In the case of limbs one transducer can be placed externally on the outside of the skin and another in a blood vessel.
-
An endoscope system may include an ultrasonic element in its tip. The endoscope may be inserted through the skin and ultrasonic transmission may be provided to the outer side of the cavity.
-
The fluid control methods may include one or more of the following implementations:
-
A restrictor around the transducer. The implementation may involve: placing the transducer at a different location in the vessel, and controlling the flow;
-
A restrictor near the transducer. The implementation may again involve placing the transducer at a different location in the vessel, and controlling the flow;
-
A restrictor in front of (upstream of) the transducer. The method may involve blocking the flow upstream in order to load the vasa-vasorum with liquid and particles.
-
A restrictor past, that is downstream of, the transducer. The method may involve blocking the flow downstream of the transducer to allow drug delivery specifically to the treated area;
-
The restrictor may be one or more of the following: a balloon, a wire, nets, or a thin plastic sheet.
-
Manipulation of in the tissue reaction to the ultrasonic treatment is possible by:
-
Injecting vasoconstriction materials into the blood, and in this way reducing the perfusion and heat evacuation from the tissue, or injecting or evoking micro-bubbles and increasing the heating by increasing absorption of the ultrasonic energy, or the evoked micro-bubbles may be produced by use of an additional separate transducer.
-
Micro-bubble transportation through the cell membrane may be increased using the acoustic treatment, and may achieve a multiplied effect.
-
The tissue may be cooled before treatment in order to protect and or control the treated area and non-treated area.
-
Artificial opening of a minimal cavity surgery opening in the skin for insertion of the therapeutic catheter may be provided.
-
The ultrasonic field and/or the level of perfusion can be controlled and manipulated by influencing the body system in general.
-
Possible target tissues for the device include one or more of the following and their nearby tissues to douse cavities: arteries, veins, lymph vessels, intestine, esophagus, CNS, urine lumen, gall bladder lumen, Stomach, and Tear Trough.
-
Applications for the above-described embodiments include the following:
-
Blood vessel wall pathology. For example for an atherosclerotic lesion;
-
Healthy blood vessel wall treatment;
-
Treatment of tissue near the blood vessel wall, for example renal denervation;
-
Treatment of tissue near the urine lumen wall, for example prostate treatment;
-
Treatment of tissue far from the urine lumen wall, for example prostate cancer.
-
More detailed examples for treatment and advantages using the present embodiments include phantom pain treatment in which, the target tissue is nerve tissue in the limbs. The catheter cavity may be located in a limb artery. The purpose of the treatment may be reducing phantom pain innervations by denerving the injured nerve.
-
A point to note is that the attenuation of the ultrasound field is smaller in the fatty tissue around the nerves than in the nerves themselves at the device frequencies. Furthermore the fatty tissue, due to a relatively low heat conduction, isolates the heat created in the nerves. Such phenomena increase the selectiveness of the treatment.
-
An additional example of treatment is renal denervation.
-
In this treatment the target is the renal nerves. The catheter cavity is located in the renal artery. The purpose is to reduce pressure on the heart for high blood pressure patients. It is noted that the frequency, power and acoustic beam as per the data and results hereinbelow, treat the nerves without or with minimal damage to the artery. In addition, as in the previous example, the attenuation is smaller in the fatty tissue around the nerves than in the nerves themselves at the device frequencies, which increases the selectiveness of the treatment.
-
Possible treatment effects in the tissues can be one or more of the following:
-
Cell necrosis occurring in one or more of: lymphocytes, macrophages, smooth muscle cells, fibroblasts, endothelial cells, and neurons;
-
Reduced change in the tissue activity including: reducing smooth muscle function, reducing or blocking nerve activity, reducing or blocking the generation of the heart beat potential to the heart muscles;
-
Mechanical blocking of the vasa-vasorum or\and the lymph capillary;
-
Mechanical changes in the collagen fibers, an increase or decrease in stiffness and reducing the maximal tension for tearing;
-
Biochemical changing in the tissues may include: reducing or preventing plate connection to collagen, and changes of material diffusion through the cell walls.
-
The device may be operated using typical parameters for acoustic transmission as follows:
-
Transmission frequency: 8-30 MHz;
-
imaging frequency 8-60 MHz;
-
Transmission intensity (SATA): up to 200 w/cm2;
-
Transmission duration (total time): 1-120 seconds.
-
The ultrasonic elements transfer the energy to the target tissue, and may also be used as sensors for receiving reflections from the tissue.
-
The ultrasonic element may also be used as a jet evacuator of fluids for cooling or/and for drug delivery.
-
The ultrasonic element can be used as a microbubble evacuator.
-
The ultrasonic element typically includes one or more ultrasonic transducers including a
piezoelectric material24 or a MEMS element—see
FIGS. 2 and 3. Electrodes may provide power to the transducer. The
housing30 protects the assembly, and an electrical connection may be provided between the electrodes and the catheter wires.
-
The
transducer element124 may, as mentioned by a piezo-electric elements or a MEMS element.
-
A PIEZO-electric transducer element may typically be made from PIEZO-electric material, for example: PZT ceramics, PIEZO-electric quartz.
-
Reference is now made to
FIGS. 14A, 14B and 14C which illustrate designs for the
ultrasonic element112.
FIG. 14Aillustrates a series of shapes where the depth cross-section is rectangular as shown in
element133. The remaining elements in
FIG. 7Aare viewed from above.
Element135 is rectangular as seen from above.
Element137 is a hexagon.
Element139 is an irregular quadrilateral.
Element140 is a flattened circle.
Element142 is a trapezium.
Element144 is a bullet shape.
Element146 is a trapezium having a shorter dimension between its parallel sides than the trapezium of
element142.
Element148 is a comb shape having a narrow tooth at a first end followed by three wider teeth.
Element150 is a “W” shape, again with a narrow tooth projection at a first end.
- FIG. 14B
illustrates a closed ring shaped
element152 and an open ring shaped
element154.
- FIG. 14C
illustrates four variations on a cylindrical element.
Element156 is a filled cylinder.
Element158 is a cylinder with a removable sector.
Element160 is a hollow cylinder having an
opening161 in the lower wall, and
element162 is a hollow cylinder having an open part of the cylinder wall along its length.
-
In addition the element 112 (as shown in
FIG. 8) may be spherical.
-
In embodiments the transducer described above does not necessarily include a focal point for the ultrasonic beam. As a result the beam can reach various targets without requiring a precise distance between the element and the target, as will be described in greater detail below.
-
Possible construction of the transducer may comprise regular coating methods for piezo elements, and coating materials including one or more of: silver, Ni, gold, copper, or carbon nano-tubes.
-
Additional coating of the electrodes may improve one or more of the following: the electric conductivity, the acoustic matching, the acoustic reflection or the acoustic amplification.
-
The additional coating may use any of a variety of materials including polymers, glass and metals.
-
The PIEZO-electric material may for example comprise: PIEZO-electric ceramics and/or PIEZO-electric quartz. An embodiment as discussed hereinbelow with cooling methods may allow the design to use high hardness ceramics, which have advantages of being of high efficiency, and being small and cheap.
-
MEMS—the acoustic element can also be implemented using MEMS.
-
More than one acoustic element can be implemented, for example:
-
a phased array matrix of elements;
-
a non-linear geometric array;
-
a matrix of elements each having different resonant frequencies
-
Reference is now made to
FIGS. 15A and 15Bwhich illustrate examples for multi-elements transducers.
FIG. 15Ais a side view showing five
piezoelectric elements170 mounted on a
curved PCB172.
FIG. 15Bis a view from above showing two rows of
piezoelectric elements174 and 176.
-
The housing can made from one or more of the following materials: metals, ceramics, PZT, PIEZO-electric ceramics, glass, polymers or carbons.
-
The housing may provide an angiogram directional projection for better placing of the element. The housing may further be shaped to provide focusing or to affect fluid flow within the lumen around the element.
-
The housing may be designed to provide relatively high heat transfer from the element in order to avoid overheating. Typically the heat conductance is a function of shape and of the material used, however standard cooling fins cannot be used in the blood stream as they may cause platelets to break, thus causing blood clots.
-
The housing can include acoustic damping materials, such as tungsten, or alternatively may be designed to provide an acoustic amplifying effect. As per the discussion above, typically some of the piezoelectric surface is damped and some is provided with acoustic amplification.
-
A drug delivery capsule may be provided to inject materials into the bloodstream as required by the procedure.
-
The printed circuit may comprise materials such as hard polymers, flexible polymers, glass-fiber and carbon fiber. Alternatively, the printed circuit may be printed directly on the housing.
-
As discussed, connection to the acoustic element may use any of wire soldering, paste soldering process, conductive gluing and wire bonding. The connection is preferably both a good heat conductor and a good electrical conductor.
-
The circuit itself may include vias of copper or other metals for higher heat transfer. One or more printed materials may be provided on the board, including: copper, metals, polymers, and intermediate materials.
-
Coatings such as metals, PZT, chemical coatings, isolation coatings, hydrophilic coatings and hydrophobic coatings may be used on different parts of the PCB or housing.
-
The acoustic transducer may be connected to the
control unit116 using different kinds of wires including: coax wire, twisted pair, and fiber optic cable.
-
The acoustic transducer and the catheter may be coated with different coatings including: an isolation coating, a praline, NiSi, hydrophobic coating, hydrophilic coating, or any kind of biocompatible coating,
-
As mentioned above, an air pocket may be maintained between the PCB and the piezoelectric element.
-
The acoustic isolation of the piezoelectric element and consequent increase in efficiency has been mentioned above. This advantage can be used for working in small cavities in order to improve the ability to heat the target volume without at the same time heating the transducer volume.
-
Air pockets may be formed by the use of trenches in the PCB structure as illustrated with reference to
FIG. 3. or by providing a mounting as shown in
FIG. 1where a gap is defined between the piezoelectric element and the PCB.
-
Hydrophobic coatings, including praline, may be used to enhance the surface tension effect in order to prevent the water medium from penetrating into the air volume.
-
The coating may cover the entire air bubble surrounding or part of it and prevent water from penetrating in.
-
It is noted that the air bubble does not need to be maintained indefinitely. It is sufficient that it is retained for the duration of the ultrasound procedure.
-
The ultrasonic element may use different anti-resonance values for the working frequency when available. For example one anti- resonance may be used for moderate heating of the tissue, another for power heating of the tissue and yet another for monitoring.
-
The device may be able to provide an injection jet to the tissue, may provide for increasing fluid flow under the element, say to improve cooling, may evoke micro-bubbles, and may monitor the heating effect and or any injection. The measurement system may include doppler analysis and the heat treatment may use focused or unfocused ultrasound.
-
In embodiments, the
navigation unit122 may allow the acoustic element to reach the desired location. The navigation unit may further have some auxiliary functions. For example it may deliver the power to the element from the control unit, record measurements from the element and even deliver the measurements to the
control unit116. The navigation unit may further be involved in heat absorption or transfer from the transducer to the ambient or to the surrounding liquids by providing an additional heat exchange surface extending from the catheter.
-
The navigation unit may also mechanically hold and place the ultrasonic elements in different locations and at different desired angles, as per
FIG. 16. In
FIG. 16a
ring configuration180 may be used, or an
angle configuration182, or a
cylindrical configuration184 or a
side configuration186 or a
front configuration188, each in relation to the catheter.
-
In embodiments, the navigation unit may include an external navigated control unit. Close to the ultrasonic element, a placing unit may include a balloon, a placing wire or a net or the like.
-
A heat sink function may including cooling the ultrasonic unit using outside fluid including: blood, urine or CSF. The function may include increasing the heat evacuation by pumping fluid over or from the acoustic unit surface. The function may involve increasing the heat evacuation using internal or external heat conductive material, including: blood passivation coating, or printed coating, or may include increasing the heat evacuation using an internal or external heat conductive balloon.
-
Heat evacuation may be increased by using an internal or external heat conductive balloon with heat conduction material.
-
The
control unit116 may provide various kinds of closed loop control and indications on the treatments. The control unit may receive signals from echoes from the tissue. The echo may indicate the area and treatment effect, or the echo can indicate the distance from the cavity wall to the transducer device. The sensor may be a temperature sensor, which may indirectly sense the temperature of the transducer by measuring fluid that has just passed the sensor. The temperature may indicate the treatment efficiency, or efficiency of cooling of the cavity, or the cooling or heating of the transducer.
-
A power sensor can indicate the output treatment energy. A blood pressure sensor or other like sensors may be provided to indicate reaction to the treatment. A flow sensor can monitor fluid flow in the region of the treatment.
-
Closed loop effects which do not require the control unit may also be used, as known to the skilled person, for example a coating material on the transducer surface may be provided that attaches to particles or other materials that come from the treated tissue. The attachment may be used to control the ultrasonic process by making changes to the transducer frequency during operation.
-
Materials that can be inserted into the target tissue volume include restenosis prevention materials, for treatment of blood vessels, and materials that are used in drug eluting stents, such as sirolimus, and paclitaxel.
-
Other materials can be used, say in drug exuding and eluding balloons, and may include materials that are used for bio-degradable stents, anti-Inflammatory materials, medications that may be better presented locally to the tissue than systemically, anti-thrombotic materials, such as Heparin, Aspirin, Ticlopidine, and Clopidogrel, and materials that can cause damage or death to target tissues. Thus materials that can cause nerve death may be supplied for renal denervation.
-
Also, materials that may help in blocking of the tissue micro-circulation in heating, such as polymers that undergo cross linking, or soluble collagen, or material that may increase the ultrasonic heating of the tissue, such as micro-bubbles that cause higher energy absorption, may be used, or in the latter case generated on site.
-
Micro-bubble transportation through the cells membrane can be increased using the acoustic treatment, and achieve a multiplicative effect.
-
Also any kind of medication can be applied.
-
The transducer may be positioned on a catheter inside blood-vessels or blood cavities. Ultrasonic irradiation of the target tissue from inside the vessel lumen or cavity outwards may then be provided. Cooling of the piezoelectric element may be achieved by making the design sufficiently conductive and then using blood flow or flow of a fluid from an external source, such as saline that is irrigated into the blood vessel.
-
The transducer may be positioned on a catheter inside tissue canals or cavities of body fluids in the body, such as the urethra or urinary bladder, or in the spinal cord or brain ventricles (CNS fluid). Ultrasonic irradiation of the target tissue from inside the canal/cavity outwards may then be provided.
-
The transducer may alternatively be positioned on the tip of an endoscope or like device. The endoscope is inserted through a small hole in the skin, and the ultrasonic transducer is positioned on or near the target tissue.
-
For cooling, external irrigation is allowed to flow into the area of the treatment cavity. The endoscope tip may for example be positioned inside a balloon like device. The cooling fluid flows inside the balloon. The balloon is positioned next to the treatment tissue location. The ultrasonic transducer irradiates the target tissue through the balloon wall. Alternatively, the balloon may be positioned on the skin and not inserted through it. The treatment target may be near the skin.
-
The ultrasonic transducer may be positioned at a location that allows ultrasonic irradiation of the target tissue. Irrigation of required material in a liquid form may be provided into the blood vessels or lymphatic vessels that supply the perfusion or lymphatic capillaries of the target tissue volume, for example the artery vasa-vasorum.
-
The method may involve waiting a known time constant for the required material to reach the target tissue.
-
It is possible to add micro-bubbles to the fluid material in order to help with detection of presence of the material in the target tissue. Micro-bubbles may be detected using ultrasound and sub-harmonic imaging. Micro-bubbles may also improve heating of the target tissue under ultrasonic energy, due to higher absorption of the ultrasonic energy in the tissue volume where they are located.
-
Applying a thermal effect in the tissue may cause the capillaries to be blocked mechanically or by blood coagulation.
-
Ultrasound energy applies mechanical force on particles that are present in a liquid, when there is a difference in the acoustic impedance, which is a function of the density multiplied by the speed of sound, between the particles and the liquid. The applied force then pushes particles along the direction of the traveling ultrasonic waves. The mechanical force phenomenon can be used to ensure that required substances arrive at the treatment site.
-
The ultrasonic transducer may be positioned in a tissue liquid cavity such as a blood vessel, near the target tissue, while ensuring a liquid spacing between the target tissue and the ultrasonic transducer irradiating face. As mentioned above a control loop can be used to ensure that the transducer does not touch the vessel wall and damage epithelium cells.
-
The required material may be released into the tissue liquid cavity in a way that will cause some of the particles to enter the spacing between the target tissue and the ultrasonic transducer irradiating face. One way of doing this is to coat the face of the ultrasonic transducer with the required material, such that the operation of the ultrasonic transducer may cause particles of the required material to be released into the surrounding liquid.
-
Another possibility is to add micro-bubbles to the required material fluid in order to detect the material presence in the target tissue. Micro-bubbles may be detected using ultrasound and sub-harmonic imaging.
-
Yet another possibility is to activate the ultrasonic transducer so as to apply force on the required material particles to push the particles into the blood vessel wall near the ultrasonic transducer irradiating face, using the pushing effect mentioned above.
-
Another possibility is to apply the ultrasonic energy in short high power pulses with long separations between each pulse. This may apply mechanical force, as per the phenomenon discussed above, to the particles to push them into the tissue wall, without heating the tissue wall extensively.
-
A further possibility is that activation of the captured required material can be achieved by applying additional ultrasonic energy or some other kind of external energy such as a magnetic field on Ferro-electric particles, or an ultrasonic shock-wave to the particles
-
The present embodiments may be used for the treatment of renal denervation. The transducer is simply positioned at 1, 2 or more treatment points, and there is no need for tip manipulation or accurate positioning. The total energizing duration may be between 2 seconds and 2 minutes at each point. Real-time feedback of treatment progress may be provided. The advantages of ultrasonic treatment include directional, localized and remote target tissue effects with minimal damage to other closer tissues, possibly reducing pain, preservation of endothelium and elastic lamina structure and function, so that there is no post treatment stenosis, or at least reduced post treatment stenosis, the avoidance of any mechanical contact on the blood vessel wall, and overall a more robust treatment effect due to real-time feedback.
-
The following table is a summary of currently contemplated clinical applications.
-
TABLE 1 Currently Contemplated Clinical Applications # Application Name Anatomy Target 1. Renal sympathetic Renal artery Renal nerve modulation sympathetic nerves 2. Carotid sympathetic Carotid artery Carotid nerve modulation sympathetic nerves 3. Vagus sympathetic Aorta Vagus nerve modulation sympathetic nerve 4. Peripheral sympathetic Peripheral blood Peripheral nerve modulation vessels sympathetic nerves 5. Pain nerve modulation Spinal cord cannel Pain nerves 6. Restenosis decrease All relevant arteries Artery media and adventitia 7. Vulnerable plaque All relevant arteries Artery media stabilization and adventitia 8. Atherosclerosis All relevant arteries Artery media pasivation and adventitia 9. Plaque volume All relevant arteries Artery media decrease and adventitia 10. Plaque thrombosis All relevant arteries Artery media decrease and adventitia 11. Tetanic limb muscle Limb arteries or Peripheral motor tonus decrease veins nerves 12. Atrial fibrillation Right atria Pulmonary prevention vain insertion 13. Cardiac arrhythmia Coronary arteries Cardiac tissue prevention pathology 14. Liver tumor necrosis Inferior vena cava Tumor 15. None-malignant Urethra Sick prostate prostate treatment tissue 16. Malignant prostate Urethra Sick prostate treatment tissue 17. Artery aneurysms All relevant arteries Aneurysm wall stabilization 18. Aortic aneurysms Aorta Aneurysm wall stabilization 19. Berry aneurysms Brain arteries Aneurysm wall sealing 20. Erectile dysfunction Internal Iliac Artery media treatment and adventitia -
Table 2 below summarizes the technology
-
TABLE 2 Summary of the Technology Technology The ultrasonic transducer: 1.1.1. Very small: 1.5 × 8 [mm] 1.1.2. Very thin: 0.8 [mm] 1.1.3. Very high ultrasonic intensity output: 100 [W/cm{circumflex over ( )}2] 1.1.4. Relatively high work frequencies: 10-25 [MHz]. 1.1.5. Biocompatible coating: Perylene 1.2.1. Ultrasonic transducer cooling: vessel blood/liquid flow + catheter breading as heat sink 1.2.2. Very flexible treatment tip: 10 mm stiff length. (Pass through 8 Fr “hokey-stick” guide catheter) 1.2.3. Precise and easy torque following 1.2.4. Standard 0.014 OTW 1.2.5. Relatively small diameter: 6 Fr 1.3.1. Distancing transducer face from artery wall to prevent contact damage, with minimal mechanical forces on artery wall 2. Technology functionality 2.1. Non-focused ultrasonic beam-like ultrasonic emission 2.1.1. Simple anatomic 2.1.2. Big treatment volume cross-section, the size of the transducer face (differing from focused ultrasound with small treatment volume) 2.1.3. Relatively even spread of ultrasonic energy in beam cross-section (No need to precise anatomic positioning like in focused ultrasound) 2.2. Treatment maneuverability and directionality 2.2.1. Simple maneuvering with nearly 1:1 torquability. 2.2.2. Simple treatment beam directivity feedback and control from standard angiograph (0, 90, 180, 270) 2.2.3. No need for high operator skills 2.2.4. No problem to use contrast agent during treatment 2.3. Ultrasonic imaging using the unique transducer-Continuous measurement of distance to artery wall 2.3.1. Treatment tip real positioning measurement (not possible only from angiography) 2.3.2. Feedback to prevent high power operation of the transducer while touching the artery wall. 3.1. Very fast treatment: 3.1.1. Treatment duration of 30-5 sec per treatment point. 3.1.2. Possibly 4 treatment point per artery for renal denervation 3.2. Remote and localized effect 3.2.1. Thermal effect volume in the tissue far from the transducer face: media, adventitia, Vasa-Vasorum, peri-adventitia, adventitia nerves, peri- adventitia nerves, peri-adventitia capillaries. 3.2.2. Targeting tissues in varying distances from transducer face according to treatment parameters (not possible in most focused ultrasonic catheter designs) 3.2.3. Possibility to apply thermal effect in tissues located 5 mm from the lumen wall. Relevant for peripheral nerves blocking from peripheral arteries. 3.2.4. Non targeted tissues on the beam path to the target tissue are not damaged. 3.2.5. Importantly no damage to the endothelium, basal membrane and internal elastic lamina. 3.3.1. Highly selective remote thermal effect in nerve bundles that are covered with thick fat tissue. (most relevant to Renal Denervation in the Renal artery ostium) 3.4. Treatment special features for Renal Denervation 3.4.1. Working very close to artery ostium: <10 [mm] 3.4.2. Working in short arteries: <20 [mm] 3.4.3. Working in small arteries: 4-3 [mm] 4.1. The temperature of the blood that flows over the ultrasonic transducer does not go over 50 C. while working in the maximal allowed operation intensity level 50 [W/cm{circumflex over ( )}2]. 4.2. The temperature of the blood that flows over the ultrasonic transducer does not go over 43 C. while working in the therapeutic operation intensity level 30 [W/cm{circumflex over ( )}2]. No need to add external cooling saline injection. 4.3. The therapeutic treatment on the blood vessel wall is done with no mechanical contact with the vessel wall. No danger of damaging the vessel wall or disrupting any pathologies on the wall (Atherosclerosis plaques) 4.4. Localized and controlled effect specifically in the targeted treatment volume. No non-controlled energy effects in other tissues (unlike in RF treatment). 4.5. No blocking of the blood flow during the treatment 5.1. Much less pain in treatment: fast blocking of nerves with no electric excitation of the target nerve and no effect on other nerves (In contrast with Unipolar RF treatment) -
Reference is now made to
FIGS. 17-22which illustrate experimental results following use of the device.
- FIG. 17
is a histology slide, using H&E stain, and showing the thermal effect in a pig carotid artery. The border of the thermal effect region in the tissue is marked with a dashed line and noted as “Thermal Damage”. The setup used was an ultrasonic catheter from inside the blood vessel.
- FIG. 18
is a histology slide, using H&E stain, and showing the thermal effect in a pig renal artery. The border of the thermal effect region in the tissue is marked with a dashed line and noted as “Thermal”. A necrotic nerve inside the thermal effect region is marked with an arrow and “necrotic nerve” text. The setup involved an ultrasonic catheter from inside the blood vessel.
-
It is noted that the embodiments cause thermal damage in target tissues far from the lumen internal wall, while causing no thermal damage in the lumen wall internal layer.
-
Specifically in blood vessels it was shown that thermal damage was achieved in the adventitia or media layers, without causing any apparent damage in the intima layer, either the endothelium or the elastic lamina.
-
It is believed that the reason for this effect is that the ultrasonic energy heats the artery wall all along the beam, but the blood flow in the lumen cools the tissue that is close to the blood flow, thus the endothelium wall never heats sufficiently to be damaged. It is possible to find a setting for the treatment parameters so to cause heating above 55C of the tissues far from the blood flow, while the temperature of the intima layer is kept below 55C.
-
Exemplary results are shown in
FIGS. 19 and 20which are histology slides wherein analysis and marking of the thermal damage area to a pig Carotid Artery and a Pig Renal Artery respectively, is made by a trained pathologist.
-
Heating the adventitia or media can cause blocking of the flow inside the small capillaries (called Vasa-Vasorum) in the blood vessel media and adventitia, for example by mechanical crimping due to the shrinking of the connective tissue due to collagen denaturation, or due to thrombotic blocking by a thrombus that is formed in the Vasa-Vasorum because of the thermal damage (the blood flow in these vessels is very low so it can not cool the blood vessel).
- FIG. 21
illustrates exemplary results for the above. A histology slide shows analysis and marking of the blocked Vasa-Vasorum with arrows placed by a trained pathologist in a pig Carotid Artery Vasa-Vasorum in the adventitia.
-
The treatment is intended to provide extensive thermal damage to specific target tissues while keeping nearby tissues undamaged.
-
It is believed that the ultrasonic energy absorption is different for different kinds of tissue and, and furthermore, the content of collagen fibers may differ.
-
Specifically it was shown that in nerve fibers that are wrapped by fat tissue, it is possible to cause extensive thermal damage to the nerve tissue, while there is no significant thermal damage in the fat tissue.
- FIG. 22
illustrates two histology slides with analysis and marking of the thermal damage, or nerve degeneration area made by a trained pathologist, for a pig renal artery, and nerves in adventitia.
-
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination.
-
Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. All publications, patents, and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.
Claims (34)
1. An ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies and an extensive surface for beam emanation, the device configured to produce an unfocused power beam for tissue ablation, the unfocused power beam being produced by vibration over the body of the transducer and emanating from said extensive surface, whereby the extensive surface becomes subject to convective cooling when immersed in a fluid by a chimney effect set up by said unfocused beam.
2. The device of
claim 1, being mounted on a PCB, wherein trenches are constructed in the PCB for fluid flow to enhance said cooling.
3. The device of
claim 1, further comprising a pump unit for actively pumping liquid around said transducer.
4. The device of
claim 1, wherein said ultrasonic transducer device comprises a piezoelectric element and wherein said vibratable body is a body of said piezoelectric element.
5. The device of
claim 2, comprising an gas-filled gap between said transducer and said PCB.
6. The device of
claim 5, wherein said gas-filled gap is unsealed and wherein surface tension retains air within said gap when said device is immersed in fluid.
7. The device of
claim 6, further comprising conductive connections to the PCB across the gas-filled gap, wherein said conductive connections provide thermal linkage between said transducer and said PCB, thereby enabling the PCB to act as an additional heat dissipation surface for said device.
8. The device of
claim 1located at a circumferential wall of a catheter or at the end of said catheter, and thermally connected to a heat sink that is located within the catheter and/or at the circumferential wall of the catheter or in the blood flow.
9. The device of
claim 1, located at a circumferential wall of a catheter or at the end of said catheter, and wherein saline is pumped down the catheter to provide additional fluid flow around the transducer and/or around the heat sink.
10. The device of
claim 1, further comprising a temperature sensor located in association with said transducer.
11. The device of
claim 10, wherein said temperature sensor is located downstream of said transducer in a flow direction of liquid in a vessel within which said device is placed, thereby to measure temperature of liquid that has passed said extensive surface.
12. The device of
claim 10, further comprising a controller for providing said power beam in a duty cycle, said controller being configured to modify said duty cycle and/or applied power in response to changes in temperature indicated by said temperature sensor.
13. The device of
claim 12, wherein said controller is configured to modify said duty cycle to control said surface to remain within a range of 40° C. to 50° C., or at 44° C.
14. The device of
claim 10, controllable to stop said power beam when a temperature sensed by said sensor reaches or exceeds a predetermined safety threshold.
15. The device of
claim 1, located at the end of a catheter, and further comprising a temperature sensor located in association with said transducer, wherein saline is pumped down the catheter to provide fluid flow around the transducer and wherein a rate of pumping is controlled according to changes in temperature sensed by said temperature sensor.
16. The device of
claim 15, wherein said controller is configured to modify said rate of pumping to control said surface to remain within a range of 40° C. to 50° C., or at 44° C.
17. The device of
claim 1, wherein said power beam is provided at a frequency of at least 8 Megahertz, and said vibratable body has a thickness not exceeding 0.3 millimeters, thereby to increase heat transfer from the element.
18. The device of
claim 1further comprising a distancing mechanism for positioning said transducer at least a minimal distance away from a cavity wall.
19. The device of
claim 1, further comprising a controllable valve openable into a body lumen for controlling fluid flow about said device.
20. The device of
claim 1, further comprising a Tec cooler device.
21. The device of
claim 1, further comprising metal channels in a PCB.
22. The device of
claim 1, further comprising a distancing device for distancing the transducers from a vessel wall.
23. An ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies and a surface for beam emanation, the device configured to produce an unfocused power beam over an extent of said surface for tissue ablation, the unfocused power beam being at a frequency of at least 8 Megahertz.
24. The device of
claim 22, having a thickness below 0.3 millimeters or a thickness of 0.15 millimeters, thereby to increase heat transfer from the element.
25. An ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies, the device configured to produce a focused power beam for tissue ablation, the focused power beam being produced by vibration over the body of the transducer whereby a surface of said transducer becomes subject to convective cooling when immersed in a fluid by a chimney effect set up by said focused beam.
26. An ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies and an extensive surface for beam emanation, the device configured to produce an unfocused power beam for tissue ablation, the unfocused power beam being produced by vibration over the body of the transducer and emanating from said extensive surface, the device further comprising a heatsink thermally coupled to said body for dissipating heat from said device.
27. The ultrasonic transducer device of
claim 26, wherein said heatsink comprises braiding along a wall of a catheter to which said device is attached.
28. An ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies and an extensive surface for beam emanation, the device configured to produce an unfocused power beam for tissue ablation, the unfocused power beam being produced by vibration over the body of the transducer and emanating from said extensive surface, the device further comprising a thermo-electric cooler device thermally coupled to said body for cooling said body.
29. An ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies and an extensive surface for beam emanation, the device configured to produce an unfocused power beam for tissue ablation, the unfocused power beam being produced by vibration over the body of the transducer and emanating from said extensive surface, the body being mounted on a printed circuit board, and the printed circuit board having channels therein for allowing fluid flow to cool said body.
30. An ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies and an extensive surface for beam emanation, the device configured to produce an unfocused power beam for tissue ablation, the unfocused power beam being produced by vibration over the body of the transducer and emanating from said extensive surface, further comprising a pump for pumping fluid around said device to cool said device.
31. The ultrasonic transducer device of
claim 30, attached to a catheter and wherein said pump is located within said catheter.
32. An ultrasonic transducer device for producing ultrasonic beams, comprising a body vibratable at ultrasonic frequencies and an extensive surface for beam emanation, the device configured to produce an unfocused power beam for tissue ablation, the unfocused power beam being produced by vibration over the body of the transducer and emanating from said extensive surface, the device being insertable into vessels where flow is present, and further comprising a flow directing structure for directing said flow present in the vessel over the vibratable body and/or the heat sink in order to cool said device.
33. The device of
claim 32, wherein said flow-directing structure comprises a balloon.
34. The device of
claim 32, wherein said flow directing structure comprises a shaft and a bending zone on the shaft, the bending zone directing said flow.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/049,022 US20120095371A1 (en) | 2010-10-18 | 2011-03-16 | Ultrasound transducer and cooling thereof |
US13/880,083 US20130204242A1 (en) | 2010-10-18 | 2011-10-18 | Ultrasound transceiver and control of a thermal damage process |
PCT/IB2011/054639 WO2012052925A1 (en) | 2010-10-18 | 2011-10-18 | An ultrasound transceiver and control of a thermal damage process |
PCT/IB2011/054641 WO2012052927A1 (en) | 2010-10-18 | 2011-10-18 | An ultrasound transceiver and cooling thereof |
EP11782223.9A EP2629848B1 (en) | 2010-10-18 | 2011-10-18 | An ultrasound transceiver and control of a thermal damage process |
US13/879,400 US9566456B2 (en) | 2010-10-18 | 2011-10-18 | Ultrasound transceiver and cooling thereof |
EP11785792.0A EP2629849A1 (en) | 2010-10-18 | 2011-10-18 | An ultrasound transceiver and cooling thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US39394710P | 2010-10-18 | 2010-10-18 | |
US13/049,022 US20120095371A1 (en) | 2010-10-18 | 2011-03-16 | Ultrasound transducer and cooling thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/879,400 Continuation-In-Part US9566456B2 (en) | 2010-10-18 | 2011-10-18 | Ultrasound transceiver and cooling thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
US20120095371A1 true US20120095371A1 (en) | 2012-04-19 |
Family
ID=45934718
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/049,022 Abandoned US20120095371A1 (en) | 2010-10-18 | 2011-03-16 | Ultrasound transducer and cooling thereof |
US13/049,151 Active 2031-05-17 US8585601B2 (en) | 2010-10-18 | 2011-03-16 | Ultrasound transducer |
US13/049,013 Active US8696581B2 (en) | 2010-10-18 | 2011-03-16 | Ultrasound transducer and uses thereof |
US13/880,095 Abandoned US20130211437A1 (en) | 2010-10-18 | 2011-10-18 | Ultrasound transceiver and uses thereof |
US14/049,238 Active US9326786B2 (en) | 2010-10-18 | 2013-10-09 | Ultrasound transducer |
US14/190,113 Active US10368893B2 (en) | 2010-10-18 | 2014-02-26 | Ultrasound transducer and uses thereof |
US16/451,087 Active 2033-05-23 US11730506B2 (en) | 2010-10-18 | 2019-06-25 | Ultrasound transducer and uses thereof |
US18/235,904 Pending US20230389954A1 (en) | 2010-10-18 | 2023-08-21 | Ultrasound transducer and uses thereof |
Family Applications After (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/049,151 Active 2031-05-17 US8585601B2 (en) | 2010-10-18 | 2011-03-16 | Ultrasound transducer |
US13/049,013 Active US8696581B2 (en) | 2010-10-18 | 2011-03-16 | Ultrasound transducer and uses thereof |
US13/880,095 Abandoned US20130211437A1 (en) | 2010-10-18 | 2011-10-18 | Ultrasound transceiver and uses thereof |
US14/049,238 Active US9326786B2 (en) | 2010-10-18 | 2013-10-09 | Ultrasound transducer |
US14/190,113 Active US10368893B2 (en) | 2010-10-18 | 2014-02-26 | Ultrasound transducer and uses thereof |
US16/451,087 Active 2033-05-23 US11730506B2 (en) | 2010-10-18 | 2019-06-25 | Ultrasound transducer and uses thereof |
US18/235,904 Pending US20230389954A1 (en) | 2010-10-18 | 2023-08-21 | Ultrasound transducer and uses thereof |
Country Status (5)
Country | Link |
---|---|
US (8) | US20120095371A1 (en) |
EP (3) | EP2629681B1 (en) |
JP (1) | JP2013543422A (en) |
CN (1) | CN103260532B (en) |
WO (3) | WO2012052922A1 (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013162765A1 (en) | 2012-04-23 | 2013-10-31 | St. Jude Medical, Inc. | Ultrasonic lesion feedback, antipop monitoring, and force detection |
US8585601B2 (en) | 2010-10-18 | 2013-11-19 | CardioSonic Ltd. | Ultrasound transducer |
US8845629B2 (en) | 2002-04-08 | 2014-09-30 | Medtronic Ardian Luxembourg S.A.R.L. | Ultrasound apparatuses for thermally-induced renal neuromodulation |
US9028417B2 (en) | 2010-10-18 | 2015-05-12 | CardioSonic Ltd. | Ultrasound emission element |
US9283033B2 (en) | 2012-06-30 | 2016-03-15 | Cibiem, Inc. | Carotid body ablation via directed energy |
US9393070B2 (en) | 2012-04-24 | 2016-07-19 | Cibiem, Inc. | Endovascular catheters and methods for carotid body ablation |
US9398930B2 (en) | 2012-06-01 | 2016-07-26 | Cibiem, Inc. | Percutaneous methods and devices for carotid body ablation |
US9402677B2 (en) | 2012-06-01 | 2016-08-02 | Cibiem, Inc. | Methods and devices for cryogenic carotid body ablation |
US9486270B2 (en) | 2002-04-08 | 2016-11-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for bilateral renal neuromodulation |
US9566456B2 (en) | 2010-10-18 | 2017-02-14 | CardioSonic Ltd. | Ultrasound transceiver and cooling thereof |
US9770593B2 (en) | 2012-11-05 | 2017-09-26 | Pythagoras Medical Ltd. | Patient selection using a transluminally-applied electric current |
US9955946B2 (en) | 2014-03-12 | 2018-05-01 | Cibiem, Inc. | Carotid body ablation with a transvenous ultrasound imaging and ablation catheter |
US10004557B2 (en) | 2012-11-05 | 2018-06-26 | Pythagoras Medical Ltd. | Controlled tissue ablation |
US10076384B2 (en) | 2013-03-08 | 2018-09-18 | Symple Surgical, Inc. | Balloon catheter apparatus with microwave emitter |
US20180280043A1 (en) * | 2017-03-31 | 2018-10-04 | Medtronic Vascular, Inc. | Cavitation catheter |
US20190076674A1 (en) * | 2017-09-13 | 2019-03-14 | Ultra HOM LLC | Medical device with cmut array and solid state cooling, and associated methods and systems |
US10335280B2 (en) | 2000-01-19 | 2019-07-02 | Medtronic, Inc. | Method for ablating target tissue of a patient |
US10357304B2 (en) | 2012-04-18 | 2019-07-23 | CardioSonic Ltd. | Tissue treatment |
US10383685B2 (en) | 2015-05-07 | 2019-08-20 | Pythagoras Medical Ltd. | Techniques for use with nerve tissue |
US10478249B2 (en) | 2014-05-07 | 2019-11-19 | Pythagoras Medical Ltd. | Controlled tissue ablation techniques |
US10589130B2 (en) | 2006-05-25 | 2020-03-17 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US10933259B2 (en) | 2013-05-23 | 2021-03-02 | CardioSonic Ltd. | Devices and methods for renal denervation and assessment thereof |
US10967160B2 (en) | 2010-10-18 | 2021-04-06 | CardioSonic Ltd. | Tissue treatment |
US11318331B2 (en) | 2017-03-20 | 2022-05-03 | Sonivie Ltd. | Pulmonary hypertension treatment |
US11357447B2 (en) | 2012-05-31 | 2022-06-14 | Sonivie Ltd. | Method and/or apparatus for measuring renal denervation effectiveness |
US11678932B2 (en) | 2016-05-18 | 2023-06-20 | Symap Medical (Suzhou) Limited | Electrode catheter with incremental advancement |
US12082868B2 (en) | 2012-11-13 | 2024-09-10 | Pulnovo Medical (Wuxi) Co., Ltd. | Multi-pole synchronous pulmonary artery radiofrequency ablation catheter |
Families Citing this family (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040082859A1 (en) | 2002-07-01 | 2004-04-29 | Alan Schaer | Method and apparatus employing ultrasound energy to treat body sphincters |
EP2021846B1 (en) | 2006-05-19 | 2017-05-03 | Koninklijke Philips N.V. | Ablation device with optimized input power profile |
US9867530B2 (en) | 2006-08-14 | 2018-01-16 | Volcano Corporation | Telescopic side port catheter device with imaging system and method for accessing side branch occlusions |
US10219780B2 (en) | 2007-07-12 | 2019-03-05 | Volcano Corporation | OCT-IVUS catheter for concurrent luminal imaging |
US9622706B2 (en) | 2007-07-12 | 2017-04-18 | Volcano Corporation | Catheter for in vivo imaging |
US9596993B2 (en) | 2007-07-12 | 2017-03-21 | Volcano Corporation | Automatic calibration systems and methods of use |
US8506490B2 (en) * | 2008-05-30 | 2013-08-13 | W.L. Gore & Associates, Inc. | Real time ultrasound probe |
US20110046522A1 (en) * | 2009-08-21 | 2011-02-24 | Boston Scientific Scimed Inc. | Ultrasound Energy Delivery Assembly |
CN102596320B (en) | 2009-10-30 | 2016-09-07 | 瑞蔻医药有限公司 | Method and apparatus by percutaneous ultrasound ripple Renal denervation treatment hypertension |
US20110112400A1 (en) * | 2009-11-06 | 2011-05-12 | Ardian, Inc. | High intensity focused ultrasound catheter apparatuses, systems, and methods for renal neuromodulation |
US11141063B2 (en) | 2010-12-23 | 2021-10-12 | Philips Image Guided Therapy Corporation | Integrated system architectures and methods of use |
US11040140B2 (en) | 2010-12-31 | 2021-06-22 | Philips Image Guided Therapy Corporation | Deep vein thrombosis therapeutic methods |
WO2013033489A1 (en) | 2011-08-31 | 2013-03-07 | Volcano Corporation | Optical rotary joint and methods of use |
WO2013055685A2 (en) * | 2011-10-10 | 2013-04-18 | Boston Scientific Scimed, Inc. | Device and methods for renal nerve modulation |
EP2780081B1 (en) * | 2011-11-15 | 2017-05-10 | Boston Scientific Scimed, Inc. | Shaft with ultrasound transducers for nerve modulation |
US20140081299A1 (en) * | 2012-09-19 | 2014-03-20 | Timothy G. Dietz | Micromachined Ultrasonic Scalpel with Embedded Piezoelectric Actuator |
US9367965B2 (en) | 2012-10-05 | 2016-06-14 | Volcano Corporation | Systems and methods for generating images of tissue |
US9307926B2 (en) | 2012-10-05 | 2016-04-12 | Volcano Corporation | Automatic stent detection |
JP2015532536A (en) | 2012-10-05 | 2015-11-09 | デイビッド ウェルフォード, | System and method for amplifying light |
US9292918B2 (en) | 2012-10-05 | 2016-03-22 | Volcano Corporation | Methods and systems for transforming luminal images |
US9324141B2 (en) | 2012-10-05 | 2016-04-26 | Volcano Corporation | Removal of A-scan streaking artifact |
US20140100454A1 (en) | 2012-10-05 | 2014-04-10 | Volcano Corporation | Methods and systems for establishing parameters for three-dimensional imaging |
US11272845B2 (en) | 2012-10-05 | 2022-03-15 | Philips Image Guided Therapy Corporation | System and method for instant and automatic border detection |
US10568586B2 (en) | 2012-10-05 | 2020-02-25 | Volcano Corporation | Systems for indicating parameters in an imaging data set and methods of use |
US9286673B2 (en) | 2012-10-05 | 2016-03-15 | Volcano Corporation | Systems for correcting distortions in a medical image and methods of use thereof |
US9858668B2 (en) | 2012-10-05 | 2018-01-02 | Volcano Corporation | Guidewire artifact removal in images |
US10070827B2 (en) | 2012-10-05 | 2018-09-11 | Volcano Corporation | Automatic image playback |
US9840734B2 (en) | 2012-10-22 | 2017-12-12 | Raindance Technologies, Inc. | Methods for analyzing DNA |
US20140128734A1 (en) * | 2012-11-05 | 2014-05-08 | Ekos Corporation | Catheter systems and methods |
WO2014093374A1 (en) | 2012-12-13 | 2014-06-19 | Volcano Corporation | Devices, systems, and methods for targeted cannulation |
EP2934310A4 (en) | 2012-12-20 | 2016-10-12 | Nathaniel J Kemp | Optical coherence tomography system that is reconfigurable between different imaging modes |
US9730613B2 (en) | 2012-12-20 | 2017-08-15 | Volcano Corporation | Locating intravascular images |
US11406498B2 (en) | 2012-12-20 | 2022-08-09 | Philips Image Guided Therapy Corporation | Implant delivery system and implants |
US10942022B2 (en) | 2012-12-20 | 2021-03-09 | Philips Image Guided Therapy Corporation | Manual calibration of imaging system |
US10939826B2 (en) | 2012-12-20 | 2021-03-09 | Philips Image Guided Therapy Corporation | Aspirating and removing biological material |
EP2934311B1 (en) | 2012-12-20 | 2020-04-15 | Volcano Corporation | Smooth transition catheters |
EP2934323A4 (en) | 2012-12-21 | 2016-08-17 | Andrew Hancock | System and method for multipath processing of image signals |
EP2934280B1 (en) | 2012-12-21 | 2022-10-19 | Mai, Jerome | Ultrasound imaging with variable line density |
US10058284B2 (en) | 2012-12-21 | 2018-08-28 | Volcano Corporation | Simultaneous imaging, monitoring, and therapy |
JP2016502884A (en) | 2012-12-21 | 2016-02-01 | ダグラス メイヤー, | Rotating ultrasound imaging catheter with extended catheter body telescope |
WO2014100530A1 (en) | 2012-12-21 | 2014-06-26 | Whiseant Chester | System and method for catheter steering and operation |
US9486143B2 (en) | 2012-12-21 | 2016-11-08 | Volcano Corporation | Intravascular forward imaging device |
US10191220B2 (en) | 2012-12-21 | 2019-01-29 | Volcano Corporation | Power-efficient optical circuit |
JP2016508757A (en) | 2012-12-21 | 2016-03-24 | ジェイソン スペンサー, | System and method for graphical processing of medical data |
US9612105B2 (en) | 2012-12-21 | 2017-04-04 | Volcano Corporation | Polarization sensitive optical coherence tomography system |
US9383263B2 (en) | 2012-12-21 | 2016-07-05 | Volcano Corporation | Systems and methods for narrowing a wavelength emission of light |
US20140180316A1 (en) * | 2012-12-21 | 2014-06-26 | Volcano Corporation | Imaging and removing biological material |
US10226597B2 (en) | 2013-03-07 | 2019-03-12 | Volcano Corporation | Guidewire with centering mechanism |
CN105103163A (en) | 2013-03-07 | 2015-11-25 | 火山公司 | Multimodal segmentation in intravascular images |
US10638939B2 (en) | 2013-03-12 | 2020-05-05 | Philips Image Guided Therapy Corporation | Systems and methods for diagnosing coronary microvascular disease |
US11154313B2 (en) | 2013-03-12 | 2021-10-26 | The Volcano Corporation | Vibrating guidewire torquer and methods of use |
WO2014159819A1 (en) | 2013-03-13 | 2014-10-02 | Jinhyoung Park | System and methods for producing an image from a rotational intravascular ultrasound device |
US9301687B2 (en) | 2013-03-13 | 2016-04-05 | Volcano Corporation | System and method for OCT depth calibration |
US11026591B2 (en) | 2013-03-13 | 2021-06-08 | Philips Image Guided Therapy Corporation | Intravascular pressure sensor calibration |
US10219887B2 (en) | 2013-03-14 | 2019-03-05 | Volcano Corporation | Filters with echogenic characteristics |
JP6342984B2 (en) | 2013-03-14 | 2018-06-13 | ボルケーノ コーポレイション | Filter with echogenic properties |
US10292677B2 (en) | 2013-03-14 | 2019-05-21 | Volcano Corporation | Endoluminal filter having enhanced echogenic properties |
CN105188848B (en) | 2013-03-14 | 2019-12-10 | 瑞蔻医药有限公司 | ultrasound-based neuromodulation system |
CN105074050B (en) | 2013-03-14 | 2019-02-15 | 瑞蔻医药有限公司 | The method for being plated or coated with ultrasonic transducer |
EP4233991B1 (en) * | 2013-03-15 | 2025-01-29 | Medtronic Ardian Luxembourg S.à.r.l. | Controlled neuromodulation systems |
WO2014139002A1 (en) * | 2013-03-15 | 2014-09-18 | Colibri Technologies Inc. | Medical probes having internal hydrophilic surfaces |
EP3142564A4 (en) * | 2014-04-11 | 2017-07-19 | Koninklijke Philips N.V. | Imaging and treatment device |
JP6342247B2 (en) * | 2014-07-18 | 2018-06-13 | オリンパス株式会社 | Ultrasonic energy treatment device |
WO2016038926A1 (en) * | 2014-09-09 | 2016-03-17 | オリンパス株式会社 | Ultrasonic transducer array |
WO2016065299A2 (en) * | 2014-10-24 | 2016-04-28 | Eshoo Mark W | Ultrasonics for microfluidic sample preparation |
KR102038965B1 (en) * | 2014-11-26 | 2019-10-31 | 삼성전자주식회사 | Untrasound sensor and object detecting method thereof |
EP3223712B1 (en) * | 2014-11-26 | 2023-08-30 | Sonivie Ltd. | Devices for pulmonary hypertension treatment |
US10132924B2 (en) * | 2016-04-29 | 2018-11-20 | R2Sonic, Llc | Multimission and multispectral sonar |
US10315222B2 (en) | 2016-05-04 | 2019-06-11 | Invensense, Inc. | Two-dimensional array of CMOS control elements |
US10445547B2 (en) | 2016-05-04 | 2019-10-15 | Invensense, Inc. | Device mountable packaging of ultrasonic transducers |
US10452887B2 (en) | 2016-05-10 | 2019-10-22 | Invensense, Inc. | Operating a fingerprint sensor comprised of ultrasonic transducers |
US11673165B2 (en) | 2016-05-10 | 2023-06-13 | Invensense, Inc. | Ultrasonic transducer operable in a surface acoustic wave (SAW) mode |
US10441975B2 (en) | 2016-05-10 | 2019-10-15 | Invensense, Inc. | Supplemental sensor modes and systems for ultrasonic transducers |
US10706835B2 (en) | 2016-05-10 | 2020-07-07 | Invensense, Inc. | Transmit beamforming of a two-dimensional array of ultrasonic transducers |
IL308833A (en) | 2016-06-06 | 2024-01-01 | Sofwave Medical Ltd | Ultrasound transducer and system |
EP3472430A4 (en) | 2016-09-27 | 2020-01-08 | Halliburton Energy Services, Inc. | Multi-directional ultrasonic transducer for downhole measurements |
US10537394B2 (en) * | 2016-12-19 | 2020-01-21 | Ethicon Llc | Hot device indication of video display |
US11103262B2 (en) | 2018-03-14 | 2021-08-31 | Boston Scientific Scimed, Inc. | Balloon-based intravascular ultrasound system for treatment of vascular lesions |
US10755067B2 (en) | 2018-03-22 | 2020-08-25 | Invensense, Inc. | Operating a fingerprint sensor comprised of ultrasonic transducers |
KR102124422B1 (en) * | 2018-06-05 | 2020-06-18 | 한국과학기술연구원 | High-low intensity focused ultrasound treatment apparatus |
US11819229B2 (en) | 2019-06-19 | 2023-11-21 | Boston Scientific Scimed, Inc. | Balloon surface photoacoustic pressure wave generation to disrupt vascular lesions |
EP3829500A4 (en) * | 2018-08-02 | 2022-05-04 | Sofwave Medical Ltd. | Devices and methods for vaginal treatments |
US11813019B2 (en) | 2018-08-22 | 2023-11-14 | Healium Medical Ltd | Catheter ultrasound transducer container |
EP3870092A1 (en) | 2018-10-24 | 2021-09-01 | Boston Scientific Scimed, Inc. | Photoacoustic pressure wave generation for intravascular calcification disruption |
KR102737622B1 (en) * | 2019-05-17 | 2024-12-04 | 엘지이노텍 주식회사 | Mask and skin care device including the same |
US11717139B2 (en) | 2019-06-19 | 2023-08-08 | Bolt Medical, Inc. | Plasma creation via nonaqueous optical breakdown of laser pulse energy for breakup of vascular calcium |
US11660427B2 (en) | 2019-06-24 | 2023-05-30 | Boston Scientific Scimed, Inc. | Superheating system for inertial impulse generation to disrupt vascular lesions |
US11216681B2 (en) | 2019-06-25 | 2022-01-04 | Invensense, Inc. | Fake finger detection based on transient features |
US20200406010A1 (en) | 2019-06-26 | 2020-12-31 | Boston Scientific Scimed, Inc. | Side light direction plasma system to disrupt vascular lesions |
US11216632B2 (en) | 2019-07-17 | 2022-01-04 | Invensense, Inc. | Ultrasonic fingerprint sensor with a contact layer of non-uniform thickness |
US11176345B2 (en) | 2019-07-17 | 2021-11-16 | Invensense, Inc. | Ultrasonic fingerprint sensor with a contact layer of non-uniform thickness |
CN112341870A (en) * | 2019-08-08 | 2021-02-09 | 李石良 | Coating material for enhancing ultrasonic mediated imaging |
US11232549B2 (en) | 2019-08-23 | 2022-01-25 | Invensense, Inc. | Adapting a quality threshold for a fingerprint image |
US11392789B2 (en) | 2019-10-21 | 2022-07-19 | Invensense, Inc. | Fingerprint authentication using a synthetic enrollment image |
US11583339B2 (en) | 2019-10-31 | 2023-02-21 | Bolt Medical, Inc. | Asymmetrical balloon for intravascular lithotripsy device and method |
US12102384B2 (en) | 2019-11-13 | 2024-10-01 | Bolt Medical, Inc. | Dynamic intravascular lithotripsy device with movable energy guide |
JP7361795B2 (en) * | 2019-12-24 | 2023-10-16 | 京セラ株式会社 | Ultrasonic radiation instruments and ultrasonic devices |
US11672599B2 (en) | 2020-03-09 | 2023-06-13 | Bolt Medical, Inc. | Acoustic performance monitoring system and method within intravascular lithotripsy device |
EP4100176B1 (en) * | 2020-03-09 | 2024-10-09 | InvenSense, Inc. | Ultrasonic fingerprint sensor with a contact layer of non-uniform thickness |
US11243300B2 (en) | 2020-03-10 | 2022-02-08 | Invensense, Inc. | Operating a fingerprint sensor comprised of ultrasonic transducers and a presence sensor |
US20210290286A1 (en) | 2020-03-18 | 2021-09-23 | Bolt Medical, Inc. | Optical analyzer assembly and method for intravascular lithotripsy device |
US11707323B2 (en) | 2020-04-03 | 2023-07-25 | Bolt Medical, Inc. | Electrical analyzer assembly for intravascular lithotripsy device |
US11328165B2 (en) | 2020-04-24 | 2022-05-10 | Invensense, Inc. | Pressure-based activation of fingerprint spoof detection |
US12207870B2 (en) | 2020-06-15 | 2025-01-28 | Boston Scientific Scimed, Inc. | Spectroscopic tissue identification for balloon intravascular lithotripsy guidance |
US11995909B2 (en) | 2020-07-17 | 2024-05-28 | Tdk Corporation | Multipath reflection correction |
US12174295B2 (en) | 2020-08-07 | 2024-12-24 | Tdk Corporation | Acoustic multipath correction |
US12016610B2 (en) | 2020-12-11 | 2024-06-25 | Bolt Medical, Inc. | Catheter system for valvuloplasty procedure |
AU2021416359A1 (en) | 2020-12-31 | 2023-08-03 | Sofwave Medical Ltd. | Cooling of ultrasound energizers mounted on printed circuit boards |
US11672585B2 (en) | 2021-01-12 | 2023-06-13 | Bolt Medical, Inc. | Balloon assembly for valvuloplasty catheter system |
CA3211452A1 (en) * | 2021-02-25 | 2022-09-01 | Healium Medical Ltd. | Ultrasound tissue treatment apparatus |
US11648057B2 (en) | 2021-05-10 | 2023-05-16 | Bolt Medical, Inc. | Optical analyzer assembly with safety shutdown system for intravascular lithotripsy device |
US11806075B2 (en) | 2021-06-07 | 2023-11-07 | Bolt Medical, Inc. | Active alignment system and method for laser optical coupling |
EP4108197A1 (en) | 2021-06-24 | 2022-12-28 | Gradient Denervation Technologies | Systems for treating tissue |
US20230065212A1 (en) | 2021-08-25 | 2023-03-02 | Invensense, Inc. | Differential receive at an ultrasonic transducer |
US11839391B2 (en) | 2021-12-14 | 2023-12-12 | Bolt Medical, Inc. | Optical emitter housing assembly for intravascular lithotripsy device |
Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050015079A1 (en) * | 2003-07-17 | 2005-01-20 | Yaron Keider | Ultrasound ablation catheter and method for its use |
US20050215946A1 (en) * | 2004-01-29 | 2005-09-29 | Hansmann Douglas R | Method and apparatus for detecting vascular conditions with a catheter |
US6953460B2 (en) * | 1997-07-08 | 2005-10-11 | Maguire Mark A | Medical device with sensor cooperating with expandable member |
US20060084966A1 (en) * | 1997-07-08 | 2006-04-20 | Maguire Mark A | Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall |
US20060241442A1 (en) * | 2004-10-06 | 2006-10-26 | Guided Therapy Systems, L.L.C. | Method and system for treating photoaged tissue |
US7220261B2 (en) * | 1999-05-24 | 2007-05-22 | Sciogen, Inc. | Electrical discharge devices and techniques for medical procedures |
US20070142831A1 (en) * | 1998-05-20 | 2007-06-21 | Shadduck John H | Surgical Instruments And Techniques For Treating Gastro-Esophageal Reflux Disease |
US20070222339A1 (en) * | 2004-04-20 | 2007-09-27 | Mark Lukacs | Arrayed ultrasonic transducer |
US20070233057A1 (en) * | 2006-04-04 | 2007-10-04 | Namiki Seimitsu Houseki Kabushiki Kaisha | Radio frequency medical treatment device and system and usage method thereof |
US20080077202A1 (en) * | 2006-09-26 | 2008-03-27 | Juniper Medical, Inc. | Tissue Treatment Methods |
US20080086073A1 (en) * | 2006-10-10 | 2008-04-10 | Mcdaniel Benjamin | Multi-region staged inflation balloon |
US20080114354A1 (en) * | 2003-04-29 | 2008-05-15 | Ncontact Surgical, Inc. | Vacuum coagulation probes |
US20080146924A1 (en) * | 2006-12-15 | 2008-06-19 | General Electric Company | System and method for actively cooling an ultrasound probe |
US20080183110A1 (en) * | 2006-09-06 | 2008-07-31 | Davenport Scott A | Ultrasound system and method for hair removal |
US20080195000A1 (en) * | 2006-09-06 | 2008-08-14 | Spooner Gregory J R | System and Method for Dermatological Treatment Using Ultrasound |
US20080215039A1 (en) * | 2005-08-04 | 2008-09-04 | Inolase 2002 Ltd. | Method and Apparatus for Inhibiting Pain Signals During Vacuum-Assisted Medical Treatments of the Skin |
US20080281297A1 (en) * | 2007-03-19 | 2008-11-13 | Benny Pesach | Method and device for drug delivery |
US20090018446A1 (en) * | 2007-07-10 | 2009-01-15 | Insightec, Ltd. | Transrectal ultrasound ablation probe |
US20090036914A1 (en) * | 2007-07-31 | 2009-02-05 | Houser Kevin L | Temperature controlled ultrasonic surgical instruments |
US20090131930A1 (en) * | 2007-11-16 | 2009-05-21 | Daniel Gelbart | Medical device for use in bodily lumens, for example an atrium |
US7538425B2 (en) * | 2004-07-28 | 2009-05-26 | Delphi Technologies, Inc. | Power semiconductor package having integral fluid cooling |
USRE40815E1 (en) * | 1999-06-25 | 2009-06-30 | Ams Research Corporation | Control system for cryosurgery |
US20090281478A1 (en) * | 2008-05-08 | 2009-11-12 | Ethicon Endo-Surgery, Inc. | Vibratory trocar |
US20090299360A1 (en) * | 2008-05-28 | 2009-12-03 | Medwaves, Inc. | Tissue ablation apparatus and method using ultrasonic imaging |
US7655005B2 (en) * | 2003-12-31 | 2010-02-02 | Biosense Webster, Inc. | Circumferential ablation device assembly with dual expandable members |
US20100228162A1 (en) * | 2009-03-09 | 2010-09-09 | Sliwa John W | Apparatus and Method for Tissue Ablation with Near-Field Cooling |
US20120232436A1 (en) * | 2009-10-30 | 2012-09-13 | Sound Interventions, Inc. | Method and Apparatus for Treatment of Hypertension Through Percutaneous Ultrasound Renal Denervation |
US20130072928A1 (en) * | 2002-07-01 | 2013-03-21 | Alan K. Schaer | Method and apparatus employing ultrasound energy to treat body sphincters |
US20130207519A1 (en) * | 2008-09-18 | 2013-08-15 | N. Christopher Chaggares | Methods for manufacturing ultrasound transducers and other components |
Family Cites Families (247)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4319580A (en) | 1979-08-28 | 1982-03-16 | The Board Of Regents Of The University Of Washington | Method for detecting air emboli in the blood in an intracorporeal blood vessel |
US5372138A (en) | 1988-03-21 | 1994-12-13 | Boston Scientific Corporation | Acousting imaging catheters and the like |
US5038789A (en) | 1989-09-28 | 1991-08-13 | Frazin Leon J | Method and device for doppler-guided retrograde catheterization |
US5226847A (en) | 1989-12-15 | 1993-07-13 | General Electric Company | Apparatus and method for acquiring imaging signals with reduced number of interconnect wires |
JPH04504373A (en) | 1990-01-12 | 1992-08-06 | メトカル・インコーポレーテッド | Thermal removal equipment for scum |
AU3727993A (en) * | 1992-02-21 | 1993-09-13 | Diasonics Inc. | Ultrasound intracavity system for imaging therapy planning and treatment of focal disease |
US5620479A (en) | 1992-11-13 | 1997-04-15 | The Regents Of The University Of California | Method and apparatus for thermal therapy of tumors |
US6537306B1 (en) | 1992-11-13 | 2003-03-25 | The Regents Of The University Of California | Method of manufacture of a transurethral ultrasound applicator for prostate gland thermal therapy |
EP0597463A3 (en) | 1992-11-13 | 1996-11-06 | Dornier Med Systems Inc | Thermotherapiesonde. |
SE502620C2 (en) | 1993-02-26 | 1995-11-27 | Leif Nilsson | urinary catheter |
JP3860227B2 (en) | 1993-03-10 | 2006-12-20 | 株式会社東芝 | Ultrasonic therapy device used under MRI guide |
US5467251A (en) | 1993-10-08 | 1995-11-14 | Northern Telecom Limited | Printed circuit boards and heat sink structures |
US20020169394A1 (en) * | 1993-11-15 | 2002-11-14 | Eppstein Jonathan A. | Integrated tissue poration, fluid harvesting and analysis device, and method therefor |
JPH07227394A (en) * | 1994-02-21 | 1995-08-29 | Olympus Optical Co Ltd | Ultrasonic diagnostic and curing system |
US5471988A (en) | 1993-12-24 | 1995-12-05 | Olympus Optical Co., Ltd. | Ultrasonic diagnosis and therapy system in which focusing point of therapeutic ultrasonic wave is locked at predetermined position within observation ultrasonic scanning range |
WO1995029737A1 (en) | 1994-05-03 | 1995-11-09 | Board Of Regents, The University Of Texas System | Apparatus and method for noninvasive doppler ultrasound-guided real-time control of tissue damage in thermal therapy |
US5620417A (en) * | 1994-07-07 | 1997-04-15 | Cardiovascular Imaging Systems Incorporated | Rapid exchange delivery catheter |
US8025661B2 (en) | 1994-09-09 | 2011-09-27 | Cardiofocus, Inc. | Coaxial catheter instruments for ablation with radiant energy |
US6176842B1 (en) | 1995-03-08 | 2001-01-23 | Ekos Corporation | Ultrasound assembly for use with light activated drugs |
US5735280A (en) * | 1995-05-02 | 1998-04-07 | Heart Rhythm Technologies, Inc. | Ultrasound energy delivery system and method |
US5895355A (en) | 1995-05-23 | 1999-04-20 | Cardima, Inc. | Over-the-wire EP catheter |
DE19520749C1 (en) | 1995-06-07 | 1996-08-08 | Siemens Ag | Ultrasonic therapeutic appts. with X-ray transparent source of waves |
JPH09122139A (en) * | 1995-10-31 | 1997-05-13 | Olympus Optical Co Ltd | Ultrasonic treatment device |
US5895356A (en) * | 1995-11-15 | 1999-04-20 | American Medical Systems, Inc. | Apparatus and method for transurethral focussed ultrasound therapy |
US6073048A (en) | 1995-11-17 | 2000-06-06 | Medtronic, Inc. | Baroreflex modulation with carotid sinus nerve stimulation for the treatment of heart failure |
US7226417B1 (en) | 1995-12-26 | 2007-06-05 | Volcano Corporation | High resolution intravascular ultrasound transducer assembly having a flexible substrate |
US6261233B1 (en) | 1996-01-05 | 2001-07-17 | Sunlight Medical Ltd. | Method and device for a blood velocity determination |
US5800482A (en) | 1996-03-06 | 1998-09-01 | Cardiac Pathways Corporation | Apparatus and method for linear lesion ablation |
US5971949A (en) | 1996-08-19 | 1999-10-26 | Angiosonics Inc. | Ultrasound transmission apparatus and method of using same |
US8663311B2 (en) | 1997-01-24 | 2014-03-04 | Celonova Stent, Inc. | Device comprising biodegradable bistable or multistable cells and methods of use |
JP2001512334A (en) | 1997-02-12 | 2001-08-21 | プロリフィックス メディカル,インコーポレイテッド | Equipment for removing material from stents |
US5772642A (en) | 1997-02-19 | 1998-06-30 | Medtronic, Inc. | Closed end catheter |
JPH10248854A (en) * | 1997-03-11 | 1998-09-22 | Olympus Optical Co Ltd | Ultrasonic treatment device |
US6012457A (en) | 1997-07-08 | 2000-01-11 | The Regents Of The University Of California | Device and method for forming a circumferential conduction block in a pulmonary vein |
FR2764516B1 (en) * | 1997-06-11 | 1999-09-03 | Inst Nat Sante Rech Med | ULTRASONIC INTRATISSULAIRE APPLICATOR FOR HYPERTHERMIA |
US6514249B1 (en) | 1997-07-08 | 2003-02-04 | Atrionix, Inc. | Positioning system and method for orienting an ablation element within a pulmonary vein ostium |
US6117101A (en) | 1997-07-08 | 2000-09-12 | The Regents Of The University Of California | Circumferential ablation device assembly |
US6538739B1 (en) | 1997-09-30 | 2003-03-25 | The Regents Of The University Of California | Bubble diagnostics |
US6500121B1 (en) | 1997-10-14 | 2002-12-31 | Guided Therapy Systems, Inc. | Imaging, therapy, and temperature monitoring ultrasonic system |
US6007499A (en) | 1997-10-31 | 1999-12-28 | University Of Washington | Method and apparatus for medical procedures using high-intensity focused ultrasound |
EP1043949A2 (en) | 1997-12-31 | 2000-10-18 | Pharmasonics, Inc. | Methods and systems for the inhibition of vascular hyperplasia |
US6077225A (en) | 1998-01-23 | 2000-06-20 | Hewlett-Packard Company | Ultrasound method for enhancing image presentation when contrast agents are used |
US6319241B1 (en) | 1998-04-30 | 2001-11-20 | Medtronic, Inc. | Techniques for positioning therapy delivery elements within a spinal cord or a brain |
US6042556A (en) | 1998-09-04 | 2000-03-28 | University Of Washington | Method for determining phase advancement of transducer elements in high intensity focused ultrasound |
JP4095729B2 (en) | 1998-10-26 | 2008-06-04 | 株式会社日立製作所 | Therapeutic ultrasound system |
US6645147B1 (en) * | 1998-11-25 | 2003-11-11 | Acuson Corporation | Diagnostic medical ultrasound image and system for contrast agent imaging |
US6607502B1 (en) * | 1998-11-25 | 2003-08-19 | Atrionix, Inc. | Apparatus and method incorporating an ultrasound transducer onto a delivery member |
US6296619B1 (en) | 1998-12-30 | 2001-10-02 | Pharmasonics, Inc. | Therapeutic ultrasonic catheter for delivering a uniform energy dose |
US6855123B2 (en) | 2002-08-02 | 2005-02-15 | Flow Cardia, Inc. | Therapeutic ultrasound system |
US6743196B2 (en) * | 1999-03-01 | 2004-06-01 | Coaxia, Inc. | Partial aortic occlusion devices and methods for cerebral perfusion augmentation |
EP1769759B1 (en) | 1999-05-11 | 2008-08-13 | Atrionix, Inc. | Apparatus for ultrasound ablation |
US6217530B1 (en) * | 1999-05-14 | 2001-04-17 | University Of Washington | Ultrasonic applicator for medical applications |
US7778688B2 (en) | 1999-05-18 | 2010-08-17 | MediGuide, Ltd. | System and method for delivering a stent to a selected position within a lumen |
FR2794961B1 (en) | 1999-06-16 | 2001-09-21 | Global Link Finance | PROCESS FOR DETERMINING THE TIME OFFSET BETWEEN THE INSTANTS OF THE PASSAGE OF A SAME PULSE WAVE IN TWO DISTINCT MEASUREMENT POINTS OF AN ARTERIAL NETWORK OF A LIVING BEING AND ESTIMATING ITS AORTIC PRESSURE |
US6235024B1 (en) | 1999-06-21 | 2001-05-22 | Hosheng Tu | Catheters system having dual ablation capability |
US20010007940A1 (en) | 1999-06-21 | 2001-07-12 | Hosheng Tu | Medical device having ultrasound imaging and therapeutic means |
US7510536B2 (en) * | 1999-09-17 | 2009-03-31 | University Of Washington | Ultrasound guided high intensity focused ultrasound treatment of nerves |
US20040097996A1 (en) | 1999-10-05 | 2004-05-20 | Omnisonics Medical Technologies, Inc. | Apparatus and method of removing occlusions using an ultrasonic medical device operating in a transverse mode |
US6652547B2 (en) | 1999-10-05 | 2003-11-25 | Omnisonics Medical Technologies, Inc. | Apparatus and method of removing occlusions using ultrasonic medical device operating in a transverse mode |
US6695782B2 (en) | 1999-10-05 | 2004-02-24 | Omnisonics Medical Technologies, Inc. | Ultrasonic probe device with rapid attachment and detachment means |
US20050240170A1 (en) | 1999-10-25 | 2005-10-27 | Therus Corporation | Insertable ultrasound probes, systems, and methods for thermal therapy |
CA2389260A1 (en) | 1999-10-27 | 2001-05-03 | Neuroscience Toolworks, Inc. | Sonar-controlled apparatus for the delivery of electromagnetic radiation |
US6626855B1 (en) | 1999-11-26 | 2003-09-30 | Therus Corpoation | Controlled high efficiency lesion formation using high intensity ultrasound |
EP1237487A4 (en) | 1999-12-06 | 2010-11-03 | Simcha Milo | Ultrasonic medical device |
CA2394892A1 (en) | 1999-12-23 | 2001-06-28 | Therus Corporation | Ultrasound transducers for imaging and therapy |
US7166098B1 (en) | 1999-12-30 | 2007-01-23 | Advanced Cardiovascular Systems, Inc. | Medical assembly with transducer for local delivery of a therapeutic substance and method of using same |
US8221402B2 (en) | 2000-01-19 | 2012-07-17 | Medtronic, Inc. | Method for guiding a medical device |
US6451013B1 (en) | 2000-01-19 | 2002-09-17 | Medtronic Xomed, Inc. | Methods of tonsil reduction using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US6457365B1 (en) * | 2000-02-09 | 2002-10-01 | Endosonics Corporation | Method and apparatus for ultrasonic imaging |
US20020048310A1 (en) | 2000-03-07 | 2002-04-25 | Heuser Richard R. | Catheter for thermal and ultrasound evaluation of arteriosclerotic plaque |
US6428477B1 (en) | 2000-03-10 | 2002-08-06 | Koninklijke Philips Electronics, N.V. | Delivery of theraputic ultrasound by two dimensional ultrasound array |
JP2003527940A (en) | 2000-03-24 | 2003-09-24 | トランサージカル,インコーポレイテッド | Apparatus and method for performing internal heating procedures |
AU2001249752A1 (en) | 2000-03-31 | 2001-10-15 | Rita Medical Systems, Inc. | Tissue biopsy and treatment apparatus and method |
JP4754148B2 (en) * | 2000-05-16 | 2011-08-24 | アトリオニックス・インコーポレイテッド | Apparatus and method for incorporating an ultrasonic transducer into a delivery member |
AU2001266824B2 (en) * | 2000-06-13 | 2005-05-12 | Atrionix, Inc. | Surgical ablation probe for forming a circumferential lesion |
AU7346801A (en) | 2000-07-13 | 2002-01-30 | Transurgical Inc | Energy application with inflatable annular lens |
AU7347101A (en) | 2000-07-13 | 2002-01-30 | Transurgical Inc | Thermal treatment methods and apparatus with focused energy application |
GB2365127A (en) | 2000-07-20 | 2002-02-13 | Jomed Imaging Ltd | Catheter |
SG105459A1 (en) | 2000-07-24 | 2004-08-27 | Micron Technology Inc | Mems heat pumps for integrated circuit heat dissipation |
US20030158545A1 (en) | 2000-09-28 | 2003-08-21 | Arthrocare Corporation | Methods and apparatus for treating back pain |
US6740040B1 (en) | 2001-01-30 | 2004-05-25 | Advanced Cardiovascular Systems, Inc. | Ultrasound energy driven intraventricular catheter to treat ischemia |
US20030032898A1 (en) | 2001-05-29 | 2003-02-13 | Inder Raj. S. Makin | Method for aiming ultrasound for medical treatment |
US6932771B2 (en) | 2001-07-09 | 2005-08-23 | Civco Medical Instruments Co., Inc. | Tissue warming device and method |
US6763722B2 (en) * | 2001-07-13 | 2004-07-20 | Transurgical, Inc. | Ultrasonic transducers |
US7285116B2 (en) | 2004-05-15 | 2007-10-23 | Irvine Biomedical Inc. | Non-contact tissue ablation device and methods thereof |
US8974446B2 (en) | 2001-10-11 | 2015-03-10 | St. Jude Medical, Inc. | Ultrasound ablation apparatus with discrete staggered ablation zones |
US8419729B2 (en) | 2001-12-04 | 2013-04-16 | Endoscopic Technologies, Inc. | Cardiac ablation devices and methods |
EP1455672B1 (en) | 2001-12-14 | 2008-05-14 | Monteris Medical Inc. | Hyperthermia treatment and probe therefor |
US6998898B2 (en) | 2002-02-11 | 2006-02-14 | Texas Instruments Incorporated | Programmable front end for a receiving channel |
US20030163190A1 (en) | 2002-02-25 | 2003-08-28 | Scimed Life Systems, Inc. | High temperature stent delivery system |
US7162303B2 (en) | 2002-04-08 | 2007-01-09 | Ardian, Inc. | Renal nerve stimulation method and apparatus for treatment of patients |
US8145316B2 (en) | 2002-04-08 | 2012-03-27 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
US8347891B2 (en) | 2002-04-08 | 2013-01-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen |
US7653438B2 (en) | 2002-04-08 | 2010-01-26 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
US7853333B2 (en) | 2002-04-08 | 2010-12-14 | Ardian, Inc. | Methods and apparatus for multi-vessel renal neuromodulation |
US7756583B2 (en) | 2002-04-08 | 2010-07-13 | Ardian, Inc. | Methods and apparatus for intravascularly-induced neuromodulation |
US7617005B2 (en) | 2002-04-08 | 2009-11-10 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
US7620451B2 (en) | 2005-12-29 | 2009-11-17 | Ardian, Inc. | Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach |
US6978174B2 (en) | 2002-04-08 | 2005-12-20 | Ardian, Inc. | Methods and devices for renal nerve blocking |
US20030199768A1 (en) * | 2002-04-19 | 2003-10-23 | Cespedes Eduardo Ignacio | Methods and apparatus for the identification and stabilization of vulnerable plaque |
US20030199747A1 (en) * | 2002-04-19 | 2003-10-23 | Michlitsch Kenneth J. | Methods and apparatus for the identification and stabilization of vulnerable plaque |
US20130197555A1 (en) * | 2002-07-01 | 2013-08-01 | Recor Medical, Inc. | Intraluminal devices and methods for denervation |
US6866662B2 (en) | 2002-07-23 | 2005-03-15 | Biosense Webster, Inc. | Ablation catheter having stabilizing array |
JP2004062402A (en) * | 2002-07-26 | 2004-02-26 | Fujitsu Ltd | Timeout management system, timeout management server, and timeout management program |
US6942677B2 (en) | 2003-02-26 | 2005-09-13 | Flowcardia, Inc. | Ultrasound catheter apparatus |
US7074188B2 (en) | 2002-08-26 | 2006-07-11 | The Cleveland Clinic Foundation | System and method of characterizing vascular tissue |
US7220233B2 (en) | 2003-04-08 | 2007-05-22 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
JP2006508776A (en) | 2002-09-20 | 2006-03-16 | フローメディカ,インコーポレイテッド | Method and apparatus for selective substance delivery via an intrarenal catheter |
WO2004026150A2 (en) | 2002-09-20 | 2004-04-01 | Sherwood Sevices Ag | Electrosurgical instrument for fragmenting, cutting and coagulating tissue |
US7237024B2 (en) * | 2002-10-15 | 2007-06-26 | Aol Llc | Cross-site timed out authentication management |
US7156816B2 (en) | 2002-11-26 | 2007-01-02 | Biosense, Inc. | Ultrasound pulmonary vein isolation |
CA2412856A1 (en) | 2002-11-27 | 2004-05-27 | Frederic Bodin | Pharmaceutical composition for the treatment of pulmonary arterial hypertension |
KR20050084366A (en) | 2002-12-18 | 2005-08-26 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | Ultrasonic doppler system for determining movement of artery walls |
WO2004060448A2 (en) | 2003-01-03 | 2004-07-22 | Ekos Corporation | Ultrasonic catheter with axial energy field |
US8021359B2 (en) | 2003-02-13 | 2011-09-20 | Coaptus Medical Corporation | Transseptal closure of a patent foramen ovale and other cardiac defects |
JP2004290462A (en) | 2003-03-27 | 2004-10-21 | Terumo Corp | Optimal position profiling system of applicator |
CN1279595C (en) | 2003-05-30 | 2006-10-11 | 中国科学院上海微系统与信息技术研究所 | Base plate with minitype connection components and its preparation method |
US7220258B2 (en) | 2003-07-02 | 2007-05-22 | Cancercure As | Therapeutic probe, method and system |
JP2005027907A (en) | 2003-07-07 | 2005-02-03 | Olympus Corp | Ultrasonic surgery system and probe |
WO2005041748A2 (en) | 2003-09-12 | 2005-05-12 | Minnow Medical, Llc | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
US7347859B2 (en) | 2003-12-18 | 2008-03-25 | Boston Scientific, Scimed, Inc. | Tissue treatment system and method for tissue perfusion using feedback control |
US7727228B2 (en) | 2004-03-23 | 2010-06-01 | Medtronic Cryocath Lp | Method and apparatus for inflating and deflating balloon catheters |
US7854733B2 (en) | 2004-03-24 | 2010-12-21 | Biosense Webster, Inc. | Phased-array for tissue treatment |
JP4960220B2 (en) | 2004-04-19 | 2012-06-27 | ボストン サイエンティフィック サイムド,インコーポレイテッド | Ablation device having sensor structure |
US7313442B2 (en) | 2004-04-30 | 2007-12-25 | Advanced Neuromodulation Systems, Inc. | Method of treating mood disorders and/or anxiety disorders by brain stimulation |
JP2008508024A (en) | 2004-07-28 | 2008-03-21 | アーディアン インコーポレイテッド | Renal nerve blocking method and apparatus |
US7540852B2 (en) | 2004-08-26 | 2009-06-02 | Flowcardia, Inc. | Ultrasound catheter devices and methods |
US7824348B2 (en) | 2004-09-16 | 2010-11-02 | Guided Therapy Systems, L.L.C. | System and method for variable depth ultrasound treatment |
US8535228B2 (en) | 2004-10-06 | 2013-09-17 | Guided Therapy Systems, Llc | Method and system for noninvasive face lifts and deep tissue tightening |
US7479106B2 (en) | 2004-09-30 | 2009-01-20 | Boston Scientific Scimed, Inc. | Automated control of irrigation and aspiration in a single-use endoscope |
EP2279696A3 (en) | 2004-10-06 | 2014-02-26 | Guided Therapy Systems, L.L.C. | Method and system for non-invasive mastopexy |
US7883506B2 (en) | 2004-11-08 | 2011-02-08 | Boston Scientific Scimed, Inc. | Devices and methods for the treatment of endometriosis |
US7713210B2 (en) | 2004-11-23 | 2010-05-11 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for localizing an ultrasound catheter |
US20060173387A1 (en) | 2004-12-10 | 2006-08-03 | Douglas Hansmann | Externally enhanced ultrasonic therapy |
US20060135953A1 (en) | 2004-12-22 | 2006-06-22 | Wlodzimierz Kania | Tissue ablation system including guidewire with sensing element |
WO2006110773A2 (en) * | 2005-04-12 | 2006-10-19 | Ekos Corporation | Ultrasound catheter with cavitation promoting surface |
US7850683B2 (en) | 2005-05-20 | 2010-12-14 | Myoscience, Inc. | Subdermal cryogenic remodeling of muscles, nerves, connective tissue, and/or adipose tissue (fat) |
EP2759276A1 (en) | 2005-06-20 | 2014-07-30 | Medtronic Ablation Frontiers LLC | Ablation catheter |
US7819868B2 (en) | 2005-06-21 | 2010-10-26 | St. Jude Medical, Atrial Fibrilation Division, Inc. | Ablation catheter with fluid distribution structures |
US7628789B2 (en) | 2005-08-17 | 2009-12-08 | Pulmonx Corporation | Selective lung tissue ablation |
JP4402629B2 (en) | 2005-08-19 | 2010-01-20 | オリンパスメディカルシステムズ株式会社 | Ultrasonic coagulation and incision device |
US20070142879A1 (en) | 2005-12-20 | 2007-06-21 | The Cleveland Clinic Foundation | Apparatus and method for modulating the baroreflex system |
US20070088346A1 (en) | 2005-10-14 | 2007-04-19 | Mirizzi Michael S | Method and apparatus for varicose vein treatment using acoustic hemostasis |
US20070167824A1 (en) | 2005-11-30 | 2007-07-19 | Warren Lee | Method of manufacture of catheter tips, including mechanically scanning ultrasound probe catheter tip, and apparatus made by the method |
JP5385780B2 (en) | 2006-04-04 | 2014-01-08 | ヴォルケイノウ・コーポレーション | Ultrasonic catheter and hand-held device for manipulating the transducer at the distal end of the catheter |
US20070265560A1 (en) | 2006-04-24 | 2007-11-15 | Ekos Corporation | Ultrasound Therapy System |
EP2021846B1 (en) | 2006-05-19 | 2017-05-03 | Koninklijke Philips N.V. | Ablation device with optimized input power profile |
US7704212B2 (en) | 2006-06-14 | 2010-04-27 | Spacelabs Healthcare | Reusable invasive fluid pressure monitoring apparatus and method |
EP2218479A3 (en) | 2006-06-28 | 2013-06-05 | Medtronic Ardian Luxembourg S.à.r.l. | Methods and systems for thermally-induced renal neuromodulation |
WO2008002654A2 (en) | 2006-06-28 | 2008-01-03 | C.R. Bard, Inc. | Methods and apparatus for assessing and improving electrode contact with cardiac tissue |
US8430861B2 (en) * | 2006-08-02 | 2013-04-30 | Osprey Medical, Inc. | Microvascular obstruction detection and therapy |
US20080039727A1 (en) | 2006-08-08 | 2008-02-14 | Eilaz Babaev | Ablative Cardiac Catheter System |
US20090221955A1 (en) | 2006-08-08 | 2009-09-03 | Bacoustics, Llc | Ablative ultrasonic-cryogenic methods |
WO2008045877A2 (en) | 2006-10-10 | 2008-04-17 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Electrode tip and ablation system |
GB0622451D0 (en) | 2006-11-10 | 2006-12-20 | Intelligent Earth Ltd | Object position and orientation detection device |
US7775994B2 (en) | 2006-12-11 | 2010-08-17 | Emigrant Bank, N.A. | Ultrasound medical systems and related methods |
US8382689B2 (en) | 2007-02-08 | 2013-02-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Device and method for high intensity focused ultrasound ablation with acoustic lens |
US8473030B2 (en) | 2007-01-12 | 2013-06-25 | Medtronic Vascular, Inc. | Vessel position and configuration imaging apparatus and methods |
DK2107920T3 (en) | 2007-01-29 | 2013-10-21 | Univ Fraser Simon | TRANSVASCULAR NERVESTIMULATION DEVICE |
US8030754B2 (en) | 2007-01-31 | 2011-10-04 | Hewlett-Packard Development Company, L.P. | Chip cooling channels formed in wafer bonding gap |
EP2730247B1 (en) | 2007-02-22 | 2017-04-26 | Ramot at Tel Aviv University Ltd. | Apparatus for intraluminal treatments |
US20080300571A1 (en) | 2007-05-30 | 2008-12-04 | Lepivert Patrick | Process and device for selectively treating interstitial tissue |
US7634315B2 (en) | 2007-05-31 | 2009-12-15 | Pacesetter, Inc. | Techniques to monitor and trend nerve damage and recovery |
US7460369B1 (en) | 2007-06-01 | 2008-12-02 | Advanced Micro Devices, Inc. | Counterflow microchannel cooler for integrated circuits |
ES2381641T3 (en) | 2007-06-13 | 2012-05-30 | Pervasis Therapeutics, Inc. | Methods and devices for minimally invasive administration of fluid compositions containing cells |
JP5014051B2 (en) | 2007-10-09 | 2012-08-29 | 株式会社ユネクス | Vascular ultrasound image measurement method |
WO2009048969A1 (en) | 2007-10-09 | 2009-04-16 | Cabochon Aesthetics, Inc. | Ultrasound apparatus with treatment lens |
JP5490706B2 (en) * | 2007-10-26 | 2014-05-14 | ユニバーシティ オブ バージニア パテント ファウンデーション | Therapy and imaging system using ultrasound energy and microbubbles and related methods |
WO2009073753A1 (en) | 2007-12-03 | 2009-06-11 | Kolo Technologies, Inc. | Cmut packaging for ultrasound system |
US20090149782A1 (en) | 2007-12-11 | 2009-06-11 | Donald Cohen | Non-Invasive Neural Stimulation |
US20090163807A1 (en) | 2007-12-21 | 2009-06-25 | Sliwa John W | Finger-mounted or robot-mounted transducer device |
EP2092916A1 (en) | 2008-02-19 | 2009-08-26 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | A method of treating an ocular pathology by applying high intensity focused ultrasound and device thereof |
CN102014779B (en) | 2008-05-09 | 2014-10-22 | 赫莱拉公司 | Systems, assemblies, and methods for treating a bronchial tree |
US8591419B2 (en) | 2008-07-14 | 2013-11-26 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Methods and devices for modulating cellular activity using ultrasound |
US20100049099A1 (en) | 2008-07-18 | 2010-02-25 | Vytronus, Inc. | Method and system for positioning an energy source |
US8585695B2 (en) | 2008-07-22 | 2013-11-19 | Hue-Teh Shih | Systems and methods for noncontact ablation |
WO2010016877A2 (en) | 2008-08-05 | 2010-02-11 | Misonix Incorporated | Hifu treatment probe |
US9700365B2 (en) | 2008-10-06 | 2017-07-11 | Santa Anna Tech Llc | Method and apparatus for the ablation of gastrointestinal tissue |
US8475379B2 (en) | 2008-11-17 | 2013-07-02 | Vytronus, Inc. | Systems and methods for ablating body tissue |
JP5307900B2 (en) | 2008-11-17 | 2013-10-02 | べシックス・バスキュラー・インコーポレイテッド | Selective energy storage without knowledge of organizational topography |
US9352174B2 (en) | 2008-12-30 | 2016-05-31 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Ablation system with blood leakage minimization and tissue protective capabilities |
US8540662B2 (en) | 2009-03-24 | 2013-09-24 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Medical devices having an atraumatic distal tip segment |
WO2010118307A1 (en) | 2009-04-09 | 2010-10-14 | The Trustees Of The University Of Pennsylvania | Methods and systems for image-guided treatment of blood vessels |
EP2456369B1 (en) * | 2009-07-21 | 2018-10-24 | University Of Virginia Patent Foundation | Systems for ultrasound imaging and insonation of microbubbles |
CN102469986B (en) * | 2009-07-29 | 2015-01-28 | 皇家飞利浦电子股份有限公司 | Device with integrated ultrasound transducers and flow sensor |
US20110028962A1 (en) | 2009-07-31 | 2011-02-03 | Randell Werneth | Adjustable pulmonary vein ablation catheter |
JP2013505068A (en) | 2009-09-16 | 2013-02-14 | ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム | Body temperature changes in the mammalian body |
US20110092880A1 (en) | 2009-10-12 | 2011-04-21 | Michael Gertner | Energetic modulation of nerves |
US9119951B2 (en) * | 2009-10-12 | 2015-09-01 | Kona Medical, Inc. | Energetic modulation of nerves |
US8986211B2 (en) * | 2009-10-12 | 2015-03-24 | Kona Medical, Inc. | Energetic modulation of nerves |
US9174065B2 (en) * | 2009-10-12 | 2015-11-03 | Kona Medical, Inc. | Energetic modulation of nerves |
US20140074076A1 (en) * | 2009-10-12 | 2014-03-13 | Kona Medical, Inc. | Non-invasive autonomic nervous system modulation |
US8295912B2 (en) * | 2009-10-12 | 2012-10-23 | Kona Medical, Inc. | Method and system to inhibit a function of a nerve traveling with an artery |
US20160059044A1 (en) * | 2009-10-12 | 2016-03-03 | Kona Medical, Inc. | Energy delivery to intraparenchymal regions of the kidney to treat hypertension |
US20110257563A1 (en) * | 2009-10-26 | 2011-10-20 | Vytronus, Inc. | Methods and systems for ablating tissue |
WO2011053182A1 (en) | 2009-11-02 | 2011-05-05 | Leontiev Vladimir Vasilievich | Information storage and processing device (ispd) |
US20110112400A1 (en) | 2009-11-06 | 2011-05-12 | Ardian, Inc. | High intensity focused ultrasound catheter apparatuses, systems, and methods for renal neuromodulation |
KR101820542B1 (en) | 2009-11-11 | 2018-01-19 | 호라이라 인코포레이티드 | Systems, apparatuses, and methods for treating tissue and controlling stenosis |
US9457171B2 (en) * | 2009-12-02 | 2016-10-04 | Renovorx, Inc. | Devices, methods and kits for delivery of therapeutic materials to a target artery |
AU2010332112B2 (en) | 2009-12-14 | 2015-06-04 | Mayo Foundation For Medical Education And Research | Device and method for treating cardiac disorders by modulating autonomic response |
US9199096B2 (en) | 2009-12-31 | 2015-12-01 | Zetroz, Inc. | Portable ultrasound system |
US20110201973A1 (en) | 2010-02-18 | 2011-08-18 | St. Jude Medical, Inc. | Ultrasound compatible radiofrequency ablation electrode |
WO2011130534A2 (en) | 2010-04-14 | 2011-10-20 | Boston Scientific Scimed, Inc. | Renal artery denervation apparatus employing helical shaping arrangement |
US8834388B2 (en) | 2010-04-30 | 2014-09-16 | Medtronic Ablation Frontiers Llc | Method and apparatus to regulate a tissue temperature |
US8956346B2 (en) * | 2010-05-14 | 2015-02-17 | Rainbow Medical, Ltd. | Reflectance-facilitated ultrasound treatment and monitoring |
US8617150B2 (en) | 2010-05-14 | 2013-12-31 | Liat Tsoref | Reflectance-facilitated ultrasound treatment |
US20120053577A1 (en) | 2010-08-25 | 2012-03-01 | Neuwave Medical, Inc. | Energy delivery systems and uses thereof |
US20120095371A1 (en) | 2010-10-18 | 2012-04-19 | CardioSonic Ltd. | Ultrasound transducer and cooling thereof |
US20120215106A1 (en) | 2010-10-18 | 2012-08-23 | CardioSonic Ltd. | Tissue treatment |
WO2012052924A1 (en) | 2010-10-18 | 2012-04-26 | CardioSonic Ltd. | Separation device for ultrasound element |
US9566456B2 (en) | 2010-10-18 | 2017-02-14 | CardioSonic Ltd. | Ultrasound transceiver and cooling thereof |
US9028417B2 (en) | 2010-10-18 | 2015-05-12 | CardioSonic Ltd. | Ultrasound emission element |
EP2661304A1 (en) | 2010-10-18 | 2013-11-13 | Cardiosonic Ltd. | Therapeutics reservoir |
US9326751B2 (en) | 2010-11-17 | 2016-05-03 | Boston Scientific Scimed, Inc. | Catheter guidance of external energy for renal denervation |
EP2455133A1 (en) | 2010-11-18 | 2012-05-23 | Koninklijke Philips Electronics N.V. | Catheter comprising capacitive micromachined ultrasonic transducers with an adjustable focus |
US20120232409A1 (en) | 2010-12-15 | 2012-09-13 | Stahmann Jeffrey E | System and method for renal artery occlusion during renal denervation therapy |
CN103534502A (en) | 2010-12-17 | 2014-01-22 | 龙乔有限责任公司 | A universal joint assembly for an automotive driveline system |
WO2012112165A1 (en) | 2011-02-18 | 2012-08-23 | Recor Medical, Inc. | Apparatus for effecting renal denervation using ultrasound |
WO2013030743A1 (en) | 2011-08-26 | 2013-03-07 | Symap Medical Limited | System and method for locating and identifying functional nerves innervating wall of arteries and catheters for same |
WO2013090848A1 (en) | 2011-12-15 | 2013-06-20 | The Board Of Trustees Of The Leland Stanford Junior University | Apparatus and methods for treating pulmonary hypertension |
WO2013111136A2 (en) | 2012-01-25 | 2013-08-01 | CardioSonic Ltd. | Selective reduction of nerve activity |
US20130225595A1 (en) | 2012-02-29 | 2013-08-29 | Gilead Sciences, Inc. | Method for treating pulmonary arterial hypertension in a patient not having idiopathic pulmonary fibrosis |
WO2013134479A1 (en) | 2012-03-08 | 2013-09-12 | Medtronic Ardian Luxembourg Sarl | Neuromodulation and associated systems and methods for the management of pain |
WO2013157009A2 (en) | 2012-04-18 | 2013-10-24 | CardioSonic Ltd. | Tissue treatment |
US10357304B2 (en) | 2012-04-18 | 2019-07-23 | CardioSonic Ltd. | Tissue treatment |
CN104394933A (en) | 2012-04-27 | 2015-03-04 | 美敦力阿迪安卢森堡有限公司 | Ultrasound apparatuses, systems, and methods for renal neuromodulation |
US20130296646A1 (en) | 2012-05-02 | 2013-11-07 | Enigma Medical, Inc. | Non-invasive or minimally invasive paraspinal sympathetic ablation for the treatment of resistant hypertension |
WO2013173481A2 (en) | 2012-05-18 | 2013-11-21 | Holaira, Inc. | Compact delivery pulmonary treatment systems and methods for improving pulmonary function |
US11357447B2 (en) | 2012-05-31 | 2022-06-14 | Sonivie Ltd. | Method and/or apparatus for measuring renal denervation effectiveness |
WO2014005155A1 (en) | 2012-06-30 | 2014-01-03 | Cibiem, Inc. | Carotid body ablation via directed energy |
US20140024975A1 (en) | 2012-07-17 | 2014-01-23 | Liposonix, Inc. | Hifu components with integrated calibration parameters |
EP2900160A2 (en) | 2012-09-26 | 2015-08-05 | Boston Scientific Scimed, Inc. | Catheter having rib and spine structure supporting multiple electrodes for renal nerve ablation |
CN102908191A (en) | 2012-11-13 | 2013-02-06 | 陈绍良 | Multipolar synchronous pulmonary artery radiofrequency ablation catheter |
US9827036B2 (en) | 2012-11-13 | 2017-11-28 | Pulnovo Medical (Wuxi) Co., Ltd. | Multi-pole synchronous pulmonary artery radiofrequency ablation catheter |
US20140163652A1 (en) | 2012-12-10 | 2014-06-12 | Thomas Witzel | Method for treating and repairing mitral valve annulus |
US20140257262A1 (en) | 2013-03-11 | 2014-09-11 | Alexandre Carpentier | Interstitial ultrasonic disposable applicator and method for tissue thermal conformal volume ablation and monitoring the same |
WO2014188430A2 (en) | 2013-05-23 | 2014-11-27 | CardioSonic Ltd. | Devices and methods for renal denervation and assessment thereof |
US9584438B2 (en) * | 2013-06-02 | 2017-02-28 | Microsoft Technology Licensing, Llc | Idle worker-process page-out |
US20150112234A1 (en) * | 2013-10-18 | 2015-04-23 | Medtronic Ardian Luxembourg S.a.r.I | Devices, systems, and methods for the selective positioning of an intravascular ultrasound neuromodulation device |
US20160374710A1 (en) * | 2014-03-12 | 2016-12-29 | Yegor D. Sinelnikov | Carotid body ablation with a transvenous ultrasound imaging and ablation catheter |
EP3578228B1 (en) | 2014-04-17 | 2022-02-16 | Digma Medical Ltd. | Systems for blocking neural activity in the duodenum |
JP6608924B2 (en) | 2014-07-11 | 2019-11-20 | プルノヴォ メディカル (ウーシー) カンパニー リミテッド | Multipolar simultaneous pulmonary artery radiofrequency ablation catheter |
CN107530124B (en) | 2014-11-14 | 2021-07-20 | 美敦力阿迪安卢森堡有限公司 | Catheter apparatus for modulating nerves in communication with the pulmonary system and associated systems and methods |
EP3223712B1 (en) | 2014-11-26 | 2023-08-30 | Sonivie Ltd. | Devices for pulmonary hypertension treatment |
JP2016174752A (en) | 2015-03-20 | 2016-10-06 | ソニー株式会社 | Blood state monitoring device, blood state monitoring method, blood state monitoring system, and blood state improving program |
US10736692B2 (en) | 2016-04-28 | 2020-08-11 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation and associated systems and methods for the treatment of cancer |
WO2018173047A1 (en) | 2017-03-20 | 2018-09-27 | Sonivie Ltd. | Method for treating heart failure by improving ejection fraction of a patient |
-
2011
- 2011-03-16 US US13/049,022 patent/US20120095371A1/en not_active Abandoned
- 2011-03-16 US US13/049,151 patent/US8585601B2/en active Active
- 2011-03-16 US US13/049,013 patent/US8696581B2/en active Active
- 2011-10-18 WO PCT/IB2011/054636 patent/WO2012052922A1/en active Application Filing
- 2011-10-18 US US13/880,095 patent/US20130211437A1/en not_active Abandoned
- 2011-10-18 EP EP11782221.3A patent/EP2629681B1/en active Active
- 2011-10-18 EP EP11782476.3A patent/EP2629683B1/en active Active
- 2011-10-18 WO PCT/IB2011/054635 patent/WO2012052921A1/en active Application Filing
- 2011-10-18 EP EP11785792.0A patent/EP2629849A1/en not_active Withdrawn
- 2011-10-18 WO PCT/IB2011/054641 patent/WO2012052927A1/en active Application Filing
- 2011-10-18 JP JP2013534435A patent/JP2013543422A/en active Pending
- 2011-10-18 CN CN201180060862.8A patent/CN103260532B/en active Active
-
2013
- 2013-10-09 US US14/049,238 patent/US9326786B2/en active Active
-
2014
- 2014-02-26 US US14/190,113 patent/US10368893B2/en active Active
-
2019
- 2019-06-25 US US16/451,087 patent/US11730506B2/en active Active
-
2023
- 2023-08-21 US US18/235,904 patent/US20230389954A1/en active Pending
Patent Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6953460B2 (en) * | 1997-07-08 | 2005-10-11 | Maguire Mark A | Medical device with sensor cooperating with expandable member |
US20060084966A1 (en) * | 1997-07-08 | 2006-04-20 | Maguire Mark A | Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall |
US20070142831A1 (en) * | 1998-05-20 | 2007-06-21 | Shadduck John H | Surgical Instruments And Techniques For Treating Gastro-Esophageal Reflux Disease |
US7220261B2 (en) * | 1999-05-24 | 2007-05-22 | Sciogen, Inc. | Electrical discharge devices and techniques for medical procedures |
USRE40815E1 (en) * | 1999-06-25 | 2009-06-30 | Ams Research Corporation | Control system for cryosurgery |
US20130072928A1 (en) * | 2002-07-01 | 2013-03-21 | Alan K. Schaer | Method and apparatus employing ultrasound energy to treat body sphincters |
US20080114354A1 (en) * | 2003-04-29 | 2008-05-15 | Ncontact Surgical, Inc. | Vacuum coagulation probes |
US20050015079A1 (en) * | 2003-07-17 | 2005-01-20 | Yaron Keider | Ultrasound ablation catheter and method for its use |
US7678104B2 (en) * | 2003-07-17 | 2010-03-16 | Biosense Webster, Inc. | Ultrasound ablation catheter and method for its use |
US7655005B2 (en) * | 2003-12-31 | 2010-02-02 | Biosense Webster, Inc. | Circumferential ablation device assembly with dual expandable members |
US20050215946A1 (en) * | 2004-01-29 | 2005-09-29 | Hansmann Douglas R | Method and apparatus for detecting vascular conditions with a catheter |
US20070222339A1 (en) * | 2004-04-20 | 2007-09-27 | Mark Lukacs | Arrayed ultrasonic transducer |
US7538425B2 (en) * | 2004-07-28 | 2009-05-26 | Delphi Technologies, Inc. | Power semiconductor package having integral fluid cooling |
US20060241442A1 (en) * | 2004-10-06 | 2006-10-26 | Guided Therapy Systems, L.L.C. | Method and system for treating photoaged tissue |
US20080215039A1 (en) * | 2005-08-04 | 2008-09-04 | Inolase 2002 Ltd. | Method and Apparatus for Inhibiting Pain Signals During Vacuum-Assisted Medical Treatments of the Skin |
US20070233057A1 (en) * | 2006-04-04 | 2007-10-04 | Namiki Seimitsu Houseki Kabushiki Kaisha | Radio frequency medical treatment device and system and usage method thereof |
US20080183110A1 (en) * | 2006-09-06 | 2008-07-31 | Davenport Scott A | Ultrasound system and method for hair removal |
US20080195000A1 (en) * | 2006-09-06 | 2008-08-14 | Spooner Gregory J R | System and Method for Dermatological Treatment Using Ultrasound |
US20080077202A1 (en) * | 2006-09-26 | 2008-03-27 | Juniper Medical, Inc. | Tissue Treatment Methods |
US20080086073A1 (en) * | 2006-10-10 | 2008-04-10 | Mcdaniel Benjamin | Multi-region staged inflation balloon |
US20080146924A1 (en) * | 2006-12-15 | 2008-06-19 | General Electric Company | System and method for actively cooling an ultrasound probe |
US20080281297A1 (en) * | 2007-03-19 | 2008-11-13 | Benny Pesach | Method and device for drug delivery |
US20090018446A1 (en) * | 2007-07-10 | 2009-01-15 | Insightec, Ltd. | Transrectal ultrasound ablation probe |
US20090036914A1 (en) * | 2007-07-31 | 2009-02-05 | Houser Kevin L | Temperature controlled ultrasonic surgical instruments |
US20090131930A1 (en) * | 2007-11-16 | 2009-05-21 | Daniel Gelbart | Medical device for use in bodily lumens, for example an atrium |
US20090281478A1 (en) * | 2008-05-08 | 2009-11-12 | Ethicon Endo-Surgery, Inc. | Vibratory trocar |
US20090299360A1 (en) * | 2008-05-28 | 2009-12-03 | Medwaves, Inc. | Tissue ablation apparatus and method using ultrasonic imaging |
US20130207519A1 (en) * | 2008-09-18 | 2013-08-15 | N. Christopher Chaggares | Methods for manufacturing ultrasound transducers and other components |
US20100228162A1 (en) * | 2009-03-09 | 2010-09-09 | Sliwa John W | Apparatus and Method for Tissue Ablation with Near-Field Cooling |
US20120232436A1 (en) * | 2009-10-30 | 2012-09-13 | Sound Interventions, Inc. | Method and Apparatus for Treatment of Hypertension Through Percutaneous Ultrasound Renal Denervation |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10335280B2 (en) | 2000-01-19 | 2019-07-02 | Medtronic, Inc. | Method for ablating target tissue of a patient |
US8845629B2 (en) | 2002-04-08 | 2014-09-30 | Medtronic Ardian Luxembourg S.A.R.L. | Ultrasound apparatuses for thermally-induced renal neuromodulation |
US9486270B2 (en) | 2002-04-08 | 2016-11-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for bilateral renal neuromodulation |
US10293190B2 (en) | 2002-04-08 | 2019-05-21 | Medtronic Ardian Luxembourg S.A.R.L. | Thermally-induced renal neuromodulation and associated systems and methods |
US9186198B2 (en) | 2002-04-08 | 2015-11-17 | Medtronic Ardian Luxembourg S.A.R.L. | Ultrasound apparatuses for thermally-induced renal neuromodulation and associated systems and methods |
US10589130B2 (en) | 2006-05-25 | 2020-03-17 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
US9028417B2 (en) | 2010-10-18 | 2015-05-12 | CardioSonic Ltd. | Ultrasound emission element |
US8585601B2 (en) | 2010-10-18 | 2013-11-19 | CardioSonic Ltd. | Ultrasound transducer |
US9326786B2 (en) | 2010-10-18 | 2016-05-03 | CardioSonic Ltd. | Ultrasound transducer |
US11730506B2 (en) | 2010-10-18 | 2023-08-22 | Sonivie Ltd. | Ultrasound transducer and uses thereof |
US10967160B2 (en) | 2010-10-18 | 2021-04-06 | CardioSonic Ltd. | Tissue treatment |
US8696581B2 (en) | 2010-10-18 | 2014-04-15 | CardioSonic Ltd. | Ultrasound transducer and uses thereof |
US9566456B2 (en) | 2010-10-18 | 2017-02-14 | CardioSonic Ltd. | Ultrasound transceiver and cooling thereof |
US10368893B2 (en) | 2010-10-18 | 2019-08-06 | CardioSonic Ltd. | Ultrasound transducer and uses thereof |
US10357304B2 (en) | 2012-04-18 | 2019-07-23 | CardioSonic Ltd. | Tissue treatment |
WO2013162765A1 (en) | 2012-04-23 | 2013-10-31 | St. Jude Medical, Inc. | Ultrasonic lesion feedback, antipop monitoring, and force detection |
US10864034B2 (en) | 2012-04-23 | 2020-12-15 | St. Jude Medical, Llc | Ultrasonic lesion feedback, antipop monitoring, and force detection |
US9717547B2 (en) | 2012-04-23 | 2017-08-01 | St. Jude Medical, Inc. | Ultrasonic lesion feedback, antipop monitoring, and force detection |
US9757180B2 (en) | 2012-04-24 | 2017-09-12 | Cibiem, Inc. | Endovascular catheters and methods for carotid body ablation |
US9393070B2 (en) | 2012-04-24 | 2016-07-19 | Cibiem, Inc. | Endovascular catheters and methods for carotid body ablation |
US10219855B2 (en) | 2012-04-24 | 2019-03-05 | Cibiem, Inc. | Endovascular catheters and methods for carotid body ablation |
US11357447B2 (en) | 2012-05-31 | 2022-06-14 | Sonivie Ltd. | Method and/or apparatus for measuring renal denervation effectiveness |
US12201444B2 (en) | 2012-05-31 | 2025-01-21 | Sonivie Ltd. | Method and/or apparatus for measuring renal denervation effectiveness |
US9402677B2 (en) | 2012-06-01 | 2016-08-02 | Cibiem, Inc. | Methods and devices for cryogenic carotid body ablation |
US9808303B2 (en) | 2012-06-01 | 2017-11-07 | Cibiem, Inc. | Methods and devices for cryogenic carotid body ablation |
US9398930B2 (en) | 2012-06-01 | 2016-07-26 | Cibiem, Inc. | Percutaneous methods and devices for carotid body ablation |
US9283033B2 (en) | 2012-06-30 | 2016-03-15 | Cibiem, Inc. | Carotid body ablation via directed energy |
US9770593B2 (en) | 2012-11-05 | 2017-09-26 | Pythagoras Medical Ltd. | Patient selection using a transluminally-applied electric current |
US10004557B2 (en) | 2012-11-05 | 2018-06-26 | Pythagoras Medical Ltd. | Controlled tissue ablation |
US12082868B2 (en) | 2012-11-13 | 2024-09-10 | Pulnovo Medical (Wuxi) Co., Ltd. | Multi-pole synchronous pulmonary artery radiofrequency ablation catheter |
US10076384B2 (en) | 2013-03-08 | 2018-09-18 | Symple Surgical, Inc. | Balloon catheter apparatus with microwave emitter |
US10933259B2 (en) | 2013-05-23 | 2021-03-02 | CardioSonic Ltd. | Devices and methods for renal denervation and assessment thereof |
US9955946B2 (en) | 2014-03-12 | 2018-05-01 | Cibiem, Inc. | Carotid body ablation with a transvenous ultrasound imaging and ablation catheter |
US10478249B2 (en) | 2014-05-07 | 2019-11-19 | Pythagoras Medical Ltd. | Controlled tissue ablation techniques |
US10383685B2 (en) | 2015-05-07 | 2019-08-20 | Pythagoras Medical Ltd. | Techniques for use with nerve tissue |
US11678932B2 (en) | 2016-05-18 | 2023-06-20 | Symap Medical (Suzhou) Limited | Electrode catheter with incremental advancement |
US11318331B2 (en) | 2017-03-20 | 2022-05-03 | Sonivie Ltd. | Pulmonary hypertension treatment |
US10543007B2 (en) * | 2017-03-31 | 2020-01-28 | Medtronic Vascular, Inc. | Cavitation catheter |
US20180280043A1 (en) * | 2017-03-31 | 2018-10-04 | Medtronic Vascular, Inc. | Cavitation catheter |
US11154730B2 (en) * | 2017-09-13 | 2021-10-26 | Ultra HOM, LLC | Medical device with CMUT array and solid state cooling, and associated methods and systems |
US20220072338A1 (en) * | 2017-09-13 | 2022-03-10 | Ultra HOM LLC | Medical device with cmut array and solid state cooling, and associated methods and systems |
US20190076674A1 (en) * | 2017-09-13 | 2019-03-14 | Ultra HOM LLC | Medical device with cmut array and solid state cooling, and associated methods and systems |
US11998766B2 (en) * | 2017-09-13 | 2024-06-04 | Ultra HOM LLC | Medical device with CMUT array and solid state cooling, and associated methods and systems |
Also Published As
Publication number | Publication date |
---|---|
US20140180197A1 (en) | 2014-06-26 |
WO2012052927A1 (en) | 2012-04-26 |
US20230389954A1 (en) | 2023-12-07 |
US11730506B2 (en) | 2023-08-22 |
EP2629683A1 (en) | 2013-08-28 |
US20130211437A1 (en) | 2013-08-15 |
JP2013543422A (en) | 2013-12-05 |
US20120095372A1 (en) | 2012-04-19 |
EP2629849A1 (en) | 2013-08-28 |
CN103260532A (en) | 2013-08-21 |
US8585601B2 (en) | 2013-11-19 |
US20190308003A1 (en) | 2019-10-10 |
WO2012052921A1 (en) | 2012-04-26 |
US9326786B2 (en) | 2016-05-03 |
US20140039477A1 (en) | 2014-02-06 |
CN103260532B (en) | 2015-09-16 |
WO2012052922A1 (en) | 2012-04-26 |
EP2629683B1 (en) | 2015-10-14 |
US10368893B2 (en) | 2019-08-06 |
EP2629681B1 (en) | 2017-07-12 |
US8696581B2 (en) | 2014-04-15 |
US20120095335A1 (en) | 2012-04-19 |
EP2629681A1 (en) | 2013-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230389954A1 (en) | 2023-12-07 | Ultrasound transducer and uses thereof |
US9566456B2 (en) | 2017-02-14 | Ultrasound transceiver and cooling thereof |
US10300308B2 (en) | 2019-05-28 | System, apparatus and method for high-intensity focused ultrasound (HIFU) and/or ultrasound delivery while protecting critical structures |
ter Haar et al. | 2007 | High intensity focused ultrasound: physical principles and devices |
US9028417B2 (en) | 2015-05-12 | Ultrasound emission element |
US20060173387A1 (en) | 2006-08-03 | Externally enhanced ultrasonic therapy |
US6494874B1 (en) | 2002-12-17 | Methods and systems for the inhibition of vascular hyperplasia |
CA2726934C (en) | 2018-04-24 | System and method for delivering energy to tissue |
US7300414B1 (en) | 2007-11-27 | Transcranial ultrasound thrombolysis system and method of treating a stroke |
US6464680B1 (en) | 2002-10-15 | Ultrasonic enhancement of drug injection |
JP7232204B2 (en) | 2023-03-02 | Optimization of ultrasound frequency and microbubble size in microbubble-enhanced ultrasound procedures |
US20150018727A1 (en) | 2015-01-15 | Method of thermal treatment for myolysis and destruction of benign uterine tumors |
US20090247911A1 (en) | 2009-10-01 | Multiple-angle switched high intensity focused ultrasound |
US20210146156A1 (en) | 2021-05-20 | Ultrasound frequency and microbubble size optimization in microbubble-enhanced ultrasound treatment |
US20210267680A1 (en) | 2021-09-02 | Catheter ultrasound ablation |
US20110144493A1 (en) | 2011-06-16 | Ultrasound diagnostic and therapeutic devices |
CA2389669C (en) | 2010-06-01 | Transcranial ultrasound thrombolysis system and method of treating a stroke |
JP4387947B2 (en) | 2009-12-24 | Ultrasonic therapy device |
Yasui et al. | 2005 | Focused ultrasonic device for sonodynamic therapy in the human body |
WO2023183319A1 (en) | 2023-09-28 | Intravascular ultrasound transducers enabled tissue ablation for treatment of in-stent restenosis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
2011-06-05 | AS | Assignment |
Owner name: CARDIOSONIC LTD., ISRAEL Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SVERDLIK, ARIEL;SHABTAY, OR;REEL/FRAME:026390/0077 Effective date: 20110327 |
2015-05-17 | STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |