US20130215121A1 - Heat spreading substrate - Google Patents
- ️Thu Aug 22 2013
US20130215121A1 - Heat spreading substrate - Google Patents
Heat spreading substrate Download PDFInfo
-
Publication number
- US20130215121A1 US20130215121A1 US13/399,952 US201213399952A US2013215121A1 US 20130215121 A1 US20130215121 A1 US 20130215121A1 US 201213399952 A US201213399952 A US 201213399952A US 2013215121 A1 US2013215121 A1 US 2013215121A1 Authority
- US
- United States Prior art keywords
- electrically conductive
- electrically
- coating
- thermally
- regular solid Prior art date
- 2012-02-17 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003892 spreading Methods 0.000 title abstract description 138
- 230000007480 spreading Effects 0.000 title abstract description 138
- 239000000758 substrate Substances 0.000 title abstract description 98
- 238000000576 coating method Methods 0.000 claims abstract description 91
- 239000007787 solid Substances 0.000 claims abstract description 73
- 239000012799 electrically-conductive coating Substances 0.000 claims abstract description 65
- 239000004020 conductor Substances 0.000 claims abstract description 24
- 239000011248 coating agent Substances 0.000 claims description 67
- 238000000034 method Methods 0.000 claims description 58
- 229910000679 solder Inorganic materials 0.000 claims description 16
- 230000008878 coupling Effects 0.000 claims description 8
- 238000010168 coupling process Methods 0.000 claims description 8
- 238000005859 coupling reaction Methods 0.000 claims description 8
- 239000004065 semiconductor Substances 0.000 claims description 6
- 238000007743 anodising Methods 0.000 claims description 2
- 239000012212 insulator Substances 0.000 description 19
- 239000000463 material Substances 0.000 description 17
- 229910052782 aluminium Inorganic materials 0.000 description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 10
- 239000011810 insulating material Substances 0.000 description 10
- 230000000712 assembly Effects 0.000 description 9
- 238000000429 assembly Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 229910052594 sapphire Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 239000002390 adhesive tape Substances 0.000 description 4
- -1 for example Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 238000010422 painting Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000010297 mechanical methods and process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000615 nonconductor Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- IRLPACMLTUPBCL-KQYNXXCUSA-N 5'-adenylyl sulfate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OS(O)(=O)=O)[C@@H](O)[C@H]1O IRLPACMLTUPBCL-KQYNXXCUSA-N 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- QXAITBQSYVNQDR-UHFFFAOYSA-N amitraz Chemical compound C=1C=C(C)C=C(C)C=1N=CN(C)C=NC1=CC=C(C)C=C1C QXAITBQSYVNQDR-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3735—Laminates or multilayers, e.g. direct bond copper ceramic substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- Embodiments of the present invention relate to the field of integrated circuit design and manufacture. More specifically, embodiments of the present invention relate to systems and methods for a heat spreading substrate.
- LED light emitting diodes
- RF radio frequency
- motor controllers motor controllers
- power semiconductors and the like
- LED devices may be characterized as having high power density.
- many LED devices may be said to run “hot.”
- substrates of many such devices e.g., comprising sapphire or Gallium arsenide (GaAs) are not good conductors of heat. Conventional mounting and heat sinking methods and structures do not cost effectively remove the heat generated by such devices.
- GaAs Gallium arsenide
- an apparatus in a first embodiment in accordance with the present invention, includes a first conductive layer, a first insulating layer disposed in contact with the first conductive layer and a thermally conductive layer disposed in contact with the first insulating layer, opposite the first conductive layer.
- the faces of the first conductive layer, the first insulating layer and the thermally conductive layer are substantially co-planar; and a sum of widths of faces of the first conductive layer, the first insulating layer and the thermally conductive layer is greater than a height of the faces.
- the first conductive layer and the first insulating layer may include rolled materials.
- a thickness of each of the first and electrically conductive coatings, the first and second insulating coatings and the regular solid may be substantially constant.
- the thermally and electrically conducting regular solid may be configured for mounting a body of an electronic device.
- the first electrically conductive coating and the second electrically conductive coating may be configured for making electrical contact with contacts of an electronic device.
- the first electrically conductive coating and the second electrically conductive coating may be configured for conducting electrical signals to the contacts of an electronic device.
- a plurality of electronic devices may be wire bonded to the first electrically conductive coating.
- a plurality of electronic devices may be surface mounted to the first electrically conductive coating.
- an apparatus includes a light emitting diode.
- an apparatus includes a base for coupling to an alternating current supply, and electronics configured to convert the alternating current to electrical power suitable for driving the light emitting diode.
- an apparatus includes at least two light emitting diodes mounted on the same the thermally and electrically conducting regular solid.
- an apparatus includes a processor for operating a graphical user interface, and a display for displaying the graphical user interface.
- the light emitting diode may be configured to illuminate the display.
- an apparatus in accordance with another embodiment of the present invention, includes a first conductive layer, a first insulating layer disposed in contact with the first conductive layer and a thermally conductive layer disposed in contact with the first insulating layer, opposite the first conductive layer.
- the apparatus further includes a second insulating layer disposed in contact with the thermally conductive layer, opposite the first insulating layer, a second conductive layer disposed in contact with the second insulating layer, opposite the thermally conductive layer.
- the faces of the first conductive layer, the first insulating layer and the thermally conductive layer are substantially co-planar, and a sum of widths of faces of the first conductive layer, the first insulating layer and the thermally conductive layer is greater than a height of the faces.
- a first layer of insulating material is placed on a first layer of conductive material.
- a layer of thermally conductive material is placed on the first layer of insulating material, opposite the first layer of conductive material, wherein all materials mechanically adhere to one another. All layers are sliced substantially parallel to a long axis of the materials to form a heat spreading substrate. A sum of widths of faces of the first conductive layer, the first insulating layer and the thermally conductive layer is greater than a height of the faces.
- a layer of thermally conductive material may be pulled from a roll of thermally conductive material.
- a plurality of electronic devices may be mounted on a primary surface of the heat spreading substrate, making electrical contact with the first conductive layer and the second conductive layer.
- a solder ball may be attached to the underside of the first conductive layer.
- one electronic device may be singulated from a plurality of electronic devices.
- an apparatus in accordance with still another embodiment of the present invention, includes a thermally conductive, electrically insulating regular solid, a first electrically conductive coating mechanically coupled to a first edge of the regular solid and a second electrically conductive coating mechanically coupled to a second edge of the regular solid.
- the first and the second electrically conductive coatings are electrically isolated from one another and the faces of the first electrically conductive coating, the second electrically conductive coating and the regular solid are substantially co-planar.
- the primary and secondary surfaces of the regular solid may be free of electrically conductive materials.
- the first electrically conductive coating and the second electrically conductive coating may be configured for making electrical contact with contacts of an electronic device.
- the first electrically conductive coating and the second electrically conductive coating may be configured for conducting electrical signals to the contacts of an electronic device.
- a plurality of electronic devices may be wire bonded to the first electrically conductive coating.
- a plurality of electronic devices may be surface mounted to the first electrically conductive coating.
- an apparatus in accordance with another embodiment of the present invention, includes a light emitting diode.
- an apparatus includes a base for coupling to an alternating current supply, and electronics configured to convert the alternating current to electrical power suitable for driving the light emitting diode.
- an apparatus includes a processor for operating a graphical user interface, and a display for displaying the graphical user interface. The light emitting diode may be configured to illuminate the display.
- a thermally conductive, electrically insulating regular solid is coated with an electrically conductive coating. Portions of the electrically conductive coating are removed from primary and secondary surfaces of the thermally conductive, electrically insulating the regular solid. Portions of the electrically conductive coating are removed from faces of the thermally conductive, electrically insulating regular solid, forming first and second electrically conductive coating on edges of the thermally conductive, electrically insulating regular solid. The first and the second electrically conductive coatings are electrically isolated from one another.
- a plurality of electronic devices may be mounted on a primary surface of the thermally conductive, electrically insulating regular solid, making electrical contact with the first and the second electrically conductive coatings.
- a method includes wire bonding and/or surface mounting a plurality of electronic devices to a thermally conductive, electrically insulating regular solid.
- a method includes attaching a solder ball to the underside of the first electrically conductive coating.
- a method includes singulating one electronic device from a plurality of electronic devices.
- an apparatus in accordance with yet another embodiment of the present invention, includes a thermally and electrically conducting regular solid, a first insulating coating mechanically coupled to a first edge of the regular solid a first electrically conductive coating mechanically coupled to the first insulating coating, a second insulating coating mechanically coupled to a second edge of the regular solid, and a second electrically conductive coating mechanically coupled to the second insulating coating.
- the first and the second electrically conductive coatings are electrically isolated from one another, and the faces of the first and electrically conductive coatings, the first and second insulating coatings and the regular solid are substantially co-planar.
- the thermally and electrically conducting regular solid may be configured for mounting a body of an electronic device.
- the first electrically conductive coating and the second electrically conductive coating are configured for making electrical contact with contacts of an electronic device.
- the first electrically conductive coating and the second electrically conductive coating are configured for conducting electrical signals to the contacts of an electronic device.
- the thermally and electrically conducting regular solid may be configured for making electrical contact with contacts of an electronic device.
- a plurality of electronic devices may be wire bonded to the first electrically conductive coating.
- a plurality of electronic devices may be surface mounted to the first electrically conductive coating.
- a plurality of electronic devices includes a light emitting diode.
- an apparatus includes a base for coupling to an alternating current supply, and electronics configured to convert the alternating current to electrical power suitable for driving the light emitting diode.
- an apparatus includes at least two light emitting diodes mounted on the same the thermally and electrically conducting regular solid.
- an apparatus includes a processor for operating a graphical user interface, a display for displaying the graphical user interface. A light emitting diode may be configured to illuminate the display.
- a thermally and electrically conducting regular solid is first coated with an electrically insulating coating to produce an insulation-covered solid body.
- the insulation-covered solid body is second coated with an electrically conductive coating. Portions of the electrically conductive coating are removed from primary and secondary surfaces of the thermally and electrically conducting regular solid. Portions of the electrically conductive coating are removed from primary and secondary surfaces of the thermally and electrically conducting regular solid. Portions of the electrically conductive coating are removed from faces of the thermally and electrically conducting regular solid, forming first and second electrically conductive coating on edges of the thermally and electrically conducting regular solid. The first and the second electrically conductive coatings are electrically isolated from one another.
- a method includes mounting a plurality of electronic devices on a primary surface of the thermally and electrically conducting regular solid, making electrical contact with the first electrically conductive coating. In accordance with another embodiment of the present invention, a method includes mounting a plurality of electronic devices on a primary surface of the thermally and electrically conducting regular solid, making electrical contact with the thermally and electrically conducting regular solid. In accordance with another embodiment of the present invention, a method includes attaching a solder ball to the underside of the first electrically conductive coating.
- FIG. 1 illustrates a perspective view of a heat spreading substrate, in accordance with embodiments of the present invention.
- FIG. 2 illustrates a side sectional view of a heat spreading substrate, in accordance with embodiments of the present invention.
- FIGS. 3A and 3B illustrate electronic assemblies, in accordance with embodiments of the present invention.
- FIGS. 4A , 4 B, 4 C and 4 D illustrate electronic assemblies, in accordance with embodiments of the present invention.
- FIG. 5 illustrates a method, in accordance with embodiments of the present invention.
- FIG. 6 illustrates an example of an application of a light emitting diode, in accordance with embodiments of the present invention.
- FIG. 7 illustrates an exemplary portable computer system, in accordance with embodiments of the present invention.
- FIGS. 8A , 8 B, 8 C and 8 D illustrate a method of manufacturing a heat spreading substrate, in accordance with embodiments of the present invention.
- FIGS. 9A and 9B illustrate electronic assemblies, in accordance with embodiments of the present invention.
- FIGS. 10A , 10 B, 10 C and 10 D illustrate a method of manufacturing a heat spreading substrate, in accordance with embodiments of the present invention.
- FIG. 11 illustrates an electronic assembly, in accordance with embodiments of the present invention.
- FIGS. 12A and 12B illustrate electronic assemblies, in accordance with embodiments of the present invention.
- process 500 Some portions of the detailed descriptions which follow (e.g., process 500 ) are presented in terms of procedures, steps, logic blocks, processing, and other symbolic representations of operations on data bits that may be performed on computer memory. These descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art.
- a procedure, computer executed step, logic block, process, etc. is here, and generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired result.
- the steps are those requiring physical manipulations of physical quantities.
- these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
- sheet generally and herein, refers to or describes a three-dimensional solid, in which the length and width dimensions are significantly larger than the thickness dimension.
- a sheet of paper refers to or describes a three-dimensional solid, in which the length and width dimensions are significantly larger than the thickness dimension.
- the length of a strip is generally much larger than its width.
- a sheet may be cut into multiple strips, e.g., with cuts along a long dimension.
- FIG. 1 illustrates a perspective view of a heat spreading substrate 100 , in accordance with embodiments of the present invention.
- Conductive layer 110 comprises a sheet or strip of a conductive material, e.g., Aluminum (Al). Other conductive materials, including, for example, Copper (Cu), metal powders, particle filled materials, Silicon, metal-filled epoxy, carbon, composite materials and the like may also be used in the formation of conductive layer 110 .
- Conductive layer 110 comprises two surfaces (not shown), a face 110 B and an edge 110 C.
- Conductive layer 110 further comprises a second face and a second edge, obscured in the perspective of FIG. 1 and not shown.
- Heat spreading substrate 100 also comprises a heat spreader bar 130 .
- Heat spreader bar 130 comprises a sheet or strip of thermally conductive material, of approximately the same length and width as conductive layer 110 .
- Heat spreader bar 130 comprises two surfaces (not shown), a face 130 B and an edge 130 C.
- Heat spreader bar 130 further comprises a second face and a second edge, obscured in the perspective of FIG. 1 and not shown.
- Heat spreader bar 130 should be characterized as having a high thermal conductivity, e.g., having a thermal conductivity greater than that of sapphire ( ⁇ -Al 2 O 3 ), 32 or 35 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 , depending on the orientation.
- Heat spreader bar 130 may be further characterized as having a low coefficient of thermal expansion, e.g., having a coefficient of thermal expansion ( ⁇ ) less than that of Aluminum, 23 10 ⁇ 6 /° C.
- heat spreader bar 130 is further characterized as having a low linear coefficient of thermal expansion ( ⁇ ), while in other embodiments, heat spreader bar 130 is characterized as having a low volumetric coefficient of thermal expansion, e.g., having a volumetric coefficient of thermal expansion ( ⁇ ) less than that of Aluminum, 69 10 ⁇ 6 /° C. Still other embodiments may be characterized as having low linear and low volumetric coefficients of thermal expansion for heat spreader bar 130 .
- Heat spreader bar 130 may comprise Copper (Cu), particle filled materials, Silver (Ag) doped epoxy, Aluminum (Al), Silicon carbide (SiC) and/or ceramics, for example.
- heat spreader bar 130 may be electrically conductive or an electrical insulator.
- Heat spreading substrate 100 further comprises an insulator 120 .
- Insulator 120 comprises a sheet or strip of insulating material, of approximately the same length and width as conductive layer 110 .
- Insulator 120 comprises two surfaces (not shown), a face 120 B and an edge 120 C.
- Insulator 120 further comprises a second face and a second edge, obscured in the perspective of FIG. 1 and not shown.
- Insulator 120 provides electrical isolation between conductive layer 110 and heat spreader bar 130 .
- Insulator 120 may also provide mechanical adhesion or bonding between conductive layer 110 and heat spreader bar 130 .
- Insulator 120 should remain electrically and mechanically functional at operating temperatures of heat spreading substrate 100 .
- Insulator 120 may comprise a polyimide tape and/or poly(methyl methacrylate) (PMMA), for example.
- Heat spreading substrate 100 may optionally also comprise insulator 140 , having a face 140 B and an edge 140 C, which is similar to insulator 120 in dimension, composition and function, and conductive layer 150 , having a face 150 B, edge 150 C and surface 150 A, which is similar to conductive layer 110 in dimension, composition and function.
- insulators 120 and 140 may not be present if heat spreader bar 130 is an electrical insulator, in accordance with embodiments of the present invention. However, insulators 120 and 140 may be utilized for other mechanical properties, including, for example, adhesion, shock absorption, compliance with thermal expansion of other layers, and the like.
- the thickness of layers 110 , 120 , 130 , 140 and/or 150 will vary according to the material properties of that layer and its function within heat spreading substrate 100 , as further described below. In general, the thickness of layers 110 , 120 , 130 , 140 and/or 150 may vary from a few mils (thousandths of an inch) to a few millimeters. In general, the thicknesses of conductive layer 110 , insulator 120 and heat spreader bar 130 may be different. In accordance with embodiments of the present invention, layers 110 , 120 , 130 , 140 and/or 150 may comprise rolled materials.
- FIG. 2 illustrates a side sectional view of a heat spreading substrate 200 , in accordance with embodiments of the present invention.
- FIG. 2 illustrates the plane of faces 110 B, 120 B, 130 B, 140 B and 150 B. It is to be appreciated that the width of layers 110 , 120 , 130 , 140 and 150 as illustrated in FIG. 2 corresponds to the thickness of these layers as illustrated in FIG. 1 .
- FIG. 2 illustrates heat spreading substrates 100 of FIG. 1 rotated 90 degrees and viewed face on. Heat spreading substrate 100 optionally may have been cut along or parallel to the plane of edge cut 104 , as illustrated in FIG. 1 . Such a cut would decrease the height of layers 110 , 120 , 130 , 140 and 150 as illustrated in FIG.
- the heat spreading substrate 100 is wider than it is tall.
- the sum of the widths of faces 110 B, 120 B, 130 B and optional faces 140 B and 150 B is greater than the height of such faces.
- faces 110 B, 120 B, 130 B, 140 B and 150 B are substantially co-planar.
- faces resulting from a face cut 102 ( FIG. 1 ) will also be substantially co-planar, regardless of the angle of face cut 102 with respect to the edges 110 C- 150 C.
- edge cut 104 may be made such that the distance from edges 110 C- 150 C is less than the height of the stack of layers 110 - 150 .
- Heat spreading substrate 200 comprises a heat spreading substrate 100 .
- heat spreading substrate 200 comprises an optional electrical contact layer 210 applied to the “top” (in the perspective of FIG. 2 ) of conductive layers 110 and 150 .
- Electrical contact layer 210 may comprise, for example, Gold (Au) and may be deposited via platting, sputtering or other well known techniques. Electrical contact layer(s) 210 may be of different thickness, materials and/or shape between layers 110 and 150 , in accordance with embodiments of the present invention.
- Electrical contact layer(s) 210 may provide a low electrical resistance connection between conductive layers 110 , 150 and thermally enhanced electrical traces, e.g., device leads, contacts and/or wire bonds (not shown).
- Heat spreading substrate 200 additionally comprises an optional thermally conductive pad 220 placed on top of heat spreader bar 130 .
- Thermally conductive pad 220 may have a different size and shape than, and may be thicker or thinner, than electrical contact layer(s) 210 .
- Heat spreading substrate 200 further comprises an optional insulating adhesive tape 230 , applied to the bottom of heat spreading substrate 100 .
- Insulating adhesive tape 230 may prevent shoring between terminals, e.g., conductive terminals 110 and 150 .
- FIG. 3A illustrates an electronic assembly 300 , in accordance with embodiments of the present invention.
- Electronic assembly 300 comprises a plurality of electronic devices, 310 , 320 , 330 , that are mounted on heat spreading substrate 200 , in accordance with embodiments of the present invention.
- Electronic device 310 is wire bonded, via wire bond 312 from the device to contact 210 of conductive layer 150 . It is to be appreciated that a wire bond may be made to any suitable surface, including sides and/or bottom, of an electronic device, e.g., 310, 320, 330.
- Mask 311 e.g., a pattern of solder mask, may be formed around contact 210 to prevent electrical shorts and to aid in thermal distribution.
- Electronic device 310 is also wire bonded to conductive layer 110 .
- Electronic device 320 is wire bonded to conductive layer 110 and to heat spreader bar 130 , in accordance with embodiments of the present invention.
- heat spreader bar 130 is electrically conductive.
- optional insulator 140 and optional conductive layer 150 may not be present.
- Electronic device 330 illustrates a hybrid bonding, in accordance with embodiments of the present invention.
- heat spreader bar 130 is electrically conductive.
- Electronic device 330 is wire bonded to conductive layer 110 .
- electronic device 330 is surface mounted to heat spreader bar 130 .
- a plurality of electronic devices may be coupled to heat spreading substrate 200 , in accordance with embodiments of the present invention.
- electronic devices 310 , 320 , and/or 330 mounted along a length of heat spreading substrate 200 , in accordance with embodiments of the present invention.
- such devices may receive power and/or other signals through heat spreading substrate 200 , in accordance with embodiments of the present invention.
- conductive layer 110 may be coupled to a power supply potential, and may couple such voltage to devices 310 , 320 and 330 .
- conductive layer 150 may be coupled to a ground reference, and conduct such reference to electronic device 310 , while heat spreader bar 130 may conduct a similar ground reference to electronic devices 320 and/or 330 .
- a single electronic device, mounted on heat spreading substrate 200 may be cut or singulated from a plurality of such devices mounted along the length of heat spreading substrate 200 , for example via sawing or cutting, e.g., along face cut 102 of FIG. 1 .
- FIG. 3B illustrates an electronic assembly 350 , in accordance with embodiments of the present invention.
- Electronic assembly 350 comprises a plurality of electronic devices, 360 , 370 , that are surface mounted on heat spreading substrate 200 , in accordance with embodiments of the present invention.
- Electronic device 360 is in electrical contact with conductive layer 110 and conductive layer 150 .
- a plurality of electronic devices may be surface mounted to heat spreading substrate 200 , in accordance with embodiments of the present invention. It is to be appreciated that the size and/or shape of features such as solder masks, thermally conductive pad 220 , and/or contact 210 may be different and/or omitted for a surface-mount embodiment in comparison with a wire-bond embodiment.
- Electronic device 370 is mounted to conductive layer 110 and to heat spreader bar 130 , in accordance with embodiments of the present invention.
- heat spreader bar 130 is electrically conductive.
- optional insulator 140 and optional conductive layer 150 may not be present.
- Embodiments in accordance with the present invention are well suited to a variety of electronic devices, e.g., electronic devices 310 , 320 , 330 , 360 and/or 370 .
- electronic devices may comprise light emitting diodes (LED), radio frequency (RF) devices, power semiconductors and the like.
- LED light emitting diodes
- RF radio frequency
- a plurality of electronic devices may be mounted along a length of heat spreading substrate 200 , in accordance with embodiments of the present invention. Further, such devices may receive power and/or other signals through heat spreading substrate 200 , in accordance with embodiments of the present invention.
- conductive layer 110 may be coupled to a power supply potential, and may couple such voltage to electronic devices 360 , 370 . It is to be appreciated that other types of electrical signals may be coupled to an electronic device in a similar fashion.
- conductive layer 150 may be coupled to a ground reference, and conduct such reference to electronic device 360 , while heat spreader bar 130 may conduct a similar ground reference to electronic device 370 .
- a single electronic device, mounted on heat spreading substrate 200 may be cut or singulated from a plurality of such devices mounted along the length of heat spreading substrate 200 , for example via sawing or cutting, e.g., along face cut 102 of FIG. 1 .
- FIG. 4A illustrates an electronic assembly 400 , in accordance with embodiments of the present invention.
- FIG. 4A is a side sectional view in the same perspective as FIG. 2 , for example, from the perspective of section A, as indicated in FIG. 1 .
- FIG. 4A illustrates an electronic device 310 mounted and wire bonded to heat spreading substrate 200 .
- a wire bond 312 functionally couples electronic device 310 to conductive layer 150 via contact 210 .
- a plurality of electronic devices e.g., electronic devices 310 and 320 ( FIG. 3 ) may be mounted and wire bonded to a heat spreading substrate, for example, heat spreading substrate 200 .
- Such additional devices are above and below the plane of FIG. 4A , and are not illustrated therein.
- FIG. 4B illustrates an electronic assembly 450 , in accordance with embodiments of the present invention.
- FIG. 4B is a side sectional view in the same perspective as FIGS. 2 and 4A , for example, from the perspective of section A, as indicated in FIG. 1 .
- FIG. 4B illustrates an electronic device 330 surface mounted to heat spreading substrate 200 .
- contacts e.g., solder bumps or controlled chip collapse connections (C 4 )
- C 4 controlled chip collapse connections
- the contacts of electronic device 330 will be soldered to contacts 210 , but this is not required.
- some contacts of an electronic device may be functionally coupled to heat spreading substrate 100 via surface mount methods, while other contacts of the same electronic device may be functionally coupled to heat spreading substrate 100 via wire bond techniques.
- a contact on the bottom of electronic device 330 ( FIG. 3A ) may be functionally coupled to heat spreading substrate 100 via a surface mount connection, while a contact on the top of electronic device 330 may be functionally coupled to heat spreading substrate 100 via a wire bond connection.
- light emitting diodes frequently have electrical terminals at opposite ends of their layer stack. Embodiments in accordance with the present invention are well suited to such applications.
- FIG. 4C illustrates an electronic assembly 460 , in accordance with embodiments of the present invention.
- solder balls 462 have been attached to the underside of conductive layers 110 and 150 , as illustrated.
- electronic assembly 460 may be surface mounted to a next higher electronic assembly, e.g., printed circuit board 465 .
- FIG. 4D illustrates an electronic assembly 480 , in accordance with embodiments of the present invention.
- solder balls 462 have been attached to the underside of conductive layer 110 and thermally conductive layer 130 , as illustrated.
- heat spreader bar 130 is electrically conductive.
- optional insulator 140 and optional conductive layer 150 may not be present.
- electronic assembly 480 may be surface mounted to a next higher electronic assembly, e.g., printed circuit board 465 .
- heat generated from electronic devices e.g., 310, 320, 330 ( FIG. 3 ), 360 and/or 370 ( FIG. 3B ) is efficiently and cost effectively conducted through thermally conductive pad 220 , to heat spreader bar 130 and to any additional heat sinking structures, e.g., printed circuit board 465 ( FIG. 4C ).
- heat spreading substrate 200 may also conduct electrical signals, e.g., voltage and ground, to electronic devices 310 , 320 , 330 , 360 and/or 370 .
- FIG. 5 illustrates a method 500 , in accordance with embodiments of the present invention.
- a sheet or strip of conductive material e.g., Aluminum
- conductive layer 110 FIG. 1
- a sheet or strip of insulating material e.g., insulator 120 ( FIG. 1 ) is placed on the strip of conductive material.
- the layer of insulating material may comprise an adhesive.
- a sheet or strip of highly thermally conductive material e.g., heat spreader bar 140 ( FIG. 1 ) is placed on the layer of insulating material.
- the layer of insulating material may provide mechanical bonding, e.g., adhesion, to the highly thermally conductive material.
- a sheet or strip of insulating material e.g., insulating layer 140 ( FIG. 1 ) is placed on the highly thermally conductive material, e.g., heat spreader bar 140 ( FIG. 1 ).
- a sheet or strip of conductive material e.g., conductive layer 150 ( FIG. 1 ) is placed on the layer of insulating material, e.g., insulating layer 140 ( FIG. 1 ).
- the thicknesses (in the perspective of FIG. 1 ) of the various layers should be determined by the application of the heat spreading substrate and the material properties.
- the thickness of the highly thermally conductive material may be approximately the width of an (subsequently) attached electronic device.
- the width of heat spreading bar 130 may be approximately the width of electronic device 310 .
- the conductive sheets or strips, e.g., conductive layers 110 , 150 should be wide enough to accommodate contact 210 , mask 311 and a wire-bonding process.
- the length of conductive layers 110 , 150 may influence the width, in order to achieve a suitable electrical resistance, e.g., in an application placing a plurality of electronic devices on a heat spreading substrate 200 ( FIG. 3 ).
- the stack of layers 110 - 150 ( FIG. 1 ) is sliced substantially parallel to the long axis of the layers, e.g., substantially parallel to the plane of edge cut 104 ( FIG. 1 ), to produce a desired thickness of a heat spreading substrate 100 , as illustrated in FIG. 2 .
- Mechanical properties of the various materials and the heat spreading substrate 100 as a whole primarily determine the thickness of heat spreading substrate 100 .
- Electrical resistance of conductive layers 110 , 150 may also influence the thickness of heat spreading substrate 100 .
- an electrical contact layer e.g., electrical contact layer 210 ( FIG. 2 ) is applied to the “top” (in the perspective of FIG. 2 ) of the conductive layers, e.g., conductive layers 110 and 150 ( FIG. 2 ).
- a thermally conductive pad e.g., thermally conductive pad 220 ( FIG. 2 ) is placed on top of the thermally conductive layer, e.g., heat spreader bar 130 ( FIG. 2 ).
- an insulating adhesive tape e.g., insulating adhesive tape 230 ( FIG. 2 ) may be applied to the bottom of the stack of materials, e.g., heat spreading substrate 100 ( FIG. 2 ).
- a plurality of electronic devices are mounted to a heat spreading substrate, e.g., using wire bonding and/or surface mounting techniques, for example as illustrated in FIGS. 3A and 3B .
- solder balls are attached to the underside of some or all conductive layers, e.g., as illustrated in FIGS. 4C and 4D , to facilitate surface mounting to a next higher electronic assembly.
- individual electronic devices mounted to the heat spreading substrate are singulated by making a plurality of cuts substantially parallel to the plane of face cut 102 ( FIG. 1 ). It is appreciated that the singulating cuts need not be exactly parallel to the plane of face cut 102 , e.g., such cuts need not be exactly parallel to faces 110 B- 150 B, nor exactly perpendicular to edges 110 C- 150 C, as shown in FIG. 1 . A variety of angles, e.g., +/ ⁇ 45 degrees with respect to the plane of face cut 102 , for the singulating cuts are well suited to embodiments in accordance with the present invention. It is to be appreciated that the faces resulting from such cuts will be co-planar even if the singulating cuts are not exactly parallel to faces 110 B- 150 B, nor exactly perpendicular to edges 110 C- 150 C.
- a plurality of electronic devices may be assembled onto a heat spreading substrate, as illustrated in FIGS. 3A , 3 B, 4 A and 4 B. These assemblies are commonly referred to in terms of the electronic device.
- the combination of one or more light emitting diodes, e.g., 310, 320 ( FIG. 3 ) assembled onto a heat spreading substrate may be referred to itself as a light emitting diode.
- FIG. 6 illustrates an example of an application of a light emitting diode, in accordance with embodiments of the present invention.
- Light source 600 is well suited to a variety of lighting applications, including domestic, industrial and landscape lighting.
- Light source 600 is also well suited to stage or theatrical lighting.
- Light source 600 comprises a base 610 .
- base 610 is an Edison type base. It is appreciated that embodiments in accordance with the present invention are well suited to other types of bases, including, for example, GU, bayonet, bipin, stage pin, wedge or other type of bases.
- Light source 600 additionally comprises a body portion 620 that houses power conditioning electronics (not shown) that convert 110V AC input electrical power (or 220 V AC, or other selected input electrical power) to electrical power suitable for driving a plurality of light emitting diode devices 640 .
- Body portion 620 may also comprise, or couple to, optional heat sink features (not shown).
- Light source 600 additionally comprises optional optics 630 .
- Optics 630 comprise diffusers and/or lenses for focusing and/or diffusing light from the plurality of light emitting diode devices 640 into a desired pattern.
- Light source 600 comprises a plurality of light emitting diode devices (LEDs) 640 .
- Individual LEDs of plurality of light emitting diode devices 640 may correspond to assemblies previously described herein.
- plurality of light emitting diode devices 640 may include instances of electronic devices 310 , 320 and/or 330 ( FIG. 3A ). It is appreciated that not all instances of plurality of light emitting diode devices 640 need be identical.
- plurality of light emitting diode devices 640 may include a single heat spreading substrate comprising multiple light emitting devices.
- a single instance of plurality of light emitting diode devices 640 may comprise a plurality of individual, different, LED devices mounted on a common heat spreading substrate.
- a first electronic device may be a blue light emitting diode.
- a second electronic device may be a green light emitting diode.
- a third electronic device may be a red light emitting diode.
- the three electronic devices may be arranged on a heat spreading substrate such that the light from such three colors may be combined to produce a variety of spectral colors.
- a plurality of light emitting diode devices may comprise multiple LEDs in combination to produce a “white” light output.
- plurality of light emitting diode devices 640 may include additional electronics associated with the LED devices.
- additional electronics may comprise circuits to implement a white balance among tri-color LEDs.
- FIG. 7 illustrates an exemplary portable computer system 700 , in accordance with embodiments of the present invention.
- Portable computer system 700 may be a mobile phone or smart phone, email device, tablet, laptop or netbook computer, personal digital assistant or the like.
- a bus 701 functionally couples the various functional blocks of system 700 .
- Bus 701 may comprise multiple busses, and any such bus may be a single conductor.
- Portable computer system 700 comprises a processor 710 .
- Processor 710 may be any type of processor for executing software, and may comprise multiple distinct processors, including central processing units and graphical processing units. Processor 710 may also be a multi-core device.
- Processor 710 generally controls the operation of portable computer system 700 , and may operate a graphical user interface. For example, processor 710 accepts input, e.g., from touch sensor 750 and/or optional RF communications 740 , and may produce output, e.g., to display 770 and/or RF communications 740 .
- Processor 710 may access random access memory (RAM) 720 for programs and/or data, and may also access read only memory (ROM) for programs and/or data.
- RAM random access memory
- ROM read only memory
- Portable computer system 700 optionally comprises a radio-frequency (RF) communications subsystem 740 .
- RF communications system 740 is well suited to operate on a variety of radio communication protocols, including, for example, data and/or telephony networks, e.g., Bluetooth, WiFi, TDMA, CDMA, GSM, AMPS and the like.
- RF communications system 740 if present, operates to communicate voice, image and/or data to and from portable communication system 700 .
- Portable computer system 700 comprises a touch sensor subsystem 750 .
- Touch sensor 750 may operate as a resistive or capacitive device, and generally functions to accept input to system 700 in the form of a touch, e.g., from a finger and/or a stylus.
- Touch sensor 750 is generally strongly associated with a display device. For example, a user of system 700 may perceive touching a “screen” rather than a separate touch sensor.
- Portable computer system 700 also comprises a display device 770 .
- Display 770 may be any suitable technology, including, for example, an STN or TFT LCD display device Display 770 functions to output images and/or alpha-numeric information from system 700 .
- Portable computer system 700 further includes a light 780 to illuminate display 770 .
- a light 780 to illuminate display 770 .
- most LCD devices do not directly produce light; rather such devices filter light from another source, e.g., light 780 .
- light 780 may provide supplemental illumination when ambient light is insufficient for viewing display 770 .
- light 780 comprises a plurality of light emitting diodes.
- Individual LEDs of plurality of light emitting diode devices 780 may correspond to assemblies previously described herein.
- plurality of light emitting diode devices 780 may include multiple electronic devices, e.g., electronic devices 310 , 320 , and/or 330 ( FIG. 3A ), electronic devices 360 and/or 370 ( FIG. 3B ). It is appreciated that not all instances of plurality of light emitting diode devices 780 need be identical.
- Light 780 may illuminate display 770 from the front and/or the back and/or the sides of display 770 , and may be referred to as a front light, back light and/or side light. Light from light 780 may be coupled to the display by a diffuser in front of or behind display 770 .
- FIGS. 8A-8D illustrate a method of manufacturing a heat spreading substrate 800 , in accordance with embodiments of the present invention.
- FIG. 8A illustrates a solid heat spreading bar 810 , in accordance with embodiments of the present invention.
- Heat spreading bar 810 may be a regular solid, e.g., a rectangular cuboid, although other regular solids, e.g., a parallelepiped, are well suited to embodiments in accordance with the present invention.
- Heat spreading bar 810 comprises two surfaces (not shown), first edge 810 A and first face 810 B. A second edge and second face are not shown.
- Heat spreading bar 810 comprises an electrical insulating material having a high thermal conductivity. Heat spreader bar 810 is further characterized as having a low coefficient of thermal expansion.
- heat spreader bar 810 should be characterized as having a high thermal conductivity, e.g., having a thermal conductivity greater than that of sapphire ( ⁇ -Al 2 O 3 ), 32 or 35 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 , depending on the orientation. Heat spreader bar 810 may be further characterized as having a low coefficient of thermal expansion, e.g., having a coefficient of thermal expansion ( ⁇ ) less than that of Aluminum, 23 10 ⁇ 6 /° C.
- heat spreader bar 810 is further characterized as having a low linear coefficient of thermal expansion ( ⁇ ), while in other embodiments, heat spreader bar 810 is characterized as having a low volumetric coefficient of thermal expansion, e.g., having a volumetric coefficient of thermal expansion ( ⁇ ) less than that of Aluminum, 69 10 ⁇ 6 /° C. Still other embodiments may be characterized as having low linear and low volumetric coefficients of thermal expansion for heat spreader bar 810 .
- Exemplary materials for heat spreader bar 810 include ceramics and Silicon carbide.
- FIG. 8B illustrates heat spreading bar 810 with a conductive coating 820 applied, in accordance with embodiments of the present invention.
- Coating 820 may be applied by plating, deposition, dipping, painting and other well known methods of applying a conductive coating to an insulator. In accordance with some embodiments of the present invention, coating 820 may not be applied to the surfaces, e.g., top and bottom, of heat spreading bar 810 .
- FIG. 8C illustrates heat spreading bar 810 after portions of coating 820 have been removed, in accordance with embodiments of the present invention. As illustrated, portions of coating 820 have been removed from the top and bottom surfaces of heat spreading bar 810 . Any suitable method of partial removal of coating 820 may be utilized, including, for example, mechanical methods, e.g., cutting, sawing and/or polishing, and chemical methods, e.g., dissolving and/or chemical-mechanical polishing (CMP).
- CMP chemical-mechanical polishing
- portions of coating 820 on the edges of heat spreading bar 810 may remain at this stage of processing. For example, those portions may be removed at a later stage of processing.
- FIG. 8D illustrates a top view of heat spreading bar 810 after portions of coating 820 have been removed, in accordance with embodiments of the present invention.
- FIG. 8D also illustrates the physical separation of the remaining portions of coating 820 .
- FIG. 8D further illustrates cut 860 , similar to singulating cuts 850 , further described below, and substantially parallel to a face of heat spreading bar 810 , may be made to remove any portions of coating 820 remaining on faces of heat spreading bar 810 , electrically separating portions of coating 820 on the edges of heat spreading bar 810 , forming electrically separated coating 821 and coating 822 , in accordance with other embodiments of the present invention. It is appreciated that portions of coating 820 on faces of heat spreading bar 810 may be removed at other stages of processing, for example, as described with respect to FIG. 8C .
- FIG. 8D further illustrates a plurality of electronic devices 830 , 840 , functionally mounted to head spreading substrate 800 , in accordance with embodiments of the present invention.
- Electronic device 830 is wire bonded to head spreading substrate 800 .
- bond wires 832 couple electronic device 830 to the conductors formed by coating 820 .
- Electronic device 830 is surface mounted to head spreading substrate 800 .
- contacts of electronic device 840 are coupled, e.g., soldered, to the conductors formed by coating 820 .
- coating 820 should have sufficient width (in the perspective of FIG. 8D ) to attach wire bonds and/or surface mount contacts.
- Embodiments in accordance with the present invention are well suited to a variety of electronic devices, e.g., electronic devices 830 , 840 .
- electronic devices may comprise light emitting diodes (LED), radio frequency (RF) devices, power semiconductors and the like.
- LED light emitting diodes
- RF radio frequency
- a plurality of electronic devices may be mounted along a length of head spreading substrate 800 , in accordance with embodiments of the present invention. Further, such devices may receive power and/or other signals through heat spreading substrate 800 , in accordance with embodiments of the present invention.
- coating 821 may be coupled to a power supply potential, and may couple such voltage to electronic devices 830 , 840 . It is to be appreciated that other types of electrical signals may be coupled to an electronic device in a similar fashion.
- coating 822 may be coupled to a ground reference, and conduct such reference to electronic devices 830 , 840 .
- a single electronic device, mounted on heat spreading substrate 800 may be cut or singulated from a plurality of such devices mounted along the length of heat spreading substrate 800 , for example via sawing or cutting, e.g., along singulating cuts 850 of FIG. 8D .
- FIG. 9A illustrates an electronic assembly 900 , in accordance with embodiments of the present invention.
- FIG. 9A is a side view of a face, e.g., face 810 B, of heat spreading substrate 800 .
- FIG. 9A illustrates an electronic device 830 mounted and wire bonded to heat spreading substrate 800 .
- a wire bond 832 functionally couples electronic device 830 to conductive coating 822 via optional contact 910 .
- a thermally conductive pad 920 may be utilized to improve heat conduction from electronic device 830 to heat spreading bar 810 , in accordance with embodiments of the present invention.
- a plurality of electronic devices e.g., electronic devices 830 and 340 ( FIG. 8D ) may be mounted to a heat spreading substrate, for example, heat spreading substrate 800 .
- Such additional devices are above and below the plane of FIG. 9A , and are not illustrated therein.
- FIG. 9B illustrates an electronic assembly 950 , in accordance with embodiments of the present invention.
- FIG. 9B is a side view of a face, e.g., face 810 B), of heat spreading substrate 800 .
- FIG. 9B illustrates an electronic device 840 surface mounted to heat spreading substrate 800 .
- contacts e.g., solder bumps or controlled chip collapse connections (C 4 )
- C 4 controlled chip collapse connections
- the contacts of electronic device 840 will be soldered to contacts 910 , but this is not required.
- FIGS. 9A and 9B further illustrate electronic assemblies 900 and 950 , respectively, surface mounted to a next higher electronic assembly, e.g., printed circuit boards 940 and 945 , respectively, in accordance with embodiments of the present invention.
- solder balls 930 have been attached to the underside of conductive layers 821 and 822 , as illustrated.
- FIGS. 10A-10D illustrate a method of manufacturing a heat spreading substrate 1000 , in accordance with embodiments of the present invention.
- FIG. 10A illustrates a solid heat spreading bar 1010 , in accordance with embodiments of the present invention.
- Heat spreading bar 1010 may be a regular solid, e.g., a rectangular cuboid, although other regular solids, e.g., a parallelepiped, are well suited to embodiments in accordance with the present invention.
- Heat spreading bar 1010 comprises two surfaces (not shown), first edge 1010 A and first face 1010 B. A second edge and second face are not shown.
- Heat spreading bar 1010 comprises an electrically conducting material having a high thermal conductivity, e.g., having a thermal conductivity greater than that of sapphire ( ⁇ -Al 2 O 3 ), 32 or 35 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 , depending on the orientation. Heat spreader bar 1010 may be further characterized as having a low coefficient of thermal expansion, e.g., having a coefficient of thermal expansion ( ⁇ ) less than that of Aluminum, 23 10 ⁇ 6 /° C. Exemplary materials forming heat spreading bar 1010 include Aluminum (Al), Copper (Cu), metal powders, particle filled materials, Silicon, metal-filled epoxy, composite materials and the like may also be used in the formation of conductive layer 1010 .
- heat spreader bar 1010 is further characterized as having a low linear coefficient of thermal expansion ( ⁇ ), while in other embodiments, heat spreader bar 1010 is characterized as having a low volumetric coefficient of thermal expansion, e.g., having a volumetric coefficient of thermal expansion ( ⁇ ) less than that of Aluminum, 69 10 ⁇ 6 /° C. Still other embodiments may be characterized as having low linear and low volumetric coefficients of thermal expansion for heat spreader bar 1010 .
- FIG. 10B illustrates heat spreading bar 1010 with an electrically insulating coating 1020 applied, in accordance with embodiments of the present invention.
- Coating 1020 may be applied by anodizing, plating, dipping, painting and other well known methods of applying or forming an electrically insulating coating on a conductor.
- Coating 1020 may comprise a polymer, for example.
- coating 1020 may not be applied to the surfaces, e.g., top and bottom, of heat spreading bar 1010 .
- FIG. 10C illustrates heat spreading bar 1010 with a conductive coating 1025 applied over conductive coating 1020 , in accordance with embodiments of the present invention.
- Coating 1025 may be applied by plating, dipping, painting and other well known methods of applying a conductive coating to an insulator.
- coating 1025 may not be applied to the surfaces, e.g., top and bottom, of heat spreading bar 1010 .
- a resist material may be optionally applied to the top and bottom of heat spreading bar 1010 , prior to applying or forming coating 1020 . Such an operation may aid in removal, or prevent adherence, of coating 1020 on the top and bottom of heat spreading bar 1010 .
- FIG. 10D illustrates heat spreading bar 1010 after portions of coating 1020 and portions of coating 1025 have been removed, in accordance with embodiments of the present invention. As illustrated, portions of coatings 1020 and 1025 have been removed from the top and bottom surfaces of heat spreading bar 1010 . Portions of coatings 1025 and/or 1020 may also be removed from the faces of heat spreading bar 1010 . Any suitable method of partial removal of coatings 1020 and 1025 may be utilized, including, for example, mechanical methods, e.g., cutting, sawing and/or polishing, and chemical methods, e.g., dissolving and/or chemical-mechanical polishing (CMP).
- CMP chemical-mechanical polishing
- FIG. 11 illustrates an electronic assembly 1100 , in accordance with embodiments of the present invention.
- Electronic assembly 1100 comprises a plurality of electronic devices, 1110 , 1120 , 1130 , 1140 , 1150 that are mounted on heat spreading substrate 1101 , in accordance with embodiments of the present invention.
- Heat spreading substrate 1101 comprises heat spreading bar 1010 , coating 1020 , and coatings 1025 A and 1025 B. Coatings 1025 A and 1025 B are formed by electrically isolating portions of coating 1025 , as described with respect to FIG. 10D .
- Electronic device 1110 is wire bonded, via wire bond 1112 from the device to contact 1113 of coating 1025 B. It is to be appreciated that a wire bond may be made to any suitable surface, including sides and/or bottom, of an electronic device, e.g., 310, 320, 330.
- Mask 1111 e.g., a pattern of solder mask, may be formed around contact 1113 to prevent electrical shorts and to aid in thermal distribution.
- Electronic device 1110 is also wire bonded to coating 1025 A.
- Electronic device 1120 is wire bonded to coating 1025 A and to heat spreading bar 1010 , in accordance with embodiments of the present invention.
- Electronic device 1130 illustrates a hybrid bonding.
- Electronic device 1130 is wire bonded to coating 1025 A and surface mounted to heat spreading bar 1010 , in accordance with embodiments of the present invention.
- Electronic device 1140 is surface mounted to coating 1025 A and to coating 1025 B, in accordance with embodiments of the present invention.
- Electronic device 1140 may also optionally comprise a surface mounted electrical connection to heat spreading bar 1010 . In this manner, electronic device 1140 may receive three electrical signal coupled via heat spreading substrate 1101 .
- Electronic device 1150 is surface mounted to coating 1025 A and to heat spreading bar 1010 , in accordance with embodiments of the present invention.
- a plurality of electronic devices may be coupled to heat spreading substrate 1101 , in accordance with embodiments of the present invention.
- electronic devices 1110 , 1120 , 1130 , 1140 and/or 1150 mounted along a length of heat spreading substrate 1101 , in accordance with embodiments of the present invention.
- such devices may receive power and/or other signals through heat spreading substrate 1101 , in accordance with embodiments of the present invention.
- coating 1025 A may be coupled to a power supply potential, and may couple such voltage to devices 1110 , 1120 , 1130 , 1140 and/or 1150 .
- conductive coating 1025 B may be coupled to a ground reference, and conduct such reference to electronic devices 1110 and/or 1140
- heat spreader bar 1010 may conduct a similar ground reference to electronic devices 1120 , 1130 and/or 1150 .
- coating 1025 A, coating 1025 B and heat spreading bar 1010 may conduct different signals and/or power supply voltages, in accordance with embodiments of the present invention.
- a single electronic device, mounted on heat spreading substrate 1101 may be cut or singulated from a plurality of such devices mounted along the length of heat spreading substrate 1101 , for example via sawing or cutting, e.g., along singulation cuts 1107 of FIG. 11 .
- head spreading bar 1010 is electrically conductive in this embodiment. Accordingly, those portions of conductive coating 1025 and/or 1020 on one side (top or bottom, in the perspective of FIG. 11 ) may optionally be removed, in accordance with embodiments of the present invention. For example, electronic devices 1120 , 1130 and/or 1150 may be mounted to heat spreading substrate even if coating 1025 B and the top coating 1020 are not present.
- FIG. 12A illustrates an electronic assembly 1200 , in accordance with embodiments of the present invention.
- FIG. 12A is a side view of a face, e.g., face 1010 B, of heat spreading substrate 1101 .
- FIG. 12A illustrates an electronic device 1130 mounted and wire bonded to heat spreading substrate 1101 .
- a wire bond 1122 functionally couples electronic device 1130 to coating via optional contact 1113 .
- a thermally conductive pad 1220 may be utilized to improve heat conduction from electronic device 1130 to heat spreading bar 1010 , in accordance with embodiments of the present invention.
- a plurality of electronic devices e.g., electronic devices 110 , 1120 , 1130 , 1140 and/or 1150 ( FIG. 11A ) may be mounted to a heat spreading substrate, for example, heat spreading substrate 1101 .
- Such additional devices are above and below the plane of FIG. 12A , and are not illustrated therein.
- FIG. 12B illustrates an electronic assembly 1250 , in accordance with embodiments of the present invention.
- FIG. 12B is a side view of a face, e.g., face 1010 B, of heat spreading substrate 1101 .
- FIG. 12B illustrates an electronic device 1140 surface mounted to heat spreading substrate 1101 .
- contacts e.g., solder bumps or controlled chip collapse connections (C 4 )
- C 4 controlled chip collapse connections
- the contacts of electronic device 1140 will be soldered to contacts 1113 , but this is not required.
- electronic device 1140 may also comprise a surface mount electrical connection to head spreading bar 1010 .
- FIGS. 12A and 12B further illustrate electronic assemblies 1200 and 1250 , respectively, surface mounted to a next higher electronic assembly, e.g., printed circuit boards 1240 and 1245 , respectively, in accordance with embodiments of the present invention.
- solder balls 1230 have been attached to the underside of conductive coatings 1025 A, 1025 B and/or head spreading bar 1010 , as illustrated.
- Embodiments in accordance with the present invention provide systems and methods for heat spreading substrates.
- embodiments in accordance with the present invention provide systems and methods for heat spreading substrates comprising rolled materials.
- embodiments in accordance with the present invention provide systems and methods for heat spreading substrates that are compatible and complementary with existing systems and methods of integrated circuit design, manufacturing and test.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
Abstract
Heat spreading substrate. In accordance with an embodiment of the present invention, an apparatus includes a thermally conductive, electrically insulating regular solid, a first electrically conductive coating mechanically coupled to a first edge of the regular solid and a second electrically conductive coating mechanically coupled to a second edge of the regular solid. The first and the second electrically conductive coatings are electrically isolated from one another and the faces of the first electrically conductive coating, the second electrically conductive coating and the regular solid are substantially co-planar. The primary and secondary surfaces of the regular solid may be free of electrically conductive materials.
Description
-
FIELD OF INVENTION
-
Embodiments of the present invention relate to the field of integrated circuit design and manufacture. More specifically, embodiments of the present invention relate to systems and methods for a heat spreading substrate.
BACKGROUND
-
A variety of semiconductor devices, for example, light emitting diodes (LED), radio frequency (RF) devices, motor controllers, power semiconductors and the like, may be characterized as having high power density. For example, many LED devices may be said to run “hot.” In addition, the substrates of many such devices, e.g., comprising sapphire or Gallium arsenide (GaAs) are not good conductors of heat. Conventional mounting and heat sinking methods and structures do not cost effectively remove the heat generated by such devices.
SUMMARY OF THE INVENTION
-
Therefore, what is needed are systems and methods for heat spreading substrates. What is additionally needed are systems and methods for heat spreading substrates comprising rolled materials. A further need exists for systems and methods for heat spreading substrates that are compatible and complementary with existing systems and methods of integrated circuit design, manufacturing and test. Embodiments of the present invention provide these advantages.
-
In a first embodiment in accordance with the present invention, an apparatus includes a first conductive layer, a first insulating layer disposed in contact with the first conductive layer and a thermally conductive layer disposed in contact with the first insulating layer, opposite the first conductive layer. The faces of the first conductive layer, the first insulating layer and the thermally conductive layer are substantially co-planar; and a sum of widths of faces of the first conductive layer, the first insulating layer and the thermally conductive layer is greater than a height of the faces. The first conductive layer and the first insulating layer may include rolled materials.
-
In accordance with embodiments of the present invention, a thickness of each of the first and electrically conductive coatings, the first and second insulating coatings and the regular solid may be substantially constant. In accordance with embodiments of the present invention, the thermally and electrically conducting regular solid may be configured for mounting a body of an electronic device. In accordance with embodiments of the present invention, the first electrically conductive coating and the second electrically conductive coating may be configured for making electrical contact with contacts of an electronic device. In accordance with embodiments of the present invention, the first electrically conductive coating and the second electrically conductive coating may be configured for conducting electrical signals to the contacts of an electronic device. In accordance with embodiments of the present invention, a plurality of electronic devices may be wire bonded to the first electrically conductive coating. In accordance with embodiments of the present invention, a plurality of electronic devices may be surface mounted to the first electrically conductive coating.
-
In accordance with embodiments of the present invention, an apparatus includes a light emitting diode. In accordance with embodiments of the present invention, an apparatus includes a base for coupling to an alternating current supply, and electronics configured to convert the alternating current to electrical power suitable for driving the light emitting diode. In accordance with embodiments of the present invention, an apparatus includes at least two light emitting diodes mounted on the same the thermally and electrically conducting regular solid.
-
In accordance with embodiments of the present invention, an apparatus includes a processor for operating a graphical user interface, and a display for displaying the graphical user interface. The light emitting diode may be configured to illuminate the display.
-
In accordance with another embodiment of the present invention, an apparatus includes a first conductive layer, a first insulating layer disposed in contact with the first conductive layer and a thermally conductive layer disposed in contact with the first insulating layer, opposite the first conductive layer. The apparatus further includes a second insulating layer disposed in contact with the thermally conductive layer, opposite the first insulating layer, a second conductive layer disposed in contact with the second insulating layer, opposite the thermally conductive layer. The faces of the first conductive layer, the first insulating layer and the thermally conductive layer are substantially co-planar, and a sum of widths of faces of the first conductive layer, the first insulating layer and the thermally conductive layer is greater than a height of the faces.
-
In accordance with a method embodiment of the present invention, a first layer of insulating material is placed on a first layer of conductive material. A layer of thermally conductive material is placed on the first layer of insulating material, opposite the first layer of conductive material, wherein all materials mechanically adhere to one another. All layers are sliced substantially parallel to a long axis of the materials to form a heat spreading substrate. A sum of widths of faces of the first conductive layer, the first insulating layer and the thermally conductive layer is greater than a height of the faces.
-
In accordance with a method embodiment of the present invention, a layer of thermally conductive material may be pulled from a roll of thermally conductive material. In accordance with a method embodiment of the present invention, a plurality of electronic devices may be mounted on a primary surface of the heat spreading substrate, making electrical contact with the first conductive layer and the second conductive layer. In accordance with a method embodiment of the present invention, a solder ball may be attached to the underside of the first conductive layer. In accordance with a method embodiment of the present invention, one electronic device may be singulated from a plurality of electronic devices.
-
In accordance with still another embodiment of the present invention, an apparatus includes a thermally conductive, electrically insulating regular solid, a first electrically conductive coating mechanically coupled to a first edge of the regular solid and a second electrically conductive coating mechanically coupled to a second edge of the regular solid. The first and the second electrically conductive coatings are electrically isolated from one another and the faces of the first electrically conductive coating, the second electrically conductive coating and the regular solid are substantially co-planar. The primary and secondary surfaces of the regular solid may be free of electrically conductive materials.
-
In accordance with another embodiment of the present invention, the first electrically conductive coating and the second electrically conductive coating may be configured for making electrical contact with contacts of an electronic device. In accordance with another embodiment of the present invention, the first electrically conductive coating and the second electrically conductive coating may be configured for conducting electrical signals to the contacts of an electronic device. In accordance with another embodiment of the present invention, a plurality of electronic devices may be wire bonded to the first electrically conductive coating. In accordance with another embodiment of the present invention, a plurality of electronic devices may be surface mounted to the first electrically conductive coating.
-
In accordance with another embodiment of the present invention, an apparatus includes a light emitting diode. In accordance with another embodiment of the present invention, an apparatus includes a base for coupling to an alternating current supply, and electronics configured to convert the alternating current to electrical power suitable for driving the light emitting diode. In accordance with another embodiment of the present invention, an apparatus includes a processor for operating a graphical user interface, and a display for displaying the graphical user interface. The light emitting diode may be configured to illuminate the display.
-
In accordance with another method embodiment of the present invention, a thermally conductive, electrically insulating regular solid is coated with an electrically conductive coating. Portions of the electrically conductive coating are removed from primary and secondary surfaces of the thermally conductive, electrically insulating the regular solid. Portions of the electrically conductive coating are removed from faces of the thermally conductive, electrically insulating regular solid, forming first and second electrically conductive coating on edges of the thermally conductive, electrically insulating regular solid. The first and the second electrically conductive coatings are electrically isolated from one another. A plurality of electronic devices may be mounted on a primary surface of the thermally conductive, electrically insulating regular solid, making electrical contact with the first and the second electrically conductive coatings.
-
In accordance with another embodiment of the present invention, a method includes wire bonding and/or surface mounting a plurality of electronic devices to a thermally conductive, electrically insulating regular solid. In accordance with another embodiment of the present invention, a method includes attaching a solder ball to the underside of the first electrically conductive coating. In accordance with another embodiment of the present invention, a method includes singulating one electronic device from a plurality of electronic devices.
-
In accordance with yet another embodiment of the present invention, an apparatus includes a thermally and electrically conducting regular solid, a first insulating coating mechanically coupled to a first edge of the regular solid a first electrically conductive coating mechanically coupled to the first insulating coating, a second insulating coating mechanically coupled to a second edge of the regular solid, and a second electrically conductive coating mechanically coupled to the second insulating coating. The first and the second electrically conductive coatings are electrically isolated from one another, and the faces of the first and electrically conductive coatings, the first and second insulating coatings and the regular solid are substantially co-planar.
-
In accordance with another embodiment of the present invention, the thermally and electrically conducting regular solid may be configured for mounting a body of an electronic device. In accordance with another embodiment of the present invention, the first electrically conductive coating and the second electrically conductive coating are configured for making electrical contact with contacts of an electronic device. In accordance with another embodiment of the present invention, the first electrically conductive coating and the second electrically conductive coating are configured for conducting electrical signals to the contacts of an electronic device. In accordance with another embodiment of the present invention, the thermally and electrically conducting regular solid may be configured for making electrical contact with contacts of an electronic device. In accordance with another embodiment of the present invention, a plurality of electronic devices may be wire bonded to the first electrically conductive coating. In accordance with another embodiment of the present invention, a plurality of electronic devices may be surface mounted to the first electrically conductive coating.
-
In accordance with another embodiment of the present invention, a plurality of electronic devices includes a light emitting diode. In accordance with another embodiment of the present invention, an apparatus includes a base for coupling to an alternating current supply, and electronics configured to convert the alternating current to electrical power suitable for driving the light emitting diode. In accordance with another embodiment of the present invention, an apparatus includes at least two light emitting diodes mounted on the same the thermally and electrically conducting regular solid. In accordance with another embodiment of the present invention, an apparatus includes a processor for operating a graphical user interface, a display for displaying the graphical user interface. A light emitting diode may be configured to illuminate the display.
-
In accordance with still another method embodiment of the present invention, a thermally and electrically conducting regular solid is first coated with an electrically insulating coating to produce an insulation-covered solid body. The insulation-covered solid body is second coated with an electrically conductive coating. Portions of the electrically conductive coating are removed from primary and secondary surfaces of the thermally and electrically conducting regular solid. Portions of the electrically conductive coating are removed from primary and secondary surfaces of the thermally and electrically conducting regular solid. Portions of the electrically conductive coating are removed from faces of the thermally and electrically conducting regular solid, forming first and second electrically conductive coating on edges of the thermally and electrically conducting regular solid. The first and the second electrically conductive coatings are electrically isolated from one another.
-
In accordance with another embodiment of the present invention, a method includes mounting a plurality of electronic devices on a primary surface of the thermally and electrically conducting regular solid, making electrical contact with the first electrically conductive coating. In accordance with another embodiment of the present invention, a method includes mounting a plurality of electronic devices on a primary surface of the thermally and electrically conducting regular solid, making electrical contact with the thermally and electrically conducting regular solid. In accordance with another embodiment of the present invention, a method includes attaching a solder ball to the underside of the first electrically conductive coating.
BRIEF DESCRIPTION OF THE DRAWINGS
-
The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention. Unless otherwise noted, the drawings are not drawn to scale.
- FIG. 1
illustrates a perspective view of a heat spreading substrate, in accordance with embodiments of the present invention.
- FIG. 2
illustrates a side sectional view of a heat spreading substrate, in accordance with embodiments of the present invention.
- FIGS. 3A and 3B
illustrate electronic assemblies, in accordance with embodiments of the present invention.
- FIGS. 4A
, 4B, 4C and 4D illustrate electronic assemblies, in accordance with embodiments of the present invention.
- FIG. 5
illustrates a method, in accordance with embodiments of the present invention.
- FIG. 6
illustrates an example of an application of a light emitting diode, in accordance with embodiments of the present invention.
- FIG. 7
illustrates an exemplary portable computer system, in accordance with embodiments of the present invention.
- FIGS. 8A
, 8B, 8C and 8D illustrate a method of manufacturing a heat spreading substrate, in accordance with embodiments of the present invention.
- FIGS. 9A and 9B
illustrate electronic assemblies, in accordance with embodiments of the present invention.
- FIGS. 10A
, 10B, 10C and 10D illustrate a method of manufacturing a heat spreading substrate, in accordance with embodiments of the present invention.
- FIG. 11
illustrates an electronic assembly, in accordance with embodiments of the present invention.
- FIGS. 12A and 12B
illustrate electronic assemblies, in accordance with embodiments of the present invention.
DETAILED DESCRIPTION
-
Reference will now be made in detail to various embodiments of the invention, front facing piggyback wafer assembly, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with these embodiments, it is understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the invention, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be recognized by one of ordinary skill in the art that the invention may be practiced without these specific details. In other instances, well known methods, procedures, components, and circuits have not been described in detail as not to unnecessarily obscure aspects of the invention.
Notation and Nomenclature
-
Some portions of the detailed descriptions which follow (e.g., process 500) are presented in terms of procedures, steps, logic blocks, processing, and other symbolic representations of operations on data bits that may be performed on computer memory. These descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. A procedure, computer executed step, logic block, process, etc., is here, and generally, conceived to be a self-consistent sequence of steps or instructions leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
-
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present invention, discussions utilizing terms such as “attaching” or “processing” or “singulating” or “coating” or “placing” or “slicing” or “forming” or “mounting” or “applying” or “roughening” or “filling” or “accessing” or “performing” or “generating” or “adjusting” or “creating” or “executing” or “continuing” or “indexing” or “computing” or “translating” or “calculating” or “determining” or “measuring” or “gathering” or “running” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
-
The term sheet, generally and herein, refers to or describes a three-dimensional solid, in which the length and width dimensions are significantly larger than the thickness dimension. For example, a sheet of paper. The term strip, generally and herein, refers to or describes a three-dimensional solid, in which the length and width dimensions are significantly larger than the thickness dimension. In addition, the length of a strip is generally much larger than its width. For example, a sheet may be cut into multiple strips, e.g., with cuts along a long dimension.
Heat Spreading Substrate
- FIG. 1
illustrates a perspective view of a
heat spreading substrate100, in accordance with embodiments of the present invention.
Conductive layer110 comprises a sheet or strip of a conductive material, e.g., Aluminum (Al). Other conductive materials, including, for example, Copper (Cu), metal powders, particle filled materials, Silicon, metal-filled epoxy, carbon, composite materials and the like may also be used in the formation of
conductive layer110.
Conductive layer110 comprises two surfaces (not shown), a
face110B and an
edge110C.
Conductive layer110 further comprises a second face and a second edge, obscured in the perspective of
FIG. 1and not shown.
- Heat spreading substrate
100 also comprises a
heat spreader bar130.
Heat spreader bar130 comprises a sheet or strip of thermally conductive material, of approximately the same length and width as
conductive layer110.
Heat spreader bar130 comprises two surfaces (not shown), a
face130B and an
edge130C.
Heat spreader bar130 further comprises a second face and a second edge, obscured in the perspective of
FIG. 1and not shown.
Heat spreader bar130 should be characterized as having a high thermal conductivity, e.g., having a thermal conductivity greater than that of sapphire (α-Al2O3), 32 or 35 W·m−1·K−1, depending on the orientation.
Heat spreader bar130 may be further characterized as having a low coefficient of thermal expansion, e.g., having a coefficient of thermal expansion (α) less than that of Aluminum, 23 10−6/° C.
-
In some embodiments,
heat spreader bar130 is further characterized as having a low linear coefficient of thermal expansion (α), while in other embodiments,
heat spreader bar130 is characterized as having a low volumetric coefficient of thermal expansion, e.g., having a volumetric coefficient of thermal expansion (β) less than that of Aluminum, 69 10−6/° C. Still other embodiments may be characterized as having low linear and low volumetric coefficients of thermal expansion for
heat spreader bar130.
Heat spreader bar130 may comprise Copper (Cu), particle filled materials, Silver (Ag) doped epoxy, Aluminum (Al), Silicon carbide (SiC) and/or ceramics, for example. In accordance with embodiments of the present invention,
heat spreader bar130 may be electrically conductive or an electrical insulator.
- Heat spreading substrate
100 further comprises an
insulator120.
Insulator120 comprises a sheet or strip of insulating material, of approximately the same length and width as
conductive layer110.
Insulator120 comprises two surfaces (not shown), a
face120B and an
edge120C.
Insulator120 further comprises a second face and a second edge, obscured in the perspective of
FIG. 1and not shown.
Insulator120 provides electrical isolation between
conductive layer110 and
heat spreader bar130.
Insulator120 may also provide mechanical adhesion or bonding between
conductive layer110 and
heat spreader bar130.
Insulator120 should remain electrically and mechanically functional at operating temperatures of
heat spreading substrate100.
Insulator120 may comprise a polyimide tape and/or poly(methyl methacrylate) (PMMA), for example.
- Heat spreading substrate
100 may optionally also comprise
insulator140, having a
face140B and an
edge140C, which is similar to
insulator120 in dimension, composition and function, and
conductive layer150, having a
face150B,
edge150C and
surface150A, which is similar to
conductive layer110 in dimension, composition and function.
-
It is to be appreciated that
insulators120 and 140 may not be present if
heat spreader bar130 is an electrical insulator, in accordance with embodiments of the present invention. However,
insulators120 and 140 may be utilized for other mechanical properties, including, for example, adhesion, shock absorption, compliance with thermal expansion of other layers, and the like.
-
It is to be appreciated that the thickness of
layers110, 120, 130, 140 and/or 150 will vary according to the material properties of that layer and its function within
heat spreading substrate100, as further described below. In general, the thickness of
layers110, 120, 130, 140 and/or 150 may vary from a few mils (thousandths of an inch) to a few millimeters. In general, the thicknesses of
conductive layer110,
insulator120 and
heat spreader bar130 may be different. In accordance with embodiments of the present invention, layers 110, 120, 130, 140 and/or 150 may comprise rolled materials.
- FIG. 2
illustrates a side sectional view of a
heat spreading substrate200, in accordance with embodiments of the present invention.
FIG. 2illustrates the plane of
faces110B, 120B, 130B, 140B and 150B. It is to be appreciated that the width of
layers110, 120, 130, 140 and 150 as illustrated in
FIG. 2corresponds to the thickness of these layers as illustrated in
FIG. 1. For example,
FIG. 2illustrates
heat spreading substrates100 of
FIG. 1rotated 90 degrees and viewed face on.
Heat spreading substrate100 optionally may have been cut along or parallel to the plane of edge cut 104, as illustrated in
FIG. 1. Such a cut would decrease the height of
layers110, 120, 130, 140 and 150 as illustrated in
FIG. 2, in comparison to their width as illustrated in
FIG. 1. For example, in the perspective of
FIG. 2, the
heat spreading substrate100 is wider than it is tall. For example, the sum of the widths of
faces110B, 120B, 130B and
optional faces140B and 150B is greater than the height of such faces. It is to be appreciated that faces 110B, 120B, 130B, 140B and 150B are substantially co-planar. It is to be further appreciated that faces resulting from a face cut 102 (
FIG. 1) will also be substantially co-planar, regardless of the angle of face cut 102 with respect to the
edges110C-150C.
-
In accordance with embodiments of the present invention, edge cut 104 may be made such that the distance from
edges110C-150C is less than the height of the stack of layers 110-150.
- Heat spreading substrate
200 comprises a
heat spreading substrate100. In addition,
heat spreading substrate200 comprises an optional
electrical contact layer210 applied to the “top” (in the perspective of
FIG. 2) of
conductive layers110 and 150.
Electrical contact layer210 may comprise, for example, Gold (Au) and may be deposited via platting, sputtering or other well known techniques. Electrical contact layer(s) 210 may be of different thickness, materials and/or shape between
layers110 and 150, in accordance with embodiments of the present invention.
-
Electrical contact layer(s) 210 may provide a low electrical resistance connection between
conductive layers110, 150 and thermally enhanced electrical traces, e.g., device leads, contacts and/or wire bonds (not shown).
- Heat spreading substrate
200 additionally comprises an optional thermally
conductive pad220 placed on top of
heat spreader bar130. Thermally
conductive pad220 may have a different size and shape than, and may be thicker or thinner, than electrical contact layer(s) 210.
- Heat spreading substrate
200 further comprises an optional insulating
adhesive tape230, applied to the bottom of
heat spreading substrate100. Insulating
adhesive tape230 may prevent shoring between terminals, e.g.,
conductive terminals110 and 150.
- FIG. 3A
illustrates an electronic assembly 300, in accordance with embodiments of the present invention. Electronic assembly 300 comprises a plurality of electronic devices, 310, 320, 330, that are mounted on
heat spreading substrate200, in accordance with embodiments of the present invention.
Electronic device310 is wire bonded, via
wire bond312 from the device to contact 210 of
conductive layer150. It is to be appreciated that a wire bond may be made to any suitable surface, including sides and/or bottom, of an electronic device, e.g., 310, 320, 330. Mask 311, e.g., a pattern of solder mask, may be formed around
contact210 to prevent electrical shorts and to aid in thermal distribution.
Electronic device310 is also wire bonded to
conductive layer110.
-
Electronic device 320 is wire bonded to
conductive layer110 and to heat
spreader bar130, in accordance with embodiments of the present invention. In this embodiment,
heat spreader bar130 is electrically conductive. In addition,
optional insulator140 and optional
conductive layer150 may not be present.
- Electronic device
330 illustrates a hybrid bonding, in accordance with embodiments of the present invention. In this embodiment,
heat spreader bar130 is electrically conductive.
Electronic device330 is wire bonded to
conductive layer110. However,
electronic device330 is surface mounted to
heat spreader bar130.
-
It is to be appreciated that a plurality of electronic devices, e.g., 310, 320, 330 may be coupled to heat spreading
substrate200, in accordance with embodiments of the present invention. For example, there may be many instances of
electronic devices310, 320, and/or 330 mounted along a length of
heat spreading substrate200, in accordance with embodiments of the present invention. Further, such devices may receive power and/or other signals through
heat spreading substrate200, in accordance with embodiments of the present invention. For example,
conductive layer110 may be coupled to a power supply potential, and may couple such voltage to
devices310, 320 and 330. It is to be appreciated that other types of electrical signals may be coupled to an electronic device in a similar fashion. Similarly,
conductive layer150 may be coupled to a ground reference, and conduct such reference to
electronic device310, while
heat spreader bar130 may conduct a similar ground reference to electronic devices 320 and/or 330.
-
In accordance with other embodiments of the present invention, a single electronic device, mounted on
heat spreading substrate200 may be cut or singulated from a plurality of such devices mounted along the length of
heat spreading substrate200, for example via sawing or cutting, e.g., along face cut 102 of
FIG. 1.
- FIG. 3B
illustrates an
electronic assembly350, in accordance with embodiments of the present invention.
Electronic assembly350 comprises a plurality of electronic devices, 360, 370, that are surface mounted on
heat spreading substrate200, in accordance with embodiments of the present invention.
Electronic device360 is in electrical contact with
conductive layer110 and
conductive layer150. A plurality of electronic devices may be surface mounted to heat spreading
substrate200, in accordance with embodiments of the present invention. It is to be appreciated that the size and/or shape of features such as solder masks, thermally
conductive pad220, and/or contact 210 may be different and/or omitted for a surface-mount embodiment in comparison with a wire-bond embodiment.
- Electronic device
370 is mounted to
conductive layer110 and to heat
spreader bar130, in accordance with embodiments of the present invention. In this embodiment,
heat spreader bar130 is electrically conductive. In addition,
optional insulator140 and optional
conductive layer150 may not be present.
-
Embodiments in accordance with the present invention are well suited to a variety of electronic devices, e.g.,
electronic devices310, 320, 330, 360 and/or 370. For example, such electronic devices may comprise light emitting diodes (LED), radio frequency (RF) devices, power semiconductors and the like.
-
It is to be appreciated that a plurality of electronic devices, e.g., multiple instances of
electronic devices360 and/or 370, may be mounted along a length of
heat spreading substrate200, in accordance with embodiments of the present invention. Further, such devices may receive power and/or other signals through
heat spreading substrate200, in accordance with embodiments of the present invention. For example,
conductive layer110 may be coupled to a power supply potential, and may couple such voltage to
electronic devices360, 370. It is to be appreciated that other types of electrical signals may be coupled to an electronic device in a similar fashion. Similarly,
conductive layer150 may be coupled to a ground reference, and conduct such reference to
electronic device360, while
heat spreader bar130 may conduct a similar ground reference to
electronic device370.
-
In accordance with other embodiments of the present invention, a single electronic device, mounted on
heat spreading substrate200 may be cut or singulated from a plurality of such devices mounted along the length of
heat spreading substrate200, for example via sawing or cutting, e.g., along face cut 102 of
FIG. 1.
- FIG. 4A
illustrates an
electronic assembly400, in accordance with embodiments of the present invention.
FIG. 4Ais a side sectional view in the same perspective as
FIG. 2, for example, from the perspective of section A, as indicated in
FIG. 1.
FIG. 4Aillustrates an
electronic device310 mounted and wire bonded to heat spreading
substrate200. For example, a
wire bond312 functionally couples
electronic device310 to
conductive layer150 via
contact210. It is appreciated that a plurality of electronic devices, e.g.,
electronic devices310 and 320 (
FIG. 3) may be mounted and wire bonded to a heat spreading substrate, for example,
heat spreading substrate200. Such additional devices are above and below the plane of
FIG. 4A, and are not illustrated therein.
- FIG. 4B
illustrates an
electronic assembly450, in accordance with embodiments of the present invention.
FIG. 4Bis a side sectional view in the same perspective as
FIGS. 2 and 4A, for example, from the perspective of section A, as indicated in
FIG. 1.
FIG. 4Billustrates an
electronic device330 surface mounted to heat spreading
substrate200. For example, contacts, e.g., solder bumps or controlled chip collapse connections (C4), of an
electronic device330 make electrical contact with
contacts210 and are thus coupled to
conductive layers150 and 110. Generally, the contacts of
electronic device330 will be soldered to
contacts210, but this is not required.
-
In accordance with alternative embodiments of the present invention, some contacts of an electronic device may be functionally coupled to heat spreading
substrate100 via surface mount methods, while other contacts of the same electronic device may be functionally coupled to heat spreading
substrate100 via wire bond techniques. For example, a contact on the bottom of electronic device 330 (
FIG. 3A) may be functionally coupled to heat spreading
substrate100 via a surface mount connection, while a contact on the top of
electronic device330 may be functionally coupled to heat spreading
substrate100 via a wire bond connection. It is to be appreciated that light emitting diodes frequently have electrical terminals at opposite ends of their layer stack. Embodiments in accordance with the present invention are well suited to such applications.
- FIG. 4C
illustrates an
electronic assembly460, in accordance with embodiments of the present invention. In
FIG. 4C,
solder balls462 have been attached to the underside of
conductive layers110 and 150, as illustrated. In this manner,
electronic assembly460 may be surface mounted to a next higher electronic assembly, e.g., printed
circuit board465.
- FIG. 4D
illustrates an
electronic assembly480, in accordance with embodiments of the present invention. In
FIG. 4D,
solder balls462 have been attached to the underside of
conductive layer110 and thermally
conductive layer130, as illustrated. In this embodiment,
heat spreader bar130 is electrically conductive. In addition,
optional insulator140 and optional
conductive layer150 may not be present. In this manner,
electronic assembly480 may be surface mounted to a next higher electronic assembly, e.g., printed
circuit board465.
-
In this novel manner, heat generated from electronic devices, e.g., 310, 320, 330 (
FIG. 3), 360 and/or 370 (
FIG. 3B) is efficiently and cost effectively conducted through thermally
conductive pad220, to heat
spreader bar130 and to any additional heat sinking structures, e.g., printed circuit board 465 (
FIG. 4C). For example, heat flows “down” in the perspective of
FIGS. 4A through 4D. In addition,
heat spreading substrate200 may also conduct electrical signals, e.g., voltage and ground, to
electronic devices310, 320, 330, 360 and/or 370.
- FIG. 5
illustrates a
method500, in accordance with embodiments of the present invention. In 510 a sheet or strip of conductive material, e.g., Aluminum, is laid down. For example, conductive layer 110 (
FIG. 1) is laid down.
-
In optional 515, a sheet or strip of insulating material, e.g., insulator 120 (
FIG. 1), is placed on the strip of conductive material. The layer of insulating material may comprise an adhesive. In 520, a sheet or strip of highly thermally conductive material, e.g., heat spreader bar 140 (
FIG. 1), is placed on the layer of insulating material. The layer of insulating material may provide mechanical bonding, e.g., adhesion, to the highly thermally conductive material.
-
In optional 525, a sheet or strip of insulating material, e.g., insulating layer 140 (
FIG. 1), is placed on the highly thermally conductive material, e.g., heat spreader bar 140 (
FIG. 1). In optional 530, a sheet or strip of conductive material, e.g., conductive layer 150 (
FIG. 1), is placed on the layer of insulating material, e.g., insulating layer 140 (
FIG. 1).
-
The thicknesses (in the perspective of
FIG. 1) of the various layers should be determined by the application of the heat spreading substrate and the material properties. For example, the thickness of the highly thermally conductive material may be approximately the width of an (subsequently) attached electronic device. For example, with reference to
FIG. 3A, the width of
heat spreading bar130 may be approximately the width of
electronic device310.
-
Similarly, the conductive sheets or strips, e.g.,
conductive layers110, 150 (
FIG. 3) should be wide enough to accommodate
contact210, mask 311 and a wire-bonding process. In addition, the length of
conductive layers110, 150 may influence the width, in order to achieve a suitable electrical resistance, e.g., in an application placing a plurality of electronic devices on a heat spreading substrate 200 (
FIG. 3).
-
Referring once again to
FIG. 5, in optional 535, the stack of layers 110-150 (
FIG. 1) is sliced substantially parallel to the long axis of the layers, e.g., substantially parallel to the plane of edge cut 104 (
FIG. 1), to produce a desired thickness of a
heat spreading substrate100, as illustrated in
FIG. 2. Mechanical properties of the various materials and the
heat spreading substrate100 as a whole primarily determine the thickness of
heat spreading substrate100. Electrical resistance of
conductive layers110, 150 may also influence the thickness of
heat spreading substrate100.
-
In optional 540, an electrical contact layer, e.g., electrical contact layer 210 (
FIG. 2), is applied to the “top” (in the perspective of
FIG. 2) of the conductive layers, e.g.,
conductive layers110 and 150 (
FIG. 2). In optional 545, a thermally conductive pad, e.g., thermally conductive pad 220 (
FIG. 2) is placed on top of the thermally conductive layer, e.g., heat spreader bar 130 (
FIG. 2).
-
In optional 550, an insulating adhesive tape, e.g., insulating adhesive tape 230 (
FIG. 2), may be applied to the bottom of the stack of materials, e.g., heat spreading substrate 100 (
FIG. 2).
-
In optional 555, a plurality of electronic devices are mounted to a heat spreading substrate, e.g., using wire bonding and/or surface mounting techniques, for example as illustrated in
FIGS. 3A and 3B. In optional 560, solder balls are attached to the underside of some or all conductive layers, e.g., as illustrated in
FIGS. 4C and 4D, to facilitate surface mounting to a next higher electronic assembly.
-
In optional 599, individual electronic devices mounted to the heat spreading substrate are singulated by making a plurality of cuts substantially parallel to the plane of face cut 102 (
FIG. 1). It is appreciated that the singulating cuts need not be exactly parallel to the plane of face cut 102, e.g., such cuts need not be exactly parallel to faces 110B-150B, nor exactly perpendicular to
edges110C-150C, as shown in
FIG. 1. A variety of angles, e.g., +/−45 degrees with respect to the plane of face cut 102, for the singulating cuts are well suited to embodiments in accordance with the present invention. It is to be appreciated that the faces resulting from such cuts will be co-planar even if the singulating cuts are not exactly parallel to faces 110B-150B, nor exactly perpendicular to
edges110C-150C.
-
In accordance with embodiments of the present invention, a plurality of electronic devices may be assembled onto a heat spreading substrate, as illustrated in
FIGS. 3A, 3B, 4A and 4B. These assemblies are commonly referred to in terms of the electronic device. For example, the combination of one or more light emitting diodes, e.g., 310, 320 (
FIG. 3) assembled onto a heat spreading substrate may be referred to itself as a light emitting diode.
- FIG. 6
illustrates an example of an application of a light emitting diode, in accordance with embodiments of the present invention.
Light source600 is well suited to a variety of lighting applications, including domestic, industrial and landscape lighting.
Light source600 is also well suited to stage or theatrical lighting.
Light source600 comprises a
base610. As illustrated,
base610 is an Edison type base. It is appreciated that embodiments in accordance with the present invention are well suited to other types of bases, including, for example, GU, bayonet, bipin, stage pin, wedge or other type of bases.
- Light source
600 additionally comprises a
body portion620 that houses power conditioning electronics (not shown) that convert 110V AC input electrical power (or 220 V AC, or other selected input electrical power) to electrical power suitable for driving a plurality of light emitting
diode devices640.
Body portion620 may also comprise, or couple to, optional heat sink features (not shown).
- Light source
600 additionally comprises
optional optics630.
Optics630 comprise diffusers and/or lenses for focusing and/or diffusing light from the plurality of light emitting
diode devices640 into a desired pattern.
- Light source
600 comprises a plurality of light emitting diode devices (LEDs) 640. Individual LEDs of plurality of light emitting
diode devices640 may correspond to assemblies previously described herein. For example, plurality of light emitting
diode devices640 may include instances of
electronic devices310, 320 and/or 330 (
FIG. 3A). It is appreciated that not all instances of plurality of light emitting
diode devices640 need be identical.
-
It is to be further appreciated that plurality of light emitting
diode devices640 may include a single heat spreading substrate comprising multiple light emitting devices. For example, a single instance of plurality of light emitting
diode devices640 may comprise a plurality of individual, different, LED devices mounted on a common heat spreading substrate. For example, a first electronic device may be a blue light emitting diode. A second electronic device may be a green light emitting diode. A third electronic device may be a red light emitting diode. The three electronic devices may be arranged on a heat spreading substrate such that the light from such three colors may be combined to produce a variety of spectral colors. For example, a plurality of light emitting diode devices may comprise multiple LEDs in combination to produce a “white” light output.
-
In accordance with embodiments of the present invention, plurality of light emitting
diode devices640 may include additional electronics associated with the LED devices. In one exemplary embodiment, such additional electronics may comprise circuits to implement a white balance among tri-color LEDs.
- FIG. 7
illustrates an exemplary
portable computer system700, in accordance with embodiments of the present invention.
Portable computer system700 may be a mobile phone or smart phone, email device, tablet, laptop or netbook computer, personal digital assistant or the like. A bus 701 functionally couples the various functional blocks of
system700. Bus 701 may comprise multiple busses, and any such bus may be a single conductor.
- Portable computer system
700 comprises a
processor710.
Processor710 may be any type of processor for executing software, and may comprise multiple distinct processors, including central processing units and graphical processing units.
Processor710 may also be a multi-core device.
Processor710 generally controls the operation of
portable computer system700, and may operate a graphical user interface. For example,
processor710 accepts input, e.g., from
touch sensor750 and/or
optional RF communications740, and may produce output, e.g., to display 770 and/or
RF communications740.
Processor710 may access random access memory (RAM) 720 for programs and/or data, and may also access read only memory (ROM) for programs and/or data.
- Portable computer system
700 optionally comprises a radio-frequency (RF)
communications subsystem740.
RF communications system740 is well suited to operate on a variety of radio communication protocols, including, for example, data and/or telephony networks, e.g., Bluetooth, WiFi, TDMA, CDMA, GSM, AMPS and the like.
RF communications system740, if present, operates to communicate voice, image and/or data to and from
portable communication system700.
- Portable computer system
700 comprises a
touch sensor subsystem750.
Touch sensor750 may operate as a resistive or capacitive device, and generally functions to accept input to
system700 in the form of a touch, e.g., from a finger and/or a stylus.
Touch sensor750 is generally strongly associated with a display device. For example, a user of
system700 may perceive touching a “screen” rather than a separate touch sensor.
- Portable computer system
700 also comprises a
display device770.
Display770 may be any suitable technology, including, for example, an STN or TFT LCD
display device Display770 functions to output images and/or alpha-numeric information from
system700.
- Portable computer system
700 further includes a light 780 to illuminate
display770. For example, most LCD devices do not directly produce light; rather such devices filter light from another source, e.g., light 780. Alternatively, light 780 may provide supplemental illumination when ambient light is insufficient for
viewing display770.
-
In accordance with embodiments of the present invention, light 780 comprises a plurality of light emitting diodes. Individual LEDs of plurality of light emitting
diode devices780 may correspond to assemblies previously described herein. For example, plurality of light emitting
diode devices780 may include multiple electronic devices, e.g.,
electronic devices310, 320, and/or 330 (
FIG. 3A),
electronic devices360 and/or 370 (
FIG. 3B). It is appreciated that not all instances of plurality of light emitting
diode devices780 need be identical.
- Light
780 may illuminate
display770 from the front and/or the back and/or the sides of
display770, and may be referred to as a front light, back light and/or side light. Light from light 780 may be coupled to the display by a diffuser in front of or behind
display770.
- FIGS. 8A-8D
illustrate a method of manufacturing a
heat spreading substrate800, in accordance with embodiments of the present invention.
FIG. 8Aillustrates a solid
heat spreading bar810, in accordance with embodiments of the present invention. Heat spreading
bar810 may be a regular solid, e.g., a rectangular cuboid, although other regular solids, e.g., a parallelepiped, are well suited to embodiments in accordance with the present invention. Heat spreading
bar810 comprises two surfaces (not shown),
first edge810A and
first face810B. A second edge and second face are not shown.
-
Heat spreading
bar810 comprises an electrical insulating material having a high thermal conductivity.
Heat spreader bar810 is further characterized as having a low coefficient of thermal expansion.
-
In some embodiments,
heat spreader bar810 should be characterized as having a high thermal conductivity, e.g., having a thermal conductivity greater than that of sapphire (α-Al2O3), 32 or 35 W·m−1·K−1, depending on the orientation.
Heat spreader bar810 may be further characterized as having a low coefficient of thermal expansion, e.g., having a coefficient of thermal expansion (α) less than that of Aluminum, 23 10−6/° C.
-
In some embodiments,
heat spreader bar810 is further characterized as having a low linear coefficient of thermal expansion (α), while in other embodiments,
heat spreader bar810 is characterized as having a low volumetric coefficient of thermal expansion, e.g., having a volumetric coefficient of thermal expansion (β) less than that of Aluminum, 69 10−6/° C. Still other embodiments may be characterized as having low linear and low volumetric coefficients of thermal expansion for
heat spreader bar810. Exemplary materials for
heat spreader bar810 include ceramics and Silicon carbide.
- FIG. 8B
illustrates
heat spreading bar810 with a
conductive coating820 applied, in accordance with embodiments of the present invention. Coating 820 may be applied by plating, deposition, dipping, painting and other well known methods of applying a conductive coating to an insulator. In accordance with some embodiments of the present invention, coating 820 may not be applied to the surfaces, e.g., top and bottom, of
heat spreading bar810.
- FIG. 8C
illustrates
heat spreading bar810 after portions of
coating820 have been removed, in accordance with embodiments of the present invention. As illustrated, portions of
coating820 have been removed from the top and bottom surfaces of
heat spreading bar810. Any suitable method of partial removal of
coating820 may be utilized, including, for example, mechanical methods, e.g., cutting, sawing and/or polishing, and chemical methods, e.g., dissolving and/or chemical-mechanical polishing (CMP).
-
In accordance with embodiments of the present invention, portions of
coating820 on the edges of
heat spreading bar810, e.g.,
edge810A and/or the faces of
heat spreading bar810, e.g., face 810B, may remain at this stage of processing. For example, those portions may be removed at a later stage of processing.
- FIG. 8D
illustrates a top view of
heat spreading bar810 after portions of
coating820 have been removed, in accordance with embodiments of the present invention.
- FIG. 8D
also illustrates the physical separation of the remaining portions of
coating820.
FIG. 8Dfurther illustrates cut 860, similar to
singulating cuts850, further described below, and substantially parallel to a face of
heat spreading bar810, may be made to remove any portions of
coating820 remaining on faces of
heat spreading bar810, electrically separating portions of
coating820 on the edges of
heat spreading bar810, forming electrically separated
coating821 and
coating822, in accordance with other embodiments of the present invention. It is appreciated that portions of
coating820 on faces of
heat spreading bar810 may be removed at other stages of processing, for example, as described with respect to
FIG. 8C.
- FIG. 8D
further illustrates a plurality of
electronic devices830, 840, functionally mounted to head spreading
substrate800, in accordance with embodiments of the present invention.
Electronic device830 is wire bonded to head spreading
substrate800. For example,
bond wires832 couple
electronic device830 to the conductors formed by
coating820.
Electronic device830 is surface mounted to head spreading
substrate800. For example, contacts of
electronic device840 are coupled, e.g., soldered, to the conductors formed by
coating820. In accordance with embodiments of the present invention, coating 820 should have sufficient width (in the perspective of
FIG. 8D) to attach wire bonds and/or surface mount contacts.
-
Embodiments in accordance with the present invention are well suited to a variety of electronic devices, e.g.,
electronic devices830, 840. For example, such electronic devices may comprise light emitting diodes (LED), radio frequency (RF) devices, power semiconductors and the like.
-
It is to be appreciated that a plurality of electronic devices, e.g., multiple instances of
electronic devices830 and/or 840, may be mounted along a length of
head spreading substrate800, in accordance with embodiments of the present invention. Further, such devices may receive power and/or other signals through
heat spreading substrate800, in accordance with embodiments of the present invention. For example, coating 821 may be coupled to a power supply potential, and may couple such voltage to
electronic devices830, 840. It is to be appreciated that other types of electrical signals may be coupled to an electronic device in a similar fashion. Similarly, coating 822 may be coupled to a ground reference, and conduct such reference to
electronic devices830, 840.
-
In accordance with other embodiments of the present invention, a single electronic device, mounted on
heat spreading substrate800 may be cut or singulated from a plurality of such devices mounted along the length of
heat spreading substrate800, for example via sawing or cutting, e.g., along
singulating cuts850 of
FIG. 8D.
- FIG. 9A
illustrates an
electronic assembly900, in accordance with embodiments of the present invention.
FIG. 9Ais a side view of a face, e.g., face 810B, of
heat spreading substrate800.
FIG. 9Aillustrates an
electronic device830 mounted and wire bonded to heat spreading
substrate800. For example, a
wire bond832 functionally couples
electronic device830 to
conductive coating822 via
optional contact910. Optionally, a thermally
conductive pad920 may be utilized to improve heat conduction from
electronic device830 to heat spreading
bar810, in accordance with embodiments of the present invention. It is appreciated that a plurality of electronic devices, e.g.,
electronic devices830 and 340 (
FIG. 8D) may be mounted to a heat spreading substrate, for example,
heat spreading substrate800. Such additional devices are above and below the plane of
FIG. 9A, and are not illustrated therein.
- FIG. 9B
illustrates an
electronic assembly950, in accordance with embodiments of the present invention.
FIG. 9Bis a side view of a face, e.g., face 810B), of
heat spreading substrate800.
FIG. 9Billustrates an
electronic device840 surface mounted to heat spreading
substrate800. For example, contacts, e.g., solder bumps or controlled chip collapse connections (C4), of an
electronic device840 make electrical contact with
contacts910 and are thus coupled to
conductive layers821 and 822. Generally, the contacts of
electronic device840 will be soldered to
contacts910, but this is not required.
- FIGS. 9A and 9B
further illustrate
electronic assemblies900 and 950, respectively, surface mounted to a next higher electronic assembly, e.g., printed
circuit boards940 and 945, respectively, in accordance with embodiments of the present invention. In
FIGS. 9A and 9B,
solder balls930 have been attached to the underside of
conductive layers821 and 822, as illustrated.
- FIGS. 10A-10D
illustrate a method of manufacturing a heat spreading substrate 1000, in accordance with embodiments of the present invention.
FIG. 10Aillustrates a solid
heat spreading bar1010, in accordance with embodiments of the present invention. Heat spreading
bar1010 may be a regular solid, e.g., a rectangular cuboid, although other regular solids, e.g., a parallelepiped, are well suited to embodiments in accordance with the present invention. Heat spreading
bar1010 comprises two surfaces (not shown),
first edge1010A and
first face1010B. A second edge and second face are not shown.
-
Heat spreading
bar1010 comprises an electrically conducting material having a high thermal conductivity, e.g., having a thermal conductivity greater than that of sapphire (α-Al2O3), 32 or 35 W·m−1·K−1, depending on the orientation.
Heat spreader bar1010 may be further characterized as having a low coefficient of thermal expansion, e.g., having a coefficient of thermal expansion (α) less than that of Aluminum, 23 10−6/° C. Exemplary materials forming
heat spreading bar1010 include Aluminum (Al), Copper (Cu), metal powders, particle filled materials, Silicon, metal-filled epoxy, composite materials and the like may also be used in the formation of
conductive layer1010.
-
In some embodiments,
heat spreader bar1010 is further characterized as having a low linear coefficient of thermal expansion (α), while in other embodiments,
heat spreader bar1010 is characterized as having a low volumetric coefficient of thermal expansion, e.g., having a volumetric coefficient of thermal expansion (β) less than that of Aluminum, 69 10−6/° C. Still other embodiments may be characterized as having low linear and low volumetric coefficients of thermal expansion for
heat spreader bar1010.
- FIG. 10B
illustrates
heat spreading bar1010 with an electrically insulating
coating1020 applied, in accordance with embodiments of the present invention.
Coating1020 may be applied by anodizing, plating, dipping, painting and other well known methods of applying or forming an electrically insulating coating on a conductor.
Coating1020 may comprise a polymer, for example. In accordance with some embodiments of the present invention,
coating1020 may not be applied to the surfaces, e.g., top and bottom, of
heat spreading bar1010.
- FIG. 10C
illustrates
heat spreading bar1010 with a
conductive coating1025 applied over
conductive coating1020, in accordance with embodiments of the present invention.
Coating1025 may be applied by plating, dipping, painting and other well known methods of applying a conductive coating to an insulator. In accordance with some embodiments of the present invention,
coating1025 may not be applied to the surfaces, e.g., top and bottom, of
heat spreading bar1010. In some embodiments, a resist material may be optionally applied to the top and bottom of
heat spreading bar1010, prior to applying or forming
coating1020. Such an operation may aid in removal, or prevent adherence, of
coating1020 on the top and bottom of
heat spreading bar1010.
- FIG. 10D
illustrates
heat spreading bar1010 after portions of
coating1020 and portions of
coating1025 have been removed, in accordance with embodiments of the present invention. As illustrated, portions of
coatings1020 and 1025 have been removed from the top and bottom surfaces of
heat spreading bar1010. Portions of
coatings1025 and/or 1020 may also be removed from the faces of
heat spreading bar1010. Any suitable method of partial removal of
coatings1020 and 1025 may be utilized, including, for example, mechanical methods, e.g., cutting, sawing and/or polishing, and chemical methods, e.g., dissolving and/or chemical-mechanical polishing (CMP).
- FIG. 11
illustrates an
electronic assembly1100, in accordance with embodiments of the present invention.
Electronic assembly1100 comprises a plurality of electronic devices, 1110, 1120, 1130, 1140, 1150 that are mounted on
heat spreading substrate1101, in accordance with embodiments of the present invention.
Heat spreading substrate1101 comprises
heat spreading bar1010,
coating1020, and
coatings1025A and 1025B.
Coatings1025A and 1025B are formed by electrically isolating portions of
coating1025, as described with respect to
FIG. 10D.
- Electronic device
1110 is wire bonded, via
wire bond1112 from the device to contact 1113 of
coating1025B. It is to be appreciated that a wire bond may be made to any suitable surface, including sides and/or bottom, of an electronic device, e.g., 310, 320, 330.
Mask1111, e.g., a pattern of solder mask, may be formed around
contact1113 to prevent electrical shorts and to aid in thermal distribution.
Electronic device1110 is also wire bonded to
coating1025A.
- Electronic device
1120 is wire bonded to
coating1025A and to heat spreading
bar1010, in accordance with embodiments of the present invention.
Electronic device1130 illustrates a hybrid bonding.
Electronic device1130 is wire bonded to
coating1025A and surface mounted to heat spreading
bar1010, in accordance with embodiments of the present invention.
- Electronic device
1140 is surface mounted to
coating1025A and to coating 1025B, in accordance with embodiments of the present invention.
Electronic device1140 may also optionally comprise a surface mounted electrical connection to heat spreading
bar1010. In this manner,
electronic device1140 may receive three electrical signal coupled via
heat spreading substrate1101.
Electronic device1150 is surface mounted to
coating1025A and to heat spreading
bar1010, in accordance with embodiments of the present invention.
-
It is to be appreciated that a plurality of electronic devices, e.g.,
electronic devices1110, 1120, 1130, 1140, 1150 may be coupled to heat spreading
substrate1101, in accordance with embodiments of the present invention. For example, there may be many instances of
electronic devices1110, 1120, 1130, 1140 and/or 1150 mounted along a length of
heat spreading substrate1101, in accordance with embodiments of the present invention. Further, such devices may receive power and/or other signals through
heat spreading substrate1101, in accordance with embodiments of the present invention. For example,
coating1025A may be coupled to a power supply potential, and may couple such voltage to
devices1110, 1120, 1130, 1140 and/or 1150. It is to be appreciated that other types of electrical signals may be coupled to an electronic device in a similar fashion. Similarly,
conductive coating1025B may be coupled to a ground reference, and conduct such reference to
electronic devices1110 and/or 1140, while
heat spreader bar1010 may conduct a similar ground reference to
electronic devices1120, 1130 and/or 1150. Further, coating 1025A,
coating1025B and
heat spreading bar1010 may conduct different signals and/or power supply voltages, in accordance with embodiments of the present invention.
-
In accordance with other embodiments of the present invention, a single electronic device, mounted on
heat spreading substrate1101 may be cut or singulated from a plurality of such devices mounted along the length of
heat spreading substrate1101, for example via sawing or cutting, e.g., along
singulation cuts1107 of
FIG. 11.
-
It is to be appreciated that
head spreading bar1010 is electrically conductive in this embodiment. Accordingly, those portions of
conductive coating1025 and/or 1020 on one side (top or bottom, in the perspective of
FIG. 11) may optionally be removed, in accordance with embodiments of the present invention. For example,
electronic devices1120, 1130 and/or 1150 may be mounted to heat spreading substrate even if coating 1025B and the
top coating1020 are not present.
- FIG. 12A
illustrates an
electronic assembly1200, in accordance with embodiments of the present invention.
FIG. 12Ais a side view of a face, e.g., face 1010B, of
heat spreading substrate1101.
FIG. 12Aillustrates an
electronic device1130 mounted and wire bonded to heat spreading
substrate1101. For example, a wire bond 1122 functionally couples
electronic device1130 to coating via
optional contact1113. Optionally, a thermally
conductive pad1220 may be utilized to improve heat conduction from
electronic device1130 to heat spreading
bar1010, in accordance with embodiments of the present invention. It is appreciated that a plurality of electronic devices, e.g.,
electronic devices110, 1120, 1130, 1140 and/or 1150 (
FIG. 11A) may be mounted to a heat spreading substrate, for example,
heat spreading substrate1101. Such additional devices are above and below the plane of
FIG. 12A, and are not illustrated therein.
- FIG. 12B
illustrates an
electronic assembly1250, in accordance with embodiments of the present invention.
FIG. 12Bis a side view of a face, e.g., face 1010B, of
heat spreading substrate1101.
FIG. 12Billustrates an
electronic device1140 surface mounted to heat spreading
substrate1101. For example, contacts, e.g., solder bumps or controlled chip collapse connections (C4), of an
electronic device1140 make electrical contact with
contacts1113 and are thus coupled to
coatings1025A and 1025B. Generally, the contacts of
electronic device1140 will be soldered to
contacts1113, but this is not required.
-
In accordance with embodiments of the present invention,
electronic device1140 may also comprise a surface mount electrical connection to head spreading
bar1010.
- FIGS. 12A and 12B
further illustrate
electronic assemblies1200 and 1250, respectively, surface mounted to a next higher electronic assembly, e.g., printed
circuit boards1240 and 1245, respectively, in accordance with embodiments of the present invention. In
FIGS. 12A and 12B,
solder balls1230 have been attached to the underside of
conductive coatings1025A, 1025B and/or
head spreading bar1010, as illustrated.
-
Embodiments in accordance with the present invention provide systems and methods for heat spreading substrates. In addition, embodiments in accordance with the present invention provide systems and methods for heat spreading substrates comprising rolled materials. Further, embodiments in accordance with the present invention provide systems and methods for heat spreading substrates that are compatible and complementary with existing systems and methods of integrated circuit design, manufacturing and test.
-
Various embodiments of the invention are thus described. While the present invention has been described in particular embodiments, it should be appreciated that the invention should not be construed as limited by such embodiments, but rather construed according to the below claims.
Claims (39)
1. An apparatus comprising:
a thermally conductive, electrically insulating regular solid;
a first electrically conductive coating mechanically coupled to a first edge of said regular solid;
a second electrically conductive coating mechanically coupled to a second edge of said regular solid;
wherein said first and said second electrically conductive coatings are electrically isolated from one another; and
wherein faces of said first electrically conductive coating, said second electrically conductive coating and said regular solid are substantially co-planar.
2. The apparatus of
claim 1wherein the primary and secondary surfaces of said regular solid are free of electrically conductive materials.
3. The apparatus of
claim 1wherein said thermally conductive, electrically insulating regular solid is configured for mounting a body of an electronic device.
4. The apparatus of
claim 1wherein said first electrically conductive coating and said second electrically conductive coating are configured for conducting electrical signals to contacts of an electronic device.
5. The apparatus of
claim 1further comprising a plurality of electronic devices wire bonded to said first electrically conductive coating.
6. The apparatus of
claim 1further comprising a plurality of electronic devices surface mounted to said first electrically conductive coating.
7. The apparatus of
claim 1further comprising a light emitting diode.
8. The apparatus of
claim 7further comprising:
a base for coupling to an alternating current supply; and
electronics configured to convert said alternating current to electrical power suitable for driving said light emitting diode.
9. The apparatus of
claim 8further comprising at least two light emitting diodes mounted on the same said thermally conductive, electrically insulating regular solid.
10. The apparatus of
claim 7further comprising:
a processor for operating a graphical user interface;
a display for displaying said graphical user interface; and
wherein said light emitting diode is configured to illuminate said display.
11. The apparatus of
claim 1further comprising radio frequency circuitry.
12. The apparatus of
claim 1further comprising a power semiconductor device.
13. A method comprising:
coating a thermally conductive, electrically insulating regular solid with an electrically conductive coating;
removing portions of said electrically conductive coating from primary and secondary surfaces of said thermally conductive, electrically insulating regular solid; and
removing portions of said electrically conductive coating from faces of said thermally conductive, electrically insulating regular solid, forming first and second electrically conductive coating on edges of said thermally conductive, electrically insulating regular solid,
wherein said first and said second electrically conductive coatings are electrically isolated from one another.
14. The method of
claim 13further comprising mounting a plurality of electronic devices on a primary surface of said thermally conductive, electrically insulating regular solid, making electrical contact with said first and said second electrically conductive coatings.
15. The method of
claim 13further comprising wire bonding.
16. The method of
claim 13further comprising surface mounting.
17. The method of
claim 13further comprising attaching a solder ball to the underside of said first electrically conductive coating.
18. The method of
claim 13further comprising singulating one electronic device from said plurality of electronic devices.
19. An apparatus comprising:
a thermally and electrically conducting regular solid;
a first insulating coating mechanically coupled to a first edge of said regular solid;
a first electrically conductive coating mechanically coupled to said first insulating coating;
a second insulating coating mechanically coupled to a second edge of said regular solid;
a second electrically conductive coating mechanically coupled to said second insulating coating;
wherein said first and said second electrically conductive coatings are electrically isolated from one another; and
wherein faces of said first and electrically conductive coatings, said first and second insulating coatings and said regular solid are substantially co-planar.
20. The apparatus of
claim 19wherein primary and secondary surfaces of said thermally and electrically conducting regular solid are exposed.
21. The apparatus of
claim 19wherein said first electrically conductive coating and said second electrically conductive coating are configured for making electrical contact with contacts of an electronic device.
22. The apparatus of
claim 19wherein said thermally and electrically conducting regular solid is configured for conducting electrical signals to said contacts of an electronic device.
23. The apparatus of
claim 19further comprising a plurality of electronic devices having electronic device bodies.
24. The apparatus of
claim 23wherein said plurality of electronic devices are surface mounted to said first electrically conductive coating.
25. The apparatus of
claim 23comprising a wire bond coupling and a surface mount coupling.
26. The apparatus of
claim 23comprising a surface mount coupling to said thermally and electrically conducting regular solid.
27. The apparatus of
claim 23wherein said plurality of electronic devices comprise a light emitting diode.
28. The apparatus of
claim 27further comprising:
a base for coupling to an alternating current supply; and
electronics configured to convert said alternating current to electrical power suitable for driving said light emitting diode.
29. The apparatus of
claim 27further comprising:
a processor for operating a graphical user interface;
a display for displaying said graphical user interface; and
wherein said light emitting diode is configured to illuminate said display.
30. The apparatus of
claim 23wherein said plurality of electronic devices comprise radio frequency circuitry.
31. The apparatus of
claim 23wherein said plurality of electronic devices comprise a power semiconductor device.
32. A method comprising:
first coating a thermally and electrically conducting regular solid with an electrically insulating coating to produce an insulation-covered solid body;
second coating said insulation-covered solid body with an electrically conductive coating;
removing portions of said electrically conductive coating from primary and secondary surfaces of said thermally and electrically conducting regular solid;
removing portions of said electrically conductive coating from primary and secondary surfaces of said thermally and electrically conducting regular solid; and
removing portions of said electrically conductive coating from faces of said thermally and electrically conducting regular solid, forming first and second electrically conductive coating on edges of said thermally and electrically conducting regular solid,
wherein said first and said second electrically conductive coatings are electrically isolated from one another.
33. The method of
claim 32wherein said first coating comprises anodizing.
34. The method of
claim 32further comprising mounting a plurality of electronic devices on a primary surface of said thermally and electrically conducting regular solid, making electrical contact with said first electrically conductive coating.
35. The method of
claim 32further comprising mounting a plurality of electronic devices on a primary surface of said thermally and electrically conducting regular solid, making electrical contact with said thermally and electrically conducting regular solid.
36. The method of
claim 32further comprising wire bonding.
37. The method of
claim 32further comprising surface mounting.
38. The method of
claim 32further comprising attaching a solder ball to the underside of said first electrically conductive coating.
39. The method of
claim 32further comprising singulating one electronic device from said plurality of electronic devices.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/399,952 US9390998B2 (en) | 2012-02-17 | 2012-02-17 | Heat spreading substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/399,952 US9390998B2 (en) | 2012-02-17 | 2012-02-17 | Heat spreading substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
US20130215121A1 true US20130215121A1 (en) | 2013-08-22 |
US9390998B2 US9390998B2 (en) | 2016-07-12 |
Family
ID=48981917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/399,952 Active 2035-05-15 US9390998B2 (en) | 2012-02-17 | 2012-02-17 | Heat spreading substrate |
Country Status (1)
Country | Link |
---|---|
US (1) | US9390998B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150029673A1 (en) * | 2013-07-23 | 2015-01-29 | Denso Corporation | Electronic element and electronic device |
US20150117039A1 (en) * | 2013-10-25 | 2015-04-30 | Kevin Yang | Substrate Gap Mounted LED |
US20150179908A1 (en) * | 2011-08-08 | 2015-06-25 | Research & Business Foundation Sungkyunkwan University | Substrate for semiconductor device, semiconductor device having the substrate, and manufacturing method thereof |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5371654A (en) * | 1992-10-19 | 1994-12-06 | International Business Machines Corporation | Three dimensional high performance interconnection package |
US20050006754A1 (en) * | 2003-07-07 | 2005-01-13 | Mehmet Arik | Electronic devices and methods for making same using nanotube regions to assist in thermal heat-sinking |
US20050228097A1 (en) * | 2004-03-30 | 2005-10-13 | General Electric Company | Thermally conductive compositions and methods of making thereof |
US20050280142A1 (en) * | 2004-06-18 | 2005-12-22 | Intel Corporation | Electronic assembly having an indium wetting layer on a thermally conductive body |
US20070090522A1 (en) * | 2005-09-26 | 2007-04-26 | Iyad Alhayek | Integrated circuit mounting for thermal stress relief useable in a multi-chip module |
US20070205495A1 (en) * | 2004-08-02 | 2007-09-06 | Elstan Anthony Fernandez | Electronic Component With Stacked Semiconductor Chips And Heat Dissipating Means |
US20070216274A1 (en) * | 2006-03-17 | 2007-09-20 | 3M Innovative Properties Company | Illumination assembly with enhanced thermal conductivity |
US20080239675A1 (en) * | 2005-01-05 | 2008-10-02 | Tir Systems Ltd. | Thermally and Electrically Conductive Apparatus |
US20090309215A1 (en) * | 2006-09-20 | 2009-12-17 | Makoto Kitabatake | Semiconductor module and method for fabricating semiconductor module |
US20100319898A1 (en) * | 2008-03-13 | 2010-12-23 | Underwood Patrick K | Thermal interconnect and integrated interface systems, methods of production and uses thereof |
US20130004791A1 (en) * | 2009-11-27 | 2013-01-03 | Showa Denko K.K. | Laminate and manufacturing method for same |
US20140035129A1 (en) * | 2009-07-15 | 2014-02-06 | Io Semiconductor, Inc. | Thin integrated circuit chip-on-board assembly and method of making |
US8785961B2 (en) * | 2012-02-17 | 2014-07-22 | Invensas Corporation | Heat spreading substrate |
US9087854B1 (en) * | 2014-01-20 | 2015-07-21 | Hrl Laboratories, Llc | Thermal management for heterogeneously integrated technology |
-
2012
- 2012-02-17 US US13/399,952 patent/US9390998B2/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5371654A (en) * | 1992-10-19 | 1994-12-06 | International Business Machines Corporation | Three dimensional high performance interconnection package |
US20050006754A1 (en) * | 2003-07-07 | 2005-01-13 | Mehmet Arik | Electronic devices and methods for making same using nanotube regions to assist in thermal heat-sinking |
US20050228097A1 (en) * | 2004-03-30 | 2005-10-13 | General Electric Company | Thermally conductive compositions and methods of making thereof |
US20050280142A1 (en) * | 2004-06-18 | 2005-12-22 | Intel Corporation | Electronic assembly having an indium wetting layer on a thermally conductive body |
US20070205495A1 (en) * | 2004-08-02 | 2007-09-06 | Elstan Anthony Fernandez | Electronic Component With Stacked Semiconductor Chips And Heat Dissipating Means |
US20080239675A1 (en) * | 2005-01-05 | 2008-10-02 | Tir Systems Ltd. | Thermally and Electrically Conductive Apparatus |
US20070090522A1 (en) * | 2005-09-26 | 2007-04-26 | Iyad Alhayek | Integrated circuit mounting for thermal stress relief useable in a multi-chip module |
US20070216274A1 (en) * | 2006-03-17 | 2007-09-20 | 3M Innovative Properties Company | Illumination assembly with enhanced thermal conductivity |
US20090309215A1 (en) * | 2006-09-20 | 2009-12-17 | Makoto Kitabatake | Semiconductor module and method for fabricating semiconductor module |
US20100319898A1 (en) * | 2008-03-13 | 2010-12-23 | Underwood Patrick K | Thermal interconnect and integrated interface systems, methods of production and uses thereof |
US20140035129A1 (en) * | 2009-07-15 | 2014-02-06 | Io Semiconductor, Inc. | Thin integrated circuit chip-on-board assembly and method of making |
US20130004791A1 (en) * | 2009-11-27 | 2013-01-03 | Showa Denko K.K. | Laminate and manufacturing method for same |
US8785961B2 (en) * | 2012-02-17 | 2014-07-22 | Invensas Corporation | Heat spreading substrate |
US9087854B1 (en) * | 2014-01-20 | 2015-07-21 | Hrl Laboratories, Llc | Thermal management for heterogeneously integrated technology |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150179908A1 (en) * | 2011-08-08 | 2015-06-25 | Research & Business Foundation Sungkyunkwan University | Substrate for semiconductor device, semiconductor device having the substrate, and manufacturing method thereof |
US9136455B2 (en) * | 2011-08-08 | 2015-09-15 | Research & Business Foundation Sungkyunkwan University | Substrate for semiconductor device, semiconductor device having the substrate, and manufacturing method thereof |
US20150029673A1 (en) * | 2013-07-23 | 2015-01-29 | Denso Corporation | Electronic element and electronic device |
US9756716B2 (en) * | 2013-07-23 | 2017-09-05 | Denso Corporation | Electronic element and electronic device |
US20150117039A1 (en) * | 2013-10-25 | 2015-04-30 | Kevin Yang | Substrate Gap Mounted LED |
Also Published As
Publication number | Publication date |
---|---|
US9390998B2 (en) | 2016-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9842745B2 (en) | 2017-12-12 | Heat spreading substrate with embedded interconnects |
JP5773082B2 (en) | 2015-09-02 | module |
US6740903B2 (en) | 2004-05-25 | Substrate for light emitting diodes |
US9041212B2 (en) | 2015-05-26 | Thermal design and electrical routing for multiple stacked packages using through via insert (TVI) |
EP1981321A3 (en) | 2009-09-16 | Circuitized substrate assembly with internal stacked semiconductor chips, method of making same, electrical assembly utilizing same and information handling system utilizing same |
TW200849675A (en) | 2008-12-16 | Semiconductor light emitting device |
US20110266586A1 (en) | 2011-11-03 | Led package and manufacturing method thereof |
US8785961B2 (en) | 2014-07-22 | Heat spreading substrate |
US8278154B2 (en) | 2012-10-02 | Method of fabricating a semiconductor device package including a heat radiation plate |
US11676900B2 (en) | 2023-06-13 | Electronic assembly that includes a bridge |
US9831144B2 (en) | 2017-11-28 | Semiconductor die and package jigsaw submount |
US9390998B2 (en) | 2016-07-12 | Heat spreading substrate |
US10700041B2 (en) | 2020-06-30 | Stacking of three-dimensional circuits including through-silicon-vias |
CN101447441A (en) | 2009-06-03 | Integrated circuit package system including die having relieved active region |
US7154188B2 (en) | 2006-12-26 | Semiconductor chip, semiconductor device, circuit board, and electronic instrument |
TWI640070B (en) | 2018-11-01 | Stacked rectifiers in a package |
KR20160137546A (en) | 2016-11-30 | Flexible circuits with coplanar conductive features and methods of making same |
US10741465B2 (en) | 2020-08-11 | Circuit module and method of manufacturing the same |
EP4071837A1 (en) | 2022-10-12 | Flip led chip, circuit board and electronic device |
US20080290378A1 (en) | 2008-11-27 | Transistor package with wafer level dielectric isolation |
US9508639B2 (en) | 2016-11-29 | Package-in-substrate, semiconductor device and module |
US10881006B2 (en) | 2020-12-29 | Package carrier and package structure |
WO2019075713A1 (en) | 2019-04-25 | Fingerprint package chip and packaging method, fingerprint module and mobile terminal |
CN201788970U (en) | 2011-04-06 | A light-emitting module and application device with high heat conduction and light conduction functions |
TW200834851A (en) | 2008-08-16 | Structure of integrated active component within substrate and manufacturing method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
2012-06-05 | AS | Assignment |
Owner name: INVENSAS CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GUEVARA, GABRIEL Z.;MOHAMMED, ILYAS;WANG, LIANG;SIGNING DATES FROM 20120508 TO 20120510;REEL/FRAME:028322/0760 |
2016-06-22 | STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
2016-12-02 | AS | Assignment |
Owner name: ROYAL BANK OF CANADA, AS COLLATERAL AGENT, CANADA Free format text: SECURITY INTEREST;ASSIGNORS:INVENSAS CORPORATION;TESSERA, INC.;TESSERA ADVANCED TECHNOLOGIES, INC.;AND OTHERS;REEL/FRAME:040797/0001 Effective date: 20161201 |
2019-12-30 | MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |
2020-06-01 | AS | Assignment |
Owner name: BANK OF AMERICA, N.A., NORTH CAROLINA Free format text: SECURITY INTEREST;ASSIGNORS:ROVI SOLUTIONS CORPORATION;ROVI TECHNOLOGIES CORPORATION;ROVI GUIDES, INC.;AND OTHERS;REEL/FRAME:053468/0001 Effective date: 20200601 |
2020-06-11 | AS | Assignment |
Owner name: TESSERA ADVANCED TECHNOLOGIES, INC, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001 Effective date: 20200601 Owner name: INVENSAS BONDING TECHNOLOGIES, INC. (F/K/A ZIPTRONIX, INC.), CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001 Effective date: 20200601 Owner name: DTS LLC, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001 Effective date: 20200601 Owner name: TESSERA, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001 Effective date: 20200601 Owner name: IBIQUITY DIGITAL CORPORATION, MARYLAND Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001 Effective date: 20200601 Owner name: INVENSAS CORPORATION, CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001 Effective date: 20200601 Owner name: FOTONATION CORPORATION (F/K/A DIGITALOPTICS CORPORATION AND F/K/A DIGITALOPTICS CORPORATION MEMS), CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001 Effective date: 20200601 Owner name: DTS, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001 Effective date: 20200601 Owner name: PHORUS, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:ROYAL BANK OF CANADA;REEL/FRAME:052920/0001 Effective date: 20200601 |
2024-01-03 | MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |