US20130338626A1 - Photopatterning of skin - Google Patents
- ️Thu Dec 19 2013
US20130338626A1 - Photopatterning of skin - Google Patents
Photopatterning of skin Download PDFInfo
-
Publication number
- US20130338626A1 US20130338626A1 US13/897,258 US201313897258A US2013338626A1 US 20130338626 A1 US20130338626 A1 US 20130338626A1 US 201313897258 A US201313897258 A US 201313897258A US 2013338626 A1 US2013338626 A1 US 2013338626A1 Authority
- US
- United States Prior art keywords
- skin region
- light
- skin
- photoresponsive material
- delivering Prior art date
- 2005-06-02 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M37/00—Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
- A61M37/0076—Tattooing apparatus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/0208—Tissues; Wipes; Patches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/04—Dispersions; Emulsions
- A61K8/042—Gels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/04—Dispersions; Emulsions
- A61K8/046—Aerosols; Foams
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/04—Dispersions; Emulsions
- A61K8/06—Emulsions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/062—Photodynamic therapy, i.e. excitation of an agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q1/00—Make-up preparations; Body powders; Preparations for removing make-up
- A61Q1/02—Preparations containing skin colorants, e.g. pigments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q1/00—Make-up preparations; Body powders; Preparations for removing make-up
- A61Q1/02—Preparations containing skin colorants, e.g. pigments
- A61Q1/025—Semi-permanent tattoos, stencils, e.g. "permanent make-up"
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/203—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00452—Skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00904—Automatic detection of target tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B2018/2035—Beam shaping or redirecting; Optical components therefor
- A61B2018/20351—Scanning mechanisms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B2018/2035—Beam shaping or redirecting; Optical components therefor
- A61B2018/205547—Controller with specific architecture or programmatic algorithm for directing scan path, spot size or shape, or spot intensity, fluence or irradiance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/04—Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery
- A61B2090/0409—Specification of type of protection measures
- A61B2090/0436—Shielding
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/04—Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery
- A61B2090/049—Protection of tissue around surgical sites against effects of non-mechanical surgery, e.g. laser surgery against light, e.g. laser
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/50—Supports for surgical instruments, e.g. articulated arms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/20—Chemical, physico-chemical or functional or structural properties of the composition as a whole
- A61K2800/26—Optical properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/42—Colour properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/42—Colour properties
- A61K2800/43—Pigments; Dyes
- A61K2800/434—Luminescent, Fluorescent; Optical brighteners; Photosensitizers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/40—Chemical, physico-chemical or functional or structural properties of particular ingredients
- A61K2800/42—Colour properties
- A61K2800/43—Pigments; Dyes
- A61K2800/438—Thermochromatic; Photochromic; Phototropic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/80—Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
- A61K2800/81—Preparation or application process involves irradiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2800/00—Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
- A61K2800/80—Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
- A61K2800/91—Injection
Definitions
- the present application relates, in general, to the field of treating skin for aesthetic and/or health and/or other purposes.
- this application relates to methods and systems for controlling the delivery of materials into or onto skin.
- a desired pattern may be formed by delivering a photoresponsive material to the skin and exposing the skin to light or other electromagnetic energy to cause a reaction or conversion of the photoresponsive material.
- a photoresponsive material may be delivered into or onto the skin in a pattern.
- patterned light may be delivered to the skin.
- One or both the photoresponsive material and light may be patterned in order to form a desired distribution of material.
- Materials distributed in or on the skin may have a variety of properties for aesthetic, cosmetic, functional, health, or medical purposes.
- FIG. 1 illustrates focusing of light in a skin region to produce modification of a photoresponsive material
- FIG. 2A illustrates transformation of a photoresponsive substance from a first form to a second form with exposure to light
- FIG. 2B illustrates cross-linking of a photoresponsive substance on exposure to light
- FIGS. 3A-3C illustrate photopatterning of skin by targeted application of light
- FIG. 4A illustrates topical application of a photoresponsive material
- FIG. 4B illustrates diffusion of topically applied photoresponsive material into the skin
- FIG. 5A illustrates hypodermal injection of photoresponsive material
- FIG. 5B illustrates diffusion of injected photoresponsive material
- FIG. 6 illustrates injection of photoresponsive material into skin with a microneedle array
- FIG. 7 depicts diffusion of photoresponsive material into skin from a capillary
- FIG. 8 depicts a skin region including a photoresponsive substance
- FIG. 9 depicts targeted application of light to a skin region including a photoresponsive substance
- FIG. 10 depicts an embodiment of a system for controlled delivery of light to skin
- FIG. 11 is a flow diagram of a method of forming a pattern in a skin volume
- FIG. 12 is a flow diagram of a further method of forming a pattern in skin
- FIG. 13 is a flow diagram of a further method of forming a pattern in skin
- FIG. 14 is a block diagram of a system for targeted application of light to skin
- FIG. 15 is a block diagram of a system for targeted application of light to skin
- FIG. 16 is a block diagram of an embodiment of a system for controlled delivery of light to skin
- FIG. 17 is a flow diagram of a method producing a pattern on a surface
- FIGS. 18A-18D depict steps of a method of patterning skin
- FIG. 19A illustrates an embodiment of a mask with a decorative pattern
- FIG. 19B depicts use of the mask depicted in FIG. 19A ;
- FIG. 19C illustrates a decorative pattern formed on a skin surface with the use of the mask depicted in FIG. 19A ;
- FIG. 20 is a flow diagram of a method of forming a patterned distribution of material in skin
- FIG. 21A illustrates delivery of patterned light to a treated skin surface
- FIG. 21B illustrates a pattern formed on a skin surface by the patterned light depicted in FIG. 21A ;
- FIG. 22 is a flow diagram illustrating variations of methods for photopatterning of skin
- FIGS. 23A-23C illustrate steps of forming a patterned distribution of material in skin
- FIG. 24 is a flow diagram illustrating variations of methods for photopatterning of skin
- FIGS. 25A-25C illustrate patterning of skin by patterned delivery of photoresponsive material combined with patterned delivery of light
- FIG. 26 is a block diagram of a system for photopatterning of skin
- FIG. 27 is a flow diagram of a method of photopatterning skin including reversing the photoreaction
- FIG. 28 is a flow diagram of a method of photopatterning skin including removing the modified form of the photoresponsive material
- FIG. 29 is a flow diagram of a method of photopatterning skin including removing unmodified photoresponsive material from the skin;
- FIG. 30 is a flow diagram of a method of photopatterning an active chemical compound in the skin
- FIG. 31 is a flow diagram of a method of manufacturing a device for delivering patterned light
- FIG. 32 is a flow diagram of a further method of manufacturing a device for delivering patterned light.
- FIG. 33 is a block diagram of a system for delivery of patterned light.
- Patterned distributions of materials in skin may have various applications, including but not limited to aesthetic, cosmetic, functions, medical or health purposes. Patterned distributions of dyes, pigments, or other light absorbing, reflecting, or emitting materials, (or any other materials that may produce a visually or optically detectable effect) may be used for aesthetic, decorative, or cosmetic purposes (for example, as tattoos or permanent or semi-permanent cosmetics).
- Detectable markings which may be detectable visually or optically, or by electrical, magnetic, acoustic, or various other detection methods, may have functional applications, as well, for example, marking the location of a surgical site on a patient, or for providing permanent or semi-permanent identifying markings, e.g., on pets, livestock, etc.
- Patterned distributions of materials having pharmaceutical activity may be used to selectively treat various structures in or near the skin surface.
- Treatment targets may include skin lesions, including cancerous and precancerous skin lesions, moles, warts, and pimples. Treatment may also be applied to disorders of various skin structures, for example, capillaries, veins, sweat glands, and hair follicles.
- patterned distributions of structural materials may be used for cosmetic or reconstructive surgery applications.
- structural materials e.g., materials that add strength, form, shape, bulk, resilience, or other desired structural or mechanical properties to skin, connective tissue, cartilage, and so forth
- the patterned material is a biologically active compound intended to treat a specific medical problem, only transient presence of the patterned material may be desired.
- FIG. 1 illustrates modification of a photoresponsive material in skin caused by delivery of light.
- molecules or particles of photoresponsive material 10 are distributed throughout skin region 12 , and light 14 is targeted to a specific location by lens 16 , where it produces a reaction or other modification of one or more molecules or particles of photoresponsive material 10 to produce modified form 11 .
- Skin region 12 includes stratum corneum 18 and keratinocyte layer 20 , which together form epidermis 22 , and dermis 24 . Also shown is hair follicle 26 and hair 28 .
- Photoresponsive material 10 may be distributed in the form of molecules, clusters or aggregations of molecules, particles, gels, solutions, emulsions, suspensions, sprays, fluids, powders, among others.
- photoresponsive material refers to a material (compound, element, composite material, etc.) that undergoes or participates in a reaction, interaction, transformation, modification, phase change, change in energetic state, etc.) to produce a reaction product, or modified form, indicated by reference number 11 in FIG. 1 , having one or more different activities or properties than the original or ‘unmodified’ photoresponsive material.
- a “modification”, as used herein may include chemical reactions, changes in energetic state, phase, conformation, associations, aggregations, formation of bonds or other interactions (e.g.
- Photoresponsive material may be any material that is responsive or sensitive to light to change from a first state to a second state, by itself or in cooperation or reaction with other materials present.
- a photoresponsive material may undergo a modification that results in a modification to a secondary material, in which it is the secondary material that produces an effect in the skin.
- the photoreactive material may be employed as a light-specified ‘mask’ which then is used to control the exposure of skin not so ‘masked’ to subsequent processing.
- Photoresponsive material may include mixtures of materials that react or interact upon exposure to light.
- FIG. 2A depicts a change in conformation produced by exposure to light, in which photoresponsive material 10 is converted from a first state 10 to a second state 11 .
- FIG. 2B depicts cross linking of multiple molecules 30 of photoresponsive material produced by exposure to light, to form crosslinked network 31 .
- Conversion of a photoreactive material from an unreacted to a reacted form may include conversion from inactive to active form, from active to inactive form, from colored form to non-colored form, from a darker form to a lighter oner (or vice versa), from a more-scattering form to a less-scattering one (or vice versa), from a first color to a second color, or any combination of these.
- Conversion of a photoreactive material from an unreacted form to a reacted form may include a changes in the scattering or absorption properties of the photoreactive material for light of a given waveband.
- Various methods of delivering photoresponsive material and light to a skin region may be used to produce a patterned distribution of a material in the skin region.
- One or the other or both of the photoresponsive material and the light may be delivered in a targeted fashion in order to produce a patterned distribution of material in the skin.
- a patterned distribution of a material in or on skin may be produced by delivering a photoresponsive material to at least a skin region of a subject in a relatively non-targeted fashion, and delivering targeted light to the skin region according to a pattern.
- the targeted light may have a wavelength content, time-averaged flux and/or fluence sufficient to cause a transformation of the photoresponsive material to a modified form.
- the method may include delivering targeted light to the skin region according to a pattern by delivering targeted light to a plurality of locations in the skin region according to a pattern.
- a patterned distribution of the modified form of the photoresponsive material may then be formed. This general approach is illustrated in FIG. 3A-3C . In FIG.
- FIG. 3A a skin region 100 is illustrated. Photoresponsive material has been applied to a portion 102 of skin region 100 . Focused light 106 from light source 108 is delivered to location 110 a , which is one of multiple locations 110 a - 110 j within portion 102 .
- FIG. 3B illustrates delivery of light 106 to location 110 a , where photoresponsive material is converted to a modified form, indicated by a dark circle.
- FIG. 3B depicts multiple locations 110 b - 110 j that have previously been exposed to light to cause modification of photoresponsive material.
- Light source 108 may be positioned with respect to skin region 108 by a linkage 112 .
- FIG. 3C depicts a pattern of modified material at locations 110 a - 110 o.
- Photoresponsive material in relatively non-targeted fashion may be accomplished by various methods, which may depend on various factors, including the type of photoresponsive material to be used, desired depth of delivery of the material in the skin, the size of the area in which a patterned distribution of material is to be produced.
- photoresponsive material may be delivered to the skin topically.
- a carrier material 130 containing a photoresponsive material 132 may be placed on a skin surface 134 .
- Photoresponsive material 132 may diffuse out of carrier material 130 and into skin 12 , as shown in FIG. 4B .
- Skin 12 includes epidermis 22 and dermis 24 .
- Diffusion of photoresponsive material 132 may be enhanced by electrophoresis or by the presence of solvent or ‘carrier’ chemicals such as DMSO or EDTA in certain embodiments (see, e.g., “Photodynamic Therapy”, Medscape Dermatology 3(2), 2002, incorporated herein by reference.
- Photoresponsive material may be delivered to at least a skin region of a subject topically in various forms, including, for example, an aerosol, cream, emulsion, gel, liquid, vapor, gas, lotion, patch, or powder or combinations of these.
- a general distribution of a photoresponsive material within a skin region may be obtained by injecting the photoresponsive material 132 into skin 12 with an hypodermic needle 140 , as depicted in FIG. 5A .
- Photoresponsive material 132 may be in a liquid carrier solution 136 , or in a suspension, an emulsion, or any other form suitable for delivery via a hypodermic needle. This approach may be suitable if the diffusion or dispersion of the photoresponsive material away from the injection site produces an acceptable (e.g., sufficiently uniform) distribution of photoresponsive material, as depicted in FIG. 5B , within an acceptable amount of time.
- photoresponsive material may be distributed into a skin region 12 with the use of a microneedle array 150 , as depicted in FIG. 6 .
- Photoresponsive material 132 may be injected below stratum corneum 18 of skin region 12 with the use of a microneedle array 150 .
- photoresponsive material to be delivered via microneedle array 150 may be carried in a carrier fluid 152 that is adapted for use with a microneedle array.
- photoresponsive material 132 that can be obtained within skin region 12 may depend on the combination of injection methodology and photoresponsive material used. For example, smaller molecules may diffuse or disperse more readily from the injection site than may larger molecules. In addition, the presence of certain functional groups may cause some photoresponsive materials to be taken up by certain tissues or cell types. Accordingly, photoresponsive materials may be selected or designed for use in combination with certain delivery mechanism and for preferential delivery to, retention by, or processing by certain tissues or cells.
- photoresponsive materials to have certain diffusion or selective uptake-or-retention-or-processing properties may be performed by a person of skill in the relevant art, for example, as described in Pogue and Hasan, “Targeting in Photodynamic Therapy and Photo-Imaging, Optics & Photonics News, August 2003, pp. 36-43, which is incorporated herein by reference.
- a photoresponsive material may be delivered to at least a skin region of a subject by delivering the photoresponsive material to the subject systemically.
- photoresponsive material may be delivered to the subject orally in an ingestible formulation, via an inhalant, via intravenous or other ‘deep’ injection modalities or via various other systemic routes.
- a photoresponsive material may be delivered via injection, but subsequently carried throughout the body by the blood stream.
- a systemically delivered photoresponsive material 132 may be carried in the blood stream (e.g., in capillary 160 ) and diffuse out into the skin region of interest, which in this example is skin region 12 .
- the photoresponsive material may distribute uniformly throughout the subject's body, or may distribute preferentially to certain regions, tissues, or cells of the body.
- the photoresponsive material may be attached to a carrier molecule compounded in various ways as known to those of skill in the arts of drug delivery, in order to produce a desired distribution of photoresponsive material within the subject's body.
- FIG. 8 depicts the arm 200 of a subject, showing a skin region 202 in which a photoresponsive material is distributed.
- photoresponsive material may be distributed only to the skin region of interest (skin region 202 in the present example), by, for example, topical application or local injection, or it may be distributed to a larger portion of the subject's body (up to and including the entire body), of which the region of interest is a part.
- patterned light 204 is delivered to skin region 202 from light source 206 to cause modification of the photoresponsive material to produce a patterned distribution 208 of the modified material in skin region 202 .
- FIG. 10 provides a general illustration of a device 300 that may be used to produce a patterned distribution of light.
- Controller 301 controls the deliver of light 302 from light source 304 via optical system 306 .
- Device 300 may be positioned by a mechanical linkage 112 supported by a base 140 .
- Light 302 may be delivered at different x, y positions on the skin surface (e.g. x 1 , y 1 , x 2 , y 2 , x 3 , and y 3 in FIG. 10 ), as well as at different depths or z positions (e.g. z 1 , z 2 , and z 3 in FIG. 10 ) below the skin surface 134 .
- Each location may be characterized by an x coordinate and y coordinate in an effectively planar portion of the skin region. Similarly, each location may be characterized by z coordinate corresponding to the depth of the location below a surface of the skin region. In some applications, the z coordinate may be selected for each location such that a pattern is formed in the epidermis of the skin region. In other applications, the z coordinate may be selected for each location such that a pattern is formed in the dermis of the skin region, or even below the dermis.
- a method as depicted in FIG. 11 may be used for forming a pattern in a skin volume.
- a photoresponsive material is delivered to at least a skin volume of a subject, the skin volume including a region having a depth underlying a skin surface having an area.
- light of a wavelength band, time-averaged flux and/or fluence sufficient to cause modification of the photoresponsive material may be aimed and focused at a plurality of locations within the volume, with at least a portion of the plurality of locations being at different depths within the region.
- FIG. 12 depicts steps of a method of forming a patterned distribution of material in skin, including delivering a photoresponsive material to at least a skin region of a subject at step 452 and delivering targeted light to the skin region according to a pattern, the targeted light having a wavelength content, time-averaged flux and/or fluence sufficient to cause a transformation of the photoresponsive material to a modified form, at step 454 .
- FIG. 12 depicts steps of a method of forming a patterned distribution of material in skin, including delivering a photoresponsive material to at least a skin region of a subject at step 452 and delivering targeted light to the skin region according to a pattern, the targeted light having a wavelength content, time-averaged flux and/or fluence sufficient to cause a transformation of the photoresponsive material to a modified form, at step 454 .
- FIG. 13 depicts a related method, which includes delivering a photoresponsive material to at least a skin region of a subject at step 472 and delivering targeted light to a plurality of locations in the skin region according to a pattern, the targeted light having a wavelength content, time-averaged flux and/or fluence sufficient to cause a transformation of the photoresponsive material to a modified form, in step 474 .
- FIG. 14 is a block diagram of a system 500 for delivering patterned light.
- System 500 includes a light source 502 capable of producing light 503 of at least one defined wavelength band, and a controllable optical system 504 .
- Controllable optical system 504 is configured to receive control signal 506 generated according to a pattern 508 , and responsive to the control signal 506 to aim and focus light 503 from the light source 502 onto one or more selected skin locations of the plurality of skin locations 510 a - 510 p according to pattern 508 .
- Pattern 508 may represent a desired distribution of a material to a plurality of locations in or on skin region 510 .
- System 500 may also include electronic circuitry 512 configured to limit the fluence of light 503 produced by the light source 502 to levels that are non-damaging or not significantly damaging to skin.
- Controller 514 which may be, for example, a microprocessor, may perform computations used to produce control signal 506 for controlling controllable optical system 504 , and light source drive signal 515 for driving light production by light source 502 .
- Electronic circuitry 512 may function to limit light source drive signal 515 to limit light generation to safe levels.
- a system for delivering patterned light to skin may include a light source capable of producing light of at least one defined wavelength band, a controllable optical system, and electronic circuitry configured to limit the fluence of light produced by the light source to levels that are non-damaging or not significantly damaging to skin.
- the controllable optical system may be configured to receive a control signal generated according to a pattern representing a desired distribution of a material to a plurality of locations in or on a skin region, and responsive to the control signal to aim and focus light from the light source onto one or more selected skin locations of the plurality of skin locations according to the pattern.
- the system for delivering patterned light may also include an imaging device adapted for imaging a skin region containing at least a portion of the plurality of skin locations.
- the system may include a device driver including one or more of hardware, software, or firmware for generating the control signal based upon pattern data stored in a machine readable medium.
- the controllable optical system may include one or more deflectors configured to aim light from the light source, and the position of at least one of the one or more reflectors may be controllable to aim light toward at least one of the plurality of skin locations.
- the controllable optical system may include a positioner adapted to adjust the position of the light source.
- Deflectors may include mirror-type reflectors and surface-acoustic wave (SAW) Bragg-type deflectors, as well as electrically-steered refractive elements.
- SAW surface-acoustic wave
- Patterned light may be delivered in the form of discrete pulses applied at multiple locations, as depicted in FIG. 14 . Patterned light may also be delivered by sweeping a focused beam of light across a skin surface in a continuous pattern, for example, as depicted in FIG. 15 . A beam may be moved across the skin surface with the use of a scanning mirror or functionally-equivalent optical systems of other types, the design and use of which is well known to those of skill in the art. Patterned light may also be delivered in some combination of continuous and discrete light; for example, a beam may be swept across the skin surface to form contiguous portions of a pattern, but turn on and off as the beam is moved to non-contiguous portions of the pattern.
- FIG. 15 depicts a system 600 including a controllable positioning system 602 that may be used to move a beam of light 604 over a skin surface 606 and to adjust the positioning of light from the light source on a skin region.
- System 600 may include a controllable optical system 608 that includes one or more deflectors 610 configured to aim light 604 , from the light source 612 .
- the position of at least one deflector 610 may be controllable to aim light 604 toward at least one of the plurality of skin locations.
- Controllable optical system 608 may include a positioner adapted to adjust the position of light source 612 .
- Light source 612 may be capable of producing light 604 of at least one defined wavelength band.
- System 600 may also include memory 614 capable of storing a pattern 616 in machine-readable form representing a plurality of locations within a skin region to which light 604 from light source 612 is to be directed.
- system 600 may include one or more optical components capable of focusing light 604 from the light source 612 at a specific depth within a skin region 12 in response to a control signal 618 , controller 620 configured to generate control signal 618 for driving controllable positioning system 602 to direct light onto a plurality of skin locations according to pattern 616 stored in memory 614 .
- Controller 620 may be configured to generate a control signal from driving one or more optical components to adjust the focusing of light 604 at different depths and at different skin locations according to pattern 616 .
- Deflectors 610 may be controllable deflectors configured to aim light 604 from light source 612 , wherein the position of at least one of the one or more deflectors 610 is controllable to aim light toward any of the plurality of skin locations.
- Controller 620 may include one or more of hardware, software, and firmware.
- controller 620 may include a microprocessor.
- system 600 may include an imaging device, which may be for example, a CCD camera.
- FIG. 16 is a block diagram of different aspects of a system 700 for delivering patterned light to a skin region 12 .
- System 700 may include light source 702 and optical system 704 , which directs and focuses light 706 from light source 702 .
- Overall system operation may be controlled by processor 708 , which may be, for example, a microprocessor, powered by power supply 710 .
- Processor 708 may execute commands from executable code 712 to generate signals 714 and 716 , which are sent to light source driver 718 and optical driver 720 , respectively.
- Light source driver 718 which may include hardware, software, firmware, or a combination thereof, drives operation of light source 702 .
- Optical driver 720 which also may include hardware, software, firmware, or a combination thereof, drives operation of optical system 704 , via position control module 722 and focus control module 724 .
- System 700 may be used to deliver targeted light to a plurality of locations under software control and/or under microprocessor control.
- FIG. 17 outlines a method that includes delivering patterned light of a restricted wavelength band to a skin surface coated with a photosensitive material, wherein the patterned light is capable of interacting with the photosensitive material to produce a visible pattern on the coated surface, as shown at step 752 of the flow diagram.
- the photosensitive material may be applied to the surface.
- Light may be delivered to different locations in sequence, in either discrete or continuous fashion. Patterned light as used in certain embodiments may be produced with the use of a controllable optical system that is controllable to focus the light source on at least two of a plurality of skin locations in sequence. In some embodiments, a controllable optical system may be used that is controllable to focus the light source on at least two of a plurality of skin locations simultaneously.
- FIG. 18A illustrates a skin region 800 with a treated region 802 that contains a photoresponsive material.
- photoresponsive material may be delivered to region 802 topically, by injection, or systemically.
- step 18 B patterned light is delivered to area 804 in region 802 through the use of a stencil or mask or other methods as described herein below. Patterned light causes a reaction or transformation of photoresponsive material in area 804 , to produce a pattern 806 of modified material as shown in FIG. 18C .
- an additional step may be carried out to remove unmodified photoresponsive material from skin region 800 , so that only pattern 806 remains in skin region 800 , as depicted in FIG. 18D .
- FIGS. 19A-19C Several methods may be used to expose a treated skin region to patterned light.
- a mask (or stencil) 850 may be placed on the skin surface to block exposure of the skin surface to light except in the areas that are to be patterned.
- FIG. 19A depicts a mask 850 having an opaque portion 852 and a light transmitting portion 854 .
- Mask 850 may be placed over a skin region that contains a photoresponsive material.
- the skin region is a portion of the arm 858 of a subject.
- a drape 860 may be used to extend the covered area of arm 858 ; various functionally equivalent configurations may be devised by a practitioner of skill in the relevant art.
- Light from light source 862 may cover all of the light transmitting portion 854 of mask 850 , as depicted in FIG. 19B .
- light from a light source may cover a portion of a light transmitting portion of a mask, and the light source may be moved to one or more additional regions in order to expose all of the skin region exposed by the light transmitting portion of the mask.
- Light source 862 may be removed or turned off following exposure to light for a period of time sufficient to produce a desired modification of the photoresponsive material, and mask 830 and drape 860 (if used) removed.
- arm 858 of the subject bears a patterned distribution 864 of modified photoresponsive material that corresponds to the light transmitting regions 854 of mask 850 .
- a photoresponsive material is delivered to at least a skin region of a subject.
- a mask is placed over the skin region, the mask including one or more light blocking regions and defining one or more light transmissive regions to form a pattern.
- the skin region is exposed to light of wavelength band, time-averaged flux and/or fluence sufficient to produce modification of the photoresponsive material within the skin region beneath the one or more light transmissive regions defined by the mask.
- Delivering a photoresponsive material may include delivering a photoresponsive material that is converted from an active form to an inactive form by exposure to light.
- delivering a photoresponsive material may include delivering a photoresponsive material that is converted from an inactive form to an active form by exposure to light.
- the method may also include reversing the photo reaction by exposing the skin region to light of a wavelength band, time-averaged flux and/or fluence sufficient to reverse the reaction.
- Photo reactions that may operate in a first direction at a first wavelength band, time-averaged flux and/or fluence, and which may be reversed at a second wavelength band, time-averaged flux and/or fluence include, for example crosslinking of PEG-cinnamylidine acetate as described in U.S. Pat. No. 5,990,193, and reactions of various aromatic diazo dyes, as described in U.S. Pat. No. 5,998,588, both of which are incorporated herein by reference in their entirety.
- FIGS. 21A and 21B An alternative method of delivering patterned light is depicted in FIGS. 21A and 21B .
- FIG. 21A depicts a light source 880 that produces patterned light 882 . This may be accomplished by placing a mask over a single light source of sufficient size and capable of generating substantially collimated light, or by placing multiple smaller light sources, also capable of producing relatively parallel light, in a suitable arrangement. Patterned light 882 from light source 880 may then be delivered to a treated surface 884 . In the example of FIG. 21A , treated surface 884 need not be masked, because the light is patterned, although in some embodiments patterned light may be used in combination with a mask or stencil.
- FIG. 21B illustrates pattern 886 that has been formed by modification of photoresponsive material in or on treated surface 884 by exposure to patterned light 882 .
- Delivering photoresponsive material to at least a skin region may be further characterized as delivering photoresponsive material topically (step 902 a ), delivering photoresponsive material by injection in the skin region ( 902 b ) by delivering photoresponsive material by injection below the stratum corneum with a microneedle array ( 902 c ), or delivering the photoresponsive material systemically ( 902 d ).
- Delivering targeted light to the skin region according to a pattern may be performed by a number of approaches, including delivering targeted light to a plurality of locations in the skin region according to a pattern ( 904 a ), delivering targeted light to the skin region according to a decorative pattern (step 904 b ) or delivering targeted light to the skin region according to a pattern corresponding to one or more structures in the skin region (step 904 c ).
- Methods including step 904 c may also include a step of detecting one or more features in the skin region.
- the target light may have a wavelength content, time-averaged flux, or fluence sufficient to cause a transformation of the photoresponsive material to a modified form.
- a photoresponsive material may be introduced into a skin region in a patterned distribution, and light delivered to the skin in a relatively non-targeted fashion in order to cause transformation of the photoresponsive material to a modified form.
- a photoresponsive material may be delivered topically in a pattern by various methods, including painting, printing (i.g., ink jet or wire jet printing), and stenciling, for example.
- Photoresponsive material may be delivered into the skin, below the skin surface, by injection with one or multiple needles (e.g. tattoo needles, micro-needle array, hypodermic needle) or by a pressure jet.
- FIG. 23A illustrates a skin region 950 including a patterned distribution of photoresponsive material 952 .
- light source 954 is used to deliver light to a region 956 which includes patterned distribution of photoresponsive material 952 .
- Light source 954 delivers light in a relatively non-targeted fashion; any light distribution that covers patterned distribution of photoresponsive material 952 with light of sufficient intensity or fluence may be used.
- light may be delivered in several stages or from several sources, e.g., by delivering light from two or more sources, or from the same source at two different times, such that each individual delivery of light covers only a part of the patterned distribution of photoresponsive material, but that together, the multiple deliveries of light cover the entire patterned distribution of photoresponsive material.
- FIG. 23C following modification of photoresponsive material due to light exposure, a patterned distribution of modified material 958 is present in skin region 950 .
- both photoresponsive material and light may be delivered to the skin in a pattern.
- Patterned delivery of photoresponsive material and of light may be accomplished by any of the exemplary methods described herein above, for example.
- the patterns may be substantially similar and overlapping, in which case the distribution pattern of the modified form in or on the skin will be substantially the same as the distribution patterns of the unmodified form and the light. If the distribution pattern of the photoresponsive material and the distribution pattern of the light are partially overlapping, a patterned distribution of the modified form may be obtained that is defined by the shape and distribution of the regions of overlap between the distribution patterns of photoreactive material and light. This approach is illustrated in FIG. 24 and FIGS. 25A-25C . At step 972 of FIG.
- a photoresponsive material is delivered to a skin region of a subject in a first pattern.
- photoresponsive material is delivered to the skin region topically.
- photoresponsive material 972 b is delivered to the skin region by injection (e.g., via a hypodermic needle, tattoo needle, microneedle array, pressure jet, etc.)
- targeted light is delivered to the skin region in a second pattern, the second pattern overlapping partially with the first pattern.
- the photoresponsive material in the areas of overlap between the first pattern and the second pattern may undergo photomodification to form an overlap pattern of modified photoresponsive material within the skin region. The method is illustrated in graphic form in FIGS. 25A-25C . In FIG.
- a patterned distribution of photoresponsive material 1000 is formed in skin region 1002 .
- patterned distribution of photoresponsive material 1000 includes five lines of photoresponsive material 1000 a , 1000 b , 1000 c , 1000 d , and 1000 e .
- Such a patterned distribution may be formed by printing, injection, or other methods as described herein or as may be devised by one of skill in the art.
- a patterned distribution of light 1004 is delivered to skin region 1002 , overlapping patterned distribution of photoresponsive material 1000 .
- FIG. 26 is a block diagram of a system 1050 that includes an imaging device 1052 .
- System 1050 may include a light source 1054 capable of producing light of at least one defined wavelength band, memory 1056 capable of storing a pattern in machine-readable form representing a plurality of locations within a skin region to which light from the light source is to be directed, controllable positioning system 1060 configured to adjust the positioning of light from light source 1054 on a skin region, one or more optical components 1062 capable of focusing light from the light source 1054 at a specific depth within a skin region in response to a control signal, and controller 1064 configured to generate a control signal 1066 for driving controllable positioning system 1060 to direct light onto a plurality of skin locations according to the pattern 1058 stored in memory 1056 .
- a light source 1054 capable of producing light of at least one defined wavelength band
- memory 1056 capable of storing a pattern in machine-readable form representing a plurality of locations within a skin region to which light from the light source is to be directed
- controllable positioning system 1060 configured to adjust the positioning of light from light source 1054 on a skin region
- controller 1064 may be configured to generate control signal 1066 for driving optical components 1062 to adjust the focusing of light at different depths and at different skin locations according to pattern 1058 stored in memory 1056 .
- controllable positioning system 1060 includes one or more controllable deflectors configured to aim light from light source 1054 , wherein the position of at least one of the deflectors is controllable to aim light toward any of the plurality of skin locations.
- System 1050 may also include one or more I/O devices 1068 to provide for entry of control inputs by a user and for the presentation of information or data to the user.
- Controller 1064 may include one or more of hardware, software, and firmware. In some embodiments, controller 1064 may include a microprocessor. System 1050 may include an imaging device, which may be, for example, a CCD camera.
- photoresponsive materials may be delivered to at least a skin region of a subject, and some or all of the photoresponsive material may be exposed to light to cause a reaction or conversion of the photoresponsive material.
- Unwanted material may be removed by processes normally occurring in the body, such as metabolism or excretion of the material, or by sluffing of skin containing the material.
- materials may not be removed by naturally occurring processes, or may not be removed as quickly as is deemed desirable, and further treatment steps may be used to remove the materials form the body.
- unmodified material may be removed, while modified material may be left in the skin region.
- modified material may be removed from the skin region after a use period.
- Treatment to removed either modified or unmodified photoresponsive material, or both may include phototreatment (e.g., photobleaching), chemical treatment (e.g., chemical bleaching), chemo-mechanical treatment, or treatment by exposure to heat, vibration, electromagnetic fields, among others.
- FIG. 27 depicts an exemplary sequence of method steps.
- a photoresponsive material is delivered to at least a skin region of a subject.
- a mask is placed over the skin region, the mask including one or more light blocking regions and defining one or more light transmissive regions to form a pattern.
- the skin region may be exposed to light of wavelength band, time-averaged flux and/or fluence sufficient to produce modification of the photoresponsive material within the skin region beneath the one or more light transmissive regions beneath the mask.
- Method steps 1102 through 1106 correspond to the method illustrated in FIGS. 19A-19C , for example.
- the modification is reversed by exposing the skin region to light of wavelength, time-averaged flux and/or fluence sufficient to reverse the modification.
- the modified form may include removal of the modified form of the photoresponsive material from the skin region over time.
- the modified form may be removed from the skin region by metabolism.
- the modified form may be removed from the skin region through sluffing of dead skin cells and/or the continual shedding of epidermal outer layers, for example.
- the modified form may be removed from the skin region after a treatment period.
- the method may include removing the modified form by a photo treatment, by a chemical treatment, or by a chemo-mechanical treatment.
- FIG. 28 depicts steps of a method that includes removing the modified form of the photoresponsive material from the skin region after a treatment period.
- a photoresponsive material is delivered to at least a skin region of a subject.
- targeted light is delivered to the skin region according to a pattern, the targeted light having a wavelength content, time-averaged flux and/or fluence sufficient to cause a transformation of the photoresponsive material to a modified form.
- the modified form is removed from the skin region after a treatment period.
- the modified form may be removed by photo treatment (step 1156 a ) or by chemical treatement ( 1156 b ), for example.
- the treatment period may be quite brief, producing only a transient presence of the modified material in the system, or may be of extended duration, of hours, days, weeks, months, or even years.
- photoresponsive materials examples include, but are not limited to photodynamic therapy agents, photochromic dyes and pigments, photo-crosslinkable materials, photopolymerizable materials, and photodimerizable materials, luminides, light reactive polymers that change in conformation, volume, binding activity, drug activity, hydrogels of various types.
- photoresponsive materials may be cosmetic materials having selected color or other appearance properties. Reaction undergone by photoresponsive materials may be a reversible transformation or an irreversible transformation.
- the transformation may convert the photoresponsive material from an active to an inactive form. In other embodiments, the transformation may convert the photoresponsive material from an inactive to an active form.
- the transformation may include, for example, conversion of a photoresponsive material from a substantially colorless form to a colored form, or from a colored form to a substantially colorless form. Examples of photochromic dyes are listed in U.S. Pat. No. 6,602,975, which is incorporated herein by reference.
- the transformation may include conversion of the photoresponsive material from a first color to a second color, or may modify the extent to which it scatters light of a given waveband.
- the modified form may be visible under natural light in some embodiments. In some embodiments, the modified form may be visible under ultraviolet light. In some embodiments, the modified form may be fluorescent.
- the modified form may be a pigment, dye, pharmaceutical compound, or cosmetic material.
- FIG. 29 depicts steps of a method that includes removing unmodified photoresponsive material from a skin region of a subject.
- a photoresponsive material is delivered to at least a skin region of a subject.
- targeted light is delivered to the skin region according to a pattern, the targeted light having a wavelength content, time-averaged flux and/or fluence sufficient to cause a transformation of the photoresponsive material to a modified form.
- the unmodified photoresponsive material is removed from the skin region.
- the unmodified photoresponsive material may be removed by phototreatment, as shown in step 1206 a , or by chemical treatment, as shown in step 1206 b.
- FIG. 30 illustrates a method of providing controlled delivery of an active compound to a skin region, which includes delivering an inactive chemical compound non-specifically to at least a skin region of a subject at step 1252 and exposing the skin region to targeted light delivered to multiple selected locations within the skin region to form a pattern at step 1254 , the targeted light having a wavelength band, time-averaged flux and/or fluence sufficient to cause modification of the inactive chemical compound to form an active compound within the skin region at the selected locations according to the pattern.
- delivering an inactive chemical compound may include delivering an inactive form of a photodynamic therapy agent or a photochromic dye or pigment. It is within the present inventive scope to deliver two-or-more materials in this manner, and to induce reactions between the two-or-more of them or between the two-or-more of them and ambient materials by the action of the incident light.
- Systems for the delivery of light to skin may include various types of light sources.
- light sources must deliver light having wavelength content, fluxes and fluences sufficient to produce a particular effect in the photoresponsive material that is being exposed to the light.
- the light may have a wavelength content, time-averaged flux and/or fluence sufficient to cause a photo cross-linking reaction of the photoresponsive material.
- the light may have wavelength content, time-averaged flux and/or fluence sufficient to cause a photochromic reaction of the photoresponsive material.
- the light may have a wavelength content, time-averaged flux and/or fluence sufficient to cause a photodimerization reaction of the photoresponsive material.
- Light sources suitable for use in various embodiments as described herein include lasers, laser diodes, as well as various non-coherent light sources.
- Light sources may include light emitting diodes.
- light sources may emit light in an ultraviolet wavelength band.
- light sources may emit light in a visible wavelength band, or in an infrared one. Broad-band light sources may be used in some embodiments.
- FIG. 31 depicts a method of manufacturing a targeted light delivery system.
- Step 1302 includes providing a housing configured to be positioned relative to a skin region of a subject.
- a light source is mounted in fixed relationship with respect to the housing, the light source capable of delivering light of a wavelength band, time-averaged flux and/or fluence sufficient to activate a photoresponsive material in a skin region when the housing is positioned realitive to the skin region.
- a controllable optical system is mounted with respect to the housing and the light source such that light from the light source may be focused on a skin region by the controllable optical system when the housing is positioned relative to the skin region.
- driver interface circuitry is connected to the light source and the controllable optical system, the driver interface circuitry adapted to receive one or more control signals and responsive to the control signals to drive the controllable optical system and the light source to focus light on one or more targets in the skin region according to a pattern and/or in an aligned manner.
- FIG. 32 depicts a method of manufacturing a device for delivering patterned light.
- a housing is provided that is configured to be positioned adjacent to a skin region of a subject.
- a light source is mounted in fixed relationship with respect to the housing, the light source capable of delivering light of a wavelength band, time-averaged flux and/or fluence sufficient to activate a photoresponsive material in a skin region when the housing is positioned adjacent to the skin region.
- a controllable optical system is mounted with respect to the housing and the light source such that light from the light source may be focused on a skin region by the controllable optical system when the housing is positioned relative to the skin region at step 1356 .
- driver interface circuitry is connected to the light source and the controllable optical system, the driver interface circuitry adapted to receive one or more control signals from a microprocessor-based controller and responsive to the control signals to drive the controllable optical system and the light source to focus light on one or more locations in the skin region according to a pattern.
- software code is provided that is executable by the microprocessor based controller to generate the one or more control signals.
- the driver interface circuitry may be adapted to receive the one or more control signals from a microprocessor-based controller.
- the method may include providing software code executable by the microprocessor-based controller to generate the one or more control signals.
- FIG. 33 depicts features of a device as described in connection with FIG. 32 ; included are housing 1400 , light source 1402 , controllable optical system 1404 , and driver interface circuitry 1406 .
- Driver interface circuitry receives at least one control signal 1408 on input 1410 , and generates control signals 1412 and 1414 for driving light source 1402 and controllable optical system 1404 , respectively.
- Portion 1416 of housing 1400 may be configured to be positioned adjacent a skin region 1418 , so that light 1420 may be directed to skin region 1418 by controllable optical system 1404 .
- lithography of silicon wafers may be modified and combined in a variety of ways analogous to those of photolithography of silicon wafers.
- masks or stencils may be used to form positive or negative patterns.
- Additive and subtractive processing may be performed by appropriate combinations of steps. For example, multiple steps, each involving the use of a different stencil and a different depth of focus of light in the skin, may be used to form a patterned distribution of material that varies as a function of depth within the skin.
- a multi-step process may be used in which a material modified at a first step, for example by treatment at a first wavelength, may in turn influence (e.g.
- an implementer may opt for a hardware and/or firmware vehicle; alternatively, if flexibility is paramount, the implementer may opt for a solely software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware.
- any vehicle to be utilized is a choice dependent upon the context in which the vehicle will be deployed and the specific concerns (e.g., speed, flexibility, or predictability) of the implementer, any of which may vary.
- those skilled in the art will recognize that optical aspects of implementations will require optically-oriented hardware, software, and or firmware.
- signal bearing media include, but are not limited to, the following: recordable type media such as floppy disks, hard disk drives, CD ROMs, digital tape, and computer memory; and transmission type media such as digital and analog communication links using TDM or IP based communication links (e.g., links carrying packetized data).
- electrical circuitry includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment).
- a computer program e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein
- electrical circuitry forming a memory device
- systems as described herein may include one or more of a memory such as volatile and non-volatile memory, processors such as microprocessors and digital signal processors, computational-supporting or -associated entities such as operating systems, user interfaces, drivers, sensors, actuators, applications programs, one or more interaction devices, such as data ports, control systems including feedback loops and control implementing actuators (e.g., devices for sensing position and/or velocity and/or acceleration or time-rate-of-change thereof; control motors for moving and/or adjusting components).
- a skin treatment system may be implemented utilizing any suitable available components, combined with standard engineering practices.
- any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermediate components.
- any two components so associated can also be viewed as being “operably connected”, or “operably coupled”, to each other to achieve the desired functionality.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Birds (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Dermatology (AREA)
- Biophysics (AREA)
- Radiology & Medical Imaging (AREA)
- Pathology (AREA)
- Virology (AREA)
- Heart & Thoracic Surgery (AREA)
- Anesthesiology (AREA)
- Medical Informatics (AREA)
- Hematology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
Methods and systems for treating skin for aesthetic or health purposes are described. According to various embodiments, photoresponsive materials and light are delivered in a controlled fashion to produce a patterned distribution of a material in the skin.
Description
-
CROSS-REFERENCE TO RELATED APPLICATIONS
-
The present application claims the benefit of the earliest available effective filing date(s) from the following listed application(s) (the “Priority Applications”), if any, listed below (e.g., claims earliest available priority dates for other than provisional patent applications or claims benefits under 35 USC §119(e) for provisional patent applications, for any and all parent, grandparent, great-grandparent, etc. applications of the Priority Application(s)). In addition, the present application is related to the “Related Applications,” if any, listed below.
Priority Applications
-
The present application constitutes a continuation of U.S. patent application Ser. No. 11/143,116, entitled PHOTOPATTERNING OF SKIN, naming Bran Ferren, Muriel Y. Ishikawa, Edward K. Y. Jung, Nathan P. Myhrvold, and Lowell L. Wood, Jr. as inventors, filed 2 Jun. 2005 with attorney docket no. 0504-004-002F-000000, which is currently co-pending or is an application of which a currently co-pending application is entitled to the benefit of the filing date.
Related Applications
-
U.S. patent application Ser. No. 11/072,007, entitled HAIR REMOVAL SYSTEM WITH LIGHT SOURCE ARRAY, naming Bran Ferren, Muriel Y. Ishikawa, Edward K. Y. Jung, Nathan P. Myhrvold, Clarence T. Tegreene, and Lowell L. Wood, Jr. as inventors, filed 4 Mar. 2005 with attorney docket no. 0504-004-002J-000000, is related to the present application.
-
U.S. patent application Ser. No. 11/072,698, entitled HAIR TREATMENT SYSTEM, naming Bran Ferren, Muriel Y. Ishikawa, Edward K. Y. Jung, Nathan P. Myhrvold, Clarence T. Tegreene, and Lowell L. Wood, Jr. as inventors, filed 4 Mar. 2005 with attorney docket no. 0504-004-0021-000000, is related to the present application.
-
U.S. patent application Ser. No. 11/073,361, entitled METHOD AND SYSTEM FOR TEMPORARY HAIR REMOVAL, naming Bran Ferren, Muriel Y. Ishikawa, Edward K. Y. Jung, Nathan P. Myhrvold, Clarence T. Tegreene, and Lowell L. Wood, Jr. as inventors, filed 4 Mar. 2005 with attorney docket no. 0504-004-002B-000000, is related to the present application.
-
U.S. patent application Ser. No. 11/143,925, entitled SKIN TREATMENT INCLUDING PATTERNED LIGHT, naming Bran Ferren, Muriel Y. Ishikawa, Edward K. Y. Jung, Nathan P. Myhrvold, and Lowell L. Wood, Jr. as inventors, filed 2 Jun. 2005 with attorney docket no. 0504-004-002K-000000, now U.S. Pat. No. 8,157,807 issued 17 Apr. 2012, is related to the present application.
-
U.S. patent application Ser. No. 11/171,649, entitled HAIR MODIFICATION USING CONVERGING LIGHT, naming Bran Ferren, Muriel Y. Ishikawa, Edward K. Y. Jung, Nathan P. Myhrvold, Clarence T. Tegreene, and Lowell L. Wood, Jr. as inventors, filed 29 Jun. 2005 with attorney docket no. 0504-004-002M-000000, is related to the present application.
-
U.S. patent application Ser. No. 11/175,984, entitled MULTI STEP PHOTOPATTERNING OF SKIN, naming Bran Ferren, Muriel Y. Ishikawa, Edward K. Y. Jung, Nathan P. Myhrvold, Lowell L. Wood, Jr., and Victoria Y. H. Wood as inventors, filed 5 Jul. 2005 with attorney docket no. 0504-004-002L-000000 is related to the present application.
-
U.S. patent application Ser. No. 11/198,910, entitled HOLOGRAPHIC TATTOO, naming Bran Ferren, Muriel Y. Ishikawa, Edward K. Y. Jung, Nathan P. Myhrvold, Lowell L. Wood, Jr., AND Victoria Y. H. Wood as inventors, filed 5 Aug. 2005 with attorney docket no. 0504-004-002E-000000 is related to the present application.
-
U.S. patent application Ser. No. 11/217,111, entitled MULTI STEP PATTERNING OF A SKIN SURFACE, naming Bran Ferren, Muriel Y. Ishikawa, Edward K. Y. Jung, Nathan P. Myhrvold, Lowell L. Wood, Jr., and Victoria Y. H. Wood as inventors, filed 31 Aug. 2005 with attorney docket no. 0504-004-002L-CIP001, is related to the present application.
-
U.S. patent application Ser. No. 11/973,103, entitled HAIR TREATMENT SYSTEM, naming Bran Ferren, Muriel Y. Ishikawa, Edward K. Y. Jung, Nathan P. Myhrvold, Clarence T. Tegreene, and Lowell L. Wood, Jr. as inventors, filed 4 Oct. 2007 with attorney docket no. 0504-004-0021-DIV001, is related to the present application.
-
U.S. patent application Ser. No. 11/974,077, entitled PHOTOPATTERNING OF SKIN, naming Bran Ferren, Muriel Y. Ishikawa, Edward K. Y. Jung, Nathan P. Myhrvold, and Lowell L. Wood, Jr. as inventors, filed 10 Oct. 2007 with attorney docket no. 0504-004-002F-DIV001, is related to the present application.
-
U.S. patent application Ser. No. 12/005,709, entitled PHOTOPATTERNING OF SKIN, naming Bran Ferren, Muriel Y. Ishikawa, Edward K. Y. Jung, Nathan P. Myhrvold, and Lowell L. Wood, Jr. as inventors, filed 28 Dec. 2007 with attorney docket no. 0504-004-002F-DIV002, is related to the present application.
-
U.S. patent application Ser. No. 13/385,970, entitled SKIN TREATMENT INCLUDING PATTERNED LIGHT, naming Bran Ferren, Muriel Y. Ishikawa, Edward K. Y. Jung, Nathan P. Myhrvold, and Lowell L. Wood, Jr. as inventors, filed 16 Mar. 2012 with attorney docket no. 0504-004-002K-DIV001, is related to the present application.
-
U.S. patent application Ser. No. 13/897,227, entitled HOLOGRAPHIC TATTOO, naming Bran Ferren, Muriel Y. Ishikawa, Edward K. Y. Jung, Nathan P. Myhrvold, Lowell L. Wood, Jr., AND Victoria Y. H. Wood as inventors, filed 17 May 2013 with attorney docket no. 0504-004-002E-000001, is related to the present application.
-
If the listings of applications provided above are inconsistent with the listings provided via an ADS, it is the intent of the Applicant to claim priority to each application that appears in the Priority Applications section of the ADS and to each application that appears in the Priority Applications section of this application.
-
All subject matter of the Priority Applications and of any and all parent, grandparent, great-grandparent, etc. applications of the Priority Applications, including any priority claims, is incorporated herein by reference to the extent such subject matter is not inconsistent herewith.
-
If an Application Data Sheet (ADS) has been filed on the filing date of this application, it is incorporated by reference herein. Any applications claimed on the ADS for priority under 35 U.S.C. §§119, 120, 121, or 365(c), and any and all parent, grandparent, great-grandparent, etc. applications of such applications, are also incorporated by reference, including any priority claims made in those applications and any material incorporated by reference, to the extent such subject matter is not inconsistent herewith.
TECHNICAL FIELD
-
The present application relates, in general, to the field of treating skin for aesthetic and/or health and/or other purposes. In particularly, this application relates to methods and systems for controlling the delivery of materials into or onto skin.
BACKGROUND
-
The introduction of various dyes or other pigmented materials into or onto the skin to in the form of cosmetics or tattoos is well known, as is the application of various biologically active compounds onto or into the skin surface for various medical-related purposes. In recent years, light-activated photodynamic therapy agents have been developed for the treatment of various skin problems, including skin cancers.
SUMMARY
-
According to various embodiments, methods are provided for forming patterned distributions of materials in the skin of a subject. A desired pattern may be formed by delivering a photoresponsive material to the skin and exposing the skin to light or other electromagnetic energy to cause a reaction or conversion of the photoresponsive material. In some embodiments, a photoresponsive material may be delivered into or onto the skin in a pattern. In some embodiments, patterned light may be delivered to the skin. One or both the photoresponsive material and light may be patterned in order to form a desired distribution of material. Materials distributed in or on the skin may have a variety of properties for aesthetic, cosmetic, functional, health, or medical purposes. Features of various embodiments will be apparent from the following detailed description and associated drawings.
BRIEF DESCRIPTION OF THE FIGURES
-
Features of the invention are set forth in the appended claims. The exemplary embodiments may best be understood by making reference to the following description taken in conjunction with the accompanying drawings. In the figures, like referenced numerals identify like elements.
- FIG. 1
illustrates focusing of light in a skin region to produce modification of a photoresponsive material;
- FIG. 2A
illustrates transformation of a photoresponsive substance from a first form to a second form with exposure to light;
- FIG. 2B
illustrates cross-linking of a photoresponsive substance on exposure to light;
- FIGS. 3A-3C
illustrate photopatterning of skin by targeted application of light;
- FIG. 4A
illustrates topical application of a photoresponsive material;
- FIG. 4B
illustrates diffusion of topically applied photoresponsive material into the skin;
- FIG. 5A
illustrates hypodermal injection of photoresponsive material;
- FIG. 5B
illustrates diffusion of injected photoresponsive material;
- FIG. 6
illustrates injection of photoresponsive material into skin with a microneedle array;
- FIG. 7
depicts diffusion of photoresponsive material into skin from a capillary;
- FIG. 8
depicts a skin region including a photoresponsive substance;
- FIG. 9
depicts targeted application of light to a skin region including a photoresponsive substance;
- FIG. 10
depicts an embodiment of a system for controlled delivery of light to skin;
- FIG. 11
is a flow diagram of a method of forming a pattern in a skin volume;
- FIG. 12
is a flow diagram of a further method of forming a pattern in skin;
- FIG. 13
is a flow diagram of a further method of forming a pattern in skin;
- FIG. 14
is a block diagram of a system for targeted application of light to skin;
- FIG. 15
is a block diagram of a system for targeted application of light to skin;
- FIG. 16
is a block diagram of an embodiment of a system for controlled delivery of light to skin;
- FIG. 17
is a flow diagram of a method producing a pattern on a surface;
- FIGS. 18A-18D
depict steps of a method of patterning skin;
- FIG. 19A
illustrates an embodiment of a mask with a decorative pattern;
- FIG. 19B
depicts use of the mask depicted in
FIG. 19A;
- FIG. 19C
illustrates a decorative pattern formed on a skin surface with the use of the mask depicted in
FIG. 19A;
- FIG. 20
is a flow diagram of a method of forming a patterned distribution of material in skin;
- FIG. 21A
illustrates delivery of patterned light to a treated skin surface;
- FIG. 21B
illustrates a pattern formed on a skin surface by the patterned light depicted in
FIG. 21A;
- FIG. 22
is a flow diagram illustrating variations of methods for photopatterning of skin;
- FIGS. 23A-23C
illustrate steps of forming a patterned distribution of material in skin;
- FIG. 24
is a flow diagram illustrating variations of methods for photopatterning of skin;
- FIGS. 25A-25C
illustrate patterning of skin by patterned delivery of photoresponsive material combined with patterned delivery of light;
- FIG. 26
is a block diagram of a system for photopatterning of skin;
- FIG. 27
is a flow diagram of a method of photopatterning skin including reversing the photoreaction;
- FIG. 28
is a flow diagram of a method of photopatterning skin including removing the modified form of the photoresponsive material;
- FIG. 29
is a flow diagram of a method of photopatterning skin including removing unmodified photoresponsive material from the skin;
- FIG. 30
is a flow diagram of a method of photopatterning an active chemical compound in the skin;
- FIG. 31
is a flow diagram of a method of manufacturing a device for delivering patterned light;
- FIG. 32
is a flow diagram of a further method of manufacturing a device for delivering patterned light; and
- FIG. 33
is a block diagram of a system for delivery of patterned light.
DETAILED DESCRIPTION
-
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. The detailed description and the drawings illustrate specific exemplary embodiments by which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It is understood that other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the present invention. The following detailed description is therefore not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
-
Throughout the specification and claims, the following terms take the meanings explicitly associated herein unless the context dictates otherwise. The meaning of “a”, “an”, and “the” include plural references. The meaning of “in” includes “in” and “on.” A reference to the singular includes a reference to the plural unless otherwise stated or inconsistent with the disclosure herein.
-
According to various embodiments as disclosed herein, methods and systems are provided for forming patterned distributions of materials in or on skin. Patterned distributions of materials in skin may have various applications, including but not limited to aesthetic, cosmetic, functions, medical or health purposes. Patterned distributions of dyes, pigments, or other light absorbing, reflecting, or emitting materials, (or any other materials that may produce a visually or optically detectable effect) may be used for aesthetic, decorative, or cosmetic purposes (for example, as tattoos or permanent or semi-permanent cosmetics). Detectable markings, which may be detectable visually or optically, or by electrical, magnetic, acoustic, or various other detection methods, may have functional applications, as well, for example, marking the location of a surgical site on a patient, or for providing permanent or semi-permanent identifying markings, e.g., on pets, livestock, etc. Patterned distributions of materials having pharmaceutical activity may used to selectively treat various structures in or near the skin surface. Treatment targets may include skin lesions, including cancerous and precancerous skin lesions, moles, warts, and pimples. Treatment may also be applied to disorders of various skin structures, for example, capillaries, veins, sweat glands, and hair follicles. In other embodiments, patterned distributions of structural materials (e.g., materials that add strength, form, shape, bulk, resilience, or other desired structural or mechanical properties to skin, connective tissue, cartilage, and so forth) may be used for cosmetic or reconstructive surgery applications. In some cases, a few example of which are provided above, it may be desirable to form a pattern of material that remains in the skin permanently or semi-permanently. In other cases, e.g., if the patterned material is a biologically active compound intended to treat a specific medical problem, only transient presence of the patterned material may be desired.
- FIG. 1
illustrates modification of a photoresponsive material in skin caused by delivery of light. In
FIG. 1, molecules or particles of
photoresponsive material10 are distributed throughout
skin region12, and light 14 is targeted to a specific location by
lens16, where it produces a reaction or other modification of one or more molecules or particles of
photoresponsive material10 to produce modified
form11.
Skin region12 includes
stratum corneum18 and
keratinocyte layer20, which together form epidermis 22, and
dermis24. Also shown is
hair follicle26 and
hair28.
Photoresponsive material10 may be distributed in the form of molecules, clusters or aggregations of molecules, particles, gels, solutions, emulsions, suspensions, sprays, fluids, powders, among others. As used herein, the term photoresponsive material refers to a material (compound, element, composite material, etc.) that undergoes or participates in a reaction, interaction, transformation, modification, phase change, change in energetic state, etc.) to produce a reaction product, or modified form, indicated by
reference number11 in
FIG. 1, having one or more different activities or properties than the original or ‘unmodified’ photoresponsive material. A “modification”, as used herein may include chemical reactions, changes in energetic state, phase, conformation, associations, aggregations, formation of bonds or other interactions (e.g. molecular bonds, hydrogen bonds, van der Waals linkages, etc.), polymerization, cross linking, breaking of bonds, dissociation of associated molecules, atoms, ions, etc., oxidation or reduction reactions, formation of ions or free radicals, changes of 3-D molecular structure, being only examples. Photoresponsive material may be any material that is responsive or sensitive to light to change from a first state to a second state, by itself or in cooperation or reaction with other materials present. In some embodiments, a photoresponsive material may undergo a modification that results in a modification to a secondary material, in which it is the secondary material that produces an effect in the skin. In other embodiments, the photoreactive material may be employed as a light-specified ‘mask’ which then is used to control the exposure of skin not so ‘masked’ to subsequent processing. Photoresponsive material may include mixtures of materials that react or interact upon exposure to light.
FIG. 2Adepicts a change in conformation produced by exposure to light, in which photoresponsive
material10 is converted from a
first state10 to a
second state11.
FIG. 2Bdepicts cross linking of
multiple molecules30 of photoresponsive material produced by exposure to light, to form crosslinked
network31. Conversion of a photoreactive material from an unreacted to a reacted form may include conversion from inactive to active form, from active to inactive form, from colored form to non-colored form, from a darker form to a lighter oner (or vice versa), from a more-scattering form to a less-scattering one (or vice versa), from a first color to a second color, or any combination of these. Conversion of a photoreactive material from an unreacted form to a reacted form may include a changes in the scattering or absorption properties of the photoreactive material for light of a given waveband.
-
Various methods of delivering photoresponsive material and light to a skin region may be used to produce a patterned distribution of a material in the skin region. One or the other or both of the photoresponsive material and the light may be delivered in a targeted fashion in order to produce a patterned distribution of material in the skin.
-
In some embodiments, a patterned distribution of a material in or on skin may be produced by delivering a photoresponsive material to at least a skin region of a subject in a relatively non-targeted fashion, and delivering targeted light to the skin region according to a pattern. The targeted light may have a wavelength content, time-averaged flux and/or fluence sufficient to cause a transformation of the photoresponsive material to a modified form. As illustrated in
FIGS. 3A-3C, the method may include delivering targeted light to the skin region according to a pattern by delivering targeted light to a plurality of locations in the skin region according to a pattern. A patterned distribution of the modified form of the photoresponsive material may then be formed. This general approach is illustrated in
FIG. 3A-3C. In
FIG. 3A, a
skin region100 is illustrated. Photoresponsive material has been applied to a
portion102 of
skin region100. Focused light 106 from
light source108 is delivered to
location110 a, which is one of multiple locations 110 a-110 j within
portion102.
FIG. 3Billustrates delivery of
light106 to
location110 a, where photoresponsive material is converted to a modified form, indicated by a dark circle.
FIG. 3Bdepicts
multiple locations110 b-110 j that have previously been exposed to light to cause modification of photoresponsive material.
Light source108 may be positioned with respect to
skin region108 by a
linkage112.
FIG. 3Cdepicts a pattern of modified material at locations 110 a-110 o.
-
Delivery of photoresponsive material in relatively non-targeted fashion may be accomplished by various methods, which may depend on various factors, including the type of photoresponsive material to be used, desired depth of delivery of the material in the skin, the size of the area in which a patterned distribution of material is to be produced. In some embodiments, photoresponsive material may be delivered to the skin topically. As illustrated in
FIG. 4A, a
carrier material130 containing a
photoresponsive material132 may be placed on a
skin surface134.
Photoresponsive material132 may diffuse out of
carrier material130 and into
skin12, as shown in
FIG. 4B.
Skin12 includes
epidermis22 and
dermis24. Diffusion of
photoresponsive material132 may be enhanced by electrophoresis or by the presence of solvent or ‘carrier’ chemicals such as DMSO or EDTA in certain embodiments (see, e.g., “Photodynamic Therapy”, Medscape Dermatology 3(2), 2002, incorporated herein by reference. Photoresponsive material may be delivered to at least a skin region of a subject topically in various forms, including, for example, an aerosol, cream, emulsion, gel, liquid, vapor, gas, lotion, patch, or powder or combinations of these.
-
In some cases, a general distribution of a photoresponsive material within a skin region may be obtained by injecting the
photoresponsive material132 into
skin12 with an
hypodermic needle140, as depicted in
FIG. 5A.
Photoresponsive material132 may be in a
liquid carrier solution136, or in a suspension, an emulsion, or any other form suitable for delivery via a hypodermic needle. This approach may be suitable if the diffusion or dispersion of the photoresponsive material away from the injection site produces an acceptable (e.g., sufficiently uniform) distribution of photoresponsive material, as depicted in
FIG. 5B, within an acceptable amount of time. Alternatively, photoresponsive material may be distributed into a
skin region12 with the use of a
microneedle array150, as depicted in
FIG. 6.
Photoresponsive material132 may be injected below
stratum corneum18 of
skin region12 with the use of a
microneedle array150. As described in connection with the embodiment depicted in
FIG. 5A, photoresponsive material to be delivered via
microneedle array150 may be carried in a
carrier fluid152 that is adapted for use with a microneedle array.
-
The distribution of
photoresponsive material132 that can be obtained within
skin region12 may depend on the combination of injection methodology and photoresponsive material used. For example, smaller molecules may diffuse or disperse more readily from the injection site than may larger molecules. In addition, the presence of certain functional groups may cause some photoresponsive materials to be taken up by certain tissues or cell types. Accordingly, photoresponsive materials may be selected or designed for use in combination with certain delivery mechanism and for preferential delivery to, retention by, or processing by certain tissues or cells. The design or selection of photoresponsive materials to have certain diffusion or selective uptake-or-retention-or-processing properties may be performed by a person of skill in the relevant art, for example, as described in Pogue and Hasan, “Targeting in Photodynamic Therapy and Photo-Imaging, Optics & Photonics News, August 2003, pp. 36-43, which is incorporated herein by reference.
-
In some embodiments, a photoresponsive material may be delivered to at least a skin region of a subject by delivering the photoresponsive material to the subject systemically. For example, photoresponsive material may be delivered to the subject orally in an ingestible formulation, via an inhalant, via intravenous or other ‘deep’ injection modalities or via various other systemic routes. In some cases, a photoresponsive material may be delivered via injection, but subsequently carried throughout the body by the blood stream. As depicted in
FIG. 7, a systemically delivered
photoresponsive material132 may be carried in the blood stream (e.g., in capillary 160) and diffuse out into the skin region of interest, which in this example is
skin region12. Depending on the particular photoresponsive material, it may distribute uniformly throughout the subject's body, or may distribute preferentially to certain regions, tissues, or cells of the body. In this, and other embodiments, the photoresponsive material may be attached to a carrier molecule compounded in various ways as known to those of skill in the arts of drug delivery, in order to produce a desired distribution of photoresponsive material within the subject's body.
- FIG. 8
depicts the
arm200 of a subject, showing a
skin region202 in which a photoresponsive material is distributed. In this and other embodiments, photoresponsive material may be distributed only to the skin region of interest (
skin region202 in the present example), by, for example, topical application or local injection, or it may be distributed to a larger portion of the subject's body (up to and including the entire body), of which the region of interest is a part. In
FIG. 9,
patterned light204 is delivered to
skin region202 from
light source206 to cause modification of the photoresponsive material to produce a patterned
distribution208 of the modified material in
skin region202.
- FIG. 10
provides a general illustration of a
device300 that may be used to produce a patterned distribution of light.
Controller301 controls the deliver of light 302 from
light source304 via
optical system306.
Device300 may be positioned by a
mechanical linkage112 supported by a
base140.
Light302 may be delivered at different x, y positions on the skin surface (e.g. x1, y1, x2, y2, x3, and y3 in
FIG. 10), as well as at different depths or z positions (e.g. z1, z2, and z3 in
FIG. 10) below the
skin surface134. Each location may be characterized by an x coordinate and y coordinate in an effectively planar portion of the skin region. Similarly, each location may be characterized by z coordinate corresponding to the depth of the location below a surface of the skin region. In some applications, the z coordinate may be selected for each location such that a pattern is formed in the epidermis of the skin region. In other applications, the z coordinate may be selected for each location such that a pattern is formed in the dermis of the skin region, or even below the dermis.
-
A method as depicted in
FIG. 11may be used for forming a pattern in a skin volume. At
step402, a photoresponsive material is delivered to at least a skin volume of a subject, the skin volume including a region having a depth underlying a skin surface having an area. At
step404, light of a wavelength band, time-averaged flux and/or fluence sufficient to cause modification of the photoresponsive material may be aimed and focused at a plurality of locations within the volume, with at least a portion of the plurality of locations being at different depths within the region.
- FIG. 12
depicts steps of a method of forming a patterned distribution of material in skin, including delivering a photoresponsive material to at least a skin region of a subject at
step452 and delivering targeted light to the skin region according to a pattern, the targeted light having a wavelength content, time-averaged flux and/or fluence sufficient to cause a transformation of the photoresponsive material to a modified form, at
step454.
FIG. 13depicts a related method, which includes delivering a photoresponsive material to at least a skin region of a subject at
step472 and delivering targeted light to a plurality of locations in the skin region according to a pattern, the targeted light having a wavelength content, time-averaged flux and/or fluence sufficient to cause a transformation of the photoresponsive material to a modified form, in
step474.
- FIG. 14
is a block diagram of a
system500 for delivering patterned light.
System500 includes a
light source502 capable of producing
light503 of at least one defined wavelength band, and a controllable
optical system504. Controllable
optical system504 is configured to receive
control signal506 generated according to a
pattern508, and responsive to the
control signal506 to aim and focus light 503 from the
light source502 onto one or more selected skin locations of the plurality of
skin locations510 a-510 p according to
pattern508.
Pattern508 may represent a desired distribution of a material to a plurality of locations in or on
skin region510.
System500 may also include
electronic circuitry512 configured to limit the fluence of
light503 produced by the
light source502 to levels that are non-damaging or not significantly damaging to skin.
Controller514, which may be, for example, a microprocessor, may perform computations used to produce control signal 506 for controlling controllable
optical system504, and light
source drive signal515 for driving light production by
light source502.
Electronic circuitry512 may function to limit light
source drive signal515 to limit light generation to safe levels. In some embodiments, a system for delivering patterned light to skin may include a light source capable of producing light of at least one defined wavelength band, a controllable optical system, and electronic circuitry configured to limit the fluence of light produced by the light source to levels that are non-damaging or not significantly damaging to skin. The controllable optical system may be configured to receive a control signal generated according to a pattern representing a desired distribution of a material to a plurality of locations in or on a skin region, and responsive to the control signal to aim and focus light from the light source onto one or more selected skin locations of the plurality of skin locations according to the pattern. The system for delivering patterned light may also include an imaging device adapted for imaging a skin region containing at least a portion of the plurality of skin locations. In some embodiments, the system may include a device driver including one or more of hardware, software, or firmware for generating the control signal based upon pattern data stored in a machine readable medium. In some embodiments, the controllable optical system may include one or more deflectors configured to aim light from the light source, and the position of at least one of the one or more reflectors may be controllable to aim light toward at least one of the plurality of skin locations. In some embodiments, the controllable optical system may include a positioner adapted to adjust the position of the light source. Deflectors may include mirror-type reflectors and surface-acoustic wave (SAW) Bragg-type deflectors, as well as electrically-steered refractive elements.
-
Patterned light may be delivered in the form of discrete pulses applied at multiple locations, as depicted in
FIG. 14. Patterned light may also be delivered by sweeping a focused beam of light across a skin surface in a continuous pattern, for example, as depicted in
FIG. 15. A beam may be moved across the skin surface with the use of a scanning mirror or functionally-equivalent optical systems of other types, the design and use of which is well known to those of skill in the art. Patterned light may also be delivered in some combination of continuous and discrete light; for example, a beam may be swept across the skin surface to form contiguous portions of a pattern, but turn on and off as the beam is moved to non-contiguous portions of the pattern.
- FIG. 15
depicts a
system600 including a
controllable positioning system602 that may be used to move a beam of
light604 over a
skin surface606 and to adjust the positioning of light from the light source on a skin region.
System600 may include a controllable
optical system608 that includes one or
more deflectors610 configured to aim light 604, from the
light source612. The position of at least one
deflector610 may be controllable to aim light 604 toward at least one of the plurality of skin locations. Controllable
optical system608 may include a positioner adapted to adjust the position of
light source612.
Light source612 may be capable of producing
light604 of at least one defined wavelength band.
System600 may also include
memory614 capable of storing a
pattern616 in machine-readable form representing a plurality of locations within a skin region to which light 604 from
light source612 is to be directed. In some embodiments,
system600 may include one or more optical components capable of focusing light 604 from the
light source612 at a specific depth within a
skin region12 in response to a
control signal618,
controller620 configured to generate control signal 618 for driving
controllable positioning system602 to direct light onto a plurality of skin locations according to
pattern616 stored in
memory614.
Controller620 may be configured to generate a control signal from driving one or more optical components to adjust the focusing of light 604 at different depths and at different skin locations according to
pattern616.
Deflectors610 may be controllable deflectors configured to aim light 604 from
light source612, wherein the position of at least one of the one or
more deflectors610 is controllable to aim light toward any of the plurality of skin locations.
Controller620 may include one or more of hardware, software, and firmware. In some embodiments,
controller620 may include a microprocessor. In some embodiments,
system600 may include an imaging device, which may be for example, a CCD camera.
- FIG. 16
is a block diagram of different aspects of a
system700 for delivering patterned light to a
skin region12.
System700 may include
light source702 and
optical system704, which directs and focuses light 706 from
light source702. Overall system operation may be controlled by
processor708, which may be, for example, a microprocessor, powered by
power supply710.
Processor708 may execute commands from
executable code712 to generate
signals714 and 716, which are sent to
light source driver718 and
optical driver720, respectively.
Light source driver718, which may include hardware, software, firmware, or a combination thereof, drives operation of
light source702.
Optical driver720, which also may include hardware, software, firmware, or a combination thereof, drives operation of
optical system704, via
position control module722 and focus
control module724.
System700 may be used to deliver targeted light to a plurality of locations under software control and/or under microprocessor control.
- FIG. 17
outlines a method that includes delivering patterned light of a restricted wavelength band to a skin surface coated with a photosensitive material, wherein the patterned light is capable of interacting with the photosensitive material to produce a visible pattern on the coated surface, as shown at
step752 of the flow diagram. The photosensitive material may be applied to the surface. Light may be delivered to different locations in sequence, in either discrete or continuous fashion. Patterned light as used in certain embodiments may be produced with the use of a controllable optical system that is controllable to focus the light source on at least two of a plurality of skin locations in sequence. In some embodiments, a controllable optical system may be used that is controllable to focus the light source on at least two of a plurality of skin locations simultaneously.
-
In some embodiments, light may be delivered to all parts of a pattern simultaneously.
FIG. 18Aillustrates a
skin region800 with a treated
region802 that contains a photoresponsive material. As described previously, photoresponsive material may be delivered to
region802 topically, by injection, or systemically. In step 18B, patterned light is delivered to
area804 in
region802 through the use of a stencil or mask or other methods as described herein below. Patterned light causes a reaction or transformation of photoresponsive material in
area804, to produce a
pattern806 of modified material as shown in
FIG. 18C. In some embodiments, an additional step may be carried out to remove unmodified photoresponsive material from
skin region800, so that
only pattern806 remains in
skin region800, as depicted in
FIG. 18D.
-
Several methods may be used to expose a treated skin region to patterned light. As shown in
FIGS. 19A-19C, a mask (or stencil) 850 may be placed on the skin surface to block exposure of the skin surface to light except in the areas that are to be patterned.
FIG. 19Adepicts a
mask850 having an
opaque portion852 and a
light transmitting portion854.
Mask850 may be placed over a skin region that contains a photoresponsive material. In the example of
FIG. 19B, the skin region is a portion of the
arm858 of a subject. A
drape860 may be used to extend the covered area of
arm858; various functionally equivalent configurations may be devised by a practitioner of skill in the relevant art. Light from
light source862 may cover all of the
light transmitting portion854 of
mask850, as depicted in
FIG. 19B. In some alternative embodiments, light from a light source may cover a portion of a light transmitting portion of a mask, and the light source may be moved to one or more additional regions in order to expose all of the skin region exposed by the light transmitting portion of the mask.
Light source862 may be removed or turned off following exposure to light for a period of time sufficient to produce a desired modification of the photoresponsive material, and mask 830 and drape 860 (if used) removed. As shown in
FIG. 19C,
arm858 of the subject, bears a patterned
distribution864 of modified photoresponsive material that corresponds to the
light transmitting regions854 of
mask850.
-
The method illustrated in
FIGS. 19A-19Cis summarized in
FIG. 20. At
step872, a photoresponsive material is delivered to at least a skin region of a subject. At
step874, a mask is placed over the skin region, the mask including one or more light blocking regions and defining one or more light transmissive regions to form a pattern. At
step876, the skin region is exposed to light of wavelength band, time-averaged flux and/or fluence sufficient to produce modification of the photoresponsive material within the skin region beneath the one or more light transmissive regions defined by the mask. Delivering a photoresponsive material may include delivering a photoresponsive material that is converted from an active form to an inactive form by exposure to light. Alternatively, delivering a photoresponsive material may include delivering a photoresponsive material that is converted from an inactive form to an active form by exposure to light. In further embodiments, the method may also include reversing the photo reaction by exposing the skin region to light of a wavelength band, time-averaged flux and/or fluence sufficient to reverse the reaction. Photo reactions that may operate in a first direction at a first wavelength band, time-averaged flux and/or fluence, and which may be reversed at a second wavelength band, time-averaged flux and/or fluence include, for example crosslinking of PEG-cinnamylidine acetate as described in U.S. Pat. No. 5,990,193, and reactions of various aromatic diazo dyes, as described in U.S. Pat. No. 5,998,588, both of which are incorporated herein by reference in their entirety.
-
An alternative method of delivering patterned light is depicted in
FIGS. 21A and 21B.
FIG. 21Adepicts a
light source880 that produces patterned
light882. This may be accomplished by placing a mask over a single light source of sufficient size and capable of generating substantially collimated light, or by placing multiple smaller light sources, also capable of producing relatively parallel light, in a suitable arrangement. Patterned light 882 from
light source880 may then be delivered to a treated
surface884. In the example of
FIG. 21A, treated
surface884 need not be masked, because the light is patterned, although in some embodiments patterned light may be used in combination with a mask or stencil.
FIG. 21Billustrates
pattern886 that has been formed by modification of photoresponsive material in or on treated
surface884 by exposure to patterned
light882.
-
As illustrated in
FIG. 22, various methods of delivering photoresponsive material to a skin region may be combined with various methods of delivering targeted light to a skin region to produce a number of related embodiments. Delivering photoresponsive material to at least a skin region, at
step902, may be further characterized as delivering photoresponsive material topically (step 902 a), delivering photoresponsive material by injection in the skin region (902 b) by delivering photoresponsive material by injection below the stratum corneum with a microneedle array (902 c), or delivering the photoresponsive material systemically (902 d). Delivering targeted light to the skin region according to a pattern, as at
step904, may be performed by a number of approaches, including delivering targeted light to a plurality of locations in the skin region according to a pattern (904 a), delivering targeted light to the skin region according to a decorative pattern (step 904 b) or delivering targeted light to the skin region according to a pattern corresponding to one or more structures in the skin region (step 904 c).
Methods including step904 c may also include a step of detecting one or more features in the skin region. The target light may have a wavelength content, time-averaged flux, or fluence sufficient to cause a transformation of the photoresponsive material to a modified form.
-
In some embodiments, a photoresponsive material may be introduced into a skin region in a patterned distribution, and light delivered to the skin in a relatively non-targeted fashion in order to cause transformation of the photoresponsive material to a modified form. This approach is illustrated in
FIGS. 23A-23C. A photoresponsive material may be delivered topically in a pattern by various methods, including painting, printing (i.g., ink jet or wire jet printing), and stenciling, for example. Photoresponsive material may be delivered into the skin, below the skin surface, by injection with one or multiple needles (e.g. tattoo needles, micro-needle array, hypodermic needle) or by a pressure jet.
- FIG. 23A
illustrates a
skin region950 including a patterned distribution of
photoresponsive material952. In
FIG. 23B,
light source954 is used to deliver light to a
region956 which includes patterned distribution of
photoresponsive material952.
Light source954 delivers light in a relatively non-targeted fashion; any light distribution that covers patterned distribution of
photoresponsive material952 with light of sufficient intensity or fluence may be used. In some embodiments, light may be delivered in several stages or from several sources, e.g., by delivering light from two or more sources, or from the same source at two different times, such that each individual delivery of light covers only a part of the patterned distribution of photoresponsive material, but that together, the multiple deliveries of light cover the entire patterned distribution of photoresponsive material. In
FIG. 23C, following modification of photoresponsive material due to light exposure, a patterned distribution of modified
material958 is present in
skin region950.
-
In some embodiments, both photoresponsive material and light may be delivered to the skin in a pattern. Patterned delivery of photoresponsive material and of light may be accomplished by any of the exemplary methods described herein above, for example. The patterns may be substantially similar and overlapping, in which case the distribution pattern of the modified form in or on the skin will be substantially the same as the distribution patterns of the unmodified form and the light. If the distribution pattern of the photoresponsive material and the distribution pattern of the light are partially overlapping, a patterned distribution of the modified form may be obtained that is defined by the shape and distribution of the regions of overlap between the distribution patterns of photoreactive material and light. This approach is illustrated in
FIG. 24and
FIGS. 25A-25C. At
step972 of
FIG. 24, a photoresponsive material is delivered to a skin region of a subject in a first pattern. In one exemplary variant, 972 a, photoresponsive material is delivered to the skin region topically. In another
exemplary variant972 b,
photoresponsive material972 b is delivered to the skin region by injection (e.g., via a hypodermic needle, tattoo needle, microneedle array, pressure jet, etc.) At
step974, targeted light is delivered to the skin region in a second pattern, the second pattern overlapping partially with the first pattern. The photoresponsive material in the areas of overlap between the first pattern and the second pattern may undergo photomodification to form an overlap pattern of modified photoresponsive material within the skin region. The method is illustrated in graphic form in
FIGS. 25A-25C. In
FIG. 25A, a patterned distribution of
photoresponsive material1000 is formed in
skin region1002. In the present example, patterned distribution of
photoresponsive material1000 includes five lines of
photoresponsive material1000 a, 1000 b, 1000 c, 1000 d, and 1000 e. Such a patterned distribution may be formed by printing, injection, or other methods as described herein or as may be devised by one of skill in the art. In
FIG. 25B, a patterned distribution of light 1004 is delivered to
skin region1002, overlapping patterned distribution of
photoresponsive material1000. Patterned distribution of light 1004 in this example includes five lines of light, 1004 1, 1004 2, 1004 3, 1004 4, and 1004 5, which may be formed by various methods as described previously. Following exposure to light, the photoresponsive material may react to form the patterned
distribution1006 of modified material in
skin region1002, as shown in
FIG. 25C.
Patterned distribution1006 includes
regions1006 rc, where r=1.5 and c=a.e, formed by areas of overlap between patterned distribution of
photoresponsive material1000 and patterned distribution of light 1004.
-
In some embodiments, it may be desirable to detect an image of a skin region in which a patterned distribution of a material is to be formed. For example, it may be desirable to detect a feature in a skin region that may be a treatment target, prior to delivery of a treatment in a targeted or aligned fashion. Or, it may be desirable to view an image of the skin region in order to determine placement of a decorative pattern in or on the skin region, e.g, aligned relative to a portion of a previously-emplaced pattern.
FIG. 26is a block diagram of a
system1050 that includes an
imaging device1052.
System1050 may include a
light source1054 capable of producing light of at least one defined wavelength band,
memory1056 capable of storing a pattern in machine-readable form representing a plurality of locations within a skin region to which light from the light source is to be directed,
controllable positioning system1060 configured to adjust the positioning of light from
light source1054 on a skin region, one or more
optical components1062 capable of focusing light from the
light source1054 at a specific depth within a skin region in response to a control signal, and
controller1064 configured to generate a
control signal1066 for driving
controllable positioning system1060 to direct light onto a plurality of skin locations according to the
pattern1058 stored in
memory1056. In some embodiments,
controller1064 may be configured to generate
control signal1066 for driving
optical components1062 to adjust the focusing of light at different depths and at different skin locations according to
pattern1058 stored in
memory1056. In some embodiments,
controllable positioning system1060 includes one or more controllable deflectors configured to aim light from
light source1054, wherein the position of at least one of the deflectors is controllable to aim light toward any of the plurality of skin locations.
System1050 may also include one or more I/
O devices1068 to provide for entry of control inputs by a user and for the presentation of information or data to the user. Various types of I/O devices are known or may be developed by those of skill in the arts of electronics and sensors for receipt and presentation of information and data in audio, visual, electronic, tactile, or other form, examples of which include scanners, touchscreens, keyboards, mice, trackballs, buttons, dials, microphones, speakers, video displays, etc.
Controller1064 may include one or more of hardware, software, and firmware. In some embodiments,
controller1064 may include a microprocessor.
System1050 may include an imaging device, which may be, for example, a CCD camera.
-
In various embodiments, examples of which are described herein, photoresponsive materials may be delivered to at least a skin region of a subject, and some or all of the photoresponsive material may be exposed to light to cause a reaction or conversion of the photoresponsive material. In some applications it may be desirable to remove one or both of modified and unmodified material from the subject's body. Unwanted material may be removed by processes normally occurring in the body, such as metabolism or excretion of the material, or by sluffing of skin containing the material. In some cases, materials may not be removed by naturally occurring processes, or may not be removed as quickly as is deemed desirable, and further treatment steps may be used to remove the materials form the body. In some embodiments, unmodified material may be removed, while modified material may be left in the skin region. In some embodiments, modified material may be removed from the skin region after a use period. Treatment to removed either modified or unmodified photoresponsive material, or both, may include phototreatment (e.g., photobleaching), chemical treatment (e.g., chemical bleaching), chemo-mechanical treatment, or treatment by exposure to heat, vibration, electromagnetic fields, among others.
- FIG. 27
depicts an exemplary sequence of method steps. At
step1102, a photoresponsive material is delivered to at least a skin region of a subject. At
step1104, a mask is placed over the skin region, the mask including one or more light blocking regions and defining one or more light transmissive regions to form a pattern. At
step1106, the skin region may be exposed to light of wavelength band, time-averaged flux and/or fluence sufficient to produce modification of the photoresponsive material within the skin region beneath the one or more light transmissive regions beneath the mask.
Method steps1102 through 1106 correspond to the method illustrated in
FIGS. 19A-19C, for example. At
step1108, the modification is reversed by exposing the skin region to light of wavelength, time-averaged flux and/or fluence sufficient to reverse the modification.
-
Various of the methods disclosed herein (for example, the method as outlined in
FIG. 12), may include removal of the modified form of the photoresponsive material from the skin region over time. In some embodiments, the modified form may be removed from the skin region by metabolism. The modified form may be removed from the skin region through sluffing of dead skin cells and/or the continual shedding of epidermal outer layers, for example. In some embodiments, the modified form may be removed from the skin region after a treatment period. The method may include removing the modified form by a photo treatment, by a chemical treatment, or by a chemo-mechanical treatment.
- FIG. 28
depicts steps of a method that includes removing the modified form of the photoresponsive material from the skin region after a treatment period. At
step1152, a photoresponsive material is delivered to at least a skin region of a subject. At
step1154, targeted light is delivered to the skin region according to a pattern, the targeted light having a wavelength content, time-averaged flux and/or fluence sufficient to cause a transformation of the photoresponsive material to a modified form. At
step1156, the modified form is removed from the skin region after a treatment period. The modified form may be removed by photo treatment (
step1156 a) or by chemical treatement (1156 b), for example. The treatment period may be quite brief, producing only a transient presence of the modified material in the system, or may be of extended duration, of hours, days, weeks, months, or even years.
-
Examples of photoresponsive materials that may be used in various embodiments include, but are not limited to photodynamic therapy agents, photochromic dyes and pigments, photo-crosslinkable materials, photopolymerizable materials, and photodimerizable materials, luminides, light reactive polymers that change in conformation, volume, binding activity, drug activity, hydrogels of various types. Various exemplary photoresponsive materials are described in U.S. Pat. Nos. 6,602,975; 5,998,588; 6,555,663; 5,990,193; and 6,818,018, which are incorporated herein by reference in their entirety. Photoresponsive materials may be cosmetic materials having selected color or other appearance properties. Reaction undergone by photoresponsive materials may be a reversible transformation or an irreversible transformation. In some embodiments, the transformation may convert the photoresponsive material from an active to an inactive form. In other embodiments, the transformation may convert the photoresponsive material from an inactive to an active form. The transformation may include, for example, conversion of a photoresponsive material from a substantially colorless form to a colored form, or from a colored form to a substantially colorless form. Examples of photochromic dyes are listed in U.S. Pat. No. 6,602,975, which is incorporated herein by reference. In some embodiments, the transformation may include conversion of the photoresponsive material from a first color to a second color, or may modify the extent to which it scatters light of a given waveband. The modified form may be visible under natural light in some embodiments. In some embodiments, the modified form may be visible under ultraviolet light. In some embodiments, the modified form may be fluorescent. The modified form may be a pigment, dye, pharmaceutical compound, or cosmetic material.
- FIG. 29
depicts steps of a method that includes removing unmodified photoresponsive material from a skin region of a subject. At
step1202, a photoresponsive material is delivered to at least a skin region of a subject. At
step1204, targeted light is delivered to the skin region according to a pattern, the targeted light having a wavelength content, time-averaged flux and/or fluence sufficient to cause a transformation of the photoresponsive material to a modified form. At
step1206, the unmodified photoresponsive material is removed from the skin region. The unmodified photoresponsive material may be removed by phototreatment, as shown in
step1206 a, or by chemical treatment, as shown in
step1206 b.
- FIG. 30
illustrates a method of providing controlled delivery of an active compound to a skin region, which includes delivering an inactive chemical compound non-specifically to at least a skin region of a subject at
step1252 and exposing the skin region to targeted light delivered to multiple selected locations within the skin region to form a pattern at
step1254, the targeted light having a wavelength band, time-averaged flux and/or fluence sufficient to cause modification of the inactive chemical compound to form an active compound within the skin region at the selected locations according to the pattern. As illustrated by
steps1252 a and 1252 b, respectively, delivering an inactive chemical compound may include delivering an inactive form of a photodynamic therapy agent or a photochromic dye or pigment. It is within the present inventive scope to deliver two-or-more materials in this manner, and to induce reactions between the two-or-more of them or between the two-or-more of them and ambient materials by the action of the incident light.
-
Systems for the delivery of light to skin, as described herein, may include various types of light sources. In general, light sources must deliver light having wavelength content, fluxes and fluences sufficient to produce a particular effect in the photoresponsive material that is being exposed to the light. For example, in some embodiments, the light may have a wavelength content, time-averaged flux and/or fluence sufficient to cause a photo cross-linking reaction of the photoresponsive material. In other embodiments, the light may have wavelength content, time-averaged flux and/or fluence sufficient to cause a photochromic reaction of the photoresponsive material. In still other embodiments, the light may have a wavelength content, time-averaged flux and/or fluence sufficient to cause a photodimerization reaction of the photoresponsive material. Light sources suitable for use in various embodiments as described herein include lasers, laser diodes, as well as various non-coherent light sources. Light sources may include light emitting diodes. In some embodiments, light sources may emit light in an ultraviolet wavelength band. In some embodiments, light sources may emit light in a visible wavelength band, or in an infrared one. Broad-band light sources may be used in some embodiments.
- FIG. 31
depicts a method of manufacturing a targeted light delivery system.
Step1302 includes providing a housing configured to be positioned relative to a skin region of a subject. At
step1304, a light source is mounted in fixed relationship with respect to the housing, the light source capable of delivering light of a wavelength band, time-averaged flux and/or fluence sufficient to activate a photoresponsive material in a skin region when the housing is positioned realitive to the skin region. At
step1306, a controllable optical system is mounted with respect to the housing and the light source such that light from the light source may be focused on a skin region by the controllable optical system when the housing is positioned relative to the skin region. At
step1308, driver interface circuitry is connected to the light source and the controllable optical system, the driver interface circuitry adapted to receive one or more control signals and responsive to the control signals to drive the controllable optical system and the light source to focus light on one or more targets in the skin region according to a pattern and/or in an aligned manner.
- FIG. 32
depicts a method of manufacturing a device for delivering patterned light. A housing is provided that is configured to be positioned adjacent to a skin region of a subject. At
step1354, a light source is mounted in fixed relationship with respect to the housing, the light source capable of delivering light of a wavelength band, time-averaged flux and/or fluence sufficient to activate a photoresponsive material in a skin region when the housing is positioned adjacent to the skin region. A controllable optical system is mounted with respect to the housing and the light source such that light from the light source may be focused on a skin region by the controllable optical system when the housing is positioned relative to the skin region at
step1356. At
step1358, driver interface circuitry is connected to the light source and the controllable optical system, the driver interface circuitry adapted to receive one or more control signals from a microprocessor-based controller and responsive to the control signals to drive the controllable optical system and the light source to focus light on one or more locations in the skin region according to a pattern. At
step1360, software code is provided that is executable by the microprocessor based controller to generate the one or more control signals. In some embodiments, the driver interface circuitry may be adapted to receive the one or more control signals from a microprocessor-based controller. In some embodiments, the method may include providing software code executable by the microprocessor-based controller to generate the one or more control signals.
- FIG. 33
depicts features of a device as described in connection with
FIG. 32; included are
housing1400,
light source1402, controllable
optical system1404, and
driver interface circuitry1406. Driver interface circuitry receives at least one
control signal1408 on
input1410, and generates
control signals1412 and 1414 for driving
light source1402 and controllable
optical system1404, respectively.
Portion1416 of
housing1400 may be configured to be positioned adjacent a
skin region1418, so that light 1420 may be directed to
skin region1418 by controllable
optical system1404.
-
The methods, apparatuses, and approaches described herein may be modified and combined in a variety of ways analogous to those of photolithography of silicon wafers. For example, masks or stencils may be used to form positive or negative patterns. Additive and subtractive processing may be performed by appropriate combinations of steps. For example, multiple steps, each involving the use of a different stencil and a different depth of focus of light in the skin, may be used to form a patterned distribution of material that varies as a function of depth within the skin. As another example, a multi-step process may be used in which a material modified at a first step, for example by treatment at a first wavelength, may in turn influence (e.g. by causing, preventing, promoting, or inhibiting) a further reaction or modification of the same or a different material produced at a second step by treatment with a second wavelength. It will appreciated that a wide variety of combination of treatment steps may be devised to control formation of patterned distributions of material in skin. As with photolithography methods, as multiple steps involving patterned delivery of materials or light to the skin are used, it may be necessary to maintain alignment or registration of patterns delivered at each step, e.g. by controlling mask positioning or targeting of light or delivery of photoresponsive material. Methods of maintaining positioning, targeting, or alignment are known to those of skill in the art, and variations are considered to fall within the scope of the present invention.
-
With regard to the hardware and/or software used in the control of skin treatment systems according to the present embodiments, and particularly to the sensing, analysis, and control aspects of such systems, those having skill in the art will recognize that the state of the art has progressed to the point where there is little distinction left between hardware and software implementations of aspects of systems; the use of hardware or software is generally (but not always, in that in certain contexts the choice between hardware and software can become significant) a design choice representing cost vs. efficiency or implementation convenience tradeoffs. Those having skill in the art will appreciate that there are various vehicles by which processes and/or systems described herein can be effected (e.g., hardware, software, and/or firmware), and that the preferred vehicle will vary with the context in which the processes are deployed. For example, if an implementer determines that speed and accuracy are paramount, the implementer may opt for a hardware and/or firmware vehicle; alternatively, if flexibility is paramount, the implementer may opt for a solely software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, and/or firmware. Hence, there are several possible vehicles by which the processes described herein may be effected, none of which is inherently superior to the other in that any vehicle to be utilized is a choice dependent upon the context in which the vehicle will be deployed and the specific concerns (e.g., speed, flexibility, or predictability) of the implementer, any of which may vary. For example, those skilled in the art will recognize that optical aspects of implementations will require optically-oriented hardware, software, and or firmware.
-
The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of block diagrams, flowcharts, and/or examples. Insofar as such block diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be implicitly understood by those with skill in the art that each function and/or operation within such block diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, several portions of the subject matter subject matter described herein may be implemented via Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats. However, those skilled in the art will recognize that some aspects of the embodiments disclosed herein, in whole or in part, can be equivalently implemented in standard integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and/or firmware would be well within the capabilities of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that certain mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment of the subject matter described herein applies equally regardless of the particular type of signal bearing media used to actually carry out the distribution. Examples of a signal bearing media include, but are not limited to, the following: recordable type media such as floppy disks, hard disk drives, CD ROMs, digital tape, and computer memory; and transmission type media such as digital and analog communication links using TDM or IP based communication links (e.g., links carrying packetized data).
-
In a general sense, those skilled in the art will recognize that the various aspects described herein which can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or any combination thereof can be viewed as being composed of various types of “electrical circuitry.” Consequently, as used herein “electrical circuitry” includes, but is not limited to, electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, electrical circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes and/or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes and/or devices described herein), electrical circuitry forming a memory device (e.g., forms of random access memory), and/or electrical circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment).
-
Those skilled in the art will recognize that it is common within the art to describe devices for detection or sensing, signal processing, and device control in the fashion set forth herein, and thereafter use standard engineering practices to integrate such described devices and/or processes into skin treatment systems as exemplified herein. That is, at least a portion of the devices and/or processes described herein can be integrated into a skin treatment system via a reasonable amount of experimentation.
-
Those having skill in the art will recognize that systems as described herein may include one or more of a memory such as volatile and non-volatile memory, processors such as microprocessors and digital signal processors, computational-supporting or -associated entities such as operating systems, user interfaces, drivers, sensors, actuators, applications programs, one or more interaction devices, such as data ports, control systems including feedback loops and control implementing actuators (e.g., devices for sensing position and/or velocity and/or acceleration or time-rate-of-change thereof; control motors for moving and/or adjusting components). A skin treatment system may be implemented utilizing any suitable available components, combined with standard engineering practices.
-
The foregoing-described aspects depict different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermediate components. Likewise, any two components so associated can also be viewed as being “operably connected”, or “operably coupled”, to each other to achieve the desired functionality.
-
While particular aspects of the present subject matter described herein have been shown and described, it will be obvious to those skilled in the art that, based upon the teachings herein, changes and modifications may be made without departing from this subject matter described herein and its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as are within the true spirit and scope of this subject matter described herein. Furthermore, it is to be understood that the invention is defined by the appended claims. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases “at least one” and “one or more” to introduce claim recitations. However, the use of such phrases should NOT be construed to imply that the introduction of a claim recitation by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim recitation to inventions containing only one such recitation, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an” (e.g., “a” and/or “an” should typically be interpreted to mean “at least one” and/or “one or more”); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of “two recitations,” without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to “at least one of A, B, and C, etc.” is used, in general such a construction is intended in the sense of one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, and C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together). In those instances where a convention analogous to “at least one of A, B, or C, etc.” is used, in general such a construction is intended in the sense of one having skill in the art would understand the convention (e.g., “a system having at least one of A, B, or C” would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together).
-
Although the methods, devices, systems and approaches herein have been described with reference to certain preferred embodiments, other embodiments are possible. As illustrated by the foregoing examples, various choices of light delivery system configuration and method of delivery of photoresponsive material may be within the scope of the invention. As has been discussed, the choice of system configuration may depend on the intended application of the system, the environment in which the system is used, cost, personal preference or other factors.—System design, manufacture, and control processes may be modified to take into account choices of photoresponsive material and intended application, and such modifications, as known to those of skill in the arts of display design and construction, may fall within the scope of the invention. Therefore, the full spirit or scope of the invention is defined by the appended claims and is not to be limited to the specific embodiments described herein.
Claims (39)
58. A method of producing a patterned distribution of a material within a skin region, comprising:
delivering a photoresponsive material to at least a skin region of a subject; and
delivering targeted light to a plurality of locations within the skin region according to a pattern, the targeted light having a wavelength content, time-averaged flux and/or fluence sufficient to cause a transformation of the photoresponsive material at the plurality of locations within the skin region to a modified form to form the patterned distribution.
59. The method of
claim 58, wherein delivering targeted light to the plurality of locations within the skin region according to the pattern produces a patterned distribution of the modified form within the skin region.
60. The method of
claim 58, wherein delivering targeted light to the plurality of locations within the skin region according to a pattern includes aiming and focusing a beam of light at each location of the plurality of locations with a system including at least one of a controllable positioning system and a controllable optical system, each location characterized by an x coordinate and y coordinate in an effectively-planar portion of the skin region.
61. The method of
claim 60, wherein delivering targeted light to the plurality of locations within the skin region according to a pattern includes aiming and focusing beam of light at each location of the plurality of locations with a system including at least one of a controllable positioning system and a controllable optical system, each location characterized by a z coordinate corresponding to the depth of the location below a surface of the skin region.
64. The method of
claim 58, including delivering targeted light to the plurality of locations under software control.
65. The method of
claim 58, including delivering targeted light to the plurality of locations under microprocessor control.
66. The method of
claim 58, wherein the pattern is a decorative pattern.
67. The method of
claim 58, wherein the pattern corresponds to one or more structures in the skin region.
68. The method of
claim 67, including detecting one or more features in the skin region.
69. The method of
claim 58, including topically delivering the photoresponsive material to at least the skin region of a subject.
70. The method of
claim 69, including delivering the photoresponsive material to at least the skin region of a subject topically in the form of an aerosol, cream, emulsion, gel, liquid, fluid, gas, vapor, lotion, patch, powder, or combination thereof.
73. The method of
claim 58, including delivering the photoresponsive material to at least the skin region of the subject by injecting the photoresponsive material into the skin region.
74. The method of
claim 58, including delivering the photoresponsive material to at least the skin region of the subject by injecting the photoresponsive material below the stratum corneum of the skin region with the use of a microneedle array.
75. The method of
claim 58, including delivering the photoresponsive material to at least the sking region of the subject by delivering the photoresponsive material to the subject systemically.
76. The method of
claim 75, wherein delivering the photoresponsive material to the subject systemically includes delivering the photoresponsive material to the subject orally in an ingestible formulation.
77. The method of
claim 58, wherein the modified form of the photoresponsive material is removed from the skin region over time.
80. The method of
claim 58, further comprising removing the modified form from the skin region after a treatment period.
83. The method of
claim 58, wherein unmodified photoresponsive material is removed from the skin region over time.
98. The method of
claim 58, wherein the modified form is a pigment, dye, pharmaceutical compound, or cosmetic material.
104. The method of
claim 58, wherein the photoresponsive material is selected or designed for preferential delivery to, retention by, or processing by certain tissues or cells.
105. The method of
claim 61, including selecting the z coordinate for each location such that a patterned distribution of the modified form within the skin region is formed in the epidermis of the skin region.
106. The method of
claim 61, including selecting the z coordinate for each location such that a patterned distribution of the modified form within the skin region is formed in the dermis of the skin region.
107. The method of
claim 69, further comprising enhancing diffusion of the photoresponsive material into the skin region with at least one of electrophoresis, a solvent and a carrier chemical.
108. The method of
claim 77, wherein the modified form is removed from the skin region by at least one of metabolism and sluffing of dead skin cells.
109. The method of
claim 80, further comprising removing the modified form by at least one of photo treatment, chemical treatment, or chemo-mechanical treatment.
110. The method of
claim 83, wherein unmodified photoresponsive material is removed from the skin region by at least one of metabolism and sluffing of dead skin cells.
111. The method of
claim 58, including removing unmodified photoresponsive material from the skin region by at least one of photo treatment, chemical treatment and chemo-mechanical treatment.
112. The method of
claim 58, wherein the transformation is selected from a reversible transformation and an irreversible transformation.
113. The method of
claim 58, wherein the transformation converts the photoresponsive material from an active to an inactive form, from an inactive to an active form, from a substantially colorless form to a colored form, from a colored form to a substantially colorless form, or from a first color to a second color; or changes the scattering or absorption properties of the photoresponsive material for light of a given waveband.
114. The method of
claim 58, wherein the modified form is visible under natural light, visible under ultraviolet light, or fluorescent.
115. The method of
claim 58, wherein delivering targeted light to the plurality of locations within the skin region includes delivering targeted light having wavelength content, time-averaged flux and/or fluence sufficient to cause at least one of a photo cross-linking reaction, a photochromic reaction, a photodimerization reaction and a photopolymerization reaction of the photoresponsive material.
116. The method of
claim 58, wherein delivering the photoresponsive material to at least the skin region of the subject includes delivering at least one of a photochromic material and a photodynamic therapy agent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/897,258 US20130338626A1 (en) | 2005-06-02 | 2013-05-17 | Photopatterning of skin |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/143,116 US20060276859A1 (en) | 2005-06-02 | 2005-06-02 | Photopatterning of skin |
US13/897,258 US20130338626A1 (en) | 2005-06-02 | 2013-05-17 | Photopatterning of skin |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/143,116 Continuation US20060276859A1 (en) | 2005-03-04 | 2005-06-02 | Photopatterning of skin |
Publications (1)
Publication Number | Publication Date |
---|---|
US20130338626A1 true US20130338626A1 (en) | 2013-12-19 |
Family
ID=46322065
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/143,925 Expired - Fee Related US8157807B2 (en) | 2005-03-04 | 2005-06-02 | Skin treatment including patterned light |
US12/005,709 Expired - Fee Related US8562657B2 (en) | 2005-03-04 | 2007-12-28 | Photopatterning of skin |
US13/897,258 Abandoned US20130338626A1 (en) | 2005-06-02 | 2013-05-17 | Photopatterning of skin |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/143,925 Expired - Fee Related US8157807B2 (en) | 2005-03-04 | 2005-06-02 | Skin treatment including patterned light |
US12/005,709 Expired - Fee Related US8562657B2 (en) | 2005-03-04 | 2007-12-28 | Photopatterning of skin |
Country Status (1)
Country | Link |
---|---|
US (3) | US8157807B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130023966A1 (en) * | 2011-07-20 | 2013-01-24 | Telesto GmbH | Laser therapy system with uva and ir laser light for directional generation of a dermal collagen matrix |
US20190046267A1 (en) * | 2016-02-22 | 2019-02-14 | The General Hospital Corporation | Systems and methods for selective targeting of structural features in treating skin conditions |
US11291819B2 (en) | 2019-04-16 | 2022-04-05 | BlinkInk LLC | Customizable tattoo stamp for permanent multicolor tattoo on skin |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6104959A (en) | 1997-07-31 | 2000-08-15 | Microwave Medical Corp. | Method and apparatus for treating subcutaneous histological features |
US20060047281A1 (en) | 2004-09-01 | 2006-03-02 | Syneron Medical Ltd. | Method and system for invasive skin treatment |
US20110015549A1 (en) * | 2005-01-13 | 2011-01-20 | Shimon Eckhouse | Method and apparatus for treating a diseased nail |
US20060276859A1 (en) * | 2005-06-02 | 2006-12-07 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Photopatterning of skin |
US8157807B2 (en) | 2005-06-02 | 2012-04-17 | The Invention Science Fund I, Llc | Skin treatment including patterned light |
US8679101B2 (en) | 2005-03-04 | 2014-03-25 | The Invention Science Fund I, Llc | Method and system for temporary hair removal |
US20060200114A1 (en) * | 2005-03-04 | 2006-09-07 | Searete Llc, A Limited Liability Corporation Of State Of Delaware | Hair removal system with light source array |
US8529560B2 (en) | 2005-03-04 | 2013-09-10 | The Invention Science Fund I, Llc | Hair treatment system |
US8540701B2 (en) | 2005-03-04 | 2013-09-24 | The Invention Science Fund I, Llc | Hair treatment system |
US20060246358A1 (en) * | 2005-03-17 | 2006-11-02 | Edwin Ryan | Device and method to treat blood vessels in the eye |
US20070032846A1 (en) * | 2005-08-05 | 2007-02-08 | Bran Ferren | Holographic tattoo |
US9055958B2 (en) | 2005-06-29 | 2015-06-16 | The Invention Science Fund I, Llc | Hair modification using converging light |
US20070048340A1 (en) * | 2005-08-31 | 2007-03-01 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Multi step patterning of a skin surface |
US9084622B2 (en) * | 2006-08-02 | 2015-07-21 | Omnitek Partners Llc | Automated laser-treatment system with real-time integrated 3D vision system for laser debridement and the like |
US20080172114A1 (en) * | 2007-01-17 | 2008-07-17 | Lerner Medical Devices, Inc. | Phototherapy handpiece |
US20100106145A1 (en) * | 2007-03-22 | 2010-04-29 | Alan David Widgerow | Ablation technique for cosmetic surgery |
US20100114086A1 (en) | 2007-04-19 | 2010-05-06 | Deem Mark E | Methods, devices, and systems for non-invasive delivery of microwave therapy |
JP2010524591A (en) | 2007-04-19 | 2010-07-22 | ザ ファウンドリー, インコーポレイテッド | Method and apparatus for reducing sweat production |
JP5543332B2 (en) | 2007-04-19 | 2014-07-09 | ミラマー ラブズ, インコーポレイテッド | Systems and methods for producing effects on specific tissues using microwave energy |
WO2009128940A1 (en) | 2008-04-17 | 2009-10-22 | Miramar Labs, Inc. | Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy |
US20100211059A1 (en) | 2007-04-19 | 2010-08-19 | Deem Mark E | Systems and methods for creating an effect using microwave energy to specified tissue |
CN101970046B (en) | 2007-12-12 | 2015-03-25 | 美丽华实验室公司 | Disposable medical equipment and system thereof |
KR101826243B1 (en) | 2007-12-12 | 2018-02-06 | 미라마 랩스 인코포레이티드 | Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy |
WO2009090632A2 (en) | 2008-01-17 | 2009-07-23 | Syneron Medical Ltd. | A hair removal apparatus for personal use and the method of using same |
AU2008348611A1 (en) * | 2008-01-24 | 2009-07-30 | Syneron Medical Ltd. | A device, apparatus, and method of adipose tissue treatment |
CA2891990C (en) | 2008-05-20 | 2022-07-26 | Ralph Sebastian Dacosta | Device and method for fluorescence-based imaging and monitoring |
US9314293B2 (en) * | 2008-07-16 | 2016-04-19 | Syneron Medical Ltd | RF electrode for aesthetic and body shaping devices and method of using same |
US20100017750A1 (en) * | 2008-07-16 | 2010-01-21 | Avner Rosenberg | User interface |
MX2011002987A (en) | 2008-09-21 | 2011-07-20 | Syneron Medical Ltd | A method and apparatus for personal skin treatment. |
US8606366B2 (en) | 2009-02-18 | 2013-12-10 | Syneron Medical Ltd. | Skin treatment apparatus for personal use and method for using same |
US20100211055A1 (en) * | 2009-02-18 | 2010-08-19 | Shimon Eckhouse | Method for body toning and an integrated data management system for the same |
CA2747767A1 (en) | 2009-02-25 | 2010-09-02 | Transpharma Medical Ltd. | Electrical skin rejuvenation |
IL201369A0 (en) * | 2009-10-11 | 2010-05-31 | Michael Slatkine | A bermatology apparatus |
CN102762154B (en) | 2009-12-06 | 2015-12-02 | 赛诺龙医疗公司 | method and apparatus for personal skin care |
DE102010011643B4 (en) * | 2010-03-16 | 2024-05-29 | Christian Buske | Device and method for plasma treatment of living tissue |
US9314301B2 (en) | 2011-08-01 | 2016-04-19 | Miramar Labs, Inc. | Applicator and tissue interface module for dermatological device |
US10143531B2 (en) | 2012-09-28 | 2018-12-04 | Beekley Corporation | Skin marking porous grid and related method of use |
WO2015013502A2 (en) | 2013-07-24 | 2015-01-29 | Miramar Labs, Inc. | Apparatus and methods for the treatment of tissue using microwave energy |
ES2834612T3 (en) | 2014-02-03 | 2021-06-18 | Zerigo Health Inc | Systems for phototherapy |
CN106714670A (en) | 2014-07-24 | 2017-05-24 | 大学健康网络 | Collection and analysis of data for diagnostic purposes |
AU2016245001B2 (en) | 2015-04-10 | 2020-09-03 | Zerigo Health, Inc. | Phototherapy light engine |
US11638834B2 (en) | 2015-07-24 | 2023-05-02 | Zerigo Health, Inc. | Systems and methods for phototherapy control |
US10180248B2 (en) | 2015-09-02 | 2019-01-15 | ProPhotonix Limited | LED lamp with sensing capabilities |
GB2562443B (en) * | 2016-08-05 | 2021-01-13 | Lancaster Univ Business Enterprises Limited | Injectable composition |
CN106390301A (en) * | 2016-11-08 | 2017-02-15 | 学校法人金泉大学 | Light emitting diode cosmetic mask for improving skin and treatment scar |
US11285335B2 (en) | 2018-10-08 | 2022-03-29 | Biohacked, Inc. | Photo-therapeutic method and apparatus |
US11464997B2 (en) * | 2020-07-18 | 2022-10-11 | Konrad Jarausch | Systems and methods for light generation and use thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6050990A (en) * | 1996-12-05 | 2000-04-18 | Thermolase Corporation | Methods and devices for inhibiting hair growth and related skin treatments |
US6165170A (en) * | 1998-01-29 | 2000-12-26 | International Business Machines Corporation | Laser dermablator and dermablation |
US6355054B1 (en) * | 1999-11-05 | 2002-03-12 | Ceramoptec Industries, Inc. | Laser system for improved transbarrier therapeutic radiation delivery |
US6569157B1 (en) * | 1998-05-18 | 2003-05-27 | Abbott Laboratories | Removal of stratum corneum by means of light |
Family Cites Families (181)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3685051A (en) * | 1969-03-06 | 1972-08-15 | Tetra Tech | Holographic imaging system using crossed linear arrays of energy sources and sensors |
US4214490A (en) | 1978-06-12 | 1980-07-29 | Chizek Franklin J | Method and means for placing an identification mark on a hog |
DE3306981C2 (en) | 1983-02-28 | 1987-11-12 | Wolfram 8048 Haimhausen Weinberg | Device for the photocoagulation of biological tissue |
US5428163A (en) * | 1986-12-31 | 1995-06-27 | Mills; Randell L. | Prodrugs for selective drug delivery |
US6555663B1 (en) * | 1986-12-31 | 2003-04-29 | Randell Lee Mills | Prodrugs for selective drug delivery |
US5028792A (en) * | 1987-03-19 | 1991-07-02 | Xytronyx, Inc. | System for the visualization of exposure to ultraviolet radiation |
US4898192A (en) | 1988-10-12 | 1990-02-06 | Cohen Allen L | Holographic false nails |
US5865832A (en) * | 1992-02-27 | 1999-02-02 | Visx, Incorporated | System for detecting, measuring and compensating for lateral movements of a target |
US4979935A (en) | 1989-02-21 | 1990-12-25 | Quantex Corporation | Method of photodynamic therapy employing electron trapping material |
US6090790A (en) * | 1989-12-14 | 2000-07-18 | Eriksson; Elof | Gene delivery by microneedle injection |
US5071417A (en) | 1990-06-15 | 1991-12-10 | Rare Earth Medical Lasers, Inc. | Laser fusion of biological materials |
US6405072B1 (en) | 1991-01-28 | 2002-06-11 | Sherwood Services Ag | Apparatus and method for determining a location of an anatomical target with reference to a medical apparatus |
IL97531A (en) * | 1991-03-12 | 1995-12-31 | Kelman Elliot | Hair cutting apparatus |
US5279284A (en) * | 1991-10-11 | 1994-01-18 | Frontier, Inc. | Skin stimulation device |
US5425728A (en) | 1991-10-29 | 1995-06-20 | Tankovich; Nicolai I. | Hair removal device and method |
US5871480A (en) | 1991-10-29 | 1999-02-16 | Thermolase Corporation | Hair removal using photosensitizer and laser |
US5226907A (en) * | 1991-10-29 | 1993-07-13 | Tankovich Nikolai I | Hair removal device and method |
US6048337A (en) * | 1992-01-07 | 2000-04-11 | Principal Ab | Transdermal perfusion of fluids |
US5501680A (en) * | 1992-01-15 | 1996-03-26 | The University Of Pittsburgh | Boundary and proximity sensor apparatus for a laser |
ES2153378T3 (en) | 1992-02-28 | 2001-03-01 | Univ Texas | PHOTOPOLIMERIZABLE BIODEGRADABLE HYDROGELS AS FABRIC CONTACT MATERIALS AND CONTROLLED DISCHARGE CARRIER. |
EP0580905A1 (en) * | 1992-07-28 | 1994-02-02 | BRITISH TELECOMMUNICATIONS public limited company | Optical radiation devices |
JPH0797388B2 (en) * | 1992-09-29 | 1995-10-18 | 日本発条株式会社 | Object identification structure |
US6280438B1 (en) * | 1992-10-20 | 2001-08-28 | Esc Medical Systems Ltd. | Method and apparatus for electromagnetic treatment of the skin, including hair depilation |
US5665382A (en) * | 1993-02-22 | 1997-09-09 | Vivorx Pharmaceuticals, Inc. | Methods for the preparation of pharmaceutically active agents for in vivo delivery |
DE9303102U1 (en) | 1993-03-03 | 1993-08-05 | Courage + Khazaka Electronic GmbH, 50829 Köln | DEVICE FOR MEASURING A THREE-DIMENSIONAL SURFACE STRUCTURE |
EG20471A (en) | 1993-07-12 | 1999-05-31 | Thermotrex Corp | Hair removal device and method |
US5860967A (en) * | 1993-07-21 | 1999-01-19 | Lucid, Inc. | Dermatological laser treatment system with electronic visualization of the area being treated |
US5470351A (en) | 1993-08-30 | 1995-11-28 | Ross; Jerry | Method and apparatus for creating tattoos |
US5586981A (en) | 1994-08-25 | 1996-12-24 | Xin-Hua Hu | Treatment of cutaneous vascular and pigmented lesions |
US6176842B1 (en) * | 1995-03-08 | 2001-01-23 | Ekos Corporation | Ultrasound assembly for use with light activated drugs |
US5879376A (en) * | 1995-07-12 | 1999-03-09 | Luxar Corporation | Method and apparatus for dermatology treatment |
US5849029A (en) | 1995-12-26 | 1998-12-15 | Esc Medical Systems, Ltd. | Method for controlling the thermal profile of the skin |
JP2000500733A (en) | 1995-09-01 | 2000-01-25 | ユニバーシティ オブ ワシントン | Interacting molecular conjugate |
US5990193A (en) | 1995-12-12 | 1999-11-23 | University Of Pittsburgh | Polymers for reversible photoinduced sol gel transitions |
US5846080A (en) | 1995-12-20 | 1998-12-08 | W&H Dentalwerk Gmbh | Laser dental devices and methods |
ZA967500B (en) * | 1995-12-21 | 1998-03-05 | Unilever Plc | Device for the identification of acne, microcomedones, and bacteria on human skin. |
WO1997032483A1 (en) * | 1996-03-06 | 1997-09-12 | I. Belloch Corporation | Method for treating liquid materials |
US5630811A (en) * | 1996-03-25 | 1997-05-20 | Miller; Iain D. | Method and apparatus for hair removal |
IL126475A0 (en) * | 1996-04-09 | 1999-08-17 | Cynosure Inc | Alexandrite laser system for treatment of dermatological specimens |
US6385487B1 (en) * | 1996-05-08 | 2002-05-07 | Biophoretic Therapeutic Systems, Llc | Methods for electrokinetic delivery of medicaments |
JP3036232U (en) | 1996-09-26 | 1997-04-15 | ヤーマン株式会社 | Optical hair removal device |
US6306128B1 (en) | 1996-10-09 | 2001-10-23 | Laser Industries Ltd. | Cooling apparatus for cutaneous treatment employing a laser and method for operating same |
GB9623627D0 (en) * | 1996-11-13 | 1997-01-08 | Meditech International Inc | Method and apparatus for photon therapy |
US6273884B1 (en) * | 1997-05-15 | 2001-08-14 | Palomar Medical Technologies, Inc. | Method and apparatus for dermatology treatment |
US8182473B2 (en) | 1999-01-08 | 2012-05-22 | Palomar Medical Technologies | Cooling system for a photocosmetic device |
US7204832B2 (en) * | 1996-12-02 | 2007-04-17 | Pálomar Medical Technologies, Inc. | Cooling system for a photo cosmetic device |
FR2757371B1 (en) | 1996-12-20 | 1999-03-26 | Mxm | ELASTIC DEVICE WITH LARGE ELONGATION CAPACITY FOR LIVE TISSUE EXTENSION |
US5833649A (en) | 1997-01-06 | 1998-11-10 | Atef; Hamid | Method and kit for disguising tattoos |
CA2280802A1 (en) * | 1997-02-12 | 1998-08-20 | Markus Zeitler | Process and device for identifying animals |
US5743899A (en) * | 1997-03-04 | 1998-04-28 | Izi Medical Products | Method and apparatus for marking skin with ink |
US6171302B1 (en) * | 1997-03-19 | 2001-01-09 | Gerard Talpalriu | Apparatus and method including a handpiece for synchronizing the pulsing of a light source |
US6315480B1 (en) | 1997-04-10 | 2001-11-13 | Stephane Christopher Martel | Device for diffusing one or several fluid product doses, and device for applying a temporary adhesive tattoo using same |
US6235015B1 (en) * | 1997-05-14 | 2001-05-22 | Applied Optronics Corporation | Method and apparatus for selective hair depilation using a scanned beam of light at 600 to 1000 nm |
US6739744B2 (en) * | 1997-07-02 | 2004-05-25 | Lumitex, Inc. | Light delivery systems and applications thereof |
US6168590B1 (en) * | 1997-08-12 | 2001-01-02 | Y-Beam Technologies, Inc. | Method for permanent hair removal |
US6074382A (en) * | 1997-08-29 | 2000-06-13 | Asah Medico A/S | Apparatus for tissue treatment |
US6468508B1 (en) | 1997-10-08 | 2002-10-22 | Laughlin Products, Inc. | Method, apparatus, and composition for automatically coating the human body and skin preconditioning system for use therewith |
US6199557B1 (en) | 1997-10-08 | 2001-03-13 | Laughlin Products, Inc. | Method of and apparatus for automatically coating the human body |
US6416747B1 (en) * | 1997-10-08 | 2002-07-09 | Laughlin Products, Inc. | Method, apparatus, and composition for automatically coating the human body with plural components |
CA2317777C (en) * | 1998-01-08 | 2005-05-03 | Sontra Medical, Inc. | Sonophoretic enhanced transdermal transport |
EP1062001B1 (en) * | 1998-03-12 | 2005-07-27 | Palomar Medical Technologies, Inc. | System for electromagnetic radiation of the skin |
US6192890B1 (en) | 1998-03-31 | 2001-02-27 | David H Levy | Changeable tattoos |
FR2777178B1 (en) | 1998-04-10 | 2000-06-02 | Oreal | MAKEUP KIT COMBINING A GONIOCHROMATIC PIGMENT AND A SINGLE-COLORED PIGMENT HAVING ONE OF THE COLORS OF GONIOCHROMATIC PIGMENT, USES THEREOF |
IL124616A0 (en) * | 1998-05-24 | 1998-12-06 | Romedix Ltd | Apparatus and method for measurement and temporal comparison of skin surface images |
US7220427B2 (en) | 1998-07-08 | 2007-05-22 | Oryxe | Mixture for transdermal delivery of low and high molecular weight compounds |
US6277128B1 (en) * | 1998-07-11 | 2001-08-21 | J. Scott Muldner | Skin abrasion treatment device |
US6267724B1 (en) | 1998-07-30 | 2001-07-31 | Microfab Technologies, Inc. | Implantable diagnostic sensor |
US6818018B1 (en) | 1998-08-14 | 2004-11-16 | Incept Llc | In situ polymerizable hydrogels |
US6152943A (en) * | 1998-08-14 | 2000-11-28 | Incept Llc | Methods and apparatus for intraluminal deposition of hydrogels |
US6013122A (en) | 1998-08-18 | 2000-01-11 | Option Technologies, Inc. | Tattoo inks |
US6358516B1 (en) * | 1998-08-21 | 2002-03-19 | Norris R. Harod | One-step system for cleansing, conditioning, and treating the skin |
US6022361A (en) * | 1998-10-09 | 2000-02-08 | Biointerventional Corporation | Device for introducing and polymerizing polymeric biomaterials in the human body and method |
US6611706B2 (en) * | 1998-11-09 | 2003-08-26 | Transpharma Ltd. | Monopolar and bipolar current application for transdermal drug delivery and analyte extraction |
MY131835A (en) | 1998-11-20 | 2007-09-28 | Gen Hospital Corp | Permanent, removable tissue markings |
US6119038A (en) * | 1998-11-20 | 2000-09-12 | Proventure, Llc | Handheld skin treatment system and method |
US6283956B1 (en) * | 1998-11-30 | 2001-09-04 | David H. McDaniels | Reduction, elimination, or stimulation of hair growth |
US6514242B1 (en) * | 1998-12-03 | 2003-02-04 | David Vasily | Method and apparatus for laser removal of hair |
US6428532B1 (en) * | 1998-12-30 | 2002-08-06 | The General Hospital Corporation | Selective tissue targeting by difference frequency of two wavelengths |
US6602274B1 (en) * | 1999-01-15 | 2003-08-05 | Light Sciences Corporation | Targeted transcutaneous cancer therapy |
US6306119B1 (en) | 1999-01-20 | 2001-10-23 | Pearl Technology Holdings, Llc | Skin resurfacing and treatment using biocompatible materials |
US6461594B1 (en) | 1999-01-28 | 2002-10-08 | Syracuse University | Photochromic materials suitable for cosmetic and sunblocking effects |
JP2000228101A (en) | 1999-02-08 | 2000-08-15 | Matsushita Electronics Industry Corp | Fluorescent lamp |
EP1279374A1 (en) | 1999-02-26 | 2003-01-29 | Nidek Co., Ltd | Laser depilation apparatus |
WO2000053113A1 (en) * | 1999-03-09 | 2000-09-14 | Thermage, Inc. | Apparatus and method for treatment of tissue |
US6341831B1 (en) * | 1999-03-09 | 2002-01-29 | Paul J. Weber | Skin decoration apparatus and method |
US6477410B1 (en) * | 2000-05-31 | 2002-11-05 | Biophoretic Therapeutic Systems, Llc | Electrokinetic delivery of medicaments |
US6162232A (en) | 1999-03-18 | 2000-12-19 | Shadduck; John H. | Instruments and techniques for high-velocity fluid abrasion of epidermal layers with skin cooling |
ES2248075T3 (en) | 1999-04-14 | 2006-03-16 | Koninklijke Philips Electronics N.V. | HAIR ELIMINATION DEVICE WITH A CONTROLLABLE LASER SOURCE. |
US6743211B1 (en) * | 1999-11-23 | 2004-06-01 | Georgia Tech Research Corporation | Devices and methods for enhanced microneedle penetration of biological barriers |
US6791531B1 (en) | 1999-06-07 | 2004-09-14 | Dot On, Inc. | Device and method for cursor motion control calibration and object selection |
EP1189660B1 (en) * | 1999-06-08 | 2006-05-03 | Altea Therapeutics Corporation | Apparatus for microporation of biological membranes using thin film tissue interface devices, and method therefor |
US6211243B1 (en) * | 1999-09-22 | 2001-04-03 | B. Ron Johnson | Methods for treating cold sores with anti-infective compositions |
US6406474B1 (en) * | 1999-09-30 | 2002-06-18 | Ceramoptec Ind Inc | Device and method for application of radiation |
US6758845B1 (en) * | 1999-10-08 | 2004-07-06 | Lumenis Inc. | Automatic firing apparatus and methods for laser skin treatment over large areas |
US6312124B1 (en) * | 1999-10-27 | 2001-11-06 | Hewlett-Packard Company | Solid and semi-flexible body inkjet printing system |
US6358242B1 (en) | 1999-11-12 | 2002-03-19 | Ceramoptec Industries, Inc. | Post laser treatment for permanent hair removal |
EP1237626A1 (en) | 1999-12-02 | 2002-09-11 | Radiancy Inc. | Selective photothermolysis |
JP3188437B2 (en) | 1999-12-08 | 2001-07-16 | ヤーマン株式会社 | Laser irradiation probe |
US6743222B2 (en) * | 1999-12-10 | 2004-06-01 | Candela Corporation | Method of treating disorders associated with sebaceous follicles |
US6470891B2 (en) | 1999-12-13 | 2002-10-29 | George H. Carroll | Photochromatic tattoo |
US6387103B2 (en) * | 1999-12-30 | 2002-05-14 | Aq Technologies, Inc. | Instruments and techniques for inducing neocollagenesis in skin treatments |
JP4357682B2 (en) * | 2000-01-18 | 2009-11-04 | 株式会社フレキシア | Beauty equipment |
AU784423B2 (en) * | 2000-01-25 | 2006-03-30 | General Hospital Corporation, The | Method and apparatus for medical treatment utilizing long duration electromagnetic radiation |
US20030060810A1 (en) * | 2000-02-16 | 2003-03-27 | Diego Syrowicz | Method and apparatus for treating and/or removing an undesired presence on the skin of an individual |
US6629974B2 (en) | 2000-02-22 | 2003-10-07 | Gyrus Medical Limited | Tissue treatment method |
JP2001238968A (en) | 2000-03-01 | 2001-09-04 | Ya Man Ltd | Laser beam irradiation probe |
US6685719B2 (en) | 2000-03-15 | 2004-02-03 | James R. Matera, Jr. | Surgical tattooing apparatus and method |
US6565532B1 (en) * | 2000-07-12 | 2003-05-20 | The Procter & Gamble Company | Microneedle apparatus used for marking skin and for dispensing semi-permanent subcutaneous makeup |
WO2001091661A1 (en) * | 2000-06-01 | 2001-12-06 | The General Hospital Corporation | Selective photocoagulation |
US6717102B2 (en) * | 2000-06-08 | 2004-04-06 | Joseph Neev | Laser tissue processing for cosmetic and bio-medical applications |
US6457585B1 (en) | 2000-10-31 | 2002-10-01 | Sonoco Development, Inc. | Packaging with incorporated temporary tattoo |
EP1347711B1 (en) | 2000-12-28 | 2006-11-15 | Palomar Medical Technologies, Inc. | Apparatus for therapeutic emr treatment of the skin |
US6533744B1 (en) * | 2001-02-15 | 2003-03-18 | Walt Stanish | Portable apparatus for applying traction forces to a human or animal body |
WO2002069825A2 (en) | 2001-03-02 | 2002-09-12 | Palomar Medical Technologies, Inc. | Apparatus and method for photocosmetic and photodermatological treatment |
US6749602B2 (en) * | 2001-03-03 | 2004-06-15 | Cynosure, Inc. | Method and apparatus for the double output treatment of pigmented lesions and tattoos |
US6497719B2 (en) * | 2001-03-06 | 2002-12-24 | Henry Pearl | Apparatus and method for stimulating hair growth |
TR201910734T4 (en) | 2001-03-30 | 2019-08-21 | Koninklijke Philips Nv | Skin treatment device with a shielded radiation exit opening |
CN1463188A (en) | 2001-04-20 | 2003-12-24 | 皇家菲利浦电子有限公司 | Skin treating device with protection against rediation pulse overdose |
US7217266B2 (en) * | 2001-05-30 | 2007-05-15 | Anderson R Rox | Apparatus and method for laser treatment with spectroscopic feedback |
CA2447881C (en) * | 2001-06-15 | 2014-02-11 | Richard Eckhardt | Method and apparatus for sterilizing or disinfecting a region through a bandage |
US7170034B2 (en) * | 2002-02-05 | 2007-01-30 | Radiancy Inc. | Pulsed electric shaver |
EP1414361B1 (en) * | 2001-07-27 | 2014-04-30 | Koninklijke Philips N.V. | Skin treating device comprising a processor for determination of the radiation pulse dose |
EP1436844B1 (en) | 2001-09-05 | 2016-03-23 | Rensselaer Polytechnic Institute | Passivated nanoparticles, method of fabrication thereof, and devices incorporating nanoparticles |
US6699509B1 (en) | 2001-09-17 | 2004-03-02 | Silvia Melinte | Tattoo removal |
CA2461307C (en) * | 2001-09-24 | 2011-01-11 | Imx Labs, Inc. | Apparatus and method for custom cosmetic dispensing |
US8088568B2 (en) | 2001-11-05 | 2012-01-03 | Medgentics, Inc. | Dermal micro-organs, methods and apparatuses for producing and using the same |
US7468242B2 (en) | 2001-11-05 | 2008-12-23 | Medgenics, Inc. | Dermal micro organs, methods and apparatuses for producing and using the same |
US7762964B2 (en) | 2001-12-10 | 2010-07-27 | Candela Corporation | Method and apparatus for improving safety during exposure to a monochromatic light source |
US6531118B1 (en) * | 2001-12-11 | 2003-03-11 | Avon Products, Inc. | Topical compositions with a reversible photochromic ingredient |
US6626927B1 (en) | 2002-03-11 | 2003-09-30 | Michael L. Koplen | Tattoo system |
US6723750B2 (en) * | 2002-03-15 | 2004-04-20 | Allergan, Inc. | Photodynamic therapy for pre-melanomas |
US6844948B2 (en) | 2002-03-27 | 2005-01-18 | Rabbit Tanaka Corporation Limited | Integral hologram revolving lamp and method for making same |
US7322972B2 (en) * | 2002-04-10 | 2008-01-29 | The Regents Of The University Of California | In vivo port wine stain, burn and melanin depth determination using a photoacoustic probe |
US7967839B2 (en) | 2002-05-20 | 2011-06-28 | Rocky Mountain Biosystems, Inc. | Electromagnetic treatment of tissues and cells |
US7250047B2 (en) | 2002-08-16 | 2007-07-31 | Lumenis Ltd. | System and method for treating tissue |
US6766199B2 (en) * | 2002-10-10 | 2004-07-20 | Proventure (Far East), Limited | Skin/hair treatment method and system |
US20040228818A1 (en) | 2002-10-18 | 2004-11-18 | L'oreal | Cosmetic composition combining at least two dyes including at least one photochromic dye |
EP2522294A2 (en) * | 2002-10-23 | 2012-11-14 | Palomar Medical Technologies, Inc. | Phototreatment device for use with coolants and topical substances |
JP2006507046A (en) * | 2002-10-31 | 2006-03-02 | クールタッチ, インコーポレイテッド | Intravenous closure of varicose veins by mid-infrared laser |
US20060165657A1 (en) * | 2003-02-05 | 2006-07-27 | Paul Bernasconi | Method for delivery of cosmetic by topical application |
JP2006520245A (en) | 2003-03-13 | 2006-09-07 | スリーエム イノベイティブ プロパティズ カンパニー | How to remove a tattoo |
US7494493B2 (en) | 2003-05-02 | 2009-02-24 | Grace Masako Matsuura | Animal tattooing apparatus and procedure thereof |
CN100479778C (en) | 2003-08-04 | 2009-04-22 | 皇家飞利浦电子股份有限公司 | A device for shortening hairs by means of laser induced optical breakdown effects |
WO2005046576A2 (en) | 2003-08-06 | 2005-05-26 | The General Hospital Corporation | Magnetic ink tissue markings |
IL157696A0 (en) | 2003-09-01 | 2004-03-28 | Hawk Medical Technologies Ltd | Apparatus and method for removing a pigmented section of skin |
US7083611B2 (en) * | 2003-12-19 | 2006-08-01 | Marc S. Lemchen | Method and apparatus for providing facial rejuvenation treatments |
US7090670B2 (en) * | 2003-12-31 | 2006-08-15 | Reliant Technologies, Inc. | Multi-spot laser surgical apparatus and method |
US7131446B2 (en) | 2004-03-25 | 2006-11-07 | Tang Kenneth Y | Light-triggered tattoo process |
CN100435748C (en) | 2004-04-15 | 2008-11-26 | 皇家飞利浦电子股份有限公司 | A device for the treatment of skin by means of a radiation beam |
US7842029B2 (en) | 2004-05-07 | 2010-11-30 | Aesthera | Apparatus and method having a cooling material and reduced pressure to treat biological external tissue |
US7413572B2 (en) * | 2004-06-14 | 2008-08-19 | Reliant Technologies, Inc. | Adaptive control of optical pulses for laser medicine |
US7837675B2 (en) * | 2004-07-22 | 2010-11-23 | Shaser, Inc. | Method and device for skin treatment with replaceable photosensitive window |
US7374569B2 (en) * | 2004-09-02 | 2008-05-20 | Dynatronics, Corporation | Dynamically distributing power of a light beam for use in light therapy |
EP2368601A3 (en) * | 2004-09-29 | 2012-03-07 | Rejuvedent, LLC | A tooth rejuvenation composition, a capsule and an applicator for rejuvenating treatment of hard tissue |
US20060207978A1 (en) | 2004-10-28 | 2006-09-21 | Rizun Peter R | Tactile feedback laser system |
US7780656B2 (en) * | 2004-12-10 | 2010-08-24 | Reliant Technologies, Inc. | Patterned thermal treatment using patterned cryogen spray and irradiation by light |
WO2006087708A2 (en) | 2005-02-17 | 2006-08-24 | Medingo Ltd. | Method and apparatus for monitoring bodily analytes |
US20060276859A1 (en) | 2005-06-02 | 2006-12-07 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Photopatterning of skin |
US8157807B2 (en) * | 2005-06-02 | 2012-04-17 | The Invention Science Fund I, Llc | Skin treatment including patterned light |
US20060206171A1 (en) | 2005-03-14 | 2006-09-14 | Michael Gertner | Devices, methods and kits for radiation treatment via a target body surface |
US20070032846A1 (en) * | 2005-08-05 | 2007-02-08 | Bran Ferren | Holographic tattoo |
US7962192B2 (en) | 2005-09-30 | 2011-06-14 | Restoration Robotics, Inc. | Systems and methods for aligning a tool with a desired location or object |
US8157837B2 (en) * | 2006-03-13 | 2012-04-17 | Pneumrx, Inc. | Minimally invasive lung volume reduction device and method |
US7699917B1 (en) | 2006-03-29 | 2010-04-20 | Pat Andrew Pagnotta | Selectively alterable intermittent tattoo ink and system |
US20090124996A1 (en) | 2006-11-03 | 2009-05-14 | Scott Heneveld | Apparatus and methods for injecting high viscosity dermal fillers |
US8175718B2 (en) | 2006-12-19 | 2012-05-08 | Ethicon, Inc. | Electrode patch and method for neurostimulation |
US7713265B2 (en) | 2006-12-22 | 2010-05-11 | Ethicon Endo-Surgery, Inc. | Apparatus and method for medically treating a tattoo |
US7922688B2 (en) | 2007-01-08 | 2011-04-12 | Restoration Robotics, Inc. | Automated delivery of a therapeutic or cosmetic substance to cutaneous, subcutaneous and intramuscular tissue regions |
US8036448B2 (en) | 2007-04-05 | 2011-10-11 | Restoration Robotics, Inc. | Methods and devices for tattoo application and removal |
US7985537B2 (en) | 2007-06-12 | 2011-07-26 | Aderans Research Institute, Inc. | Methods for determining the hair follicle inductive properties of a composition |
US7734321B2 (en) | 2007-07-13 | 2010-06-08 | All Protect, Llc | Apparatus for non-invasive spectroscopic measurement of analytes, and method of using the same |
US7988199B2 (en) | 2007-09-24 | 2011-08-02 | Michele Welsh | Safety skin applique kit for identification of lost persons |
US8120485B2 (en) | 2007-12-19 | 2012-02-21 | Abbott Laboratories | Articles containing chipless radio frequency identification elements |
EP2231258A1 (en) | 2007-12-21 | 2010-09-29 | Aesthetic Sciences Corporation | Self-contained pressurized injection device |
US7886742B2 (en) | 2008-01-14 | 2011-02-15 | Medline Industries, Inc. | Surgical drape and system having a barrier for preventing the start of a surgical procedure and methods for using same |
US8303982B2 (en) | 2009-03-20 | 2012-11-06 | Ethicon, Inc | Self-locating, multiple application, and multiple location medical patch systems and methods therefor |
US7870951B1 (en) | 2009-03-27 | 2011-01-18 | Mark Anthony Orsi | Single use ink cup holder and hand tray |
US20110189292A1 (en) | 2009-04-20 | 2011-08-04 | Allergan, Inc. | Dermal fillers comprising silk fibroin hydrogels and uses thereof |
US20110008406A1 (en) | 2009-04-20 | 2011-01-13 | Altman Gregory H | Silk Fibroin Hydrogels and Uses Thereof |
US8393249B2 (en) | 2009-12-18 | 2013-03-12 | Arthur Alexander Godoy | Electromagnetic support coil and subframe |
PL2747693T3 (en) | 2011-08-26 | 2018-09-28 | On Light Sciences, Inc. | Tattoo removal system and method |
-
2005
- 2005-06-02 US US11/143,925 patent/US8157807B2/en not_active Expired - Fee Related
-
2007
- 2007-12-28 US US12/005,709 patent/US8562657B2/en not_active Expired - Fee Related
-
2013
- 2013-05-17 US US13/897,258 patent/US20130338626A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6050990A (en) * | 1996-12-05 | 2000-04-18 | Thermolase Corporation | Methods and devices for inhibiting hair growth and related skin treatments |
US6165170A (en) * | 1998-01-29 | 2000-12-26 | International Business Machines Corporation | Laser dermablator and dermablation |
US6569157B1 (en) * | 1998-05-18 | 2003-05-27 | Abbott Laboratories | Removal of stratum corneum by means of light |
US6355054B1 (en) * | 1999-11-05 | 2002-03-12 | Ceramoptec Industries, Inc. | Laser system for improved transbarrier therapeutic radiation delivery |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130023966A1 (en) * | 2011-07-20 | 2013-01-24 | Telesto GmbH | Laser therapy system with uva and ir laser light for directional generation of a dermal collagen matrix |
US9486284B2 (en) * | 2011-07-20 | 2016-11-08 | Telesto GmbH | Laser therapy system with UVA and IR laser light for directional generation of a dermal collagen matrix |
US20190046267A1 (en) * | 2016-02-22 | 2019-02-14 | The General Hospital Corporation | Systems and methods for selective targeting of structural features in treating skin conditions |
US10842565B2 (en) * | 2016-02-22 | 2020-11-24 | The General Hospital Corporation | Systems and methods for selective targeting of structural features in treating skin conditions |
US11684419B2 (en) | 2016-02-22 | 2023-06-27 | The General Hospital Corporation | Systems and methods for selective targeting of structural features in treating skin conditions |
US11291819B2 (en) | 2019-04-16 | 2022-04-05 | BlinkInk LLC | Customizable tattoo stamp for permanent multicolor tattoo on skin |
Also Published As
Publication number | Publication date |
---|---|
US8562657B2 (en) | 2013-10-22 |
US20060276860A1 (en) | 2006-12-07 |
US20080145326A1 (en) | 2008-06-19 |
US8157807B2 (en) | 2012-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8157807B2 (en) | 2012-04-17 | Skin treatment including patterned light |
US20120253430A1 (en) | 2012-10-04 | Skin treatment including patterned light |
US20070048340A1 (en) | 2007-03-01 | Multi step patterning of a skin surface |
US20130331766A1 (en) | 2013-12-12 | Holographic tattoo |
US20070038270A1 (en) | 2007-02-15 | Multi step photopatterning of skin |
US11419937B2 (en) | 2022-08-23 | Delivery of nanoparticles |
EP2111251B1 (en) | 2018-09-12 | Devices for generation of subsurface micro-disruptions for biomedical applications |
US9452013B2 (en) | 2016-09-27 | Apparatus for dermatological treatment using chromophores |
US10543123B2 (en) | 2020-01-28 | Devices and methods for generation of subsurface micro-disruptions for opthalmic surgery and opthalmic applications |
RU2440091C2 (en) | 2012-01-20 | Method of step-by-step light-sensitive make-up |
RU2438646C2 (en) | 2012-01-10 | Method of light-sensitive make-up which uses optical agent for effect protection |
US20120029417A1 (en) | 2012-02-02 | Cosmetic treatment method including the projection of an image onto the zone to be treated |
US10588694B1 (en) | 2020-03-17 | Devices and methods for generation of subsurface micro-disruptions for biomedical applications |
US20060282135A1 (en) | 2006-12-14 | Radiation separating shield for skin treatment |
KR20110125251A (en) | 2011-11-18 | Makeup method using addressable matrix light source |
JP2008500846A (en) | 2008-01-17 | Method and product for making a grid of EMR-treated isolated points in tissue and use thereof |
RU2447883C2 (en) | 2012-04-20 | Method of light-sensitive make-up and light-sensitive make-up composition |
JP2012518629A (en) | 2012-08-16 | Method for making up with photosensitive makeup using photochromic composition already in color state |
EP2221038A1 (en) | 2010-08-25 | Make-up method with application of a base layer and system for implementing said method |
WO2015031189A1 (en) | 2015-03-05 | Targeted delivery of nanoparticles to skin surface |
Mazur et al. | 2023 | Photodynamic Therapy in Pigmented Basal Cell Carcinoma—A Review |
Nkune et al. | 2024 | Possible integration of artificial intelligence with photodynamic therapy and diagnosis: A review |
Tonaree et al. | 2022 | Prospective study of Q-switched Nd: YAG laser treatment of hyperpigmented split-thickness skin grafts |
JP2002272859A (en) | 2002-09-24 | Light energy treatment instrument of dermatophytosis using liniment jointly |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
2013-08-16 | AS | Assignment |
Owner name: SEARETE LLC, WASHINGTON Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FERREN, BRAN;ISHIKAWA, MURIEL Y.;JUNG, EDWARD K.Y.;AND OTHERS;SIGNING DATES FROM 20130616 TO 20130625;REEL/FRAME:031026/0474 |
2015-02-09 | STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |