US20140106943A1 - Weight Lifting and Selector Pin Assembly - Google Patents
- ️Thu Apr 17 2014
US20140106943A1 - Weight Lifting and Selector Pin Assembly - Google Patents
Weight Lifting and Selector Pin Assembly Download PDFInfo
-
Publication number
- US20140106943A1 US20140106943A1 US13/653,852 US201213653852A US2014106943A1 US 20140106943 A1 US20140106943 A1 US 20140106943A1 US 201213653852 A US201213653852 A US 201213653852A US 2014106943 A1 US2014106943 A1 US 2014106943A1 Authority
- US
- United States Prior art keywords
- weight
- selector
- car
- selector pin
- track Prior art date
- 2012-10-17 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/06—User-manipulated weights
- A63B21/062—User-manipulated weights including guide for vertical or non-vertical weights or array of weights to move against gravity forces
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/06—User-manipulated weights
- A63B21/062—User-manipulated weights including guide for vertical or non-vertical weights or array of weights to move against gravity forces
- A63B21/0626—User-manipulated weights including guide for vertical or non-vertical weights or array of weights to move against gravity forces with substantially vertical guiding means
- A63B21/0628—User-manipulated weights including guide for vertical or non-vertical weights or array of weights to move against gravity forces with substantially vertical guiding means for vertical array of weights
- A63B21/063—Weight selecting means
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/06—User-manipulated weights
- A63B21/0615—User-manipulated weights pivoting about a fixed horizontal fulcrum
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/06—User-manipulated weights
- A63B21/062—User-manipulated weights including guide for vertical or non-vertical weights or array of weights to move against gravity forces
- A63B21/0626—User-manipulated weights including guide for vertical or non-vertical weights or array of weights to move against gravity forces with substantially vertical guiding means
- A63B21/0628—User-manipulated weights including guide for vertical or non-vertical weights or array of weights to move against gravity forces with substantially vertical guiding means for vertical array of weights
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/06—User-manipulated weights
- A63B21/072—Dumb-bells, bar-bells or the like, e.g. weight discs having an integral peripheral handle
- A63B21/075—Dumb-bells, bar-bells or the like, e.g. weight discs having an integral peripheral handle with variable weights, e.g. weight systems with weight selecting means for bar-bells or dumb-bells
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B23/00—Exercising apparatus specially adapted for particular parts of the body
- A63B23/035—Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
- A63B23/04—Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs
- A63B23/0405—Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs involving a bending of the knee and hip joints simultaneously
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B71/00—Games or sports accessories not covered in groups A63B1/00 - A63B69/00
- A63B71/0036—Accessories for stowing, putting away or transporting exercise apparatus or sports equipment
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B71/00—Games or sports accessories not covered in groups A63B1/00 - A63B69/00
- A63B71/06—Indicating or scoring devices for games or players, or for other sports activities
- A63B71/0619—Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
- A63B2071/0655—Tactile feedback
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/40—Interfaces with the user related to strength training; Details thereof
- A63B21/4027—Specific exercise interfaces
- A63B21/4033—Handles, pedals, bars or platforms
- A63B21/4034—Handles, pedals, bars or platforms for operation by feet
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B21/00—Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
- A63B21/40—Interfaces with the user related to strength training; Details thereof
- A63B21/4041—Interfaces with the user related to strength training; Details thereof characterised by the movements of the interface
- A63B21/4043—Free movement, i.e. the only restriction coming from the resistance
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63B—APPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
- A63B2208/00—Characteristics or parameters related to the user or player
- A63B2208/02—Characteristics or parameters related to the user or player posture
- A63B2208/0228—Sitting on the buttocks
- A63B2208/0238—Sitting on the buttocks with stretched legs, like on a bed
Definitions
- the present invention relates to a weightlifting system and selector pin component thereof.
- this invention relates to a selector pin assembly, track and/or weight plate for use with body building equipment, and more particularly to a selector pin which is not removable from a car which travels either along a track or within the weight plate bodies which can then be inserted through the car and the track into a throughbore or selection point in a weight plate or through the car directly into the throughbore in order to safely, reliably and easily engage a connection union with a vertically or horizontally running selector stem.
- a traditional weight stack for use on what is known in the commercial fitness industry as “selectorized” or “Nautilus” strength training machines incorporates a weight stack in which similar or identically sized or shaped weight plates are stacked vertically atop one another. Formed into each plate and in identical locations on each plate in the are four throughbores: three throughbores extending vertically from the top surface through to the bottom surface of a given plate and one horizontally extending throughbore from the front surface (i.e., the surface facing the person selecting the weight level for the machine) through to the rear surface opposite the front surface. Two of the three vertical throughbores are of the same size and are located equally and on either side of the third, centrally located and larger vertical throughbore.
- the third, centrally located and larger vertical throughbore is meant to accept a “selector stem” or third and moveable rod which is permanently attached to the topmost or highest plate on the weight stack but which is not permanently attached to any other plate in the stack.
- the selector rod is of at least equal length as the stacked plates forming the weight stack.
- a cable or belt which runs over a pulley or series of pulleys and/or cams and is attached at the other end to the “movement arm” which is the piece of the machine the user moves when performing the desired exercise.
- Formed horizontally through the selector stem are throughbores equal in number and vertically placed in an identical orientation to the horizontal throughbores formed from the front surface to the back surface of each individual weight plate.
- this design is so that when a user wants to select the appropriate amount of resistance or weight desired to perform the exercise, that user inserts a “selector pin” into the horizontal throughbore on the surface of the weight stack and through the throughbore in the selector stem forming a non-permanent, selectable engagement so that when the user moves the movement arm, all plates above the temporary union formed by inserting the selector pin horizontally through the horizontal throughbore and selector stem are lifted vertically and against the force of gravity providing the strength training resistance when the user moves the movement arm and performs the exercise.
- the removable pin also permits the user to easily modify the operation of the apparatus outside the manufacturer's design criteria for the plates and/or weight stack, which can create unacceptable safety risks for the user and/or bystanders.
- the selector pin of the present invention includes a variety of embodiments, but is generally displaced within and is not removable from a moveable car or similar sliding mechanism which is continuously engaged but able to travel continuously the length of a horizontal or vertical weight stack either via a continuous, yet separable segmented track affixed to the surface of the plate body or within a continuous, yet separable cavity running internally within and the length of the weight stack, which is continuous and not separated when the user is not using the exercise apparatus.
- the full weight stack is aligned, and the user may thus select and/or adjust the desired weight amount for exercise.
- the mobility of the car and pin assembly allowing for the selector pin to be inserted into the selector pin throughbore in any weight plate in the weight stack in order to engage or disengage a connecting union with the center post running vertically or horizontally through the center throughbore of the weight stack without allowing the selector pin to ever be removed from the car which in turn is continuously engaged with the track, cavern or recess within the weight stack.
- the selector pin is slightly larger at the tip or has a similar preventive design which allows disengagement from the selector stem and withdrawal from the throughbore and allowing for car travel within the segmented track or continuous cavern, but preventing removal from the car.
- the selector pin has a knob or other gripping surface on the user end, or a vertically rotating or horizontally rotating latch or lever, preventing the pin from being pushed through the car when inserted through the car and into the selector pin borehole for engagement with the centerpost or selector stem.
- the selector pin and car mechanism have spring-loaded ball bearings embedded in the car and grooves cut into the pin which accept the spring-loaded ball bearings which provide the user with tactile sensation when the pin is at its full insertion position or its full extracted position and may also have a locking mechanism further guaranteeing complete insertion and proper union with the centerpost.
- the weights stack features of the present invention includes a number of embodiments.
- stacked weight plates for physical fitness equipment are employed, including a plate body with an upward, radial extending cavity (e.g., a “U-shaped” recess) allowing for acceptance of a horizontal centerbar or selector stem which is affixed to the exercise apparatus only at the movement arm end.
- the centerbar has multiple diametric throughbores to receive a selector pin which passes through a horizontal throughbore disposed intermediate to the opposing surfaces of the plate body and entering into the weight plate at a 90 degree angle to the tangent of the front surface of the weight plate.
- the horizontal bore connects the upward, radial extending cavity with a horizontally running internal cavity.
- a selector pin is movably mounted, but not removable from the movable car traveling within the horizontal internal cavity when the selector pin is disengaged from the selector stem within the radial extending cavity.
- each plate may be independently selected by way of manually or otherwise inserting a selector pin.
- the horizontally stacked weight plates which can be made of steel, lead, iron, rubber, urethane or a composite are of a shape that as the moveable selector pin is engaged into a plate farther from the fixed end, all plates between the selected insertion point and the fixed end of the horizontal selector stem will provide resistance thereby allowing the user to select more or less weight with the use of only a single selector pin and car or sliding mechanism.
- selector pin is engaged with the centerbar or selector stem, all plates between the selected insertion point and the fixed end of the horizontal centerbar will be lifted or moved via a cable, lever, belt, movement arm or lift apparatus or the like.
- horizontally stacked weight plate for physical fitness equipment including a plate body with an upward, radial extending cavity allowing for acceptance of a horizontal centerbar which is affixed to the exercise apparatus only at one end which has multiple diametric throughbores to receive a selector pin which passes through a segmented track connected to the front surface of the weight plate and connected to the central throughbore by a horizontal bore disposed intermediate the opposing surfaces of the plate body and entering into the weight plate through the segmented track at a 90 degree angle to the tangent of the front surface of the weight plate.
- a selector pin is movably mounted, but not removable from the movable car traveling within the segmented track when the selector pin is disengaged from the selector stem within the radial extending cavity.
- each plate may be independently selected by way of manually or otherwise inserting a selector pin.
- the horizontally stacked weight plates which can be made of steel, lead, iron, rubber, urethane or a composite are of a shape that as the moveable selector pin is engaged into a plate farther from the fixed end of the selector stem, all plates between the selected insertion point and the fixed end of the horizontal selector stem will provide resistance thereby allowing the user to select more or less weight with the use of only a single selector pin and car mechanism.
- the selector pin is engaged with the centerbar all plates between the selected insertion point and the fixed end of the horizontal centerbar will be lifted or moved via a cable, lever, belt, movement arm or lift apparatus or the like.
- a vertically stacked weight plate for physical fitness equipment including a plate body with central throughbore for connection and at least one, preferably two, throughbores which pass vertically therethrough for receiving guide rods or the like.
- the plate body additionally has an internal cavity connected to the central throughbore by a horizontal bore disposed intermediate the opposing surfaces of the plate body and entering into the weight plate at a 90 degree angle to the front surface of the weight plate.
- the horizontal bore intersects the central vertical throughbore.
- a selector pin is movably mounted, but not removable from the movable car traveling within the additional internal cavity when the selector pin is disengaged from the center post within the third, center borehole.
- the center post has multiple diametric throughbores to receive the selector pin which passes through the fourth throughbore and forms a connection with the center post.
- each plate may be independently selected by way of manually inserting or otherwise engaging the selector pin when the travelling car is moved to the appropriate level or weight plate.
- all weight plates above the weight plate where the selector pin is inserted or otherwise engaged with the center post will be lifted or moved via a cable, lever, belt, movement arm or lift apparatus or the like.
- a fourth embodiment teaches a vertically stacked weight plate for physical fitness equipment, including a plate body with central throughbore for connection and at least one, preferably two, throughbores which pass vertically therethrough for receiving guide rods or the like.
- the plate body additionally has an external segmented track (e.g., a track which could be retrofitted to existing weight stack configurations), where the track connected to the front surface of the weight plate and connected to the central throughbore by a horizontal bore disposed intermediate the opposing surfaces of the plate body and entering into the weight plate through the segmented track at a 90 degree angle to the front surface of the weight plate.
- the horizontal bore intersects the central vertical throughbore.
- a selector pin is movably mounted, but not removable from the movable car which travels and is continuously engaged along the external track when the selector pin is disengaged from the center post within the third, center borehole.
- the center post has multiple diametric throughbores to receive the selector pin which passes through a selector pin throughbore and forms a connection with the center post.
- each plate may be independently selected by way of manually or otherwise inserting the selector pin when the travelling car is moved to the appropriate level or weight plate.
- one object of the present invention is to provide a component for a weight lifting system which prevents the loss of a selector pin and the misuse of a weight training machine resulting from the loss thereof.
- Another object of the present invention is to provide a selector pin and related car or holder thereof which enables the continuous connection of the selector pin to a weight lifting device.
- Still another object of the present invention is to provide a track or groove in a weight stack for a selector pin to enable the improved selection of a desired weight to be lifted.
- Yet another object of the present invention is to provide a mechanism for the easy engagement of a selected weight level so as to reduce the possibility of an improper mating of the selector pin and the weight stack, thereby reducing the possibility of any in situ failure of the weight lifting machine.
- Yet another object of the present invention is to provide a weight lifting machine that can eliminate the need for belts, pulleys or similar devices for transferring energy for the movement of a weight stack.
- FIG. 1 is a side view of a weight plate assembly known in the prior art.
- FIG. 2 is a front view of the weight plate stack with guide rods and a selector stem as known in the prior art.
- FIG. 3 is a perspective in situ view of the weight plate stack with guide rods and selector stem shown of FIG. 2 in the assembled condition with the selector pin in the engaged position.
- FIG. 4 is an exploded view of a weight plate and selector pin engagement as known in the prior art
- FIG. 5 shows a side view of a weight stack assembly in accordance with some of the preferred embodiments of the present invention.
- FIG. 6 shows a side view of a weight stack assembly in accordance with some of the preferred embodiments of the present invention in operation wherein the user has selected to lift all weights in the stack, leaving the tray empty.
- FIG. 7 shows a side view of a weight stack assembly in accordance with some of the preferred embodiments of the present invention in operation wherein the user has selected to lift only a portion of the weights in the stack, leaving the remaining weight plates in the tray.
- FIG. 8 shows an exploded perspective view of the weight plate and selector pin engagement in accordance with some of the preferred embodiments of the present invention.
- FIG. 9 is an exploded view of the selector pin showing the knob and slider features for engaging with the weight plate cavity of some preferred embodiments of the present invention.
- FIG. 10 is a perspective view of the weight stack engaging the movement arm while at rest in the tray as used in some preferred embodiments of the present invention.
- FIG. 11 is a side view of a weight plate as used in some preferred embodiments of the present invention.
- FIG. 12 is a perspective view of a weight plate as used in some preferred embodiments of the present invention.
- FIG. 13 is a profile view of a weight plate as used in some preferred embodiments of the present invention.
- FIG. 14 is a perspective view of the weight stack partially engaged with the selector stem as shown in FIG. 7 .
- FIG. 15 is an exposed side view of an engaged selector pin and weight stack in operational engagement with the pivot point and movement arm plate as used in some preferred embodiments of the present invention.
- FIG. 16 is an exposed side view of an disengaged selector pin and weight stack in operational engagement with the pivot point and movement arm plate as used in some preferred embodiments of the present invention.
- FIG. 17 a - b are exposed profile views of the selector pin car and track, respectively as used in some preferred embodiments of the present invention.
- FIG. 18 a - b are exposed profile views of the selector pin and selector pin car in disengaged and engaged positions, respectively, as used in some preferred embodiments of the present invention.
- FIG. 19 a - b are exposed profile views showing details of the selector pin and the stubby plunger used in some preferred embodiments of the present invention.
- FIG. 20 a - b are side and exposed side views of the stubby plunger, including the ball bearing component used in some preferred embodiments of the present invention.
- FIG. 21 a - b are exploded profile views showing the selector pin and cart combination and the weight plate with cart cavity as used in some preferred embodiments of the present invention.
- FIG. 22 is an exploded perspective view of the selector pin and cart and weight stack as details in FIG. 21 a - b.
- FIG. 23 is an exploded perspective view of an attachable selector pin track used in some preferred embodiments of the present invention.
- FIG. 24 is a front view showing the detail of track elements of the attachable selector pin track shown in FIG. 23 .
- FIG. 25 is a top view showing the profile of a track element as shown in FIG. 24 .
- FIG. 26 is a side view of a selector pin and selector pin cart for use the some preferred embodiments of the present invention.
- FIG. 27 a - b is a front view of the selector pin cart are front and top profile views of the selector pin cart of FIG. 26 in operational engagement with the attachable selector pin track shown in FIG. 25 .
- FIGS. 1-4 A typical weight lifting apparatus 10 as known in the prior art is shown by way of example in FIGS. 1-4 .
- such an apparatus 10 includes a weight stack assembly 20 , a movement assembly 40 for receiving work or force from a user, and a pulley system 50 to facilitate or translate the gravitational force from the weight stack assembly 20 so as to provide resistance to the movement assembly 40 .
- the movement assembly 40 typically includes a movement arm 42 which is displaced by the user during exercise, and a pivot point 44 which permits rotation of the user's force against the resistance of the weight stack assembly.
- the weight stack assembly 20 typically comprises a selector pin 22 so that the user can select the appropriate level of weight or resistance, a series of guide rods 24 for aligning and supporting the weight stack assembly 20 during exercise, and a series of plates 26 , each plate having a weight plate throughbore 28 for receiving a selector pin 22 .
- a selector pin 22 so that the user can select the appropriate level of weight or resistance
- a series of guide rods 24 for aligning and supporting the weight stack assembly 20 during exercise
- a series of plates 26 each plate having a weight plate throughbore 28 for receiving a selector pin 22 .
- the connection between the selector pin 22 and the cable 52 of pulley system 50 is accomplished by a selector stem 30 .
- the selector stem 30 is typically permanently attached to the weight plate 26 which is at the top of the stack.
- the selector stem further includes a series of throughbores 32 which receive the selector pin 22 extending through the weight plate throughbore 28 .
- the weight stack assembly 20 further includes a selector stem bore 34 and guide rod bores 36 for receiving the selector stem 30 and guide rods 24 , respectively.
- the weight lifting apparatus includes a movement assembly 140 comprising movement arm 142 and pivot point 144 , a weight stack assembly 120 (which is supported at rest by tray 125 ), and a selector stem 130 .
- the selector stem 130 extends horizontally and is integral with or attached directly to the movement arm 142 , and is preferably permanently attached to and inseparable from the movement arm.
- the weight stack assembly comprises a series of weight plates 126 , and the “first” plate (i.e., the weight plate 126 closest to movement arm 142 ) may be permanently attached to the union of the movement arm 142 and the selector stem 130 which, when moved around a pivot point 144 , makes the movement arm heavier at the selector stem end than at the pivot point end.
- the selector stem 130 and the first plate travel upwards against the force of gravity to provide resistance to the user.
- each individual weight plate 126 is of a similar or identical size and shape and are arranged in a horizontal stack, in similar fashion to books on a bookshelf. As shown in FIG. 10 , the weight plates 126 at rest are located in a basket or tray 125 or the like, which is permanently attached to and immoveable from the weight lifting apparatus 110 . As shown in FIGS. 8-9 and 11 , each of the weight plates 126 include an identical, “U shaped” upward radiating cavity 121 so as to permit movement of the selector stem 130 when a given weight plate is not selected. Each weight plate further includes an additional frontward radiating, contoured cavity 127 which forms a track.
- the engagement of the frontward radiating cavity 127 and the selector pin 122 and slider 123 creates a track for engagement such that the selector pin can be moved from one weight plate 126 to another, while preventing the selector pin 122 from being removed from the weight stack assembly 120 .
- Each weight plate 126 plate has a selector pin throughbore 133 connecting the frontward radiating cavity 127 with the upward radiating cavity to as to be able to receive selector pin 122 .
- the selector stem contains a selector pin throughbores 132 such that the selector pin may traverse the weight plate 126 and selector stem 130 when in the engaged position.
- this embodiment also includes the use of a configuration for a weight plate 126 that provides for horizontal stacking such that a single selector pin 122 , when engaged, can support the lifting of multiple weight plates 126 .
- Each weight plate 126 when viewed from front position, preferably includes an overlapping flange 134 or similar shape that overlaps and forms a union with the lower portion of the adjoining weight plate 126 farther away from the union of the movement arm 142 and the selector stem 130 , and is overlapped by and a union is formed by the upper portion of the adjoining weight plate 126 closer to the union of the movement arm 142 and the selector stem 130 .
- the farthest weight plate 126 from the union of the movement arm 142 and the selector stem 130 is of similar or identical size and shape as the other plates in the weight stack 120 but, being the farthest plate in the stack from the union of the movement arm and the selector stem has no farther plate to form a union with and instead overlaps and forms a union with the tray 125 .
- FIGS. 15 and 16 show the engagement and disengagement of the selector pin 122 in this embodiment.
- the selector stem 130 and permanently attached “First Plate” end of the movement arm due to the force of gravity, come to rest within the upwardly radiating cavity 121 of weight plates 126 , which in turn are held solidly and reliably in place by their overlapping flanges 134 and the tray 125 .
- the user selects the desired amount of resistance by withdrawing the selector pin into the “disengaged position” and sliding the selector pin 122 using the slider which is sized to slide along the channel formed by the accumulation of front facing cavities 127 formed by the weight plates.
- the combination of the selector pin 122 and slide 123 is moved outward away from the union of the selector stem 130 and the movement arm 142 , and inward towards the union of the selector stem 130 and movement arm 142 if he desires less resistance (less weight). Then the user inserts the selector pin 122 into the “engaged position” through the selector pin throughbore 132 of the weight plate 126 and through the selector pin throughbore 132 in the selector stem 132 , the throughbores being properly spaced in order to form a mechanical union between selector pin 122 , weight plate 126 and selector stem 130 . The user then performs the exercise and is provided resistance based on the number of weight plates 126 located between the insertion point of the selector pin 122 and the union of the movement arm 142 and selector stem 130 due to the overlapping design of the weight plates 126 .
- This embodiment provides several benefits. Because the union of the movement arm 142 , selector stem 130 and first plate 126 is an integrated, there is no need for pulleys, cables or belts between the source of resistance and the movement arm 142 . The resistance is effectively and safely put on the movement arm 142 itself. Unlike the traditional weight stack 20 , this embodiment has less moving parts and therefore there is less likelihood for mechanical failure and subsequent injury making it inherently safer. Additional design safety comes from the fact that since there are no pulleys, belts or cables, there are no “pinch points” caused by these mechanisms which exist as “necessary evils” on the traditional horizontal weight stack. Further benefit is derived from the fact that due to the fact that there are no guide rods requiring lubrication. With fewer moving parts, breakable mechanisms, or the like, the invention will be less expensive to manufacture and maintain than the traditional horizontal weight stack.
- the embodiment only requires the use of one, non-removable selector pin 122 mechanism versus several.
- the invention is thereby more intuitive and eliminates potential injury and confusion due to inappropriate resistance selection and the need to engage more than one selection mechanism or a different selection mechanism to select a different amount of resistance. Additionally, since there are fewer selection mechanisms and since all plates are of identical size, weight and shape, the cost of manufacture will be less.
- this embodiment also represents a significant improvement for several reasons. Due to the tray 125 and flange 134 /overlapping weight plate 126 design, the weight stack assembly 120 is permanently attached to the weight lifting apparatus 110 , eliminating the need for the user to locate, gather, lift up and load matching weight plates onto each of the two the movement arms of the equipment which is how current “plate loaded” equipment must be made ready for exercise. This process in and of itself is dangerous as numerous injuries have resulted from the act of loading and unloading the “plate loaded” equipment.
- this embodiment eliminates the need for not only the purchase of weight plates by the health club owner, but storage racks for those weight plates as well. It also leads to a neater and better organized and safer exercise environment. It is a common occurrence for not all users to unload the traditional “plate loaded” equipment after completing their exercise session, leaving the next potential user in the unsafe or compromised position of having to unload the weight plates from the loaded piece of equipment to achieve the desired amount of weight or resistance or, in the event that the loaded weight plates are too heavy to unload, simply get discouraged and not use the piece of exercise equipment at all.
- the present invention includes other embodiments which include other types of weight stack assemblies, even including prior art weight lifting assemblies such as those discloses in FIGS. 1-4 .
- the invention can simply address embodiments which rely upon a selector pin 122 which uses a car 160 or similar sliding mechanism to engage a track 164 or similar channel, but includes a stubby plunger 162 or similar bias and detent mechanism for permanently retaining the selector pin 122 in the car 160 , and in turn in the track 164 .
- FIGS. 17-20 the invention can simply address embodiments which rely upon a selector pin 122 which uses a car 160 or similar sliding mechanism to engage a track 164 or similar channel, but includes a stubby plunger 162 or similar bias and detent mechanism for permanently retaining the selector pin 122 in the car 160 , and in turn in the track 164 .
- the selector pin includes grooves 166 , with the groove furthest from the knob for a “disengaged” position, and the groove closes to the knob for an “engaged” position.
- the stubby plunger 162 is permanently fixed inside the car 160 and includes a ball bearing 168 which is biased inwards by a spring (not shown).
- the ball bearing 168 couples with a groove 166 to provide a locking mechanism for the “engaged” or “disengaged” positions.
- the selector pin 222 and car 224 combination can be sized to fit within a contoured cavity 228 located within a conventional shaped vertically stacked group of weight plates.
- the car includes ball bearings 225 to slide up and down the weight stack 220 until the user selects a desired weight plate corresponding to a desire weight level.
- the present invention can be used with a selector pin and cart which in connected to a weight stack via an attachable track.
- the track 360 is comprised of individual track elements 362 which are permanently affixed to corresponding weight plates 326 in a weight stack 320 , each track element 326 having a selector pin throughbore 364 , and each element being capable of locking or connecting to other, similar elements using male 366 and female 368 connectors.
- the track provides a channel for a cart 324 to slide through, the cart having ball bearings 325 to enable sliding up and down the track to the desired level in the track 360 corresponding to a desired level in the weight stack 320 , such that the selector pin 322 (which is permanently connected to cart 324 ) can extend through the selector pin throughbore 364 and the weight plate 326 , using grooves 370 to facilitate engaged and disengaged positions.
- the cart and track connection could be configured such that the cart surrounds the track, instead of being contained within a channel of the track.
Landscapes
- Health & Medical Sciences (AREA)
- Orthopedic Medicine & Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Handcart (AREA)
Abstract
A permanently affixed and travelling selector pin, car and weight plate selection mechanism for use with physical fitness equipment is disclosed including a segmented track and/or cut out cavern within the plate body for the car to travel within in either vertically or horizontally in order to select a different weight plate or cumulatively, more or less weight for an exercise. The selector pin and car mechanism features a selector pin which is not removable from the car and is inserted through the car which is contained by the track and or plate body shape and into a throughbore in the weight plate in order to engage with the selector stem.
Description
-
PRIORITY OF INVENTION
-
The present invention incorporates by reference and claims priority to Provisional Application No. 61/629,443, Filed Nov. 18, 2011, and Provisional Application No. 61/631,734, Filed Jan. 10, 2012.
FIELD OF THE INVENTION
-
The present invention relates to a weightlifting system and selector pin component thereof. In particular, this invention relates to a selector pin assembly, track and/or weight plate for use with body building equipment, and more particularly to a selector pin which is not removable from a car which travels either along a track or within the weight plate bodies which can then be inserted through the car and the track into a throughbore or selection point in a weight plate or through the car directly into the throughbore in order to safely, reliably and easily engage a connection union with a vertically or horizontally running selector stem.
BACKGROUND OF THE INVENTION AND PRIOR ART
-
A traditional weight stack for use on what is known in the commercial fitness industry as “selectorized” or “Nautilus” strength training machines incorporates a weight stack in which similar or identically sized or shaped weight plates are stacked vertically atop one another. Formed into each plate and in identical locations on each plate in the are four throughbores: three throughbores extending vertically from the top surface through to the bottom surface of a given plate and one horizontally extending throughbore from the front surface (i.e., the surface facing the person selecting the weight level for the machine) through to the rear surface opposite the front surface. Two of the three vertical throughbores are of the same size and are located equally and on either side of the third, centrally located and larger vertical throughbore.
-
Inserted downward through the two smaller vertical throughbores are poles or “guide rods,” the purpose of which is to permanently affix the weight stack to the machine and to ensure proper alignment of the stack before, during and after the user performs an exercise on the machine. The third, centrally located and larger vertical throughbore is meant to accept a “selector stem” or third and moveable rod which is permanently attached to the topmost or highest plate on the weight stack but which is not permanently attached to any other plate in the stack. The selector rod is of at least equal length as the stacked plates forming the weight stack.
-
In these prior art systems, at the top of the selector stem a cable or belt which runs over a pulley or series of pulleys and/or cams and is attached at the other end to the “movement arm” which is the piece of the machine the user moves when performing the desired exercise. Formed horizontally through the selector stem are throughbores equal in number and vertically placed in an identical orientation to the horizontal throughbores formed from the front surface to the back surface of each individual weight plate. The purpose of this design is so that when a user wants to select the appropriate amount of resistance or weight desired to perform the exercise, that user inserts a “selector pin” into the horizontal throughbore on the surface of the weight stack and through the throughbore in the selector stem forming a non-permanent, selectable engagement so that when the user moves the movement arm, all plates above the temporary union formed by inserting the selector pin horizontally through the horizontal throughbore and selector stem are lifted vertically and against the force of gravity providing the strength training resistance when the user moves the movement arm and performs the exercise.
-
Although traditional weight stacks, such as those described above, have succeeded in carrying out the intended weight lifting purpose, there are many areas for substantial improvement.
-
One key problem often associated with traditional weight stacks is that the selector pin is removable and, as a result, is often misplaced, stolen or damaged whereupon it is replaced with a functionally and/or structurally inadequately sized pin. This inappropriate replacement historically has caused bodily injury when the system fails due to the violation of the inherent design of the apparatus.
-
The removable pin also permits the user to easily modify the operation of the apparatus outside the manufacturer's design criteria for the plates and/or weight stack, which can create unacceptable safety risks for the user and/or bystanders.
-
Additionally, there is a level of dexterity and hand to eye coordination required to insert the selector pin in the horizontal throughbore of the weight and the center post which further limits the true and effective result, and potentially frustrates the user such that the equipment receives less use.
-
In addition, an improper or incomplete mating between the selector pin and selector stem could result in an in situ decoupling with the weight stock dropping (through gravity) with potential for damage to the system and/or injury to bystanders standing in proximity to the weight stack.
-
Therefore, there exists a need for a safer, simpler and better arranged weight selection mechanism system such as the selector pin, car and weight plate mechanism which cannot be misplaced, stolen or lost, and can be safely, simply and conveniently be engaged with thereby minimizing user error, complication and compromise in user safety.
-
Existing prior art approaches do not fully satisfy these problems. One approach calls for weight plates with rotating latches on the weight plates that once rotated engage with a groove molded into the center post (Itaru U.S. Pat. No. 5,306,221). This device, however, is overly complicated and unreliable with frequent slips and malfunctions.
-
There also exists a sliding plate mechanism (Reach U.S. Pat. No. 772,906), however, this approach also results in high manufacturing costs and creates inherent safety issues.
-
There also exists an imbedded system featuring a selector pin imbedded in a cartridge, imbedded in every weight plate and an external toggle lever switch mounted on the surface of each plate that is manipulated laterally from left to right on a weight stack (see, e.g., U.S. Pat. No. 7,608,021 to Nalley) by the user in order to engage the imbedded selector pin through the throughbore in order to engage the imbedded selector pin into the center post. This system is confusing to the user as one, more than one, or in fact all of the selector pins can be engaged at one time creating user confusion and numerous safety issues if and when the user mistakenly and dangerously attempts to perform an exercise with a weight amount he/she is physically incapable of lifting or moving.
-
In addition to inherent safety issues in design or and confusion and unavoidable user error and/or injury, these latter devices and mechanisms are unable to be applied, added to or retrofitted onto existing exercise apparatus in the marketplace.
SUMMARY OF THE INVENTION
-
The selector pin of the present invention includes a variety of embodiments, but is generally displaced within and is not removable from a moveable car or similar sliding mechanism which is continuously engaged but able to travel continuously the length of a horizontal or vertical weight stack either via a continuous, yet separable segmented track affixed to the surface of the plate body or within a continuous, yet separable cavity running internally within and the length of the weight stack, which is continuous and not separated when the user is not using the exercise apparatus. When the user is not performing exercise, the full weight stack is aligned, and the user may thus select and/or adjust the desired weight amount for exercise. The mobility of the car and pin assembly allowing for the selector pin to be inserted into the selector pin throughbore in any weight plate in the weight stack in order to engage or disengage a connecting union with the center post running vertically or horizontally through the center throughbore of the weight stack without allowing the selector pin to ever be removed from the car which in turn is continuously engaged with the track, cavern or recess within the weight stack.
-
In certain preferred embodiments, the selector pin is slightly larger at the tip or has a similar preventive design which allows disengagement from the selector stem and withdrawal from the throughbore and allowing for car travel within the segmented track or continuous cavern, but preventing removal from the car. Likewise, in such embodiments, the selector pin has a knob or other gripping surface on the user end, or a vertically rotating or horizontally rotating latch or lever, preventing the pin from being pushed through the car when inserted through the car and into the selector pin borehole for engagement with the centerpost or selector stem. In one preferred version, the selector pin and car mechanism have spring-loaded ball bearings embedded in the car and grooves cut into the pin which accept the spring-loaded ball bearings which provide the user with tactile sensation when the pin is at its full insertion position or its full extracted position and may also have a locking mechanism further guaranteeing complete insertion and proper union with the centerpost.
-
The weights stack features of the present invention includes a number of embodiments. In a first version of a weight stack practicing the present invention, stacked weight plates for physical fitness equipment are employed, including a plate body with an upward, radial extending cavity (e.g., a “U-shaped” recess) allowing for acceptance of a horizontal centerbar or selector stem which is affixed to the exercise apparatus only at the movement arm end. The centerbar has multiple diametric throughbores to receive a selector pin which passes through a horizontal throughbore disposed intermediate to the opposing surfaces of the plate body and entering into the weight plate at a 90 degree angle to the tangent of the front surface of the weight plate. The horizontal bore connects the upward, radial extending cavity with a horizontally running internal cavity. A selector pin is movably mounted, but not removable from the movable car traveling within the horizontal internal cavity when the selector pin is disengaged from the selector stem within the radial extending cavity. Thus, each plate may be independently selected by way of manually or otherwise inserting a selector pin. The horizontally stacked weight plates, which can be made of steel, lead, iron, rubber, urethane or a composite are of a shape that as the moveable selector pin is engaged into a plate farther from the fixed end, all plates between the selected insertion point and the fixed end of the horizontal selector stem will provide resistance thereby allowing the user to select more or less weight with the use of only a single selector pin and car or sliding mechanism. As a result, once the selector pin is engaged with the centerbar or selector stem, all plates between the selected insertion point and the fixed end of the horizontal centerbar will be lifted or moved via a cable, lever, belt, movement arm or lift apparatus or the like.
-
In a second version of the weight stack employed by the present invention, horizontally stacked weight plate for physical fitness equipment is disclosed including a plate body with an upward, radial extending cavity allowing for acceptance of a horizontal centerbar which is affixed to the exercise apparatus only at one end which has multiple diametric throughbores to receive a selector pin which passes through a segmented track connected to the front surface of the weight plate and connected to the central throughbore by a horizontal bore disposed intermediate the opposing surfaces of the plate body and entering into the weight plate through the segmented track at a 90 degree angle to the tangent of the front surface of the weight plate. A selector pin is movably mounted, but not removable from the movable car traveling within the segmented track when the selector pin is disengaged from the selector stem within the radial extending cavity. Thus each plate may be independently selected by way of manually or otherwise inserting a selector pin. The horizontally stacked weight plates which can be made of steel, lead, iron, rubber, urethane or a composite are of a shape that as the moveable selector pin is engaged into a plate farther from the fixed end of the selector stem, all plates between the selected insertion point and the fixed end of the horizontal selector stem will provide resistance thereby allowing the user to select more or less weight with the use of only a single selector pin and car mechanism. As a result, once the selector pin is engaged with the centerbar all plates between the selected insertion point and the fixed end of the horizontal centerbar will be lifted or moved via a cable, lever, belt, movement arm or lift apparatus or the like.
-
In a third embodiment, a vertically stacked weight plate for physical fitness equipment is disclosed including a plate body with central throughbore for connection and at least one, preferably two, throughbores which pass vertically therethrough for receiving guide rods or the like. The plate body additionally has an internal cavity connected to the central throughbore by a horizontal bore disposed intermediate the opposing surfaces of the plate body and entering into the weight plate at a 90 degree angle to the front surface of the weight plate. Typically, the horizontal bore intersects the central vertical throughbore. A selector pin is movably mounted, but not removable from the movable car traveling within the additional internal cavity when the selector pin is disengaged from the center post within the third, center borehole. The center post has multiple diametric throughbores to receive the selector pin which passes through the fourth throughbore and forms a connection with the center post. Thus, each plate may be independently selected by way of manually inserting or otherwise engaging the selector pin when the travelling car is moved to the appropriate level or weight plate. As a result of such selection, once the selector pin is engaged with the center post all weight plates above the weight plate where the selector pin is inserted or otherwise engaged with the center post will be lifted or moved via a cable, lever, belt, movement arm or lift apparatus or the like.
-
A fourth embodiment teaches a vertically stacked weight plate for physical fitness equipment, including a plate body with central throughbore for connection and at least one, preferably two, throughbores which pass vertically therethrough for receiving guide rods or the like. The plate body additionally has an external segmented track (e.g., a track which could be retrofitted to existing weight stack configurations), where the track connected to the front surface of the weight plate and connected to the central throughbore by a horizontal bore disposed intermediate the opposing surfaces of the plate body and entering into the weight plate through the segmented track at a 90 degree angle to the front surface of the weight plate. Typically, the horizontal bore intersects the central vertical throughbore. A selector pin is movably mounted, but not removable from the movable car which travels and is continuously engaged along the external track when the selector pin is disengaged from the center post within the third, center borehole. The center post has multiple diametric throughbores to receive the selector pin which passes through a selector pin throughbore and forms a connection with the center post. Thus, each plate may be independently selected by way of manually or otherwise inserting the selector pin when the travelling car is moved to the appropriate level or weight plate. Once the selector pin is engaged with the center post, all weight plates above the weight plate where the selector pin is inserted and engaged with the center post will be lifted or moved via a cable, lever, belt, movement arm or lift apparatus or the like.
-
Thus, one object of the present invention is to provide a component for a weight lifting system which prevents the loss of a selector pin and the misuse of a weight training machine resulting from the loss thereof.
-
Another object of the present invention is to provide a selector pin and related car or holder thereof which enables the continuous connection of the selector pin to a weight lifting device.
-
Still another object of the present invention is to provide a track or groove in a weight stack for a selector pin to enable the improved selection of a desired weight to be lifted.
-
Yet another object of the present invention is to provide a mechanism for the easy engagement of a selected weight level so as to reduce the possibility of an improper mating of the selector pin and the weight stack, thereby reducing the possibility of any in situ failure of the weight lifting machine.
-
Yet another object of the present invention is to provide a weight lifting machine that can eliminate the need for belts, pulleys or similar devices for transferring energy for the movement of a weight stack.
-
It should be noted that not every embodiment of the claimed invention will accomplish each of the objects of the invention set forth above. In addition, further objects of the invention will become apparent based on the summary of the invention, the detailed description of preferred embodiments, and as illustrated in the accompanying drawings. Such objects, features, and advantages of the present invention will become more apparent in light of the following detailed description of a best mode embodiment thereof, and as illustrated in the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
- FIG. 1
is a side view of a weight plate assembly known in the prior art.
- FIG. 2
is a front view of the weight plate stack with guide rods and a selector stem as known in the prior art.
- FIG. 3
is a perspective in situ view of the weight plate stack with guide rods and selector stem shown of
FIG. 2in the assembled condition with the selector pin in the engaged position.
- FIG. 4
is an exploded view of a weight plate and selector pin engagement as known in the prior art
- FIG. 5
shows a side view of a weight stack assembly in accordance with some of the preferred embodiments of the present invention.
- FIG. 6
shows a side view of a weight stack assembly in accordance with some of the preferred embodiments of the present invention in operation wherein the user has selected to lift all weights in the stack, leaving the tray empty.
- FIG. 7
shows a side view of a weight stack assembly in accordance with some of the preferred embodiments of the present invention in operation wherein the user has selected to lift only a portion of the weights in the stack, leaving the remaining weight plates in the tray.
- FIG. 8
shows an exploded perspective view of the weight plate and selector pin engagement in accordance with some of the preferred embodiments of the present invention.
- FIG. 9
is an exploded view of the selector pin showing the knob and slider features for engaging with the weight plate cavity of some preferred embodiments of the present invention.
- FIG. 10
is a perspective view of the weight stack engaging the movement arm while at rest in the tray as used in some preferred embodiments of the present invention.
- FIG. 11
is a side view of a weight plate as used in some preferred embodiments of the present invention.
- FIG. 12
is a perspective view of a weight plate as used in some preferred embodiments of the present invention.
- FIG. 13
is a profile view of a weight plate as used in some preferred embodiments of the present invention.
- FIG. 14
is a perspective view of the weight stack partially engaged with the selector stem as shown in
FIG. 7.
- FIG. 15
is an exposed side view of an engaged selector pin and weight stack in operational engagement with the pivot point and movement arm plate as used in some preferred embodiments of the present invention.
- FIG. 16
is an exposed side view of an disengaged selector pin and weight stack in operational engagement with the pivot point and movement arm plate as used in some preferred embodiments of the present invention.
- FIG. 17
a-b are exposed profile views of the selector pin car and track, respectively as used in some preferred embodiments of the present invention.
- FIG. 18
a-b are exposed profile views of the selector pin and selector pin car in disengaged and engaged positions, respectively, as used in some preferred embodiments of the present invention.
- FIG. 19
a-b are exposed profile views showing details of the selector pin and the stubby plunger used in some preferred embodiments of the present invention.
- FIG. 20
a-b are side and exposed side views of the stubby plunger, including the ball bearing component used in some preferred embodiments of the present invention.
- FIG. 21
a-b are exploded profile views showing the selector pin and cart combination and the weight plate with cart cavity as used in some preferred embodiments of the present invention.
- FIG. 22
is an exploded perspective view of the selector pin and cart and weight stack as details in
FIG. 21a-b.
- FIG. 23
is an exploded perspective view of an attachable selector pin track used in some preferred embodiments of the present invention.
- FIG. 24
is a front view showing the detail of track elements of the attachable selector pin track shown in
FIG. 23.
- FIG. 25
is a top view showing the profile of a track element as shown in
FIG. 24.
- FIG. 26
is a side view of a selector pin and selector pin cart for use the some preferred embodiments of the present invention.
- FIG. 27
a-b is a front view of the selector pin cart are front and top profile views of the selector pin cart of
FIG. 26in operational engagement with the attachable selector pin track shown in
FIG. 25.
DETAILED DESCRIPTION OF THE INVENTION
-
Set forth below is a description of what is currently believed to be the preferred embodiment or best examples of the invention claimed. Future and present alternatives and modifications to this preferred embodiment are contemplated. Any alternatives or modifications which make insubstantial changes in function, in purpose, in structure or in result are intended to be covered by the claims in this patent.
-
A typical weight lifting apparatus 10 as known in the prior art is shown by way of example in
FIGS. 1-4. Generally, such an apparatus 10 includes a
weight stack assembly20, a
movement assembly40 for receiving work or force from a user, and a
pulley system50 to facilitate or translate the gravitational force from the
weight stack assembly20 so as to provide resistance to the
movement assembly40. The
movement assembly40 typically includes a
movement arm42 which is displaced by the user during exercise, and a
pivot point44 which permits rotation of the user's force against the resistance of the weight stack assembly.
-
As shown in
FIG. 2, the
weight stack assembly20 typically comprises a
selector pin22 so that the user can select the appropriate level of weight or resistance, a series of
guide rods24 for aligning and supporting the
weight stack assembly20 during exercise, and a series of
plates26, each plate having a weight plate throughbore 28 for receiving a
selector pin22. Thus, as a user selects a given
weight plate throughbore28, only that portion of
weight stack assembly20 which is at the level of the selector pin or above is engaged.
-
As shown in
FIG. 3, the connection between the
selector pin22 and the
cable52 of
pulley system50 is accomplished by a
selector stem30. The selector stem 30 is typically permanently attached to the
weight plate26 which is at the top of the stack. The selector stem further includes a series of
throughbores32 which receive the
selector pin22 extending through the
weight plate throughbore28. As shown in
FIG. 4, the
weight stack assembly20 further includes a selector stem bore 34 and guide rod bores 36 for receiving the
selector stem30 and guide
rods24, respectively.
-
By comparison, a first preferred embodiment of a weight lifting apparatus 110 of the present invention is shown in
FIGS. 5-7. In this embodiment, the weight lifting apparatus, includes a
movement assembly140 comprising
movement arm142 and
pivot point144, a weight stack assembly 120 (which is supported at rest by tray 125), and a
selector stem130. However, in this embodiment, the
selector stem130 extends horizontally and is integral with or attached directly to the
movement arm142, and is preferably permanently attached to and inseparable from the movement arm. Thus, there are no pulley systems required between the weight plates and the movement arm, making it the present embodiment inherently safer, as there are no “pinch points” where a user or bystander can injure a finger or other body part. The weight stack assembly comprises a series of
weight plates126, and the “first” plate (i.e., the
weight plate126 closest to movement arm 142) may be permanently attached to the union of the
movement arm142 and the
selector stem130 which, when moved around a
pivot point144, makes the movement arm heavier at the selector stem end than at the pivot point end. Thus, when the user performs the exercise, the
selector stem130 and the first plate travel upwards against the force of gravity to provide resistance to the user.
-
In this embodiment, each
individual weight plate126 is of a similar or identical size and shape and are arranged in a horizontal stack, in similar fashion to books on a bookshelf. As shown in
FIG. 10, the
weight plates126 at rest are located in a basket or
tray125 or the like, which is permanently attached to and immoveable from the weight lifting apparatus 110. As shown in
FIGS. 8-9and 11, each of the
weight plates126 include an identical, “U shaped”
upward radiating cavity121 so as to permit movement of the
selector stem130 when a given weight plate is not selected. Each weight plate further includes an additional frontward radiating, contoured
cavity127 which forms a track. The engagement of the
frontward radiating cavity127 and the
selector pin122 and slider 123 (which is a type of a car or cart) creates a track for engagement such that the selector pin can be moved from one
weight plate126 to another, while preventing the
selector pin122 from being removed from the
weight stack assembly120. Each
weight plate126 plate has a selector pin throughbore 133 connecting the
frontward radiating cavity127 with the upward radiating cavity to as to be able to receive
selector pin122. Likewise, the selector stem contains a selector pin throughbores 132 such that the selector pin may traverse the
weight plate126 and selector stem 130 when in the engaged position.
-
As shown in
FIGS. 12-14, this embodiment also includes the use of a configuration for a
weight plate126 that provides for horizontal stacking such that a
single selector pin122, when engaged, can support the lifting of
multiple weight plates126. Each
weight plate126, when viewed from front position, preferably includes an overlapping
flange134 or similar shape that overlaps and forms a union with the lower portion of the adjoining
weight plate126 farther away from the union of the
movement arm142 and the
selector stem130, and is overlapped by and a union is formed by the upper portion of the adjoining
weight plate126 closer to the union of the
movement arm142 and the
selector stem130. The
farthest weight plate126 from the union of the
movement arm142 and the
selector stem130 is of similar or identical size and shape as the other plates in the
weight stack120 but, being the farthest plate in the stack from the union of the movement arm and the selector stem has no farther plate to form a union with and instead overlaps and forms a union with the
tray125.
- FIGS. 15 and 16
show the engagement and disengagement of the
selector pin122 in this embodiment. When the
movement arm142 and
weight plates126 are in the “at rest position” and there is no user on the machine, the
selector stem130 and permanently attached “First Plate” end of the movement arm, due to the force of gravity, come to rest within the upwardly radiating
cavity121 of
weight plates126, which in turn are held solidly and reliably in place by their overlapping
flanges134 and the
tray125. The user then selects the desired amount of resistance by withdrawing the selector pin into the “disengaged position” and sliding the
selector pin122 using the slider which is sized to slide along the channel formed by the accumulation of front facing
cavities127 formed by the weight plates. If the user desires greater resistance (more weight), the combination of the
selector pin122 and slide 123 is moved outward away from the union of the
selector stem130 and the
movement arm142, and inward towards the union of the
selector stem130 and
movement arm142 if he desires less resistance (less weight). Then the user inserts the
selector pin122 into the “engaged position” through the selector pin throughbore 132 of the
weight plate126 and through the selector pin throughbore 132 in the
selector stem132, the throughbores being properly spaced in order to form a mechanical union between
selector pin122,
weight plate126 and
selector stem130. The user then performs the exercise and is provided resistance based on the number of
weight plates126 located between the insertion point of the
selector pin122 and the union of the
movement arm142 and selector stem 130 due to the overlapping design of the
weight plates126.
-
This embodiment provides several benefits. Because the union of the
movement arm142,
selector stem130 and
first plate126 is an integrated, there is no need for pulleys, cables or belts between the source of resistance and the
movement arm142. The resistance is effectively and safely put on the
movement arm142 itself. Unlike the
traditional weight stack20, this embodiment has less moving parts and therefore there is less likelihood for mechanical failure and subsequent injury making it inherently safer. Additional design safety comes from the fact that since there are no pulleys, belts or cables, there are no “pinch points” caused by these mechanisms which exist as “necessary evils” on the traditional horizontal weight stack. Further benefit is derived from the fact that due to the fact that there are no guide rods requiring lubrication. With fewer moving parts, breakable mechanisms, or the like, the invention will be less expensive to manufacture and maintain than the traditional horizontal weight stack.
-
Additionally, due to the non-removable selector pin mechanism the likelihood of the user using the wrong pin in the wrong machine which is a common occurrence and safety hazard in traditional horizontal weight stacks, often resulting in injury and the cost of replacing lost or stolen pins is greatly minimized. Also, due to the overlapping flange design feature, the embodiment only requires the use of one,
non-removable selector pin122 mechanism versus several. The invention is thereby more intuitive and eliminates potential injury and confusion due to inappropriate resistance selection and the need to engage more than one selection mechanism or a different selection mechanism to select a different amount of resistance. Additionally, since there are fewer selection mechanisms and since all plates are of identical size, weight and shape, the cost of manufacture will be less. Unlike the approach commonly referred to in the commercial fitness industry as “plate loaded” equipment, this embodiment also represents a significant improvement for several reasons. Due to the
tray125 and
flange134/overlapping
weight plate126 design, the
weight stack assembly120 is permanently attached to the weight lifting apparatus 110, eliminating the need for the user to locate, gather, lift up and load matching weight plates onto each of the two the movement arms of the equipment which is how current “plate loaded” equipment must be made ready for exercise. This process in and of itself is dangerous as numerous injuries have resulted from the act of loading and unloading the “plate loaded” equipment.
-
In addition, this embodiment eliminates the need for not only the purchase of weight plates by the health club owner, but storage racks for those weight plates as well. It also leads to a neater and better organized and safer exercise environment. It is a common occurrence for not all users to unload the traditional “plate loaded” equipment after completing their exercise session, leaving the next potential user in the unsafe or compromised position of having to unload the weight plates from the loaded piece of equipment to achieve the desired amount of weight or resistance or, in the event that the loaded weight plates are too heavy to unload, simply get discouraged and not use the piece of exercise equipment at all.
-
Of course, the present invention includes other embodiments which include other types of weight stack assemblies, even including prior art weight lifting assemblies such as those discloses in
FIGS. 1-4. For instance, as shown in
FIGS. 17-20, the invention can simply address embodiments which rely upon a
selector pin122 which uses a
car160 or similar sliding mechanism to engage a
track164 or similar channel, but includes a
stubby plunger162 or similar bias and detent mechanism for permanently retaining the
selector pin122 in the
car160, and in turn in the
track164. For instance, as shown in
FIGS. 19a-b, the selector pin includes
grooves166, with the groove furthest from the knob for a “disengaged” position, and the groove closes to the knob for an “engaged” position. As shown in
FIGS. 20a-b, the
stubby plunger162 is permanently fixed inside the
car160 and includes a
ball bearing168 which is biased inwards by a spring (not shown). Thus, when the
selector pin122 is inserted or removed by a user, the ball bearing 168 couples with a
groove166 to provide a locking mechanism for the “engaged” or “disengaged” positions.
-
In yet another embodiment, the
selector pin222 and
car224 combination can be sized to fit within a
contoured cavity228 located within a conventional shaped vertically stacked group of weight plates. In this embodiment as shown in
FIGS. 21-22, the car includes
ball bearings225 to slide up and down the
weight stack220 until the user selects a desired weight plate corresponding to a desire weight level.
-
As shown in
FIGS. 23-27, the present invention can be used with a selector pin and cart which in connected to a weight stack via an attachable track. In other words, using this embodiment of the present invention permits the present invention to be retrofitted to existing weight lifting devices. In this embodiment, the
track360 is comprised of
individual track elements362 which are permanently affixed to corresponding
weight plates326 in a weight stack 320, each
track element326 having a selector pin throughbore 364, and each element being capable of locking or connecting to other, similar elements using male 366 and female 368 connectors. Collectively, the track provides a channel for a
cart324 to slide through, the cart having
ball bearings325 to enable sliding up and down the track to the desired level in the
track360 corresponding to a desired level in the weight stack 320, such that the selector pin 322 (which is permanently connected to cart 324) can extend through the selector pin throughbore 364 and the
weight plate326, using
grooves370 to facilitate engaged and disengaged positions.
-
The above description is not intended to limit the meaning of the words used in the following claims that define the invention. Rather, it is contemplated that future modifications in structure, function or result will exist that are not substantial changes and that all such insubstantial changes in what is claimed are intended to be covered by the claims. For instance, the particular plate geometry and the presence or absence of guide rods may or may not vary depending upon (for instance) the particular weight lifting exercise. Similarly, while the preferred embodiments of the present invention focus upon the direct translation of the user's energy from the movement arm to the weight stack without the need for pulleys belts and the like, those of skill will understand the applicability of the present invention (e.g., the selector pin/car feature) to other weight lifting devices which require such machines. Also, the cart and track connection could be configured such that the cart surrounds the track, instead of being contained within a channel of the track. Likewise, it will be appreciated by those skilled in the art that various changes, additions, omissions, and modifications can be made to the illustrated embodiments without departing from the spirit of the present invention. All such modifications and changes are intended to be covered by the following claims.
Claims (8)
1. A weight selector assembly for selecting a desired weight level from at least two weight levels, the assembly comprising:
a. A moveable car for selectively engaging with one of a plurality of weight levels;
b. A track continuously engaged with the moveable car for guiding the car between a plurality of engagement points corresponding to the plurality of different weight levels;
c. A non-removable selector pin continuously engaged with the moveable car, and movable within the movable car from at least a first engaged position and a second, disengaged position, wherein the first engaged position mechanically couples one of the plurality of engagement points
2. The weight selector assembly recited in
claim 1, wherein the track comprises track segments along which the moveable car can move along in order to selectively engage the selector pin with a plurality of engagement points.
3. The weight selector assembly recited in
claim 2, whereby the track segments connect each comprise a male end and female end for connection to additional track segments.
4. The weight selector assembly recited in
claim 2, wherein the track engagement points are integrally formed on a surface of a weight plate.
5. The weight selector assembly recited in
claim 1, wherein the moveable car is a moveable car assembly for engaging between at least two selection points in a weight lifting machine the car assembly comprising:
a. A plurality of selection points, each selection point corresponding to a different weight level,
b. A car for travelling substantially in a single dimension path between at least two of the plurality of selection points, and the selector pin is moveable solely in a direction substantially perpendicular to the path of the car.
6. The weight selector assembly recited in
claim 8, further comprising ball bearings disposed within the moveable car in order to facilitate frictionless movement along said track
7. The weight selector assembly recited in
claim 8, wherein the moveable car further comprising wheels in order to facilitate frictionless movement along said track
8. The weight selector assembly recited in
claim 8, wherein the selector pin further comprises a spring loaded, tactile indicia bearing providing the user with mechanical, tactile indicator confirm whether the selector pin is in the first engaged position or the second disengaged position.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/653,852 US20140106943A1 (en) | 2012-10-17 | 2012-10-17 | Weight Lifting and Selector Pin Assembly |
US14/076,461 US9468792B2 (en) | 2011-11-18 | 2013-11-11 | Weight lifting and selector pin assembly |
US14/473,262 US9463345B2 (en) | 2011-11-18 | 2014-08-29 | Weight lifting and selector pin assembly |
US15/861,199 US10350446B2 (en) | 2011-11-18 | 2018-01-03 | Weight lifting and selector pin assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/653,852 US20140106943A1 (en) | 2012-10-17 | 2012-10-17 | Weight Lifting and Selector Pin Assembly |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/076,461 Continuation-In-Part US9468792B2 (en) | 2011-11-18 | 2013-11-11 | Weight lifting and selector pin assembly |
Publications (1)
Publication Number | Publication Date |
---|---|
US20140106943A1 true US20140106943A1 (en) | 2014-04-17 |
Family
ID=50475834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/653,852 Abandoned US20140106943A1 (en) | 2011-11-18 | 2012-10-17 | Weight Lifting and Selector Pin Assembly |
Country Status (1)
Country | Link |
---|---|
US (1) | US20140106943A1 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2939718A1 (en) * | 2014-04-29 | 2015-11-04 | Piotr Gluchowski | Device to prevent injuries |
US9468792B2 (en) * | 2011-11-18 | 2016-10-18 | Bronze Fist Design, Inc. | Weight lifting and selector pin assembly |
US9950205B2 (en) | 2016-03-14 | 2018-04-24 | Bronze Fist Design, Inc. | Weight lifting and selector pin assembly |
US10188890B2 (en) | 2013-12-26 | 2019-01-29 | Icon Health & Fitness, Inc. | Magnetic resistance mechanism in a cable machine |
US10252109B2 (en) | 2016-05-13 | 2019-04-09 | Icon Health & Fitness, Inc. | Weight platform treadmill |
US10279212B2 (en) | 2013-03-14 | 2019-05-07 | Icon Health & Fitness, Inc. | Strength training apparatus with flywheel and related methods |
US10293211B2 (en) | 2016-03-18 | 2019-05-21 | Icon Health & Fitness, Inc. | Coordinated weight selection |
US10307637B2 (en) * | 2017-02-13 | 2019-06-04 | Mark Nalley | Exercise machine having horizontally extending and selectively connected weight plates |
US10426989B2 (en) | 2014-06-09 | 2019-10-01 | Icon Health & Fitness, Inc. | Cable system incorporated into a treadmill |
US10441840B2 (en) | 2016-03-18 | 2019-10-15 | Icon Health & Fitness, Inc. | Collapsible strength exercise machine |
US10449416B2 (en) | 2015-08-26 | 2019-10-22 | Icon Health & Fitness, Inc. | Strength exercise mechanisms |
GB2573259A (en) * | 2018-02-08 | 2019-11-06 | Tubeglobal Ltd | Exercise apparatus |
USD879218S1 (en) * | 2018-10-24 | 2020-03-24 | Fabian Jones | Standing calf raise exercise machine |
US10661114B2 (en) | 2016-11-01 | 2020-05-26 | Icon Health & Fitness, Inc. | Body weight lift mechanism on treadmill |
USD891545S1 (en) * | 2018-10-19 | 2020-07-28 | Coulter Ventures, Llc. | Attachment post |
USD909176S1 (en) | 2018-10-19 | 2021-02-02 | Coulter Ventures, Llc. | Locking pin |
US10940360B2 (en) | 2015-08-26 | 2021-03-09 | Icon Health & Fitness, Inc. | Strength exercise mechanisms |
US11364407B2 (en) | 2018-10-19 | 2022-06-21 | Coulter Ventures, Llc. | Connector assembly |
USD1029151S1 (en) * | 2023-10-16 | 2024-05-28 | Yongkang Yulai Industry and Trade Co., Ltd. | Weight stack pin |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US772906A (en) * | 1904-02-24 | 1904-10-18 | Spalding Mfg Company | Weight for chest-machines. |
US5306221A (en) * | 1992-12-15 | 1994-04-26 | Abe Itaru | Weight adjusting device for muscle training machine |
US20090227432A1 (en) * | 2008-03-05 | 2009-09-10 | Icon Health & Fitness, Inc. | Exercise apparatus, resistance selector for exercise apparatus and related methods |
-
2012
- 2012-10-17 US US13/653,852 patent/US20140106943A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US772906A (en) * | 1904-02-24 | 1904-10-18 | Spalding Mfg Company | Weight for chest-machines. |
US5306221A (en) * | 1992-12-15 | 1994-04-26 | Abe Itaru | Weight adjusting device for muscle training machine |
US20090227432A1 (en) * | 2008-03-05 | 2009-09-10 | Icon Health & Fitness, Inc. | Exercise apparatus, resistance selector for exercise apparatus and related methods |
US8152702B2 (en) * | 2008-03-05 | 2012-04-10 | Icon Health & Fitness, Inc. | Exercise apparatus, resistance selector for exercise apparatus and related methods |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9468792B2 (en) * | 2011-11-18 | 2016-10-18 | Bronze Fist Design, Inc. | Weight lifting and selector pin assembly |
US10350446B2 (en) | 2011-11-18 | 2019-07-16 | Bronze Fist Design, Inc. | Weight lifting and selector pin assembly |
US10279212B2 (en) | 2013-03-14 | 2019-05-07 | Icon Health & Fitness, Inc. | Strength training apparatus with flywheel and related methods |
US10188890B2 (en) | 2013-12-26 | 2019-01-29 | Icon Health & Fitness, Inc. | Magnetic resistance mechanism in a cable machine |
EP2939718A1 (en) * | 2014-04-29 | 2015-11-04 | Piotr Gluchowski | Device to prevent injuries |
US10426989B2 (en) | 2014-06-09 | 2019-10-01 | Icon Health & Fitness, Inc. | Cable system incorporated into a treadmill |
US10940360B2 (en) | 2015-08-26 | 2021-03-09 | Icon Health & Fitness, Inc. | Strength exercise mechanisms |
US10449416B2 (en) | 2015-08-26 | 2019-10-22 | Icon Health & Fitness, Inc. | Strength exercise mechanisms |
US9950205B2 (en) | 2016-03-14 | 2018-04-24 | Bronze Fist Design, Inc. | Weight lifting and selector pin assembly |
US10441840B2 (en) | 2016-03-18 | 2019-10-15 | Icon Health & Fitness, Inc. | Collapsible strength exercise machine |
US10293211B2 (en) | 2016-03-18 | 2019-05-21 | Icon Health & Fitness, Inc. | Coordinated weight selection |
US10252109B2 (en) | 2016-05-13 | 2019-04-09 | Icon Health & Fitness, Inc. | Weight platform treadmill |
US10661114B2 (en) | 2016-11-01 | 2020-05-26 | Icon Health & Fitness, Inc. | Body weight lift mechanism on treadmill |
US10307637B2 (en) * | 2017-02-13 | 2019-06-04 | Mark Nalley | Exercise machine having horizontally extending and selectively connected weight plates |
GB2573259A (en) * | 2018-02-08 | 2019-11-06 | Tubeglobal Ltd | Exercise apparatus |
USD949989S1 (en) | 2018-10-19 | 2022-04-26 | Coulter Ventures, Llc. | Attachment post |
USD909176S1 (en) | 2018-10-19 | 2021-02-02 | Coulter Ventures, Llc. | Locking pin |
USD891545S1 (en) * | 2018-10-19 | 2020-07-28 | Coulter Ventures, Llc. | Attachment post |
USD932280S1 (en) * | 2018-10-19 | 2021-10-05 | Coulter Ventures, Llc. | Locking pin |
US11364407B2 (en) | 2018-10-19 | 2022-06-21 | Coulter Ventures, Llc. | Connector assembly |
US12076604B2 (en) | 2018-10-19 | 2024-09-03 | Coulter Ventures, Llc. | Connector assembly |
USD879218S1 (en) * | 2018-10-24 | 2020-03-24 | Fabian Jones | Standing calf raise exercise machine |
USD1029151S1 (en) * | 2023-10-16 | 2024-05-28 | Yongkang Yulai Industry and Trade Co., Ltd. | Weight stack pin |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10350446B2 (en) | 2019-07-16 | Weight lifting and selector pin assembly |
US20140106943A1 (en) | 2014-04-17 | Weight Lifting and Selector Pin Assembly |
US9468792B2 (en) | 2016-10-18 | Weight lifting and selector pin assembly |
US9463345B2 (en) | 2016-10-11 | Weight lifting and selector pin assembly |
US20160101311A1 (en) | 2016-04-14 | Resistance Selector for Exercise Apparatus |
US10426993B2 (en) | 2019-10-01 | Track-mounted lever release exercise rack accessory mount |
US8007415B1 (en) | 2011-08-30 | Adjustable dumbbell and system |
US20120021877A1 (en) | 2012-01-26 | Adjustable dumbbell and system |
US7614981B2 (en) | 2009-11-10 | Weight selection system for fitness training equipment |
US10583318B2 (en) | 2020-03-10 | Dumbbell weight training device having selectively connected weight plates |
EP2686077B1 (en) | 2020-06-24 | Improved exercise table |
US7862487B2 (en) | 2011-01-04 | Freestanding selectable free weight assembly |
US20060217245A1 (en) | 2006-09-28 | Weight selection apparatus for a weight stack |
US7608021B1 (en) | 2009-10-27 | Weight plate with externally actuated internal locking device |
US11229820B2 (en) | 2022-01-25 | Weight lifting equipment and methods |
US20190217148A1 (en) | 2019-07-18 | Strength training system and method of using same |
US9339681B1 (en) | 2016-05-17 | Weight plate with center post locking cartridge and locking fork |
US20100285933A1 (en) | 2010-11-11 | Weight plate lifting exercise apparatus |
US9682269B2 (en) | 2017-06-20 | Weight lifting arrangement and weight selector apparatus for a weight lifting arrangement |
US9737783B2 (en) | 2017-08-22 | Free weight organization system |
US20160074688A1 (en) | 2016-03-17 | Supplemental Weight Stack for an Exercise Machine |
US20240342533A1 (en) | 2024-10-17 | Exercise bar carriage locking mechanism |
US20220401789A1 (en) | 2022-12-22 | Fast-load weight plate system |
US20180104525A1 (en) | 2018-04-19 | Weight Selecting Mechanism for Exercise Equipment |
CA2676722C (en) | 2014-04-15 | Weight plate with externally actuated internal locking device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
2012-10-23 | AS | Assignment |
Owner name: BRONZE FIST DESIGN, INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SIMONETTI, DOMINIC A.;REEL/FRAME:029172/0182 Effective date: 20121015 |
2015-11-15 | STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |