US3372010A - Diamond abrasive matrix - Google Patents
- ️Tue Mar 05 1968
US3372010A - Diamond abrasive matrix - Google Patents
Diamond abrasive matrix Download PDFInfo
-
Publication number
- US3372010A US3372010A US466391A US46639165A US3372010A US 3372010 A US3372010 A US 3372010A US 466391 A US466391 A US 466391A US 46639165 A US46639165 A US 46639165A US 3372010 A US3372010 A US 3372010A Authority
- US
- United States Prior art keywords
- bonding
- matrix
- particles
- chromium
- diamond Prior art date
- 1965-06-23 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011159 matrix material Substances 0.000 title description 86
- 239000010432 diamond Substances 0.000 title description 76
- 229910003460 diamond Inorganic materials 0.000 title description 70
- 239000002245 particle Substances 0.000 description 75
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 70
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 68
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 51
- 229910052804 chromium Inorganic materials 0.000 description 51
- 239000011651 chromium Substances 0.000 description 51
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 34
- 229910052796 boron Inorganic materials 0.000 description 34
- 229910052759 nickel Inorganic materials 0.000 description 34
- 229910052742 iron Inorganic materials 0.000 description 33
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 31
- 229910052710 silicon Inorganic materials 0.000 description 31
- 239000010703 silicon Substances 0.000 description 31
- 239000000843 powder Substances 0.000 description 29
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 27
- 239000000470 constituent Substances 0.000 description 24
- 229910052802 copper Inorganic materials 0.000 description 24
- 239000010949 copper Substances 0.000 description 24
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 23
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 23
- 229910052799 carbon Inorganic materials 0.000 description 23
- 239000011135 tin Substances 0.000 description 23
- 229910052718 tin Inorganic materials 0.000 description 23
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 20
- 239000000203 mixture Substances 0.000 description 19
- 238000005245 sintering Methods 0.000 description 19
- 239000007767 bonding agent Substances 0.000 description 16
- 230000005496 eutectics Effects 0.000 description 15
- 229910052721 tungsten Inorganic materials 0.000 description 15
- 239000010937 tungsten Substances 0.000 description 15
- 239000006104 solid solution Substances 0.000 description 12
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 12
- 238000005299 abrasion Methods 0.000 description 9
- 239000013078 crystal Substances 0.000 description 9
- 230000009471 action Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000006061 abrasive grain Substances 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000000227 grinding Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- 239000010941 cobalt Substances 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- -1 tungsten carbides Chemical class 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910001092 metal group alloy Inorganic materials 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000000498 ball milling Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- NUEWEVRJMWXXFB-UHFFFAOYSA-N chromium(iii) boride Chemical compound [Cr]=[B] NUEWEVRJMWXXFB-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 235000010678 Paulownia tomentosa Nutrition 0.000 description 1
- 240000002834 Paulownia tomentosa Species 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- QFXZANXYUCUTQH-UHFFFAOYSA-N ethynol Chemical group OC#C QFXZANXYUCUTQH-UHFFFAOYSA-N 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- 239000004579 marble Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/02—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
- B24D3/04—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
- B24D3/06—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
- B24D3/08—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements for close-grained structure, e.g. using metal with low melting point
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C26/00—Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
Definitions
- a metallic bonding matrix for diamond abrasive grains having a micro structure containing tungsten carbide and chromium boride particles bonded in a lattice comprising a solid solution of controlled amounts of nickel, iron, copper, chromium, tin, carbon, boron and silicon.
- the present invention broadly relates to abrasive articles, and more particularly to an improved composition for tenaciously bonding hard abrasive particles, such as diamond, or the like, within a bonding matrix which may conveniently be affixed to a supporting substrate. More specifically, the present invention is directed to a novel metallic bonding material which, upon sintering, forms a matrix which is of excellent impact and abrasion resistance, is of high strength and ductility, and is effective for forming tenacious bonds with the diamond abrasive particles embedded therein.
- bonding agents have heretofore been used or proposed for use for mounting diamonds in single point or cluster type cutting tools or for forming diamond abrasive matrices incorporating a plurality of fine sized diamond particles distributed therethrough, providing therewith abrasive tools possessing controlled grinding or polishing action.
- Bonding agents of the types heretofore known conventionally comprise a variety of metal alloys which are selected so as to provide a resultant matrix which is abrasion and impact resistant, which forms a tenacious bond with diamond particles mounted therein and which requires nominal sintering temperatures to prevent thermal degradation of the diamond particles.
- copper base alloys Of the various bonding agents heretofore known, copper base alloys, iron base alloys, molybdenum and tungsten base alloys and metallic alloys incorporating cemented carbides are most common. Neither of the foregoing wellknown bonding agents possesses all of the optimum characteristics which are necessary to make diamond abrasive finishing tools of optimum efficiency and durability.
- copper base alloys are generally characterized by their poor abrasion resistance resulting in an excessive wear of the bonding matrix and a premature release of the diamond abrasive particle or particles bonded therein.
- Iron base alloys possess superior abrasion resistance but require higher sintering temperatures such that the differential coefiicient of thermal expansion of the bonding matrix and the diamond particles results in a shrinkage of the matrix away from the diamonds during cooling whereupon bonds of less than optimum strength are obtained.
- Molybdenum and tungsten base alloys require relatively high sintering temperatures which usually exceed about 2350 F. further aggravating the bonding problem as a result of the differences in the coeflicients of thermal expansion in addition to causing possible damage to the diamond abrasive particles themselves by exposure to excessive temperatures during the sintering or heating operation.
- Another object of the present invention is to provide a novel bonding material which can be converted into a bonding matrix requiring only nominal temperatures and which bonding material effects a wetting of the surfaces of the diamond abrasive particles obtaining bonds of substantially superior strength than those heretofore obtained.
- Still another object of the present invention is to provide an improved metallic bonding agent which possesses self-fluxing characteristics preventing thereby the formation of metallic oxides during the heating and sintering of the bonding agent in powdered form while disposed in compacted relationship and in contact with the diamond abrasive particle or particles, to be bonded.
- a further object of the present invention is to provide an improved metallic bonding material which can be heated or sintered at temperatures conventionally at or below 1850 F. thereby concurrently minimizing thermal degradation of the diamond abrasive particles, as well as minimizing the adverse effects of the differential thermal coefiicient of expansion between the bonding matrix and the abrasive particles being bonded.
- a still further object of the present invention is to provide a novel bonding composition which forms a bonding matrix of excellent ductility and toughness, of high abrasion resistance and strength, and which is of a dense structure substantially free of any cracks or fissures therein substantially enhancing the grinding character'- istics and durability of the abrasive finishing tool produced therefrom.
- Yet a still further object of the present invention is to produce an improved bonding material which is conveniently supplied in the form of a metallic powder and can be hot compacted and sintered in situ forming a bonding matrix possessing optimum characteristics.
- Yet still another object of the present invention is to provide an improved metallic bonding agent which is of simple, versatile and economical use and which forms diamond abrasive articles of high grinding and polishing efficiency and of long tool life.
- a powder which, upon sintering, at a temperature of from about 1800" F. to about 1850 F. is operative to form a hard, dense abrasion and impact resistant bonding matrix consisting of controlled proportions of tungsten carbide particles and chromium boride particles bonded within a lattice consisting essentially of a ternary soluton containing nickel, iron, copper, chromium, tin, carbon, boron and silicon, as well as a complex eutetic dispersed therethrough containing nickel, chromium boron, silicon and iron.
- novel metallic bonding composition is equally applicable for setting one or a plurality of relatively large diamond crystals in appropriate position relative to a tool support or, alternatively, for forming a diamond abrasive matrix containing controlled proportions of diamond particles distributed substantially uniformly therethrough.
- FIGURE 1 is a magnified fragmentary side elevational view of a typical single point diamond abrasive tool
- FIG. 2 is a perspective view of a typical diamond abrasive polishing wheel incorporating a diamond abrasive matrix on the working face thereof;
- FIG. 3 is a photomicrograph of the bonding matrix formed in accordance with the practice of the present invention taken of an unetched sample of a magnification of 100, and
- FIG. 4 is a photomicrograph of a marble etched sample of the bonding matrix taken at a magnification of 400.
- the bonding composition comprising the present invention and the bonding matrix resulting from the sintering thereof at an elevated temperature, is applicable for the manufacture of metal bonded diamond wheels and tools of the conventional types well known in the art.
- the use of the bonding agent for making single point diamond cutting tools is exemplified in FIGURE 1, wherein a single point tool indicated at 10, is illustrated, comprising a tool body 12 formed at its end with a cavity in which a relatively large diamond crystal 14 is tenaciously retained by means of a bonding matrix 16.
- the bonding agent comprising the present invention is equally applicable for the manufacture of diamond abrasive wheels such as the diamond abrasive wheel 18, illustrated in FIGURE 2.
- the diamond wheel comprises a hub section 20, adapted to be mounted on a suitable rotating shaft, and a wheel section 22 formed with a conical working face 24 incorporating a layer of a diamond abrasive matrix tenaciously bonded thereto.
- a variety of alternative shapes of a single point diamond cutting tool 10, shown in FIGURE 1, including cluster point tools as well as alternative shapes of the diamond wheel 18, illustrated in FIGURE 2 can be satisfactorily fabricated as may be desired to provide an appropriate grinding or polishing action consistent with the intended end use of the tool.
- the bonding matrix is particularly applicable for bonding diamond particles forming a diamond abrasive matrix, alternative hard abrasive grains can be satisfactorily bonded in accordance with the practice of the present invention.
- single point and cluster point cutting tools are made from relatively large size industrial diamond crystals which are set and tenaciously retained in the bonding matrix, which in turn is tenaciously bonded to a hard metal supporting structure such'as steel, for example, forming the tool support.
- a hard metal supporting structure such'as steel, for example, forming the tool support.
- the quantity of diamonds employed and the specific size and shape thereof can be varied within board limits to provide the requisite grinding or polishing action.
- diamond particles of an average size as small as about 1 micron or smaller, up to sizes of a nominal inch in diameter or greater and incorporated in amounts broadly ranging from by volume up to about 70% by volume of the abrasive matrix can be satisfactorily employed.
- the quantity of the diamond abrasive particles are controlled within a range of from about 25% by volume to about 35% by volume of the resultant abrasive matrix.
- diamond abrasive particles are of the industrial types conventionally employed and usually consist of bort, which comprises imperfectly crystallized or coarse diamonds or fragments obtained from diamond cutting operations.
- the bonding material comprising the present invention is conveniently supplied in the form of a fine sized metallic powder mixture which preferably is blended by ball milling or otherwise tumbling the powder particles so as to effect a simultaneous crushing and/or mechanical smearing or intermingling of the, individual powder particles with adjacent particles.
- the ball milling of the individual powder particles provides for a substantially permanent homogeneous blend of the several constituents assuring the formation of a sintered bonding matrix possessing consistent high quality and strength.
- the powder blend and the resultant sintered matrix produced therefrom contains the following essential constituents in the amounts hereinafter specified in terms of percent by weight: from about 13% to about 54% copper; from about 2% to about 33% tungsten; from about 10% to about 50% iron, from about 8% to about 36% nickel; from about 1% to about 25% chromium; from about 1% to about 6% tin; from about .2% to about 2.5% carbon; from about .4% to about 7% boron; andfrom about 0.1% to about 2.3% silicon.
- the foregoing elements can be conveniently introduced in the form of prealloyed powders of the several constituents including; for example, a bronze powder, an iron powder,.a nickel based powder incorporating self-fiuxing agents, fine sized particles of chromium boride, andparticles of tungsten carbide.
- the bronze powder incorporates proportions of copper and tin in controlled amounts and is employed in a quantity in consideration of the remaining constituents so as to provide a net percentage of copper and tin in thebondzing matrix within the ranges as hereinbefore set forth.
- the iron constituent of the bonding matrix may conveniently be introduced in a prealloyed condition or in essentially pure form to supplement the iron content present in others of the prealloyed powder particles.
- the iron powder employed is preferably of. a particle size of about 325 mesh or smaller and particularly satisfactory results have been obtained by employing an electrolytic flake grade iron powder.
- the chromium constituent in the bonding material is predominantly in the form of fine sized particles of chromium boride (CrB), which preferably are of a size of about 325 mesh or smaller.
- the tungsten constituent in the bonding material is principally in the form of fine sized particles of tungsten carbide which preferably are controlled so as to provide an average particle size of about mesh or smaller.
- the tungsten carbide constituent may include any of those conventionally known in the art including sintered tungsten carbides, fused tungsten carbides, as well cemented tungsten carbides incorporating nominal amounts of cementing agents such as, for example, cobalt and/ or nickel.
- a commercially available cemented tungsten carbide. which has been found to provide. satisfactory results comprises a tungsten carbide eutectic of W C, WC, including about 6% by weight of a cobalt cementing agent.
- the nickel constituent in the bonding agent in addition to supplementary quantities of the other metallic alloying constituents such as chromium, iron, boron, silicon and carbon, for example, is preferably introduced in the form of a prealloyed powder which conventionally contain from about 0.45% to about 0.95% carbon; from about 10% to about 26% chromium; from about 2%. to about 4% boron, which acts as a fluxing agent; from about 2% to about 4% silicon; from about 1% to about 5% iron, and the balance thereof nickel.
- the specific quantity of nickel alloy powder employed and the quantity and type of the alloying constituents contained therein, can be varied so as to provide a resultant bonding matrix composition incorporating the constituents within the range as hereinbefore set forth.
- the blended particulated metallic powder composition can be directly employed for sintering in situ at an elevated temperature, preferably under a reducing atmosphere effecting a partial melting and bonding of the diamond particle or particles embedded therein upon subsequent cooling.
- the sintering operation is of the so-called compression molding type in which the powder is packed in either a steel or a carbon mold and around the diamonds to be bonded and a carbon plug is usually used in the top of the mold over the diamond or diamond particles to produce a reducing atmosphere which is found to improve the subsequent sintering action and to minimize surface porosity in the resultant abrasive matrix formed.
- the bonding powder is sintered under a pressure of about to about p.s.i., which is efi'ective to obtain a reduction in the volume of the powder of approximately 50%.
- Sinten'ng temperatures of about 1800" F. to about 1850 F. are satisfactory for effecting a partial melting and sintering of the individual powder particles into a hard integrally bonded matrix.
- Heating of the powder can be achieved by an oxy-acetylene torch and preferably by electric induction heating techniques of the types well known in the art.
- the heating of the bonding powder is preferably done from the bottom toward the top and the mold containing the powder and the diamond abrasive particles is held at that temperature until sintering takes place after which the molds are cooled to approximately 800 F.
- a partial melting of the metallic constituents occurs, which upon subsequent cooling, forms a bonding matrix characterized as comprising a solid solution having interspersed therethrough tungsten carbide particles, chromium boride particles, and a complex eutectic of nickel, chromium, boron, silicon and iron.
- the solid solution effects tenacious bonding of the diamond abrasive particles, as well as the particles of the chromium boride and tungsten carbide present in the powder mixture.
- This bonding action is of a metallurgical nature wherein the individual chromium boride and tungsten carbide particles are minutely alloyed along the surfaces thereof into the surrounding lattice, which is of a susbtantially lower melting temperature than these particles themselves.
- the embedded diamond crystals or uniformly distributed bort blended with the bonding powder become wetted by the molten lattice and thereby are metallurgically bonded within the matrix.
- the presence of the element boron in the matrix powder provides for a self-fiuxing chemical action that takes place during the sintering operation.
- the boron constituent is present in three portions of the microstructure of the bonding matrix formed. It is present in the form of hard chromium boride compound particles, as an interstitially dissolved element in the solid solution of the lattice and as finely dispersed borides of chromium or nickel or iron in the complex eutectic.
- the boron constituent present provides the essential fiuxing action required to reduce the oxides on the surfaces of the powder particles to attain the requisite bonding of the resultant bonding matrix and the diamond abrasive particles.
- the presence of boron as a eutectic boride is apparent from an examination of the micrographs as illustrated in FIGURES 3 and 4.
- the eutectic borides are present in a substantially smaller size than the so-called free chromium boride compound particles securely bonded in the bonding matrix.
- the presence of the eutectic borides is essential to the attainment of the improved physical properties of the abrasive bonding matrix comprising the present invention.
- FIGURES 3 and 4 The microstructure of the bonding matrix devoid of any diamond abrasive particles is best seen in FIGURES 3 and 4 which are taken in magnifications of and 400, respectively.
- the comparatively large irregularly shaped particles indicated at 26 correspond to the tungsten carbide particles tenaciously bonded within the matrix.
- the smaller comparatively lighter shade particles indicated at 28 correspond to the so-called free chromium boride particles which similarly are tenaciously bonded within the lattice.
- the complex eutectic comprising nickel, chromium, boron, silicon and iron compounds, is represented by the irregularly shaped dark gray areas indicated at 30 in FIGURES 3 and 4.
- the heterogeneous structure of the complex eutectic 30 is best seen in FIGURE 4 at a magnification of 400.
- the remaining light portions of the photomicrograph indicated at 32 comprise a solid solution comprising primarily nickel, iron and copper with lesser amounts of chromium, tin, carbon, boron and silicon, and includes small interspersed particles of chromium boride therethrough.
- the mechanical characteristics and physical properties of the bonding matrix can be varied within the composition ranges as hereinbefore set forth to provide a resultant matrix possessing the requisite characteristics for a specific diamond abrasive tool.
- the Rockwell hardness of the bonding matrix will vary depending on the amount, size and distribution of the tungsten carbide and chromium boride particles and can be controlled within the ranges specified to ob tain optimum relationships between abrasion resistance and ductility to provide the desired physical characteristics of the abrasive finishing tool.
- the metallic bonding matrix prepared in accordance with the composition limits and procedures as hereinbefore defined conventionally produces a Rockwell apparent hardness ranging from about 10 C.
- the apparent hardness of a diamond abrasive matrix incorporating a plurality of diamond crystals distributed substantially uniformly throughout the metallic bonding matrix similarly will vary, depending on the quantity, size and distribution of the diamond crystals in relationship to the quantity and composition of the metallic bonding matrix.
- a particulated ball milled mixture of five particulated constituents was prepared employing a bronze powder containing about 10% tin, which was of 200 mesh size and finer, an electrolytic flake grade iron powder of a particle size 325 mesh and finer, chromium boride particles of 325 mesh and finer, cemented tungsten carbide particles containing approximately 6% cobalt cementing agent which were of mesh and finer, and prealloyed nickel base self-fluxing powder particles of a composition within the ranges hereinbefore mentioned.
- the five powder constituents were admixed and ball milled and thereafter employed for forming a diamond abrasive matrix employing from about 25% to 35% fine sized diamond crystals or bort.
- the nominal composition of the resultant metallic bonding matrix was 26% copper, 22% tungsten, 21.7% iron, 18% nickel, 4.4% chromium, 2.5% tin, 1.7% carbon, 1.5% cobalt (present as a cementing agent for the tungsten carbide), 1% boron and 1.2% silicon.
- Diamond abrasive matrices of the foregoing composition were subjected to tests under conditions typical of commerical operation. These tests clearly demonstrated the superior characteristics of the metallic bonding matrix comprising the present invention whereupon the tool possessed the best features of abrasion resistance and hardness corresponding to tungsten carbide bonding agents heretofore employed but without the disadvantages of bond strength and brittleness inherently present in sucl1- prior bonding agents.
- the abrasive. finishing tool was further characterized by its. high impact resistance and toughness as Well as the excellent bond developed between the diamond abrasive particles and. the metallic bonding matrix.
- the resultant abrasive matrix formed was a dense compact microstructure substantially devoid of any cracks or fissures therethrough or adjacent to the diamond particles.
- An abrasive article comprising at least one diamond abrasive grain; tenaciously bonded to a bonding matrix, said bonding matrix containing as its essential constituents about 13% to about 54% copper, about 2% to about 33% tungsten, about to about 50% iron, about 8% to about 36% nickel, about 1% to about chromium about 1% to about 6% tin, about .2% to about- 2.5% carbon, about.0.4% to about 7% boron, and about 0.1% to about 2.3% silicon; said bonding matrix having a microstructure containing tungsten carbide and.
- chromium boride particles bonded ina lattice comprising a solid solution consisting essentially of nickel, iron, copper, chromium, tin, carbon, boron and silicon, having dispersed therethrough a complex eutectic consisting essentially of nickel, chromium, boron, silicon and iron.
- An abrasive article comprising at least one diamond crystal at least partially embedded in and tenaciously bonded to a bonding matrix, said. bonding matrix. containing as its essential constituents about 13% to about 54% copper, about 2% to about 33% tungsten, about 10% to about 50% iron, about 8% to about 36% nickel, about 1% to about 25% chromium, about 1% to about 6% tin, about .2% to about 2.5% carbon, about 0.4% to about 7% boron, and about 0.1% to about 2.3% silicon; said bonding matrix having a microstructure containing tung: sten carbide and chromium boride particles bonded in a lattice comprising a solid solution consisting essentially of nickel, iron, copper, chromium, tin, carbon, boron and silicon, having dispersed therethrough a complex eutectic consisting essentially of nickel, chromium, boron, silicon andiron.
- An abrasive article comprising a plurality of diamond abrasive grains distributed substantially uniformly throughout and tenaciously bonded within a bonding matrix, said bonding matrix containing as its essential constituents about 13% to about 54% copper, about 2% to about 33% tungsten, about 10% to about 50% iron, about 8% to about 36% nickel, about 1% to about 25% chromium, about 1% to about 6% tin, about .2% to about 2.5% carbon, about 0.4% to about 7% boron, and about 0.1% to about 2.3% silicon; said bonding matrix having a microstructure containing tungsten carbide and chromium boride particles bonded in a lattice comprising, a solid solution consisting essentially of nickel, iron, copper, chromium, tin, carbon, boron and silicon, having dispersed therethrough a complex eutectic consisting essentially of nickel, chromium, boron, silicon and iron.
- a diamond abrasive tool comprising a plurality of diamond c r y s t a l s substantially uniformly dispersed through and tenaciously bonded within a bonding matrix, said diamond crystals comprising about 5% to about 70% by volume of said abrasive matrix, said bonding matrix containing as it essential constituents about 13% to about 54% copper, about 2% to about 33% tungsten, about 10% to about 50% iron, about 8% to about 36% nickel, about 1% to about 25 chromium, about 1% to about 6% tin, about .2%.
- said bonding matrix having a microstructure containing tungsten carbide and chromium boride particles bonded in a lattice comprising a solid solution consisting essentially of nickel, iron, copper, chromium, tin, carbon, boron and silicon, having dispersed therethrough a complex eutectic consisting essentially of nickel, chromium, boron, silicon and'irom 5.
- article comprising at least one diamond abrasive grain tenaciously bonded to a bonding matrix, said bonding matrix containing as its essential constituents about 26% copper, about 22% tungsten, about 21.7% iron, about 18% nickel, about 4.4% chromium, about 2.5% tin, about.1.7% carbon, about 1% boron, and about 1.2% silicon; said bonding. matrix having a microstructure containing tungsten carbide and chromium boride particles bonded in a. lattice comprising a solid solution consisting essentially of nickel, iron, copper, chromium, tin, carbon, boron. and'silicon, having dispersed therethrough a complex eutectic consisting essentially ofnickel, chromium, boron, silicon and iron.
- an abrasive article having at least one diamond abrasive grain bonded to a matrix, the improvement comprising a metallic bonding matrix for tenaciously bonding said grain, said bonding matrix containing as its essential constituents about 13% to about 54% copper, about 2% to about 33% tungsten, about 10%. to about 50% iron, about 8% to about 36% nickel, about 1% to about 25% chromium, about 1% to about 6% tin, about .2%.
- said bonding matrix having a microstructure containing tungsten carbide and chromium boride particles bonded in a lattice comprising a solid solution consisting essentially of nickel, iron, copper, chromium, tin, carbon, boron and silicon, having dispersed therethrough a complex eutectic consistingessentially of nickel, chromium, boron, silicon and iron.
- an abrasive article having at least one diamond abrasive grain bonded to a matrix
- the. improvement com.- prising a metallic bonding matrix for tenaciously bonding said grain, said bonding matrix containing as its essential constituents about 26% copper, about 22% tungsten, abou.t21.7% iron, about 18% nickel, about 4.4% chromium, about 2.5 tin, about 1.7 carbon, about 1% boron, and about 1.2% silicon; said bonding matrix hay.- ing a microstructure containing tungsten carbide and chromium boride particles bonded in a lattice comprising a solid solution consisting essentially of nickel, iron, copper, chromium, tin, carbon, boron and silicon, having dis.- persed therethrough a complex eutectic consisting essentially of nickel, chromium, boron, silicon and iron.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Description
March-5, 1968 c. PARSONS 3,372,010
DIAMOND ABRASIVE MATRIX Filed June 23, 1965 16 If 16 'Z ZE INVENTOR. M/fa/z 6'. Eraarzs'.
United States ABSTRACT OF THE DISCLOSURE A metallic bonding matrix for diamond abrasive grains having a micro structure containing tungsten carbide and chromium boride particles bonded in a lattice comprising a solid solution of controlled amounts of nickel, iron, copper, chromium, tin, carbon, boron and silicon.
The present invention broadly relates to abrasive articles, and more particularly to an improved composition for tenaciously bonding hard abrasive particles, such as diamond, or the like, within a bonding matrix which may conveniently be affixed to a supporting substrate. More specifically, the present invention is directed to a novel metallic bonding material which, upon sintering, forms a matrix which is of excellent impact and abrasion resistance, is of high strength and ductility, and is effective for forming tenacious bonds with the diamond abrasive particles embedded therein.
A variety of bonding agents have heretofore been used or proposed for use for mounting diamonds in single point or cluster type cutting tools or for forming diamond abrasive matrices incorporating a plurality of fine sized diamond particles distributed therethrough, providing therewith abrasive tools possessing controlled grinding or polishing action. Bonding agents of the types heretofore known conventionally comprise a variety of metal alloys which are selected so as to provide a resultant matrix which is abrasion and impact resistant, which forms a tenacious bond with diamond particles mounted therein and which requires nominal sintering temperatures to prevent thermal degradation of the diamond particles. Of the various bonding agents heretofore known, copper base alloys, iron base alloys, molybdenum and tungsten base alloys and metallic alloys incorporating cemented carbides are most common. Neither of the foregoing wellknown bonding agents possesses all of the optimum characteristics which are necessary to make diamond abrasive finishing tools of optimum efficiency and durability. For example, copper base alloys are generally characterized by their poor abrasion resistance resulting in an excessive wear of the bonding matrix and a premature release of the diamond abrasive particle or particles bonded therein. Iron base alloys, on the other hand, possess superior abrasion resistance but require higher sintering temperatures such that the differential coefiicient of thermal expansion of the bonding matrix and the diamond particles results in a shrinkage of the matrix away from the diamonds during cooling whereupon bonds of less than optimum strength are obtained. Molybdenum and tungsten base alloys require relatively high sintering temperatures which usually exceed about 2350 F. further aggravating the bonding problem as a result of the differences in the coeflicients of thermal expansion in addition to causing possible damage to the diamond abrasive particles themselves by exposure to excessive temperatures during the sintering or heating operation.
Various metallic alloys incorporating carbides have been found to possess excellent abrasion resistance but are deficient due to the excessively high sintering temperature required which frequently exceed 2800 F. resultatent 3,372,010 Patented Mar. 5, 1968 ing the formation of inferior bonds between the bonding matrix and diamonds and also a deterioration of the diamond abrasive particles due to graphitizing at the elevated temperatures during fabrication. Attempts to overcome the problems associated with carbide containing bonding agents including the formation of cold pressed conglomerates of the carbide mixture and infiltration thereof with copper or silver based alloys have not been wholly satisfactory in producing a bonding matrix possessing optimum properties.
It, is accordingly, a principal object of the present invention to provide a novel metallic bonding agent for abrasive particles which overcomes the disadvantages of bonding agents of the types heretofore known.
Another object of the present invention is to provide a novel bonding material which can be converted into a bonding matrix requiring only nominal temperatures and which bonding material effects a wetting of the surfaces of the diamond abrasive particles obtaining bonds of substantially superior strength than those heretofore obtained.
Still another object of the present invention is to provide an improved metallic bonding agent which possesses self-fluxing characteristics preventing thereby the formation of metallic oxides during the heating and sintering of the bonding agent in powdered form while disposed in compacted relationship and in contact with the diamond abrasive particle or particles, to be bonded.
A further object of the present invention is to provide an improved metallic bonding material which can be heated or sintered at temperatures conventionally at or below 1850 F. thereby concurrently minimizing thermal degradation of the diamond abrasive particles, as well as minimizing the adverse effects of the differential thermal coefiicient of expansion between the bonding matrix and the abrasive particles being bonded.
A still further object of the present invention is to provide a novel bonding composition which forms a bonding matrix of excellent ductility and toughness, of high abrasion resistance and strength, and which is of a dense structure substantially free of any cracks or fissures therein substantially enhancing the grinding character'- istics and durability of the abrasive finishing tool produced therefrom.
Yet a still further object of the present invention is to produce an improved bonding material which is conveniently supplied in the form of a metallic powder and can be hot compacted and sintered in situ forming a bonding matrix possessing optimum characteristics.
Yet still another object of the present invention is to provide an improved metallic bonding agent which is of simple, versatile and economical use and which forms diamond abrasive articles of high grinding and polishing efficiency and of long tool life.
The foregoing and other objects and advantages of the present invention are achieved by the formation of a powder which, upon sintering, at a temperature of from about 1800" F. to about 1850 F. is operative to form a hard, dense abrasion and impact resistant bonding matrix consisting of controlled proportions of tungsten carbide particles and chromium boride particles bonded within a lattice consisting essentially of a ternary soluton containing nickel, iron, copper, chromium, tin, carbon, boron and silicon, as well as a complex eutetic dispersed therethrough containing nickel, chromium boron, silicon and iron. The novel metallic bonding composition is equally applicable for setting one or a plurality of relatively large diamond crystals in appropriate position relative to a tool support or, alternatively, for forming a diamond abrasive matrix containing controlled proportions of diamond particles distributed substantially uniformly therethrough.
Other objects and advantages of the present invention will become apparent upon a reading of the following description, taken in conjunction with the accompanying drawing, wherein:
FIGURE 1 is a magnified fragmentary side elevational view of a typical single point diamond abrasive tool;
FIG. 2 is a perspective view of a typical diamond abrasive polishing wheel incorporating a diamond abrasive matrix on the working face thereof;
FIG. 3 is a photomicrograph of the bonding matrix formed in accordance with the practice of the present invention taken of an unetched sample of a magnification of 100, and
FIG. 4 is a photomicrograph of a marble etched sample of the bonding matrix taken at a magnification of 400.
The bonding composition comprising the present invention and the bonding matrix resulting from the sintering thereof at an elevated temperature, is applicable for the manufacture of metal bonded diamond wheels and tools of the conventional types well known in the art. The use of the bonding agent for making single point diamond cutting tools is exemplified in FIGURE 1, wherein a single point tool indicated at 10, is illustrated, comprising a
tool body12 formed at its end with a cavity in which a relatively
large diamond crystal14 is tenaciously retained by means of a
bonding matrix16. The bonding agent comprising the present invention is equally applicable for the manufacture of diamond abrasive wheels such as the diamond
abrasive wheel18, illustrated in FIGURE 2. As shown, the diamond wheel comprises a
hub section20, adapted to be mounted on a suitable rotating shaft, and a
wheel section22 formed with a conical working face 24 incorporating a layer of a diamond abrasive matrix tenaciously bonded thereto. It will be appreciated by those skilled in the art that a variety of alternative shapes of a single point
diamond cutting tool10, shown in FIGURE 1, including cluster point tools as well as alternative shapes of the
diamond wheel18, illustrated in FIGURE 2, can be satisfactorily fabricated as may be desired to provide an appropriate grinding or polishing action consistent with the intended end use of the tool. It will also be appreciated that while the bonding matrix is particularly applicable for bonding diamond particles forming a diamond abrasive matrix, alternative hard abrasive grains can be satisfactorily bonded in accordance with the practice of the present invention.
Conventionally, single point and cluster point cutting tools are made from relatively large size industrial diamond crystals which are set and tenaciously retained in the bonding matrix, which in turn is tenaciously bonded to a hard metal supporting structure such'as steel, for example, forming the tool support. In the formation of a diamond abrasive matrix, either supported or unsupported, in which a plurality of fine sized diamond particles are distributed substantially uniformly throughout the matrix, the quantity of diamonds employed and the specific size and shape thereof can be varied within board limits to provide the requisite grinding or polishing action. Usually, diamond particles of an average size as small as about 1 micron or smaller, up to sizes of a nominal inch in diameter or greater and incorporated in amounts broadly ranging from by volume up to about 70% by volume of the abrasive matrix, can be satisfactorily employed. conventionally, the quantity of the diamond abrasive particles are controlled within a range of from about 25% by volume to about 35% by volume of the resultant abrasive matrix. In either event, it has been found that substantially superior cutting efficiency and tool life is obtained by diamond abrasive finishing tools incorporating the metallic bonding matrix comprising the present invention over tools of similar type, or, alternatively, equal cutting efficiencies are obtained employing a lesser quantity of abrasive particles than other tools of the types heretofore known employing a greater quantity of abrasive particles and a conventional metallic bonding agent. The
4.- diamond abrasive particles are of the industrial types conventionally employed and usually consist of bort, which comprises imperfectly crystallized or coarse diamonds or fragments obtained from diamond cutting operations.
The bonding material comprising the present invention is conveniently supplied in the form of a fine sized metallic powder mixture which preferably is blended by ball milling or otherwise tumbling the powder particles so as to effect a simultaneous crushing and/or mechanical smearing or intermingling of the, individual powder particles with adjacent particles. The ball milling of the individual powder particles provides for a substantially permanent homogeneous blend of the several constituents assuring the formation of a sintered bonding matrix possessing consistent high quality and strength.
The powder blend and the resultant sintered matrix produced therefrom contains the following essential constituents in the amounts hereinafter specified in terms of percent by weight: from about 13% to about 54% copper; from about 2% to about 33% tungsten; from about 10% to about 50% iron, from about 8% to about 36% nickel; from about 1% to about 25% chromium; from about 1% to about 6% tin; from about .2% to about 2.5% carbon; from about .4% to about 7% boron; andfrom about 0.1% to about 2.3% silicon. The foregoing elements can be conveniently introduced in the form of prealloyed powders of the several constituents including; for example, a bronze powder, an iron powder,.a nickel based powder incorporating self-fiuxing agents, fine sized particles of chromium boride, andparticles of tungsten carbide.
The bronze powder incorporates proportions of copper and tin in controlled amounts and is employed in a quantity in consideration of the remaining constituents so as to provide a net percentage of copper and tin in thebondzing matrix within the ranges as hereinbefore set forth. Prealloyed bronze powders incorporated about 10% tin, which are of a relatively small particle size, preferably 200 mesh or smaller, have been foundto be particularly satisfactory for making a metallic powder blend ofthe bonding matrix. The iron constituent of the bonding matrix may conveniently be introduced in a prealloyed condition or in essentially pure form to supplement the iron content present in others of the prealloyed powder particles. The iron powder employed is preferably of. a particle size of about 325 mesh or smaller and particularly satisfactory results have been obtained by employing an electrolytic flake grade iron powder.
The chromium constituent in the bonding material is predominantly in the form of fine sized particles of chromium boride (CrB), which preferably are of a size of about 325 mesh or smaller. Similarly, the tungsten constituent in the bonding material is principally in the form of fine sized particles of tungsten carbide which preferably are controlled so as to provide an average particle size of about mesh or smaller. The tungsten carbide constituent may include any of those conventionally known in the art including sintered tungsten carbides, fused tungsten carbides, as well cemented tungsten carbides incorporating nominal amounts of cementing agents such as, for example, cobalt and/ or nickel. A commercially available cemented tungsten carbide. which has been found to provide. satisfactory results comprises a tungsten carbide eutectic of W C, WC, including about 6% by weight of a cobalt cementing agent.
The nickel constituent in the bonding agent in addition to supplementary quantities of the other metallic alloying constituents such as chromium, iron, boron, silicon and carbon, for example, is preferably introduced in the form of a prealloyed powder which conventionally contain from about 0.45% to about 0.95% carbon; from about 10% to about 26% chromium; from about 2%. to about 4% boron, which acts as a fluxing agent; from about 2% to about 4% silicon; from about 1% to about 5% iron, and the balance thereof nickel. The specific quantity of nickel alloy powder employed and the quantity and type of the alloying constituents contained therein, can be varied so as to provide a resultant bonding matrix composition incorporating the constituents within the range as hereinbefore set forth.
The blended particulated metallic powder composition can be directly employed for sintering in situ at an elevated temperature, preferably under a reducing atmosphere effecting a partial melting and bonding of the diamond particle or particles embedded therein upon subsequent cooling. The sintering operation is of the so-called compression molding type in which the powder is packed in either a steel or a carbon mold and around the diamonds to be bonded and a carbon plug is usually used in the top of the mold over the diamond or diamond particles to produce a reducing atmosphere which is found to improve the subsequent sintering action and to minimize surface porosity in the resultant abrasive matrix formed. conventionally, the bonding powder is sintered under a pressure of about to about p.s.i., which is efi'ective to obtain a reduction in the volume of the powder of approximately 50%. Sinten'ng temperatures of about 1800" F. to about 1850 F. are satisfactory for effecting a partial melting and sintering of the individual powder particles into a hard integrally bonded matrix. Heating of the powder can be achieved by an oxy-acetylene torch and preferably by electric induction heating techniques of the types well known in the art. The heating of the bonding powder is preferably done from the bottom toward the top and the mold containing the powder and the diamond abrasive particles is held at that temperature until sintering takes place after which the molds are cooled to approximately 800 F. after which the pressure on the powder is removed. During the sintering operation, a bonding of the diamond abrasive particle or particles occurs, which is simultaneously accompanied by a tenacious bonding of the bonding matrix to a hard metal tool support if employed.
1 During the sintering operation, a partial melting of the metallic constituents occurs, which upon subsequent cooling, forms a bonding matrix characterized as comprising a solid solution having interspersed therethrough tungsten carbide particles, chromium boride particles, and a complex eutectic of nickel, chromium, boron, silicon and iron. During the solidification of the sintered bonding matrix, the solid solution effects tenacious bonding of the diamond abrasive particles, as well as the particles of the chromium boride and tungsten carbide present in the powder mixture. This bonding action is of a metallurgical nature wherein the individual chromium boride and tungsten carbide particles are minutely alloyed along the surfaces thereof into the surrounding lattice, which is of a susbtantially lower melting temperature than these particles themselves. During the sintering action, the embedded diamond crystals or uniformly distributed bort blended with the bonding powder, become wetted by the molten lattice and thereby are metallurgically bonded within the matrix.
The presence of the element boron in the matrix powder, provides for a self-fiuxing chemical action that takes place during the sintering operation. The boron constituent is present in three portions of the microstructure of the bonding matrix formed. It is present in the form of hard chromium boride compound particles, as an interstitially dissolved element in the solid solution of the lattice and as finely dispersed borides of chromium or nickel or iron in the complex eutectic. During the sintering operation wherein the lattice or at least portions thereof become molten, the boron constituent present provides the essential fiuxing action required to reduce the oxides on the surfaces of the powder particles to attain the requisite bonding of the resultant bonding matrix and the diamond abrasive particles. The presence of boron as a eutectic boride, is apparent from an examination of the micrographs as illustrated in FIGURES 3 and 4. The eutectic borides are present in a substantially smaller size than the so-called free chromium boride compound particles securely bonded in the bonding matrix. The presence of the eutectic borides is essential to the attainment of the improved physical properties of the abrasive bonding matrix comprising the present invention.
The microstructure of the bonding matrix devoid of any diamond abrasive particles is best seen in FIGURES 3 and 4 which are taken in magnifications of and 400, respectively. The comparatively large irregularly shaped particles indicated at 26 correspond to the tungsten carbide particles tenaciously bonded within the matrix. The smaller comparatively lighter shade particles indicated at 28 correspond to the so-called free chromium boride particles which similarly are tenaciously bonded within the lattice. The complex eutectic comprising nickel, chromium, boron, silicon and iron compounds, is represented by the irregularly shaped dark gray areas indicated at 30 in FIGURES 3 and 4. The heterogeneous structure of the
complex eutectic30 is best seen in FIGURE 4 at a magnification of 400. The remaining light portions of the photomicrograph indicated at 32 comprise a solid solution comprising primarily nickel, iron and copper with lesser amounts of chromium, tin, carbon, boron and silicon, and includes small interspersed particles of chromium boride therethrough.
In accordance with the microstructure as illustrated in FIGURES 3 and 4, it will be apparent that the mechanical characteristics and physical properties of the bonding matrix can be varied within the composition ranges as hereinbefore set forth to provide a resultant matrix possessing the requisite characteristics for a specific diamond abrasive tool. The Rockwell hardness of the bonding matrix will vary depending on the amount, size and distribution of the tungsten carbide and chromium boride particles and can be controlled within the ranges specified to ob tain optimum relationships between abrasion resistance and ductility to provide the desired physical characteristics of the abrasive finishing tool. The metallic bonding matrix prepared in accordance with the composition limits and procedures as hereinbefore defined, conventionally produces a Rockwell apparent hardness ranging from about 10 C. to about 50 C. The apparent hardness of a diamond abrasive matrix incorporating a plurality of diamond crystals distributed substantially uniformly throughout the metallic bonding matrix, similarly will vary, depending on the quantity, size and distribution of the diamond crystals in relationship to the quantity and composition of the metallic bonding matrix.
A particulated ball milled mixture of five particulated constituents was prepared employing a bronze powder containing about 10% tin, which was of 200 mesh size and finer, an electrolytic flake grade iron powder of a particle size 325 mesh and finer, chromium boride particles of 325 mesh and finer, cemented tungsten carbide particles containing approximately 6% cobalt cementing agent which were of mesh and finer, and prealloyed nickel base self-fluxing powder particles of a composition within the ranges hereinbefore mentioned. The five powder constituents were admixed and ball milled and thereafter employed for forming a diamond abrasive matrix employing from about 25% to 35% fine sized diamond crystals or bort. The nominal composition of the resultant metallic bonding matrix was 26% copper, 22% tungsten, 21.7% iron, 18% nickel, 4.4% chromium, 2.5% tin, 1.7% carbon, 1.5% cobalt (present as a cementing agent for the tungsten carbide), 1% boron and 1.2% silicon. Diamond abrasive matrices of the foregoing composition were subjected to tests under conditions typical of commerical operation. These tests clearly demonstrated the superior characteristics of the metallic bonding matrix comprising the present invention whereupon the tool possessed the best features of abrasion resistance and hardness corresponding to tungsten carbide bonding agents heretofore employed but without the disadvantages of bond strength and brittleness inherently present in sucl1- prior bonding agents. The abrasive. finishing tool was further characterized by its. high impact resistance and toughness as Well as the excellent bond developed between the diamond abrasive particles and. the metallic bonding matrix. The resultant abrasive matrix formed was a dense compact microstructure substantially devoid of any cracks or fissures therethrough or adjacent to the diamond particles.
While it will be apparent that the preferred embodiments of the present invention disclosed are well calculated to fulfill the objects above stated, it will be appreciated that the invention is susceptible to modification, variation and change Without departing from the proper. scope or fair meaning of the subjoined claims.
What is claimed is:
1. An abrasive article comprising at least one diamond abrasive grain; tenaciously bonded to a bonding matrix, said bonding matrix containing as its essential constituents about 13% to about 54% copper, about 2% to about 33% tungsten, about to about 50% iron, about 8% to about 36% nickel, about 1% to about chromium about 1% to about 6% tin, about .2% to about- 2.5% carbon, about.0.4% to about 7% boron, and about 0.1% to about 2.3% silicon; said bonding matrix having a microstructure containing tungsten carbide and. chromium boride particles bonded ina lattice comprising a solid solution consisting essentially of nickel, iron, copper, chromium, tin, carbon, boron and silicon, having dispersed therethrough a complex eutectic consisting essentially of nickel, chromium, boron, silicon and iron.
2. An abrasive article comprising at least one diamond crystal at least partially embedded in and tenaciously bonded to a bonding matrix, said. bonding matrix. containing as its essential constituents about 13% to about 54% copper, about 2% to about 33% tungsten, about 10% to about 50% iron, about 8% to about 36% nickel, about 1% to about 25% chromium, about 1% to about 6% tin, about .2% to about 2.5% carbon, about 0.4% to about 7% boron, and about 0.1% to about 2.3% silicon; said bonding matrix having a microstructure containing tung: sten carbide and chromium boride particles bonded in a lattice comprising a solid solution consisting essentially of nickel, iron, copper, chromium, tin, carbon, boron and silicon, having dispersed therethrough a complex eutectic consisting essentially of nickel, chromium, boron, silicon andiron.
3. An abrasive article comprising a plurality of diamond abrasive grains distributed substantially uniformly throughout and tenaciously bonded within a bonding matrix, said bonding matrix containing as its essential constituents about 13% to about 54% copper, about 2% to about 33% tungsten, about 10% to about 50% iron, about 8% to about 36% nickel, about 1% to about 25% chromium, about 1% to about 6% tin, about .2% to about 2.5% carbon, about 0.4% to about 7% boron, and about 0.1% to about 2.3% silicon; said bonding matrix having a microstructure containing tungsten carbide and chromium boride particles bonded in a lattice comprising, a solid solution consisting essentially of nickel, iron, copper, chromium, tin, carbon, boron and silicon, having dispersed therethrough a complex eutectic consisting essentially of nickel, chromium, boron, silicon and iron.
4. A diamond abrasive tool comprising a plurality of diamond c r y s t a l s substantially uniformly dispersed through and tenaciously bonded within a bonding matrix, said diamond crystals comprising about 5% to about 70% by volume of said abrasive matrix, said bonding matrix containing as it essential constituents about 13% to about 54% copper, about 2% to about 33% tungsten, about 10% to about 50% iron, about 8% to about 36% nickel, about 1% to about 25 chromium, about 1% to about 6% tin, about .2%. to about 2.5% carbon, about 0.4% to about 7% boron, and about 0.1% to about 2.3% silicon; said bonding matrix having a microstructure containing tungsten carbide and chromium boride particles bonded in a lattice comprising a solid solution consisting essentially of nickel, iron, copper, chromium, tin, carbon, boron and silicon, having dispersed therethrough a complex eutectic consisting essentially of nickel, chromium, boron, silicon and'irom 5. An abrasive. article comprising at least one diamond abrasive grain tenaciously bonded to a bonding matrix, said bonding matrix containing as its essential constituents about 26% copper, about 22% tungsten, about 21.7% iron, about 18% nickel, about 4.4% chromium, about 2.5% tin, about.1.7% carbon, about 1% boron, and about 1.2% silicon; said bonding. matrix having a microstructure containing tungsten carbide and chromium boride particles bonded in a. lattice comprising a solid solution consisting essentially of nickel, iron, copper, chromium, tin, carbon, boron. and'silicon, having dispersed therethrough a complex eutectic consisting essentially ofnickel, chromium, boron, silicon and iron.
6. In an abrasive article having at least one diamond abrasive grain bonded to a matrix, the improvement comprising a metallic bonding matrix for tenaciously bonding said grain, said bonding matrix containing as its essential constituents about 13% to about 54% copper, about 2% to about 33% tungsten, about 10%. to about 50% iron, about 8% to about 36% nickel, about 1% to about 25% chromium, about 1% to about 6% tin, about .2%. to about 2.5% carbon, about 0.4% to about 7% boron, and about 0.1% to about 2.3% silicon; said bonding matrix having a microstructure containing tungsten carbide and chromium boride particles bonded in a lattice comprising a solid solution consisting essentially of nickel, iron, copper, chromium, tin, carbon, boron and silicon, having dispersed therethrough a complex eutectic consistingessentially of nickel, chromium, boron, silicon and iron.
7. In an abrasive article having at least one diamond abrasive grain bonded to a matrix, the. improvement com.- prising a metallic bonding matrix for tenaciously bonding said grain, said bonding matrix containing as its essential constituents about 26% copper, about 22% tungsten, abou.t21.7% iron, about 18% nickel, about 4.4% chromium, about 2.5 tin, about 1.7 carbon, about 1% boron, and about 1.2% silicon; said bonding matrix hay.- ing a microstructure containing tungsten carbide and chromium boride particles bonded in a lattice comprising a solid solution consisting essentially of nickel, iron, copper, chromium, tin, carbon, boron and silicon, having dis.- persed therethrough a complex eutectic consisting essentially of nickel, chromium, boron, silicon and iron.
References Cited UNITED STATES PATENTS 2,837,416 6/1958 Ervin. 2,866,698 12/1958 Kuzmick. 2,877,105 3/1959 Smith. 3,183,071 5/1965 Rue et al. 3,220,860 11/1965 Robiette et al. 3,269,815 8/ 1966 Koopman.
ALEXANDER H. BRODMERKEL, Primary Examiner.
D, J, ARNOLD, Assistant Examiner.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US466391A US3372010A (en) | 1965-06-23 | 1965-06-23 | Diamond abrasive matrix |
FR65585A FR1496767A (en) | 1965-06-23 | 1966-06-15 | Diamond abrasive matrix and new tools thus obtained |
GB27732/66A GB1114353A (en) | 1965-06-23 | 1966-06-21 | Abrasive articles |
DE19661533424 DE1533424B1 (en) | 1965-06-23 | 1966-06-21 | SINTERED GRINDING BODY |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US466391A US3372010A (en) | 1965-06-23 | 1965-06-23 | Diamond abrasive matrix |
Publications (1)
Publication Number | Publication Date |
---|---|
US3372010A true US3372010A (en) | 1968-03-05 |
Family
ID=23851575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US466391A Expired - Lifetime US3372010A (en) | 1965-06-23 | 1965-06-23 | Diamond abrasive matrix |
Country Status (4)
Country | Link |
---|---|
US (1) | US3372010A (en) |
DE (1) | DE1533424B1 (en) |
FR (1) | FR1496767A (en) |
GB (1) | GB1114353A (en) |
Cited By (65)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3493362A (en) * | 1967-01-23 | 1970-02-03 | Chevron Res | Polybutenes as inhibitors of plant growth |
US3785093A (en) * | 1970-12-21 | 1974-01-15 | L Vereschagin | Method of bonding diamond with refractory cermet material |
US3894673A (en) * | 1971-11-04 | 1975-07-15 | Abrasive Tech Inc | Method of manufacturing diamond abrasive tools |
US3913280A (en) * | 1971-01-29 | 1975-10-21 | Megadiamond Corp | Polycrystalline diamond composites |
US3916584A (en) * | 1973-03-22 | 1975-11-04 | Minnesota Mining & Mfg | Spheroidal composite particle and method of making |
US3999962A (en) * | 1975-05-23 | 1976-12-28 | Mark Simonovich Drui | Copper-chromium carbide-metal bond for abrasive tools |
US4007020A (en) * | 1970-02-02 | 1977-02-22 | Kaman Sciences Corporation | Refractory abrasive body containing chromium oxide and method of producing it |
US4066422A (en) * | 1975-10-02 | 1978-01-03 | Caterpillar Tractor Co. | Wear-resistant composite material and method of making an article thereof |
US4128971A (en) * | 1976-09-14 | 1978-12-12 | Glennel Corporation | Abrasive drill |
US4171973A (en) * | 1977-05-04 | 1979-10-23 | Sumitomo Electric Industries, Ltd. | Diamond/sintered carbide cutting tool |
US4184853A (en) * | 1976-04-21 | 1980-01-22 | Andropov Jury I | Individual abrasive grains with a silicon-base alloy coating |
US4211294A (en) * | 1978-04-21 | 1980-07-08 | Acker Drill Company, Inc. | Impregnated diamond drill bit |
US4274769A (en) * | 1978-04-21 | 1981-06-23 | Acker Drill Company, Inc. | Impregnated diamond drill bit construction |
US4274840A (en) * | 1979-01-08 | 1981-06-23 | Smith International, Inc | Wear resistant composite insert, boring tool using such insert, and method for making the insert |
EP0046374A2 (en) * | 1980-08-14 | 1982-02-24 | De Beers Industrial Diamond Division (Proprietary) Limited | Tool insert |
US4362535A (en) * | 1979-10-09 | 1982-12-07 | Mitsui Mining & Smelting Co., Ltd. | Sintered metal bonded diamond abrasive articles |
US4531595A (en) * | 1979-01-08 | 1985-07-30 | Housman Robert J | Wear resistant composite insert and boring tool with insert |
US4621031A (en) * | 1984-11-16 | 1986-11-04 | Dresser Industries, Inc. | Composite material bonded by an amorphous metal, and preparation thereof |
US4655795A (en) * | 1983-02-28 | 1987-04-07 | Ex-Cell-O Corporation | Abrasive tool for honing |
US4682987A (en) * | 1981-04-16 | 1987-07-28 | Brady William J | Method and composition for producing hard surface carbide insert tools |
US4695321A (en) * | 1985-06-21 | 1987-09-22 | New Mexico Tech Research Foundation | Dynamic compaction of composite materials containing diamond |
US4968326A (en) * | 1989-10-10 | 1990-11-06 | Wiand Ronald C | Method of brazing of diamond to substrate |
US5004581A (en) * | 1989-07-31 | 1991-04-02 | Toyota Jidosha Kabushiki Kaisha | Dispersion strengthened copper-base alloy for overlay |
US5022895A (en) * | 1988-02-14 | 1991-06-11 | Wiand Ronald C | Multilayer abrading tool and process |
US5100045A (en) * | 1986-11-20 | 1992-03-31 | Wiand Ronald C | Method of reconditioning brazed diamond abrasive tools |
US5104748A (en) * | 1987-12-10 | 1992-04-14 | Toyota Jidosha Kabushiki Kaisha | Wear resisting copper base alloy |
US5164220A (en) * | 1990-10-29 | 1992-11-17 | Diamond Technologies Company | Method for treating diamonds to produce bondable diamonds for depositing same on a substrate |
US5211726A (en) * | 1991-03-14 | 1993-05-18 | General Electric Company | Products and process for making multigrain abrasive compacts |
WO2000007773A1 (en) * | 1998-08-03 | 2000-02-17 | Tyrolit Schleifmittelwerke Swarovski Kg | Abrasive tool |
US20030084894A1 (en) * | 1997-04-04 | 2003-05-08 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US20050106057A1 (en) * | 2002-03-29 | 2005-05-19 | Bert-Jan Kamphuis | Pre-alloyed bond powders |
US7089925B1 (en) | 2004-08-18 | 2006-08-15 | Kinik Company | Reciprocating wire saw for cutting hard materials |
US20070157917A1 (en) * | 1997-04-04 | 2007-07-12 | Chien-Min Sung | High pressure superabrasive particle synthesis |
US20080047484A1 (en) * | 1997-04-04 | 2008-02-28 | Chien-Min Sung | Superabrasive particle synthesis with growth control |
CN100445035C (en) * | 2006-12-11 | 2008-12-24 | 中原工学院 | Composite base material for diamond grinding stone |
US20090068937A1 (en) * | 2006-11-16 | 2009-03-12 | Chien-Min Sung | CMP Pad Conditioners with Mosaic Abrasive Segments and Associated Methods |
US20090084042A1 (en) * | 2007-10-01 | 2009-04-02 | Saint-Gobain Abrasives, Inc. | Abrasive processing of hard and /or brittle materials |
US20090093195A1 (en) * | 2006-11-16 | 2009-04-09 | Chien-Min Sung | CMP Pad Dressers with Hybridized Abrasive Surface and Related Methods |
US20090257942A1 (en) * | 2008-04-14 | 2009-10-15 | Chien-Min Sung | Device and method for growing diamond in a liquid phase |
US20100000159A1 (en) * | 2008-07-02 | 2010-01-07 | Saint-Gobain Abrasives, Inc. | Abrasive Slicing Tool for Electronics Industry |
US20100186303A1 (en) * | 2005-08-11 | 2010-07-29 | Anine Hester Ras | Polycrystalline Diamond Abrasive Element and Method of its Production |
US20100199573A1 (en) * | 2007-08-31 | 2010-08-12 | Charles Stephan Montross | Ultrahard diamond composites |
US20100248596A1 (en) * | 2006-11-16 | 2010-09-30 | Chien-Min Sung | CMP Pad Dressers with Hybridized Abrasive Surface and Related Methods |
CN101748302B (en) * | 2008-12-08 | 2011-11-30 | 安泰科技股份有限公司 | pre-alloying powder for diamond tool and manufacturing method thereof |
WO2013059063A2 (en) * | 2011-10-18 | 2013-04-25 | Us Synthetic Corporation | Polycrystalline diamond compacts, related products, and methods of manufacture |
US8777699B2 (en) | 2010-09-21 | 2014-07-15 | Ritedia Corporation | Superabrasive tools having substantially leveled particle tips and associated methods |
US8974270B2 (en) | 2011-05-23 | 2015-03-10 | Chien-Min Sung | CMP pad dresser having leveled tips and associated methods |
US9011563B2 (en) | 2007-12-06 | 2015-04-21 | Chien-Min Sung | Methods for orienting superabrasive particles on a surface and associated tools |
US9138862B2 (en) | 2011-05-23 | 2015-09-22 | Chien-Min Sung | CMP pad dresser having leveled tips and associated methods |
US9199357B2 (en) | 1997-04-04 | 2015-12-01 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US9221154B2 (en) | 1997-04-04 | 2015-12-29 | Chien-Min Sung | Diamond tools and methods for making the same |
US9238207B2 (en) | 1997-04-04 | 2016-01-19 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US9272392B2 (en) | 2011-10-18 | 2016-03-01 | Us Synthetic Corporation | Polycrystalline diamond compacts and related products |
US9297212B1 (en) | 2013-03-12 | 2016-03-29 | Us Synthetic Corporation | Polycrystalline diamond compact including a substrate having a convexly-curved interfacial surface bonded to a polycrystalline diamond table, and related methods and applications |
US9409280B2 (en) | 1997-04-04 | 2016-08-09 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US9463552B2 (en) | 1997-04-04 | 2016-10-11 | Chien-Min Sung | Superbrasvie tools containing uniformly leveled superabrasive particles and associated methods |
US9475169B2 (en) | 2009-09-29 | 2016-10-25 | Chien-Min Sung | System for evaluating and/or improving performance of a CMP pad dresser |
US9540885B2 (en) | 2011-10-18 | 2017-01-10 | Us Synthetic Corporation | Polycrystalline diamond compacts, related products, and methods of manufacture |
US9724802B2 (en) | 2005-05-16 | 2017-08-08 | Chien-Min Sung | CMP pad dressers having leveled tips and associated methods |
US20180000558A1 (en) * | 2016-07-04 | 2018-01-04 | Coltène/Whaledent Ag | Dental instrument |
US9868100B2 (en) | 1997-04-04 | 2018-01-16 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US10280687B1 (en) | 2013-03-12 | 2019-05-07 | Us Synthetic Corporation | Polycrystalline diamond compacts including infiltrated polycrystalline diamond table and methods of making same |
CN111015539A (en) * | 2019-12-31 | 2020-04-17 | 苏州赛尔科技有限公司 | Grinding wheel for processing photovoltaic glass and preparation method thereof |
CN114536230A (en) * | 2022-01-25 | 2022-05-27 | 长沙市萨普新材料有限公司 | Diamond grinding wheel for TiCN-based metal ceramic machining and preparation method thereof |
US12044075B2 (en) | 2008-10-03 | 2024-07-23 | Us Synthetic Corporation | Polycrystalline diamond compact |
Families Citing this family (5)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE7508730L (en) * | 1974-08-02 | 1976-02-03 | Inst Materialovedenia Akademii | PROCEDURE FOR SOLDERING METALS WITH EXTREMELY HARD MATERIALS, PREFERABLY SYNTHETIC MATERIALS, AND SOLDERING MEASURES FOR PERFORMING THE PROCEDURE |
ZA756730B (en) * | 1975-10-27 | 1977-06-29 | De Beers Ind Diamond | Diamond compacts |
DE2809184A1 (en) * | 1977-03-09 | 1978-09-14 | Krebsoege Gmbh Sintermetall | PROCESS FOR MANUFACTURING HARD, WEAR-RESISTANT WORKPIECES |
GB2429980A (en) * | 2005-09-08 | 2007-03-14 | John James Saveker | Material comprising a carbide, boride or oxide and tungsten carbide |
CN110306092A (en) * | 2019-08-13 | 2019-10-08 | 广东工业大学 | A kind of hard alloy with gradient structure and its preparation method and application |
Citations (6)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2837416A (en) * | 1954-10-13 | 1958-06-03 | Norton Co | Vitrified bonded silicon carbide abrasive articles |
US2866698A (en) * | 1953-05-13 | 1958-12-30 | Paul L Kuzmick | Diamond abrasive element |
US2877105A (en) * | 1957-06-27 | 1959-03-10 | Norton Co | Vitrified bonded grinding wheel with fine hard sides |
US3183071A (en) * | 1961-06-19 | 1965-05-11 | Wakefield Corp | Abrasive article |
US3220860A (en) * | 1961-08-02 | 1965-11-30 | Fulmer Res Inst Ltd | Ceramic materials |
US3269815A (en) * | 1963-10-04 | 1966-08-30 | Gen Abrasive Company Inc | Coated abrasive grain |
Family Cites Families (1)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE750271C (en) * | 1939-06-16 | 1945-01-03 | Tool whose work surfaces are made of metal with embedded diamonds |
-
1965
- 1965-06-23 US US466391A patent/US3372010A/en not_active Expired - Lifetime
-
1966
- 1966-06-15 FR FR65585A patent/FR1496767A/en not_active Expired
- 1966-06-21 DE DE19661533424 patent/DE1533424B1/en not_active Withdrawn
- 1966-06-21 GB GB27732/66A patent/GB1114353A/en not_active Expired
Patent Citations (6)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2866698A (en) * | 1953-05-13 | 1958-12-30 | Paul L Kuzmick | Diamond abrasive element |
US2837416A (en) * | 1954-10-13 | 1958-06-03 | Norton Co | Vitrified bonded silicon carbide abrasive articles |
US2877105A (en) * | 1957-06-27 | 1959-03-10 | Norton Co | Vitrified bonded grinding wheel with fine hard sides |
US3183071A (en) * | 1961-06-19 | 1965-05-11 | Wakefield Corp | Abrasive article |
US3220860A (en) * | 1961-08-02 | 1965-11-30 | Fulmer Res Inst Ltd | Ceramic materials |
US3269815A (en) * | 1963-10-04 | 1966-08-30 | Gen Abrasive Company Inc | Coated abrasive grain |
Cited By (93)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3493362A (en) * | 1967-01-23 | 1970-02-03 | Chevron Res | Polybutenes as inhibitors of plant growth |
US4007020A (en) * | 1970-02-02 | 1977-02-22 | Kaman Sciences Corporation | Refractory abrasive body containing chromium oxide and method of producing it |
US3785093A (en) * | 1970-12-21 | 1974-01-15 | L Vereschagin | Method of bonding diamond with refractory cermet material |
US3913280A (en) * | 1971-01-29 | 1975-10-21 | Megadiamond Corp | Polycrystalline diamond composites |
US3894673A (en) * | 1971-11-04 | 1975-07-15 | Abrasive Tech Inc | Method of manufacturing diamond abrasive tools |
US3916584A (en) * | 1973-03-22 | 1975-11-04 | Minnesota Mining & Mfg | Spheroidal composite particle and method of making |
US3999962A (en) * | 1975-05-23 | 1976-12-28 | Mark Simonovich Drui | Copper-chromium carbide-metal bond for abrasive tools |
US4066422A (en) * | 1975-10-02 | 1978-01-03 | Caterpillar Tractor Co. | Wear-resistant composite material and method of making an article thereof |
US4184853A (en) * | 1976-04-21 | 1980-01-22 | Andropov Jury I | Individual abrasive grains with a silicon-base alloy coating |
US4128971A (en) * | 1976-09-14 | 1978-12-12 | Glennel Corporation | Abrasive drill |
US4171973A (en) * | 1977-05-04 | 1979-10-23 | Sumitomo Electric Industries, Ltd. | Diamond/sintered carbide cutting tool |
US4274769A (en) * | 1978-04-21 | 1981-06-23 | Acker Drill Company, Inc. | Impregnated diamond drill bit construction |
US4211294A (en) * | 1978-04-21 | 1980-07-08 | Acker Drill Company, Inc. | Impregnated diamond drill bit |
US4274840A (en) * | 1979-01-08 | 1981-06-23 | Smith International, Inc | Wear resistant composite insert, boring tool using such insert, and method for making the insert |
US4531595A (en) * | 1979-01-08 | 1985-07-30 | Housman Robert J | Wear resistant composite insert and boring tool with insert |
US4362535A (en) * | 1979-10-09 | 1982-12-07 | Mitsui Mining & Smelting Co., Ltd. | Sintered metal bonded diamond abrasive articles |
EP0046374A2 (en) * | 1980-08-14 | 1982-02-24 | De Beers Industrial Diamond Division (Proprietary) Limited | Tool insert |
EP0046374A3 (en) * | 1980-08-14 | 1982-06-23 | De Beers Industrial Diamond Division (Proprietary) Limited | Abrasive product |
US4378975A (en) * | 1980-08-14 | 1983-04-05 | Tomlinson Peter N | Abrasive product |
US4682987A (en) * | 1981-04-16 | 1987-07-28 | Brady William J | Method and composition for producing hard surface carbide insert tools |
US4655795A (en) * | 1983-02-28 | 1987-04-07 | Ex-Cell-O Corporation | Abrasive tool for honing |
US4621031A (en) * | 1984-11-16 | 1986-11-04 | Dresser Industries, Inc. | Composite material bonded by an amorphous metal, and preparation thereof |
US4695321A (en) * | 1985-06-21 | 1987-09-22 | New Mexico Tech Research Foundation | Dynamic compaction of composite materials containing diamond |
US5100045A (en) * | 1986-11-20 | 1992-03-31 | Wiand Ronald C | Method of reconditioning brazed diamond abrasive tools |
US5104748A (en) * | 1987-12-10 | 1992-04-14 | Toyota Jidosha Kabushiki Kaisha | Wear resisting copper base alloy |
US5022895A (en) * | 1988-02-14 | 1991-06-11 | Wiand Ronald C | Multilayer abrading tool and process |
US5004581A (en) * | 1989-07-31 | 1991-04-02 | Toyota Jidosha Kabushiki Kaisha | Dispersion strengthened copper-base alloy for overlay |
US4968326A (en) * | 1989-10-10 | 1990-11-06 | Wiand Ronald C | Method of brazing of diamond to substrate |
US5164220A (en) * | 1990-10-29 | 1992-11-17 | Diamond Technologies Company | Method for treating diamonds to produce bondable diamonds for depositing same on a substrate |
US5277940A (en) * | 1990-10-29 | 1994-01-11 | Diamond Technologies Company | Method for treating diamonds to produce bondable diamonds for depositing same on a substrate |
US5211726A (en) * | 1991-03-14 | 1993-05-18 | General Electric Company | Products and process for making multigrain abrasive compacts |
US7585366B2 (en) | 1997-04-04 | 2009-09-08 | Chien-Min Sung | High pressure superabrasive particle synthesis |
US9463552B2 (en) | 1997-04-04 | 2016-10-11 | Chien-Min Sung | Superbrasvie tools containing uniformly leveled superabrasive particles and associated methods |
US20030084894A1 (en) * | 1997-04-04 | 2003-05-08 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US9199357B2 (en) | 1997-04-04 | 2015-12-01 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US9221154B2 (en) | 1997-04-04 | 2015-12-29 | Chien-Min Sung | Diamond tools and methods for making the same |
US9238207B2 (en) | 1997-04-04 | 2016-01-19 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US7124753B2 (en) | 1997-04-04 | 2006-10-24 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US20070157917A1 (en) * | 1997-04-04 | 2007-07-12 | Chien-Min Sung | High pressure superabrasive particle synthesis |
US20070295267A1 (en) * | 1997-04-04 | 2007-12-27 | Chien-Min Sung | High pressure superabrasive particle synthesis |
US20080047484A1 (en) * | 1997-04-04 | 2008-02-28 | Chien-Min Sung | Superabrasive particle synthesis with growth control |
US20080248305A1 (en) * | 1997-04-04 | 2008-10-09 | Chien-Min Sung | Superabrasive Particle Synthesis with Controlled Placement of Crystalline Seeds |
US9409280B2 (en) | 1997-04-04 | 2016-08-09 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US9868100B2 (en) | 1997-04-04 | 2018-01-16 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
US20090283089A1 (en) * | 1997-04-04 | 2009-11-19 | Chien-Min Sung | Brazed Diamond Tools and Methods for Making the Same |
US8104464B2 (en) | 1997-04-04 | 2012-01-31 | Chien-Min Sung | Brazed diamond tools and methods for making the same |
WO2000007773A1 (en) * | 1998-08-03 | 2000-02-17 | Tyrolit Schleifmittelwerke Swarovski Kg | Abrasive tool |
US6338907B1 (en) | 1998-08-03 | 2002-01-15 | Tyrolit Schleifmittelwerke Swarovski K.G. | Abrasive tool |
US7077883B2 (en) * | 2002-03-29 | 2006-07-18 | Umicore | Pre-alloyed bond powders |
US20050106057A1 (en) * | 2002-03-29 | 2005-05-19 | Bert-Jan Kamphuis | Pre-alloyed bond powders |
US7089925B1 (en) | 2004-08-18 | 2006-08-15 | Kinik Company | Reciprocating wire saw for cutting hard materials |
US9724802B2 (en) | 2005-05-16 | 2017-08-08 | Chien-Min Sung | CMP pad dressers having leveled tips and associated methods |
US9067301B2 (en) | 2005-05-16 | 2015-06-30 | Chien-Min Sung | CMP pad dressers with hybridized abrasive surface and related methods |
US10213901B2 (en) * | 2005-08-11 | 2019-02-26 | Element Six Abrasives Sa | Polycrystalline diamond abrasive element and method of its production |
US20100186303A1 (en) * | 2005-08-11 | 2010-07-29 | Anine Hester Ras | Polycrystalline Diamond Abrasive Element and Method of its Production |
US20090093195A1 (en) * | 2006-11-16 | 2009-04-09 | Chien-Min Sung | CMP Pad Dressers with Hybridized Abrasive Surface and Related Methods |
US8393934B2 (en) | 2006-11-16 | 2013-03-12 | Chien-Min Sung | CMP pad dressers with hybridized abrasive surface and related methods |
US8398466B2 (en) | 2006-11-16 | 2013-03-19 | Chien-Min Sung | CMP pad conditioners with mosaic abrasive segments and associated methods |
US20090068937A1 (en) * | 2006-11-16 | 2009-03-12 | Chien-Min Sung | CMP Pad Conditioners with Mosaic Abrasive Segments and Associated Methods |
US8622787B2 (en) | 2006-11-16 | 2014-01-07 | Chien-Min Sung | CMP pad dressers with hybridized abrasive surface and related methods |
US20100248596A1 (en) * | 2006-11-16 | 2010-09-30 | Chien-Min Sung | CMP Pad Dressers with Hybridized Abrasive Surface and Related Methods |
CN100445035C (en) * | 2006-12-11 | 2008-12-24 | 中原工学院 | Composite base material for diamond grinding stone |
US20100199573A1 (en) * | 2007-08-31 | 2010-08-12 | Charles Stephan Montross | Ultrahard diamond composites |
US20100287845A1 (en) * | 2007-08-31 | 2010-11-18 | Charles Stephan Montross | Polycrystalline diamond composites |
US20090084042A1 (en) * | 2007-10-01 | 2009-04-02 | Saint-Gobain Abrasives, Inc. | Abrasive processing of hard and /or brittle materials |
US8894731B2 (en) | 2007-10-01 | 2014-11-25 | Saint-Gobain Abrasives, Inc. | Abrasive processing of hard and /or brittle materials |
US9011563B2 (en) | 2007-12-06 | 2015-04-21 | Chien-Min Sung | Methods for orienting superabrasive particles on a surface and associated tools |
US8252263B2 (en) | 2008-04-14 | 2012-08-28 | Chien-Min Sung | Device and method for growing diamond in a liquid phase |
US20090257942A1 (en) * | 2008-04-14 | 2009-10-15 | Chien-Min Sung | Device and method for growing diamond in a liquid phase |
US20150052821A1 (en) * | 2008-07-02 | 2015-02-26 | Saint-Gobain Abrasives, Inc. | Abrasive slicing tool for electronics industry |
US20100000159A1 (en) * | 2008-07-02 | 2010-01-07 | Saint-Gobain Abrasives, Inc. | Abrasive Slicing Tool for Electronics Industry |
US8882868B2 (en) * | 2008-07-02 | 2014-11-11 | Saint-Gobain Abrasives, Inc. | Abrasive slicing tool for electronics industry |
US12044075B2 (en) | 2008-10-03 | 2024-07-23 | Us Synthetic Corporation | Polycrystalline diamond compact |
CN101748302B (en) * | 2008-12-08 | 2011-11-30 | 安泰科技股份有限公司 | pre-alloying powder for diamond tool and manufacturing method thereof |
US9475169B2 (en) | 2009-09-29 | 2016-10-25 | Chien-Min Sung | System for evaluating and/or improving performance of a CMP pad dresser |
US8777699B2 (en) | 2010-09-21 | 2014-07-15 | Ritedia Corporation | Superabrasive tools having substantially leveled particle tips and associated methods |
US20150072601A1 (en) * | 2010-09-21 | 2015-03-12 | Chien-Min Sung | Superabrasive tools having substantially leveled particle tips and associated methods |
US8974270B2 (en) | 2011-05-23 | 2015-03-10 | Chien-Min Sung | CMP pad dresser having leveled tips and associated methods |
US9138862B2 (en) | 2011-05-23 | 2015-09-22 | Chien-Min Sung | CMP pad dresser having leveled tips and associated methods |
US10179390B2 (en) | 2011-10-18 | 2019-01-15 | Us Synthetic Corporation | Methods of fabricating a polycrystalline diamond compact |
WO2013059063A2 (en) * | 2011-10-18 | 2013-04-25 | Us Synthetic Corporation | Polycrystalline diamond compacts, related products, and methods of manufacture |
US9487847B2 (en) | 2011-10-18 | 2016-11-08 | Us Synthetic Corporation | Polycrystalline diamond compacts, related products, and methods of manufacture |
US9272392B2 (en) | 2011-10-18 | 2016-03-01 | Us Synthetic Corporation | Polycrystalline diamond compacts and related products |
WO2013059063A3 (en) * | 2011-10-18 | 2013-06-13 | Us Synthetic Corporation | Polycrystalline diamond compacts, related products, and methods of manufacture |
US9540885B2 (en) | 2011-10-18 | 2017-01-10 | Us Synthetic Corporation | Polycrystalline diamond compacts, related products, and methods of manufacture |
US9297212B1 (en) | 2013-03-12 | 2016-03-29 | Us Synthetic Corporation | Polycrystalline diamond compact including a substrate having a convexly-curved interfacial surface bonded to a polycrystalline diamond table, and related methods and applications |
US9938776B1 (en) | 2013-03-12 | 2018-04-10 | Us Synthetic Corporation | Polycrystalline diamond compact including a substrate having a convexly-curved interfacial surface bonded to a polycrystalline diamond table, and related applications |
US10280687B1 (en) | 2013-03-12 | 2019-05-07 | Us Synthetic Corporation | Polycrystalline diamond compacts including infiltrated polycrystalline diamond table and methods of making same |
US10716644B2 (en) * | 2016-07-04 | 2020-07-21 | Coltène/Whaledent Ag | Dental instrument |
US20180000558A1 (en) * | 2016-07-04 | 2018-01-04 | Coltène/Whaledent Ag | Dental instrument |
CN111015539A (en) * | 2019-12-31 | 2020-04-17 | 苏州赛尔科技有限公司 | Grinding wheel for processing photovoltaic glass and preparation method thereof |
CN111015539B (en) * | 2019-12-31 | 2021-02-23 | 苏州赛尔科技有限公司 | Grinding wheel for processing photovoltaic glass and preparation method thereof |
CN114536230A (en) * | 2022-01-25 | 2022-05-27 | 长沙市萨普新材料有限公司 | Diamond grinding wheel for TiCN-based metal ceramic machining and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
FR1496767A (en) | 1967-10-06 |
GB1114353A (en) | 1968-05-22 |
DE1533424B1 (en) | 1972-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3372010A (en) | 1968-03-05 | Diamond abrasive matrix |
JP4173573B2 (en) | 2008-10-29 | Method for producing porous abrasive wheel |
US8882868B2 (en) | 2014-11-11 | Abrasive slicing tool for electronics industry |
KR100371979B1 (en) | 2003-02-14 | Abrasive tool, dressing tool and method of manufacturing the dressing tool |
EP2024524B1 (en) | 2012-09-19 | Infiltrant matrix powder and product using such powder |
US4505746A (en) | 1985-03-19 | Diamond for a tool and a process for the production of the same |
US3609849A (en) | 1971-10-05 | Forming rolls |
US7879129B2 (en) | 2011-02-01 | Wear part formed of a diamond-containing composite material, and production method |
US2137201A (en) | 1938-11-15 | Abrasive article and its manufacture |
JPH081521A (en) | 1996-01-09 | Tool for processing abrasive grains bound using new metal bond and manufacture thereof |
US2121448A (en) | 1938-06-21 | Hard metal composition |
US2137329A (en) | 1938-11-22 | Abrasive article and its manufacture |
US2137200A (en) | 1938-11-15 | Abrasive article and its manufacture |
US4655795A (en) | 1987-04-07 | Abrasive tool for honing |
US2712988A (en) | 1955-07-12 | Industrial drilling tools |
CN106625198A (en) | 2017-05-10 | Compound superhard honing oilstone containing zirconium oxide and preparation method of compound superhard honing oilstone |
US3820966A (en) | 1974-06-28 | Diamond grinding layer for honing segments |
US2173833A (en) | 1939-09-26 | Abrasive article and its manufacture |
JPS6156067B2 (en) | 1986-12-01 | |
US3779746A (en) | 1973-12-18 | Carbide alloys suitable for cutting tools and wear parts |
US2223063A (en) | 1940-11-26 | Abrasive article |
JP3751160B2 (en) | 2006-03-01 | Hard material abrasive grain densification structure |
JP2001139936A (en) | 2001-05-22 | Whetstone for polishing single crystal diamond or diamond sintered body, polishing method therefor, and single crystal diamond and diamond sintered body obtained by polishing |
JPS6158432B2 (en) | 1986-12-11 | |
US2173835A (en) | 1939-09-26 | Metallic article and its manufacture |