patents.google.com

US3843089A - Textured concrete mold construction for vertically pouring concrete slabs - Google Patents

  • ️Tue Oct 22 1974

US3843089A - Textured concrete mold construction for vertically pouring concrete slabs - Google Patents

Textured concrete mold construction for vertically pouring concrete slabs Download PDF

Info

Publication number
US3843089A
US3843089A US00279406A US27940672A US3843089A US 3843089 A US3843089 A US 3843089A US 00279406 A US00279406 A US 00279406A US 27940672 A US27940672 A US 27940672A US 3843089 A US3843089 A US 3843089A Authority
US
United States
Prior art keywords
mold
concrete
members
wall
slabs
Prior art date
1972-08-10
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00279406A
Inventor
R Scholz
T Fuller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PRINTEX CONCRETE PROD
Original Assignee
PRINTEX CONCRETE PROD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
1972-08-10
Filing date
1972-08-10
Publication date
1974-10-22
1972-08-10 Application filed by PRINTEX CONCRETE PROD filed Critical PRINTEX CONCRETE PROD
1972-08-10 Priority to US00279406A priority Critical patent/US3843089A/en
1974-09-12 Priority to US05/505,417 priority patent/US3954377A/en
1974-10-22 Application granted granted Critical
1974-10-22 Publication of US3843089A publication Critical patent/US3843089A/en
1991-10-22 Anticipated expiration legal-status Critical
Status Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/36Linings or coatings, e.g. removable, absorbent linings, permanent anti-stick coatings; Linings becoming a non-permanent layer of the moulded article
    • B28B7/364Linings or coatings, e.g. removable, absorbent linings, permanent anti-stick coatings; Linings becoming a non-permanent layer of the moulded article of plastic material or rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/0029Moulds or moulding surfaces not covered by B28B7/0058 - B28B7/36 and B28B7/40 - B28B7/465, e.g. moulds assembled from several parts
    • B28B7/0035Moulds characterised by the way in which the sidewalls of the mould and the moulded article move with respect to each other during demoulding
    • B28B7/0041Moulds characterised by the way in which the sidewalls of the mould and the moulded article move with respect to each other during demoulding the sidewalls of the mould being moved only parallelly away from the sidewalls of the moulded article

Definitions

  • Each form wall has a textured mold liner permitting various patterns to be impressed upon the surface of the concrete slabs.
  • the carriage of the mobile form permits the mobile form to be removably connected to the stationary form.
  • This concrete mold permits vertically casting concrete wall slabs with textured surfaces formed into the we! concrete.
  • Precast concrete wall slabs have been used in the building construction industry for many years. Usually, the concrete slabs are poured using production line techniques at a remote factory site and then transported to the various construction sites where the slabs are installed as floors and walls. Generally, the concrete slabs are poured horizontally using the ground to support one side of the form. Heretofore, horizontal casting has been preferred because the ground easily supports the heavy weight of the concrete and an extensive mold supporting structure is not required.
  • the texture can be either a stylized pattern or a natural finish.
  • texture was impressed into one side of the wall by placing in the bottom of the form a mold liner having the desired texture. As the concrete hardened, the texture of the mold liner was impressed on the bottom side of the slab.
  • the first method stamped the texture into the wet concrete with an open, grate-like, skeletal frame.
  • the skeletal frame had projecting ribs that forced the impression into the surface of the wet concrete. Stamping down with an unperforated mold on the top side of the slab is unsuccessful because pockets of air are entrapped between the surface of the wet concrete and the surface of the mold.
  • the second method the top surface is smoothly finished and then after drying, etched with acid. The extent and depth of the texture is achieved by masking the surface and controlling the amount of acid contact.
  • Another technique involves sandblasting the texture into the slab after drying.
  • the fourh method requires plastering the concrete wall after the slab is erected and forming the desired texture in the wet plaster.
  • the mold construction and vertical pouring method permits concrete wall slabs to be poured so that both surfaces of the wet concrete slab can be impressed with a desired texture. No sandblasting, acid etching, or further finishing is required.
  • the textures are simultaneously cast into the panels.
  • numerous different texture patterns are possible and each pattern is easily incorporated into the mold.
  • the mold can cast slabs with the identical texture on both surfaces or with a different texture on each side.
  • the present invention is directed to a mold that can be readily assembled and disassembled for use and reuse in the formation of concrete slabs.
  • the mold includes first and second concrete impervious form members adapted to be disposed in confronting, releasable coupling relationship on a base member.
  • One of the form members is fixedly positioned with respect to the base member while the second form member is generally movable therefrom to enable the width of the concrete slab to be varied and ultimately for the concrete slab to be removed from the mold.
  • the mold further includes a pair of side members for closing relationship with the side openings defined by the first and second members.
  • the concrete mold of this invention includes a mobile, vertical form wall having a removable mold liner attached to its face.
  • the mobile form wall is erected on a carriage which rolls on at least two rails of a track and which moves along the ground generally perpendicularly to the face of the mold liner.
  • the mold also has a stationary, vertical form wall rigidly mounted on a concrete foundation.
  • On the face of the stationary form wall is another removable mold liner in opposing relationship to the mold liner on the mobile form wall. Since the slab is vertically poured, the tremendous weight of the concrete pushing the forms apart must be restrained.
  • the curbing of the concrete foundation of the stationary form permits the carriage of the mobile form to pass beneath the stationary form and to engage the rear supporting structure of the stationary form thereby locking the forms together.
  • the mobile form and the stationary form are also held together by turnbuckles located around the periphery of the two forms.
  • Two vertical end gates perpendicularly anchored to the forms are the end of the mold and prevent the concrete from slipping out between the ends of the mold liners.
  • the foundation curbing provides the bottom for the mold.
  • FIG. 1 is a perspective view of a mobile vertical form
  • FIG. 2 is a perspective view partially in section and broken away of a mobile form wall
  • FIG. 3 is a perspective view of a stationary form showing the pipes for pouring concrete into the mold
  • FIG. 4 is a perspective view partially broken away of the mobile form and the stationary form locked together. (The concrete pouring pipes have been omitted for clarity);
  • FIG. 5 is a plan view of the top of the mold partially in section taken along line 5-5 of FIG. 4;
  • FIG. 6 is a side view partially broken away and in section of the stationary form taken along line 66 of FIG. 5.
  • mold A is formed of a generally mobile vertical form 10, primarily described in FIGS. 1 and 2 and stationary vertical form 40, primarily described in FIGS. 3 and 4.
  • mobile form 10 has carriage l2 and form wall 14.
  • the form wall 14 is comprised of mold liner l6 and backing 18.
  • Mold liner 16 is a thick rubber sheet that has a textured surface to be impressed against the wet concrete during casting.
  • the textured surface on mold liner I6 is attached by casting the liner on a primary mold (not shown) in a conventional manner.
  • the mold liner can be fabricated from rubber or any suitable moldable material such as fiberglass, polyvinyl chloride, or cold mold rubber. Rubber is preferred because it is sufficiently pliable so that the mold liner will release itself from around undercuts (indentations) in the textured concrete without breaking the webs of the newly cured concrete.
  • mold liner 16 is formed with steel fabric wire 17 embedded in the rubber.
  • the ends of fabric wire 17 that protrude from the extremities of mold liner 16 are welded to peripheral angle iron frame 19.
  • fabric wire 17 and angle iron frame 19 are only shown in FIG. 2. It is intended, however, that FIG. 2 represent the construction of all form walls.
  • Backing 18 is a sheet of exterior plywood cut to the dimensions of the mold liner. Mold liner 16 is permanently attached to backing 18 such as by gluing with conventional contact cement and bolting peripheral angle iron frame 19 to the backing.
  • backing 18 is a sheet of exterior plywood cut to the dimensions of the mold liner.
  • Mold liner 16 is permanently attached to backing 18 such as by gluing with conventional contact cement and bolting peripheral angle iron frame 19 to the backing.
  • mobile form has a rubber stamp-like face backed by a non-compressible wooden sheet.
  • Carriage 12 of mobile form 10 is formed of skeletal framework 20 and horizontal rails 22, 23 and 24.
  • the framework is fabricated from standard steel stock and is of conventional design.
  • Framework 20 supports form wall 14 on carriage l2 forcing form wall 14 against the weight of the concrete while the mold is in use.
  • Rails 22, 23 and 24 are also fabricated from standard steel stock and are a structural part of framework 20.
  • Wheels 26 are disposed below rails 22, 23 and 24 to support mobile form 10. The wheels are positioned to engage three parallel tracks 28, 29 and 30.
  • the tracks lie perpendicular to the face of form wall 14 to enable the carriage to travel back and forth in front of the stationary mold as hereinafter described.
  • Turnbuckles 36 Randomly'spaced around the top and sides of the form wall 14 are a plurality of turnbuckles 36.
  • Turnbuckles 36 are secured to mobile form 10, for example, by steel eyes welded on to framework 20.
  • the eyes permit turnbuckles 36 to rotate sufficiently enough to engage corresponding hooks 64 on stationary form 40 as hereinafter described.
  • the eyes, turnbuckles 36 and hooks 64 are used to releasably lock stationary form 40 and mobile form 10 together to form mold A, as shown in FIG. 4.
  • a plurality of each is required to counteract the tremendous pressure exerted by the wet concrete that tends to force the two forms apart.
  • Turnbuckles 36 are specifically used because they are adjustable for locking and unlocking purposes and adjustable for varying the spacing between the two forms.
  • Randomly spaced cleats 38 are welded to the two vertical sides of mobile form 10.
  • the cleats are made of steel and guide the end gates or sides of the mold into place as hereinafter described.
  • reference numeral 40 generally indicates a stationary vertical form comprised of stationary form wall 42 and framework 44.
  • Framework 44 is a steel skeletal structure similar in construction to framework 20. Framework 44 is securely embedded in a concrete foundation to hold form wall 42 in place against the weight of the concrete. Framework 44 is provided with platform 46 that runs along the top of stationary form wall 42 and provides access to the top of mold A for the workmen.
  • Concrete pouring pipe 45 mounted to framework 44, is formed of a vertical section 48 along one side of framework 44, elbow 49, horizontal section 50 and flexible section 51.
  • the lower end of vertical section 48 is connected to a concrete pump (not shown) and flexible section 51 directed downwardly between the mobile form wall 14 and stationary form wall 42.
  • a production line having numerous vertical pouring molds is set up, an additional horizontal pipe 52 can be used.
  • the flexible section 51 is attached to pipe 52 to enable the concrete to flow along the top of form wall 42 and into the next succeeding similarly placed mold (not shown).
  • Form wall 42 on stationary form 40 is also formed of a mold liner and a plywood backing.
  • stationary form wall 42 is of similar construction and performs the same function as form wall 14 of mobile form 10. Both of form walls 14 and 42 are removably bolted to their respectiveframeworks so that mold liners can be easily interchanged. In this manner, an inventory of interchangeable form walls having different textured mold liners can be readily maintained.
  • Sutable textures heretofore employed include slumpstone, brick, wood, and rope textures, as well as the texture on existing masonary walls.
  • Removable form walls permit casting slabs to have identical texture on both sides or different textures on each side.
  • Stationary form 40 is located on top of a curb 54.
  • Curb 54 is preferably of rectangular cross-section and extends for at least the length of form 40.
  • the curb forms the lower boundary of 'mold A and is an integral part of the concrete foundation and framework that supports form wall 42.
  • the top surface of curb 54 forms the bottom of mold A.
  • Within curb 54 are three tunnels 56, 57 and 58 straddling respective of tracks 28, 29 and 30. The tunnels enable the forward ends of rails 22, 23 and 24 of mobile form 10 to extend through curb 54 beneath stationary form 40.
  • Rails 22, 23 and 24 are provided with respective of slots 32, 33 and 34.
  • Reference numeral 60 indicates a latch made of steel that engages slot 32 on rail 22 to lock mobile form 10 against curb 54. Additional latches 61 and 63 are similarly disposed on framework 44 at the terminal ends of tracks 28 and 29, respectively. Latches 61 and 63 lock into slot 33 on rail 23 and slot 34 on rail 24, respectively. By advancing rails 22, 23 and 24 through tunnels 56, 57 and 58, latches 60, 61 and 62 can be engaged with slots 32, 33 and 34 to retain mobile form 10 adjacent stationary form 40. In FIGS. 3 and 4 the latches are shown for clarity as simple hooks pivotally mounted on framework 44. Alternatively, three turnbuckles, pivotally mounted to framework 44 can be utilized for releasably latching the rails to framework 44. When used, the turnbuckles permit the spacing between the form walls to be varied, thereby changing the width of mold A.
  • a plurality of randomly spaced cleats 62 is welded on the two vertical sides of stationary form 40.
  • Cleats 62 are made of steel and are intended to cooperate with cleats 38 on mobile form 10.
  • Cleats 38 and 62 are used to hold the sides or end gates of the mold in place as hereinafter described.
  • Around the top and sides of form wall 42 is a series of hooks 64. Hooks 64 are preferably formed of steel that is welded to framework 44. The hooks are engaged by the terminal free ends of turnbuckles 36 on mobile form 10 when the forms are locked together.
  • reference numeral 66 indicates two external, electric vibrators. Vibrators 66 are rigidly attached to framework 44 and provide enough vibration to the mold to insure the complete compaction of the wet concrete within the mold. Vibrators 66 can be of conventional construction commonly used by the building industry in external vibration applications.
  • the wet concrete is held in place between forms and 40 by two end gates 68 and 70 located at the sides of mold A.
  • the end gates are rectangular, elongate steel plates that rest on top of the surface of curb 54 after mold A is assembled.
  • the width of the end gates is larger than the unobstructed width between form walls 14 and 42.
  • each end gate is provided with a series of cleats 72 welded thereto in registry with cleats 38 on the mobile mold and cleats 62 on the stationary mold when the end gates are in position on the mold.
  • the end gates are held in position when steel bars 74 are slipped between the three sets of cleats as shown most clearly in FIG. 5.
  • the steel bars are nearly the same diameter as the openings in cleats 38 and 62 to provide for frictional capture by them.
  • slip gate 76 is used.
  • Slip gate 76 is an elongate, rectangular steel plate having the same dimensions as an end gate and rests on the top surface of curb 54.
  • the slip gate is mounted parallel to end gate 70 and also forms a water tight seal by the deformation of the mold liners about its edges. Cleats have not been found to be required on slip gate 76.
  • Slip gate 76 is retained in place by support 78. Referring to FIG. 6, support 78 is preferably a wooden brace of suitable length disposed between end gate 70 and slip gate 76. The horizontal forces from the wet concrete pushing the slip gate outwardly are resisted by the support 78 acting against end gate 70 held in place by cleats 38, 62, 72 and bars 74.
  • two mold liners 16 having the desired texture are fabricated. This is usually accomplished by constructing a mock up of the finished wall and then casting either cold mold rubber, fiberglass, or some other suitable compound on the model. It has been found that adobe brick, slumpstone, brick and rough hewn wood are suitable for texture patterns.
  • a piece of fabric wire 17 is implanted in the middle of the mold liner 16 before the liner material hardens. The fabric wire is intended to reinforce mold liner l6 and provide a suitable anchoring foundation to secure mold liner 16 to backing l8.
  • Backing 18 is advantageously fabricated from exterior plywood.
  • mold liner 16 is glued to backing l8 and the exposed ends of the fabric wire 17 welded to peripheral angle iron frame 19.
  • the angle iron frame is in turn bolted to backing 18.
  • the rubber mold liner is then glued to the plywood backing using conventional contact cement.
  • the mold liners and backing used on both the mobile and stationary forms are constructed in exactly the same manner, from the same materials and are interchangeable in operation.
  • the casting process is commenced by first bolting two form walls 14 and 42 to steel framework 20 and 44 of the mobile and stationary forms, respectively. Next, the surfaces that will contact wet cement are coated with a suitable bond breaker. Both soap or oil are among satisfactory materials.
  • Carriage 12 is then advanced along tracks 28, 29 and 30 so that the forward extending portions of rails 24, 23 and 22 will extend into tunnels 58, 57 and 56.
  • the rails are locked into place by inserting latches 60, 63 and 61 on framework 44 into respective of slots 32, 33 and 34 on rails 22, 23 and 24.
  • the latches retain the lower portion of the mobile form 10 securely against curb 54 and prevent the two form walls from being forced apart by the pressure of the wet concrete.
  • the top surface of curb 54 will ultimately form the lower horizontal surface of the mold.
  • the bars hold the end gates in position against the pressure of the wet concrete.
  • the end gates form the side surfaces of the mold and keep the concrete from spilling out between the form walls. Because the mold liners are flexible, the mold liners resiliently engage and deform around the edges of the end gates. Thus a water tight, concrete proof barrier is formed.
  • turnbuckles 36 are tightened to engage hooks 64 on the stationary form. The hooks and turnbuckles hold the upper portion of mold together against the pressure of the wet concrete.
  • slip gate 76 When a concrete wall slab is desired that has a smaller length than the distance between the two end gates 68 and 70, slip gate 76 is used.
  • the slip gate is positioned between the form walls at the desired length from one of the end gates.
  • Slip gate 76 rests upon the curb 54 and is braced horizontally from the nearby end gate using support 78.
  • Slip gate 76 provides one of the side surfaces of the mold and keeps the concrete from spilling out between the form walls.
  • the mold liners also resiliently engage and deform around the edges of the slip gate. Referring to FIG. 5, the cavity between end gate 70 and slip gate 76 where support 78 is located is retained free of concrete. The concrete is only poured into the cavity formed between end gate 68 and slip gate 76 shown in FIG. 4.
  • a cage of reinforcing bars can be fabricated beforehand. After the forms are locked together, the cage (not shown) can be inserted into the cavity between end gate 68 and either end gate 70 or slip gate 76. The cage can be maintained in position between the form walls by small plastic spacers that are customarily used for horizontally poured wall slabs.
  • a conventional concrete pump (not shown) is connected to the lower, vertical end of pouring pipe 48.
  • the end of the flexible section 51 of the pouring pipe is directed into the cavity of mold A.
  • the wet concrete is forced by the concrete pump into the lower end of the pouring pipe 48, out of flexible section 51 and into the cavity formed between the forms and end gate 68 and either end gate 70 or slip gate 76.
  • external vibrators 66 on framework 44 are energized to vibrate the whole mold. The vibrators insure that the wet concrete is firmly packed into place and no bubbles are created within the concrete.
  • An adjustable, reusable mold for forming concrete slabs comprising: a first concrete impervious form member; a concrete impervious base member having an upper surface; means for fixedly supporting said first form member in a generally upright position on the upper surface of said base member; a second concrete impervious form member; means for supporting said second member in a generally upright position and for mounting said second member for movement toward and away from said first fixed member along a path generally parallel to said upper surface of said base member wherein said path comprises a plurality of rails and said supporting and moving means comprises a wheeled carriage adapted to roll on said rails; means for releasably coupling said second member at a predetermined distance from said first member on said base member; a pair of concrete impervious side members moveable into closing relationship to the side opening defined by said first and second members; and means for retaining said pair of side members in fluid-tight engagement with said first and second upright members and said base member, and said base member is provided with a plurality of slots into which respective of said plurality of rail
  • said first engagement means comprises a series of spaced slots and said second engagement means comprises a plurality of hooks whereby said hooks are adapted to be inserted into one of said plurality of slots to retain the second form member at a predetermined distance from said first form member.
  • a mold in accordance with claim 1 wherein the retaining means for said pair of members comprises a plurality of adjustable turnbuckles adapted to retain said pair of side members in confronting fluid-tight engagement along the sides of said first and second form mem-

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)

Abstract

A textured mold for vertically casting concrete wall slabs. The mold has one mobile vertical form wall mounted on a supporting carriage which runs along a track and a stationary vertical form wall rigidly anchored to a concrete foundation. Each form wall has a textured mold liner permitting various patterns to be impressed upon the surface of the concrete slabs. The carriage of the mobile form permits the mobile form to be removably connected to the stationary form. This concrete mold permits vertically casting concrete wall slabs with textured surfaces formed into the wet concrete.

Description

United States Patent 191 Scholz et al.

[451 Oct. 22, 1974 TEXTURED CONCRETE MOLD CONSTRUCTION FOR VERTICALLY POURING CONCRETE SLABS [75] lnventors: Ray John Scholz; Thomas Patrick Fuller, both of Los Altos, Calif.

[73] Assignee: Printex Concrete Products, Santa Clara, Calif.

[22] Filed: Aug. 10, 1972 [21] Appl. No.: 279,406

[52] U.S. Cl 249/158, 249/161, 249/168, 264/313 [51] Int. Cl B28b 7/02 [58] Field of Search 249/35, 47, 112, 161, 162, 249/189, 33, 158, 168; 264/313 [56] References Cited UNITED STATES PATENTS 830,893 9/1906 Engelhardt 249/47 2,453,223 11/1948 Henderson 264/313 X 2,535,277 12/1950 Fama 249/34 3,595,514 7/1971 Sanders. 249/47 X 3,609,830 10/1971 Myklebost 249/162 X 3,628,766 l2/197l Hartmann 3,664,630 5/1972 Maynen et al. 249/1 l2 3,785,608 l/l974 Hcinzman et al 249/161 Primary Examiner-Robert D. Baldwin Assistant Examiner-Robert J. Craig Attorney, Agent, or Firm-Townsend and Townsend 5 7 1 ABSTRACT A textured mold for vertically casting concrete wall slabs. The mold has one mobile vertical form wall mounted on a supporting carriage which runs along a track and a stationary vertical form wall rigidly anchored to a concrete foundation. Each form wall has a textured mold liner permitting various patterns to be impressed upon the surface of the concrete slabs. The carriage of the mobile form permits the mobile form to be removably connected to the stationary form. This concrete mold permits vertically casting concrete wall slabs with textured surfaces formed into the we! concrete.

3 Claims, 6 Drawing Figures TEXTURED CONCRETE MOLD CONSTRUCTION FOR VERTICALLY POURING CONCRETE SLABS BACKGROUND OF THE INVENTION This invention relates to prefabricated concrete building construction and, more particularly, to the methods and molds for producing precast concrete wall slabs.

SUMMARY OF THE INVENTION Precast concrete wall slabs have been used in the building construction industry for many years. Usually, the concrete slabs are poured using production line techniques at a remote factory site and then transported to the various construction sites where the slabs are installed as floors and walls. Generally, the concrete slabs are poured horizontally using the ground to support one side of the form. Heretofore, horizontal casting has been preferred because the ground easily supports the heavy weight of the concrete and an extensive mold supporting structure is not required.

One of the many advantages of precasting concrete walls is the ability to place a texture onto the surface of the wall during its casting. The texture can be either a stylized pattern or a natural finish. In the past, texture was impressed into one side of the wall by placing in the bottom of the form a mold liner having the desired texture. As the concrete hardened, the texture of the mold liner was impressed on the bottom side of the slab.

If a texture was desired on the top side of the slab in addition to a texture on the bottom side, four methods were commonly used. The first method stamped the texture into the wet concrete with an open, grate-like, skeletal frame. The skeletal frame had projecting ribs that forced the impression into the surface of the wet concrete. Stamping down with an unperforated mold on the top side of the slab is unsuccessful because pockets of air are entrapped between the surface of the wet concrete and the surface of the mold. In the second method the top surface is smoothly finished and then after drying, etched with acid. The extent and depth of the texture is achieved by masking the surface and controlling the amount of acid contact. Another technique involves sandblasting the texture into the slab after drying. The fourh method requires plastering the concrete wall after the slab is erected and forming the desired texture in the wet plaster.

The mold construction and vertical pouring method permits concrete wall slabs to be poured so that both surfaces of the wet concrete slab can be impressed with a desired texture. No sandblasting, acid etching, or further finishing is required. The textures are simultaneously cast into the panels. In addition, numerous different texture patterns are possible and each pattern is easily incorporated into the mold. The mold can cast slabs with the identical texture on both surfaces or with a different texture on each side.

The present invention is directed to a mold that can be readily assembled and disassembled for use and reuse in the formation of concrete slabs. The mold includes first and second concrete impervious form members adapted to be disposed in confronting, releasable coupling relationship on a base member. One of the form members is fixedly positioned with respect to the base member while the second form member is generally movable therefrom to enable the width of the concrete slab to be varied and ultimately for the concrete slab to be removed from the mold. The mold further includes a pair of side members for closing relationship with the side openings defined by the first and second members.

The concrete mold of this invention includes a mobile, vertical form wall having a removable mold liner attached to its face. The mobile form wall is erected on a carriage which rolls on at least two rails of a track and which moves along the ground generally perpendicularly to the face of the mold liner. The mold also has a stationary, vertical form wall rigidly mounted on a concrete foundation. On the face of the stationary form wall is another removable mold liner in opposing relationship to the mold liner on the mobile form wall. Since the slab is vertically poured, the tremendous weight of the concrete pushing the forms apart must be restrained. The curbing of the concrete foundation of the stationary form permits the carriage of the mobile form to pass beneath the stationary form and to engage the rear supporting structure of the stationary form thereby locking the forms together. The mobile form and the stationary form are also held together by turnbuckles located around the periphery of the two forms. Two vertical end gates perpendicularly anchored to the forms are the end of the mold and prevent the concrete from slipping out between the ends of the mold liners. The foundation curbing provides the bottom for the mold.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a mobile vertical form;

FIG. 2 is a perspective view partially in section and broken away of a mobile form wall;

FIG. 3 is a perspective view of a stationary form showing the pipes for pouring concrete into the mold;

FIG. 4 is a perspective view partially broken away of the mobile form and the stationary form locked together. (The concrete pouring pipes have been omitted for clarity);

FIG. 5 is a plan view of the top of the mold partially in section taken along line 5-5 of FIG. 4; and

FIG. 6 is a side view partially broken away and in section of the stationary form taken along

line

66 of FIG. 5.

DESCRIPTION OF THE PREFERRED EMBODIMENTS Turning to the drawings wherein similar characters of reference represent corresponding parts in each of the several views, mold A is formed of a generally mobile

vertical form

10, primarily described in FIGS. 1 and 2 and stationary

vertical form

40, primarily described in FIGS. 3 and 4.

Referring first to FIG. 1,

mobile form

10 has carriage l2 and

form wall

14. The

form wall

14 is comprised of mold liner l6 and backing 18.

Mold liner

16 is a thick rubber sheet that has a textured surface to be impressed against the wet concrete during casting. The textured surface on mold liner I6 is attached by casting the liner on a primary mold (not shown) in a conventional manner. The mold liner can be fabricated from rubber or any suitable moldable material such as fiberglass, polyvinyl chloride, or cold mold rubber. Rubber is preferred because it is sufficiently pliable so that the mold liner will release itself from around undercuts (indentations) in the textured concrete without breaking the webs of the newly cured concrete.

As can be seen most clearly from FIG. 2,

mold liner

16 is formed with

steel fabric wire

17 embedded in the rubber. The ends of

fabric wire

17 that protrude from the extremities of

mold liner

16 are welded to peripheral

angle iron frame

19. For clarity,

fabric wire

17 and

angle iron frame

19 are only shown in FIG. 2. It is intended, however, that FIG. 2 represent the construction of all form walls.

Backing

18 is a sheet of exterior plywood cut to the dimensions of the mold liner.

Mold liner

16 is permanently attached to backing 18 such as by gluing with conventional contact cement and bolting peripheral

angle iron frame

19 to the backing. Thus, mobile form has a rubber stamp-like face backed by a non-compressible wooden sheet.

Carriage

12 of

mobile form

10 is formed of

skeletal framework

20 and

horizontal rails

22, 23 and 24. The framework is fabricated from standard steel stock and is of conventional design.

Framework

20 supports form

wall

14 on carriage l2 forcing

form wall

14 against the weight of the concrete while the mold is in use.

Rails

22, 23 and 24 are also fabricated from standard steel stock and are a structural part of

framework

20.

Wheels

26 are disposed below

rails

22, 23 and 24 to support

mobile form

10. The wheels are positioned to engage three

parallel tracks

28, 29 and 30. Preferably, the tracks lie perpendicular to the face of

form wall

14 to enable the carriage to travel back and forth in front of the stationary mold as hereinafter described.

Randomly'spaced around the top and sides of the

form wall

14 are a plurality of

turnbuckles

36.

Turnbuckles

36 are secured to

mobile form

10, for example, by steel eyes welded on to

framework

20. The eyes permit

turnbuckles

36 to rotate sufficiently enough to engage corresponding

hooks

64 on

stationary form

40 as hereinafter described. The eyes,

turnbuckles

36 and hooks 64 are used to releasably lock

stationary form

40 and

mobile form

10 together to form mold A, as shown in FIG. 4. A plurality of each is required to counteract the tremendous pressure exerted by the wet concrete that tends to force the two forms apart.

Turnbuckles

36 are specifically used because they are adjustable for locking and unlocking purposes and adjustable for varying the spacing between the two forms.

Randomly spaced

cleats

38 are welded to the two vertical sides of

mobile form

10. The cleats are made of steel and guide the end gates or sides of the mold into place as hereinafter described.

In FIG. 3,

reference numeral

40 generally indicates a stationary vertical form comprised of

stationary form wall

42 and

framework

44.

Framework

44 is a steel skeletal structure similar in construction to

framework

20.

Framework

44 is securely embedded in a concrete foundation to hold

form wall

42 in place against the weight of the concrete.

Framework

44 is provided with

platform

46 that runs along the top of

stationary form wall

42 and provides access to the top of mold A for the workmen.

Concrete pouring pipe

45, mounted to

framework

44, is formed of a

vertical section

48 along one side of

framework

44,

elbow

49,

horizontal section

50 and

flexible section

51. During concrete pouring, the lower end of

vertical section

48 is connected to a concrete pump (not shown) and

flexible section

51 directed downwardly between the

mobile form wall

14 and

stationary form wall

42. When a production line having numerous vertical pouring molds is set up, an additional

horizontal pipe

52 can be used. Thus, after concrete is poured into mold A, the

flexible section

51 is attached to

pipe

52 to enable the concrete to flow along the top of

form wall

42 and into the next succeeding similarly placed mold (not shown).

Form wall

42 on

stationary form

40 is also formed of a mold liner and a plywood backing. Referring again to FIG. 2,

stationary form wall

42 is of similar construction and performs the same function as

form wall

14 of

mobile form

10. Both of

form walls

14 and 42 are removably bolted to their respectiveframeworks so that mold liners can be easily interchanged. In this manner, an inventory of interchangeable form walls having different textured mold liners can be readily maintained. Sutable textures heretofore employed include slumpstone, brick, wood, and rope textures, as well as the texture on existing masonary walls. Removable form walls permit casting slabs to have identical texture on both sides or different textures on each side.

Stationary form

40 is located on top of a

curb

54.

Curb

54 is preferably of rectangular cross-section and extends for at least the length of

form

40. The curb forms the lower boundary of 'mold A and is an integral part of the concrete foundation and framework that supports

form wall

42. When

mobile form

10 is secured to

stationary form

40 as in FIG. 4, the top surface of

curb

54 forms the bottom of mold A. Within

curb

54 are three

tunnels

56, 57 and 58 straddling respective of

tracks

28, 29 and 30. The tunnels enable the forward ends of

rails

22, 23 and 24 of

mobile form

10 to extend through

curb

54 beneath

stationary form

40.

Rails

22, 23 and 24 are provided with respective of

slots

32, 33 and 34.

Reference numeral

60 indicates a latch made of steel that engages

slot

32 on

rail

22 to lock

mobile form

10 against

curb

54.

Additional latches

61 and 63 are similarly disposed on

framework

44 at the terminal ends of

tracks

28 and 29, respectively.

Latches

61 and 63 lock into

slot

33 on

rail

23 and

slot

34 on

rail

24, respectively. By advancing

rails

22, 23 and 24 through

tunnels

56, 57 and 58, latches 60, 61 and 62 can be engaged with

slots

32, 33 and 34 to retain

mobile form

10 adjacent

stationary form

40. In FIGS. 3 and 4 the latches are shown for clarity as simple hooks pivotally mounted on

framework

44. Alternatively, three turnbuckles, pivotally mounted to

framework

44 can be utilized for releasably latching the rails to

framework

44. When used, the turnbuckles permit the spacing between the form walls to be varied, thereby changing the width of mold A.

A plurality of randomly spaced

cleats

62 is welded on the two vertical sides of

stationary form

40.

Cleats

62 are made of steel and are intended to cooperate with

cleats

38 on

mobile form

10.

Cleats

38 and 62 are used to hold the sides or end gates of the mold in place as hereinafter described. Around the top and sides of

form wall

42 is a series of

hooks

64.

Hooks

64 are preferably formed of steel that is welded to

framework

44. The hooks are engaged by the terminal free ends of

turnbuckles

36 on

mobile form

10 when the forms are locked together.

In FIG. 4,

reference numeral

66 indicates two external, electric vibrators.

Vibrators

66 are rigidly attached to

framework

44 and provide enough vibration to the mold to insure the complete compaction of the wet concrete within the mold.

Vibrators

66 can be of conventional construction commonly used by the building industry in external vibration applications.

In operation, the wet concrete is held in place between forms and 40 by two

end gates

68 and 70 located at the sides of mold A. The end gates are rectangular, elongate steel plates that rest on top of the surface of

curb

54 after mold A is assembled. The width of the end gates is larger than the unobstructed width between

form walls

14 and 42. When the form walls are locked together with the end gates in place, rubber mold liners deform around the edges of

end gates

68 and 70. The deformation of the rubber mold liners forms a fluid tight seal for the mold.

The outward facing side of each end gate is provided with a series of

cleats

72 welded thereto in registry with

cleats

38 on the mobile mold and

cleats

62 on the stationary mold when the end gates are in position on the mold. The end gates are held in position when steel bars 74 are slipped between the three sets of cleats as shown most clearly in FIG. 5. The steel bars are nearly the same diameter as the openings in

cleats

38 and 62 to provide for frictional capture by them.

When the length of the mold is desired to be decreased,

slip gate

76 is used. Slip

gate

76 is an elongate, rectangular steel plate having the same dimensions as an end gate and rests on the top surface of

curb

54. The slip gate is mounted parallel to end

gate

70 and also forms a water tight seal by the deformation of the mold liners about its edges. Cleats have not been found to be required on

slip gate

76. Slip

gate

76 is retained in place by

support

78. Referring to FIG. 6,

support

78 is preferably a wooden brace of suitable length disposed between

end gate

70 and

slip gate

76. The horizontal forces from the wet concrete pushing the slip gate outwardly are resisted by the

support

78 acting against

end gate

70 held in place by

cleats

38, 62, 72 and bars 74.

To utilize the vertical mold of this invention, two

mold liners

16 having the desired texture are fabricated. This is usually accomplished by constructing a mock up of the finished wall and then casting either cold mold rubber, fiberglass, or some other suitable compound on the model. It has been found that adobe brick, slumpstone, brick and rough hewn wood are suitable for texture patterns. Referring again to FIG. 2, a piece of

fabric wire

17 is implanted in the middle of the

mold liner

16 before the liner material hardens. The fabric wire is intended to reinforce mold liner l6 and provide a suitable anchoring foundation to secure

mold liner

16 to backing l8.

Backing

18 is advantageously fabricated from exterior plywood.

After the liner material has hardened,

mold liner

16 is glued to backing l8 and the exposed ends of the

fabric wire

17 welded to peripheral

angle iron frame

19. The angle iron frame is in turn bolted to

backing

18. The rubber mold liner is then glued to the plywood backing using conventional contact cement. The mold liners and backing used on both the mobile and stationary forms are constructed in exactly the same manner, from the same materials and are interchangeable in operation.

The casting process is commenced by first bolting two

form walls

14 and 42 to

steel framework

20 and 44 of the mobile and stationary forms, respectively. Next, the surfaces that will contact wet cement are coated with a suitable bond breaker. Both soap or oil are among satisfactory materials.

Carriage

12 is then advanced along

tracks

28, 29 and 30 so that the forward extending portions of

rails

24, 23 and 22 will extend into

tunnels

58, 57 and 56. The rails are locked into place by inserting

latches

60, 63 and 61 on

framework

44 into respective of

slots

32, 33 and 34 on

rails

22, 23 and 24. The latches retain the lower portion of the

mobile form

10 securely against

curb

54 and prevent the two form walls from being forced apart by the pressure of the wet concrete. The top surface of

curb

54 will ultimately form the lower horizontal surface of the mold.

End gates

68 and are next positioned so that

bars

74 can be inserted through

cleats

38, 62 and 72. The bars hold the end gates in position against the pressure of the wet concrete. The end gates form the side surfaces of the mold and keep the concrete from spilling out between the form walls. Because the mold liners are flexible, the mold liners resiliently engage and deform around the edges of the end gates. Thus a water tight, concrete proof barrier is formed. Next,

turnbuckles

36 are tightened to engage

hooks

64 on the stationary form. The hooks and turnbuckles hold the upper portion of mold together against the pressure of the wet concrete.

When a concrete wall slab is desired that has a smaller length than the distance between the two

end gates

68 and 70,

slip gate

76 is used. The slip gate is positioned between the form walls at the desired length from one of the end gates. Slip

gate

76 rests upon the

curb

54 and is braced horizontally from the nearby end

gate using support

78. Slip

gate

76 provides one of the side surfaces of the mold and keeps the concrete from spilling out between the form walls. The mold liners also resiliently engage and deform around the edges of the slip gate. Referring to FIG. 5, the cavity between

end gate

70 and

slip gate

76 where

support

78 is located is retained free of concrete. The concrete is only poured into the cavity formed between

end gate

68 and

slip gate

76 shown in FIG. 4.

If internal steel reinforcing bars (not shown) are desired for the concrete slab, a cage of reinforcing bars can be fabricated beforehand. After the forms are locked together, the cage (not shown) can be inserted into the cavity between

end gate

68 and either end

gate

70 or

slip gate

76. The cage can be maintained in position between the form walls by small plastic spacers that are customarily used for horizontally poured wall slabs.

After the form walls have been locked together with the gates in place and the surfaces coated with a bond breaker, the mold is ready to receive the concrete. A conventional concrete pump (not shown) is connected to the lower, vertical end of pouring

pipe

48. The end of the

flexible section

51 of the pouring pipe is directed into the cavity of mold A. The wet concrete is forced by the concrete pump into the lower end of the pouring

pipe

48, out of

flexible section

51 and into the cavity formed between the forms and end

gate

68 and either end

gate

70 or

slip gate

76. As the concrete is being poured into mold A,

external vibrators

66 on

framework

44 are energized to vibrate the whole mold. The vibrators insure that the wet concrete is firmly packed into place and no bubbles are created within the concrete.

After the concrete has hardened sufficiently to permit transportation of the slab, the forms are unlocked.

Although only one embodiment of the present invention has been shown and described, it is obvious that other adaptations and modifications to this invention can be made without departing from the true spirit and scope of this invention.

What is claimed is:

1. An adjustable, reusable mold for forming concrete slabs, comprising: a first concrete impervious form member; a concrete impervious base member having an upper surface; means for fixedly supporting said first form member in a generally upright position on the upper surface of said base member; a second concrete impervious form member; means for supporting said second member in a generally upright position and for mounting said second member for movement toward and away from said first fixed member along a path generally parallel to said upper surface of said base member wherein said path comprises a plurality of rails and said supporting and moving means comprises a wheeled carriage adapted to roll on said rails; means for releasably coupling said second member at a predetermined distance from said first member on said base member; a pair of concrete impervious side members moveable into closing relationship to the side opening defined by said first and second members; and means for retaining said pair of side members in fluid-tight engagement with said first and second upright members and said base member, and said base member is provided with a plurality of slots into which respective of said plurality of rails extends, the fixedly supporting means for said first member including first engagement means, said carriage including a plurality of second engagement means adapted to be extended through said slots and interlock with said first engagement means.

2. A mold in accordance with

claim

1 wherein said first engagement means comprises a series of spaced slots and said second engagement means comprises a plurality of hooks whereby said hooks are adapted to be inserted into one of said plurality of slots to retain the second form member at a predetermined distance from said first form member.

3. A mold in accordance with

claim

1 wherein the retaining means for said pair of members comprises a plurality of adjustable turnbuckles adapted to retain said pair of side members in confronting fluid-tight engagement along the sides of said first and second form mem-

Claims (3)

1. An adjustable, reusable mold for forming concrete slabs, comprising: a first concrete impervious form member; a concrete impervious base member having an upper surface; means for fixedly supporting said first form member in a generally upright position on the upper surface of said base member; a second concrete impervious form member; means for supporting said second member in a generally upright position and for mounting said second member for movement toward and away from said first fixed member along a path generally parallel to said upper surface of said base member wherein said path comprises a plurality of rails and said supporting and moving means comprises a wheeled carriage adapted to roll on said rails; means for releasably coupling said second member at a predetermined distance from said first member on said base member; a pair of concrete impervious side members moveable into closing relationship to the side opening defined by said first and second members; and means for retaining said pair of side members in fluid-tight engagement with said first and second upright members and said base member, and said base member is provided with a plurality of slots into which respective of said plurality of rails extends, the fixedly supporting means for said first member including first engagement means, said carriage including a plurality of second engagement means adapted to be extended through said slots and interlock with said first engagement means.

2. A mold in accordance with claim 1 wherein said first engagement means comprises a series of spaced slots and saId second engagement means comprises a plurality of hooks whereby said hooks are adapted to be inserted into one of said plurality of slots to retain the second form member at a predetermined distance from said first form member.

3. A mold in accordance with claim 1 wherein the retaining means for said pair of members comprises a plurality of adjustable turnbuckles adapted to retain said pair of side members in confronting fluid-tight engagement along the sides of said first and second form members.

US00279406A 1972-08-10 1972-08-10 Textured concrete mold construction for vertically pouring concrete slabs Expired - Lifetime US3843089A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US00279406A US3843089A (en) 1972-08-10 1972-08-10 Textured concrete mold construction for vertically pouring concrete slabs
US05/505,417 US3954377A (en) 1972-08-10 1974-09-12 Vertical mold for making textured concrete panels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00279406A US3843089A (en) 1972-08-10 1972-08-10 Textured concrete mold construction for vertically pouring concrete slabs

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US05/505,417 Division US3954377A (en) 1972-08-10 1974-09-12 Vertical mold for making textured concrete panels

Publications (1)

Publication Number Publication Date
US3843089A true US3843089A (en) 1974-10-22

Family

ID=23068817

Family Applications (1)

Application Number Title Priority Date Filing Date
US00279406A Expired - Lifetime US3843089A (en) 1972-08-10 1972-08-10 Textured concrete mold construction for vertically pouring concrete slabs

Country Status (1)

Country Link
US (1) US3843089A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958790A (en) * 1974-05-06 1976-05-25 Scott Samuel C Concrete wall forming panel with inflatable liner means
US4178343A (en) * 1977-05-16 1979-12-11 Rojo Agustin Jr Manufacture of precast concrete units and a building constructed therewith
US4355782A (en) * 1981-01-26 1982-10-26 Sierra Precast, Inc. Mold for forming fireplaces
US4534924A (en) * 1983-09-19 1985-08-13 Novi Development Corporation Method for molding concrete slabs and battery mold therefor
US5156791A (en) * 1990-03-26 1992-10-20 Inax Corporation Depositing method of wall concrete
US20060011802A1 (en) * 2002-04-24 2006-01-19 Profast Vertical casting apparatus and method
US20060174569A1 (en) * 2004-10-27 2006-08-10 Stott Gale J Apparatus for pre-casting concrete structures
US20070062142A1 (en) * 2005-09-20 2007-03-22 Stott Gale J Concrete structure system
WO2007143569A2 (en) * 2006-06-02 2007-12-13 Maxam Industries Inc. Concrete form utilizing flexible material and methods of making and using the same
US20090173871A1 (en) * 2008-01-08 2009-07-09 Intellectual Property Management Llc Method and System for Forming Vertical Pre-Cast Concrete Structures
US20090173872A1 (en) * 2008-01-07 2009-07-09 Intellectual Property Management Llc Method and System for Forming Pre-Cast Concrete Columns
US20120000593A1 (en) * 2009-03-12 2012-01-05 Qiangte Energy-Saving Materials Co. Ltd. Decorative brick mould for in-situ production on building
US9186819B1 (en) 2014-08-19 2015-11-17 Cambria Company Llc Synthetic molded slabs, and systems and methods related thereto
US9289923B1 (en) 2015-01-30 2016-03-22 Cambria Company Llc Synthetic molded slabs, and systems and methods related thereto
US9613412B1 (en) 2015-12-21 2017-04-04 Cambria Company Llc Stone slab manufacturing methods and systems
US10467352B2 (en) 2017-04-03 2019-11-05 Cambria Company Llc Stone slab production methods and systems
US20200330199A1 (en) * 2019-04-18 2020-10-22 Ivoclar Vivadent Ag Dental divestment method and muffle
US12030260B1 (en) 2020-01-02 2024-07-09 Cambria Company Llc Stone slabs, systems, and methods
US12151395B2 (en) 2021-05-13 2024-11-26 Cambria Company Llc Textured stone slabs, systems, and methods

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958790A (en) * 1974-05-06 1976-05-25 Scott Samuel C Concrete wall forming panel with inflatable liner means
US4178343A (en) * 1977-05-16 1979-12-11 Rojo Agustin Jr Manufacture of precast concrete units and a building constructed therewith
US4355782A (en) * 1981-01-26 1982-10-26 Sierra Precast, Inc. Mold for forming fireplaces
US4534924A (en) * 1983-09-19 1985-08-13 Novi Development Corporation Method for molding concrete slabs and battery mold therefor
US5156791A (en) * 1990-03-26 1992-10-20 Inax Corporation Depositing method of wall concrete
US20060011802A1 (en) * 2002-04-24 2006-01-19 Profast Vertical casting apparatus and method
US7665712B2 (en) 2004-10-27 2010-02-23 Intellectual Property Management, Llc Apparatus for pre-casting concrete structures
US20060174569A1 (en) * 2004-10-27 2006-08-10 Stott Gale J Apparatus for pre-casting concrete structures
US20070062142A1 (en) * 2005-09-20 2007-03-22 Stott Gale J Concrete structure system
US7802409B2 (en) 2005-09-20 2010-09-28 Intellectual Property Management, Llc System of concrete structures having panel and column portions with rigid member and end of panel portion of one structure received in slot of column portion of adjacent structure
WO2007143569A2 (en) * 2006-06-02 2007-12-13 Maxam Industries Inc. Concrete form utilizing flexible material and methods of making and using the same
WO2007143569A3 (en) * 2006-06-02 2008-11-20 Maxam Ind Inc Concrete form utilizing flexible material and methods of making and using the same
US20090173872A1 (en) * 2008-01-07 2009-07-09 Intellectual Property Management Llc Method and System for Forming Pre-Cast Concrete Columns
US20090173871A1 (en) * 2008-01-08 2009-07-09 Intellectual Property Management Llc Method and System for Forming Vertical Pre-Cast Concrete Structures
US8162638B2 (en) 2008-01-08 2012-04-24 Intellectual Property Management Llc Method and system for forming vertical pre-cast concrete structures
US20120000593A1 (en) * 2009-03-12 2012-01-05 Qiangte Energy-Saving Materials Co. Ltd. Decorative brick mould for in-situ production on building
US8444789B2 (en) * 2009-03-12 2013-05-21 Qiangte Energy-Saving Materials Co. Ltd. Decorative brick mould for in-situ production on building
US20130234002A1 (en) * 2009-03-12 2013-09-12 Qiangte Energy-Saving Materials Co. Ltd Decorative brick mould for in-situ production on building
US9074380B2 (en) * 2009-03-12 2015-07-07 Qiangte Energy-Saving Materials Co. Ltd Decorative brick mould for in-situ production on building
US10300626B2 (en) 2014-08-19 2019-05-28 Cambria Company Llc Synthetic molded slabs, and systems and methods related thereto
US9186819B1 (en) 2014-08-19 2015-11-17 Cambria Company Llc Synthetic molded slabs, and systems and methods related thereto
US11845235B2 (en) 2014-08-19 2023-12-19 Cambria Company Llc Synthetic molded slabs, and systems and methods related thereto
US9718303B2 (en) 2014-08-19 2017-08-01 Cambria Company Llc Processed slabs, and systems and methods related thereto
US9993942B2 (en) 2014-08-19 2018-06-12 Cambria Company Llc Processed slabs, and systems and methods related thereto
US9993943B2 (en) 2014-08-19 2018-06-12 Cambria Company Llc Processed slabs, and systems and methods related thereto
US11498298B2 (en) 2014-08-19 2022-11-15 Cambria Company Llc Synthetic molded slabs, and systems and methods related thereto
US10981346B2 (en) 2014-08-19 2021-04-20 Cambria Company Llc Processed slabs, and systems and methods related thereto
US9289923B1 (en) 2015-01-30 2016-03-22 Cambria Company Llc Synthetic molded slabs, and systems and methods related thereto
US10195762B2 (en) 2015-01-30 2019-02-05 Cambria Company Llc Processed slabs, and systems and methods related thereto
US11845198B2 (en) 2015-01-30 2023-12-19 Cambria Company Llc Processed slabs, and systems and methods related thereto
US11529752B2 (en) 2015-01-30 2022-12-20 Cambria Company Llc Processed slabs, and systems and methods related thereto
US10773418B2 (en) 2015-01-30 2020-09-15 Cambria Company Llc Processed slabs, and systems and methods related thereto
US10105868B2 (en) 2015-01-30 2018-10-23 Cambria Company Llc Processed slabs, and systems and methods related thereto
US10981293B2 (en) 2015-01-30 2021-04-20 Cambria Company Llc Processed slabs, and systems and methods related thereto
US10252440B2 (en) 2015-01-30 2019-04-09 Cambria Company Llc Processed slabs, and systems and methods related thereto
US10607332B2 (en) 2015-12-21 2020-03-31 Cambria Company Llc Stone slab manufacturing methods and systems
US11741590B2 (en) 2015-12-21 2023-08-29 Cambria Company Llc Stone slab manufacturing methods and systems
US9613412B1 (en) 2015-12-21 2017-04-04 Cambria Company Llc Stone slab manufacturing methods and systems
US11244086B2 (en) 2017-04-03 2022-02-08 Cambria Company Llc Stone slab production methods and systems
US10467352B2 (en) 2017-04-03 2019-11-05 Cambria Company Llc Stone slab production methods and systems
US20200330199A1 (en) * 2019-04-18 2020-10-22 Ivoclar Vivadent Ag Dental divestment method and muffle
US12030260B1 (en) 2020-01-02 2024-07-09 Cambria Company Llc Stone slabs, systems, and methods
US12151395B2 (en) 2021-05-13 2024-11-26 Cambria Company Llc Textured stone slabs, systems, and methods

Similar Documents

Publication Publication Date Title
US3954377A (en) 1976-05-04 Vertical mold for making textured concrete panels
US3843089A (en) 1974-10-22 Textured concrete mold construction for vertically pouring concrete slabs
US2208589A (en) 1940-07-23 Building material and method
US2316819A (en) 1943-04-20 Wall structure
US6503025B1 (en) 2003-01-07 Precast concrete beam element and methods of making and installing same
US7661649B2 (en) 2010-02-16 System for vertically forming concrete panels
US20060011802A1 (en) 2006-01-19 Vertical casting apparatus and method
US3879914A (en) 1975-04-29 Method of making a platform structure
AU755253B2 (en) 2002-12-05 Block system
US3785608A (en) 1974-01-15 Jig for precasting a plurality of panels
US3767153A (en) 1973-10-23 Platform structure
US1728265A (en) 1929-09-17 Floor construction and method of producing the same
JPH0579049A (en) 1993-03-30 Constructing method for beam and slab in underground body construction work
KR102214348B1 (en) 2021-02-09 the improved PC panel unit manufacturing device
US2810287A (en) 1957-10-22 Wall of pre-cast slabs
JPH0298406A (en) 1990-04-10 Manufacture of precast concrete slab
JP2002047661A (en) 2002-02-15 Building foundation, foundation material, and its execution method
JPH0218123Y2 (en) 1990-05-22
JPH1121860A (en) 1999-01-26 Construction method for wall-form concrete structure
JP3126885B2 (en) 2001-01-22 Method of manufacturing blocks for stone walls using natural stone
CN222456782U (en) 2025-02-11 Template device for basement post-pouring belt
EP0096051B1 (en) 1987-02-04 Nest-casting of concrete elements
US4784365A (en) 1988-11-15 Apparatus for nest-casting of concrete elements
JP3010556B1 (en) 2000-02-21 Fixing method of precast concrete formwork to underground concrete connecting wall
JPS5858503B2 (en) 1983-12-26 Construction method of reinforced concrete composite wall