US3843089A - Textured concrete mold construction for vertically pouring concrete slabs - Google Patents
- ️Tue Oct 22 1974
US3843089A - Textured concrete mold construction for vertically pouring concrete slabs - Google Patents
Textured concrete mold construction for vertically pouring concrete slabs Download PDFInfo
-
Publication number
- US3843089A US3843089A US00279406A US27940672A US3843089A US 3843089 A US3843089 A US 3843089A US 00279406 A US00279406 A US 00279406A US 27940672 A US27940672 A US 27940672A US 3843089 A US3843089 A US 3843089A Authority
- US
- United States Prior art keywords
- mold
- concrete
- members
- wall
- slabs Prior art date
- 1972-08-10 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B7/00—Moulds; Cores; Mandrels
- B28B7/36—Linings or coatings, e.g. removable, absorbent linings, permanent anti-stick coatings; Linings becoming a non-permanent layer of the moulded article
- B28B7/364—Linings or coatings, e.g. removable, absorbent linings, permanent anti-stick coatings; Linings becoming a non-permanent layer of the moulded article of plastic material or rubber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B7/00—Moulds; Cores; Mandrels
- B28B7/0029—Moulds or moulding surfaces not covered by B28B7/0058 - B28B7/36 and B28B7/40 - B28B7/465, e.g. moulds assembled from several parts
- B28B7/0035—Moulds characterised by the way in which the sidewalls of the mould and the moulded article move with respect to each other during demoulding
- B28B7/0041—Moulds characterised by the way in which the sidewalls of the mould and the moulded article move with respect to each other during demoulding the sidewalls of the mould being moved only parallelly away from the sidewalls of the moulded article
Definitions
- Each form wall has a textured mold liner permitting various patterns to be impressed upon the surface of the concrete slabs.
- the carriage of the mobile form permits the mobile form to be removably connected to the stationary form.
- This concrete mold permits vertically casting concrete wall slabs with textured surfaces formed into the we! concrete.
- Precast concrete wall slabs have been used in the building construction industry for many years. Usually, the concrete slabs are poured using production line techniques at a remote factory site and then transported to the various construction sites where the slabs are installed as floors and walls. Generally, the concrete slabs are poured horizontally using the ground to support one side of the form. Heretofore, horizontal casting has been preferred because the ground easily supports the heavy weight of the concrete and an extensive mold supporting structure is not required.
- the texture can be either a stylized pattern or a natural finish.
- texture was impressed into one side of the wall by placing in the bottom of the form a mold liner having the desired texture. As the concrete hardened, the texture of the mold liner was impressed on the bottom side of the slab.
- the first method stamped the texture into the wet concrete with an open, grate-like, skeletal frame.
- the skeletal frame had projecting ribs that forced the impression into the surface of the wet concrete. Stamping down with an unperforated mold on the top side of the slab is unsuccessful because pockets of air are entrapped between the surface of the wet concrete and the surface of the mold.
- the second method the top surface is smoothly finished and then after drying, etched with acid. The extent and depth of the texture is achieved by masking the surface and controlling the amount of acid contact.
- Another technique involves sandblasting the texture into the slab after drying.
- the fourh method requires plastering the concrete wall after the slab is erected and forming the desired texture in the wet plaster.
- the mold construction and vertical pouring method permits concrete wall slabs to be poured so that both surfaces of the wet concrete slab can be impressed with a desired texture. No sandblasting, acid etching, or further finishing is required.
- the textures are simultaneously cast into the panels.
- numerous different texture patterns are possible and each pattern is easily incorporated into the mold.
- the mold can cast slabs with the identical texture on both surfaces or with a different texture on each side.
- the present invention is directed to a mold that can be readily assembled and disassembled for use and reuse in the formation of concrete slabs.
- the mold includes first and second concrete impervious form members adapted to be disposed in confronting, releasable coupling relationship on a base member.
- One of the form members is fixedly positioned with respect to the base member while the second form member is generally movable therefrom to enable the width of the concrete slab to be varied and ultimately for the concrete slab to be removed from the mold.
- the mold further includes a pair of side members for closing relationship with the side openings defined by the first and second members.
- the concrete mold of this invention includes a mobile, vertical form wall having a removable mold liner attached to its face.
- the mobile form wall is erected on a carriage which rolls on at least two rails of a track and which moves along the ground generally perpendicularly to the face of the mold liner.
- the mold also has a stationary, vertical form wall rigidly mounted on a concrete foundation.
- On the face of the stationary form wall is another removable mold liner in opposing relationship to the mold liner on the mobile form wall. Since the slab is vertically poured, the tremendous weight of the concrete pushing the forms apart must be restrained.
- the curbing of the concrete foundation of the stationary form permits the carriage of the mobile form to pass beneath the stationary form and to engage the rear supporting structure of the stationary form thereby locking the forms together.
- the mobile form and the stationary form are also held together by turnbuckles located around the periphery of the two forms.
- Two vertical end gates perpendicularly anchored to the forms are the end of the mold and prevent the concrete from slipping out between the ends of the mold liners.
- the foundation curbing provides the bottom for the mold.
- FIG. 1 is a perspective view of a mobile vertical form
- FIG. 2 is a perspective view partially in section and broken away of a mobile form wall
- FIG. 3 is a perspective view of a stationary form showing the pipes for pouring concrete into the mold
- FIG. 4 is a perspective view partially broken away of the mobile form and the stationary form locked together. (The concrete pouring pipes have been omitted for clarity);
- FIG. 5 is a plan view of the top of the mold partially in section taken along line 5-5 of FIG. 4;
- FIG. 6 is a side view partially broken away and in section of the stationary form taken along line 66 of FIG. 5.
- mold A is formed of a generally mobile vertical form 10, primarily described in FIGS. 1 and 2 and stationary vertical form 40, primarily described in FIGS. 3 and 4.
- mobile form 10 has carriage l2 and form wall 14.
- the form wall 14 is comprised of mold liner l6 and backing 18.
- Mold liner 16 is a thick rubber sheet that has a textured surface to be impressed against the wet concrete during casting.
- the textured surface on mold liner I6 is attached by casting the liner on a primary mold (not shown) in a conventional manner.
- the mold liner can be fabricated from rubber or any suitable moldable material such as fiberglass, polyvinyl chloride, or cold mold rubber. Rubber is preferred because it is sufficiently pliable so that the mold liner will release itself from around undercuts (indentations) in the textured concrete without breaking the webs of the newly cured concrete.
- mold liner 16 is formed with steel fabric wire 17 embedded in the rubber.
- the ends of fabric wire 17 that protrude from the extremities of mold liner 16 are welded to peripheral angle iron frame 19.
- fabric wire 17 and angle iron frame 19 are only shown in FIG. 2. It is intended, however, that FIG. 2 represent the construction of all form walls.
- Backing 18 is a sheet of exterior plywood cut to the dimensions of the mold liner. Mold liner 16 is permanently attached to backing 18 such as by gluing with conventional contact cement and bolting peripheral angle iron frame 19 to the backing.
- backing 18 is a sheet of exterior plywood cut to the dimensions of the mold liner.
- Mold liner 16 is permanently attached to backing 18 such as by gluing with conventional contact cement and bolting peripheral angle iron frame 19 to the backing.
- mobile form has a rubber stamp-like face backed by a non-compressible wooden sheet.
- Carriage 12 of mobile form 10 is formed of skeletal framework 20 and horizontal rails 22, 23 and 24.
- the framework is fabricated from standard steel stock and is of conventional design.
- Framework 20 supports form wall 14 on carriage l2 forcing form wall 14 against the weight of the concrete while the mold is in use.
- Rails 22, 23 and 24 are also fabricated from standard steel stock and are a structural part of framework 20.
- Wheels 26 are disposed below rails 22, 23 and 24 to support mobile form 10. The wheels are positioned to engage three parallel tracks 28, 29 and 30.
- the tracks lie perpendicular to the face of form wall 14 to enable the carriage to travel back and forth in front of the stationary mold as hereinafter described.
- Turnbuckles 36 Randomly'spaced around the top and sides of the form wall 14 are a plurality of turnbuckles 36.
- Turnbuckles 36 are secured to mobile form 10, for example, by steel eyes welded on to framework 20.
- the eyes permit turnbuckles 36 to rotate sufficiently enough to engage corresponding hooks 64 on stationary form 40 as hereinafter described.
- the eyes, turnbuckles 36 and hooks 64 are used to releasably lock stationary form 40 and mobile form 10 together to form mold A, as shown in FIG. 4.
- a plurality of each is required to counteract the tremendous pressure exerted by the wet concrete that tends to force the two forms apart.
- Turnbuckles 36 are specifically used because they are adjustable for locking and unlocking purposes and adjustable for varying the spacing between the two forms.
- Randomly spaced cleats 38 are welded to the two vertical sides of mobile form 10.
- the cleats are made of steel and guide the end gates or sides of the mold into place as hereinafter described.
- reference numeral 40 generally indicates a stationary vertical form comprised of stationary form wall 42 and framework 44.
- Framework 44 is a steel skeletal structure similar in construction to framework 20. Framework 44 is securely embedded in a concrete foundation to hold form wall 42 in place against the weight of the concrete. Framework 44 is provided with platform 46 that runs along the top of stationary form wall 42 and provides access to the top of mold A for the workmen.
- Concrete pouring pipe 45 mounted to framework 44, is formed of a vertical section 48 along one side of framework 44, elbow 49, horizontal section 50 and flexible section 51.
- the lower end of vertical section 48 is connected to a concrete pump (not shown) and flexible section 51 directed downwardly between the mobile form wall 14 and stationary form wall 42.
- a production line having numerous vertical pouring molds is set up, an additional horizontal pipe 52 can be used.
- the flexible section 51 is attached to pipe 52 to enable the concrete to flow along the top of form wall 42 and into the next succeeding similarly placed mold (not shown).
- Form wall 42 on stationary form 40 is also formed of a mold liner and a plywood backing.
- stationary form wall 42 is of similar construction and performs the same function as form wall 14 of mobile form 10. Both of form walls 14 and 42 are removably bolted to their respectiveframeworks so that mold liners can be easily interchanged. In this manner, an inventory of interchangeable form walls having different textured mold liners can be readily maintained.
- Sutable textures heretofore employed include slumpstone, brick, wood, and rope textures, as well as the texture on existing masonary walls.
- Removable form walls permit casting slabs to have identical texture on both sides or different textures on each side.
- Stationary form 40 is located on top of a curb 54.
- Curb 54 is preferably of rectangular cross-section and extends for at least the length of form 40.
- the curb forms the lower boundary of 'mold A and is an integral part of the concrete foundation and framework that supports form wall 42.
- the top surface of curb 54 forms the bottom of mold A.
- Within curb 54 are three tunnels 56, 57 and 58 straddling respective of tracks 28, 29 and 30. The tunnels enable the forward ends of rails 22, 23 and 24 of mobile form 10 to extend through curb 54 beneath stationary form 40.
- Rails 22, 23 and 24 are provided with respective of slots 32, 33 and 34.
- Reference numeral 60 indicates a latch made of steel that engages slot 32 on rail 22 to lock mobile form 10 against curb 54. Additional latches 61 and 63 are similarly disposed on framework 44 at the terminal ends of tracks 28 and 29, respectively. Latches 61 and 63 lock into slot 33 on rail 23 and slot 34 on rail 24, respectively. By advancing rails 22, 23 and 24 through tunnels 56, 57 and 58, latches 60, 61 and 62 can be engaged with slots 32, 33 and 34 to retain mobile form 10 adjacent stationary form 40. In FIGS. 3 and 4 the latches are shown for clarity as simple hooks pivotally mounted on framework 44. Alternatively, three turnbuckles, pivotally mounted to framework 44 can be utilized for releasably latching the rails to framework 44. When used, the turnbuckles permit the spacing between the form walls to be varied, thereby changing the width of mold A.
- a plurality of randomly spaced cleats 62 is welded on the two vertical sides of stationary form 40.
- Cleats 62 are made of steel and are intended to cooperate with cleats 38 on mobile form 10.
- Cleats 38 and 62 are used to hold the sides or end gates of the mold in place as hereinafter described.
- Around the top and sides of form wall 42 is a series of hooks 64. Hooks 64 are preferably formed of steel that is welded to framework 44. The hooks are engaged by the terminal free ends of turnbuckles 36 on mobile form 10 when the forms are locked together.
- reference numeral 66 indicates two external, electric vibrators. Vibrators 66 are rigidly attached to framework 44 and provide enough vibration to the mold to insure the complete compaction of the wet concrete within the mold. Vibrators 66 can be of conventional construction commonly used by the building industry in external vibration applications.
- the wet concrete is held in place between forms and 40 by two end gates 68 and 70 located at the sides of mold A.
- the end gates are rectangular, elongate steel plates that rest on top of the surface of curb 54 after mold A is assembled.
- the width of the end gates is larger than the unobstructed width between form walls 14 and 42.
- each end gate is provided with a series of cleats 72 welded thereto in registry with cleats 38 on the mobile mold and cleats 62 on the stationary mold when the end gates are in position on the mold.
- the end gates are held in position when steel bars 74 are slipped between the three sets of cleats as shown most clearly in FIG. 5.
- the steel bars are nearly the same diameter as the openings in cleats 38 and 62 to provide for frictional capture by them.
- slip gate 76 is used.
- Slip gate 76 is an elongate, rectangular steel plate having the same dimensions as an end gate and rests on the top surface of curb 54.
- the slip gate is mounted parallel to end gate 70 and also forms a water tight seal by the deformation of the mold liners about its edges. Cleats have not been found to be required on slip gate 76.
- Slip gate 76 is retained in place by support 78. Referring to FIG. 6, support 78 is preferably a wooden brace of suitable length disposed between end gate 70 and slip gate 76. The horizontal forces from the wet concrete pushing the slip gate outwardly are resisted by the support 78 acting against end gate 70 held in place by cleats 38, 62, 72 and bars 74.
- two mold liners 16 having the desired texture are fabricated. This is usually accomplished by constructing a mock up of the finished wall and then casting either cold mold rubber, fiberglass, or some other suitable compound on the model. It has been found that adobe brick, slumpstone, brick and rough hewn wood are suitable for texture patterns.
- a piece of fabric wire 17 is implanted in the middle of the mold liner 16 before the liner material hardens. The fabric wire is intended to reinforce mold liner l6 and provide a suitable anchoring foundation to secure mold liner 16 to backing l8.
- Backing 18 is advantageously fabricated from exterior plywood.
- mold liner 16 is glued to backing l8 and the exposed ends of the fabric wire 17 welded to peripheral angle iron frame 19.
- the angle iron frame is in turn bolted to backing 18.
- the rubber mold liner is then glued to the plywood backing using conventional contact cement.
- the mold liners and backing used on both the mobile and stationary forms are constructed in exactly the same manner, from the same materials and are interchangeable in operation.
- the casting process is commenced by first bolting two form walls 14 and 42 to steel framework 20 and 44 of the mobile and stationary forms, respectively. Next, the surfaces that will contact wet cement are coated with a suitable bond breaker. Both soap or oil are among satisfactory materials.
- Carriage 12 is then advanced along tracks 28, 29 and 30 so that the forward extending portions of rails 24, 23 and 22 will extend into tunnels 58, 57 and 56.
- the rails are locked into place by inserting latches 60, 63 and 61 on framework 44 into respective of slots 32, 33 and 34 on rails 22, 23 and 24.
- the latches retain the lower portion of the mobile form 10 securely against curb 54 and prevent the two form walls from being forced apart by the pressure of the wet concrete.
- the top surface of curb 54 will ultimately form the lower horizontal surface of the mold.
- the bars hold the end gates in position against the pressure of the wet concrete.
- the end gates form the side surfaces of the mold and keep the concrete from spilling out between the form walls. Because the mold liners are flexible, the mold liners resiliently engage and deform around the edges of the end gates. Thus a water tight, concrete proof barrier is formed.
- turnbuckles 36 are tightened to engage hooks 64 on the stationary form. The hooks and turnbuckles hold the upper portion of mold together against the pressure of the wet concrete.
- slip gate 76 When a concrete wall slab is desired that has a smaller length than the distance between the two end gates 68 and 70, slip gate 76 is used.
- the slip gate is positioned between the form walls at the desired length from one of the end gates.
- Slip gate 76 rests upon the curb 54 and is braced horizontally from the nearby end gate using support 78.
- Slip gate 76 provides one of the side surfaces of the mold and keeps the concrete from spilling out between the form walls.
- the mold liners also resiliently engage and deform around the edges of the slip gate. Referring to FIG. 5, the cavity between end gate 70 and slip gate 76 where support 78 is located is retained free of concrete. The concrete is only poured into the cavity formed between end gate 68 and slip gate 76 shown in FIG. 4.
- a cage of reinforcing bars can be fabricated beforehand. After the forms are locked together, the cage (not shown) can be inserted into the cavity between end gate 68 and either end gate 70 or slip gate 76. The cage can be maintained in position between the form walls by small plastic spacers that are customarily used for horizontally poured wall slabs.
- a conventional concrete pump (not shown) is connected to the lower, vertical end of pouring pipe 48.
- the end of the flexible section 51 of the pouring pipe is directed into the cavity of mold A.
- the wet concrete is forced by the concrete pump into the lower end of the pouring pipe 48, out of flexible section 51 and into the cavity formed between the forms and end gate 68 and either end gate 70 or slip gate 76.
- external vibrators 66 on framework 44 are energized to vibrate the whole mold. The vibrators insure that the wet concrete is firmly packed into place and no bubbles are created within the concrete.
- An adjustable, reusable mold for forming concrete slabs comprising: a first concrete impervious form member; a concrete impervious base member having an upper surface; means for fixedly supporting said first form member in a generally upright position on the upper surface of said base member; a second concrete impervious form member; means for supporting said second member in a generally upright position and for mounting said second member for movement toward and away from said first fixed member along a path generally parallel to said upper surface of said base member wherein said path comprises a plurality of rails and said supporting and moving means comprises a wheeled carriage adapted to roll on said rails; means for releasably coupling said second member at a predetermined distance from said first member on said base member; a pair of concrete impervious side members moveable into closing relationship to the side opening defined by said first and second members; and means for retaining said pair of side members in fluid-tight engagement with said first and second upright members and said base member, and said base member is provided with a plurality of slots into which respective of said plurality of rail
- said first engagement means comprises a series of spaced slots and said second engagement means comprises a plurality of hooks whereby said hooks are adapted to be inserted into one of said plurality of slots to retain the second form member at a predetermined distance from said first form member.
- a mold in accordance with claim 1 wherein the retaining means for said pair of members comprises a plurality of adjustable turnbuckles adapted to retain said pair of side members in confronting fluid-tight engagement along the sides of said first and second form mem-
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)
Abstract
A textured mold for vertically casting concrete wall slabs. The mold has one mobile vertical form wall mounted on a supporting carriage which runs along a track and a stationary vertical form wall rigidly anchored to a concrete foundation. Each form wall has a textured mold liner permitting various patterns to be impressed upon the surface of the concrete slabs. The carriage of the mobile form permits the mobile form to be removably connected to the stationary form. This concrete mold permits vertically casting concrete wall slabs with textured surfaces formed into the wet concrete.
Description
United States Patent 191 Scholz et al.
[451 Oct. 22, 1974 TEXTURED CONCRETE MOLD CONSTRUCTION FOR VERTICALLY POURING CONCRETE SLABS [75] lnventors: Ray John Scholz; Thomas Patrick Fuller, both of Los Altos, Calif.
[73] Assignee: Printex Concrete Products, Santa Clara, Calif.
[22] Filed: Aug. 10, 1972 [21] Appl. No.: 279,406
[52] U.S. Cl 249/158, 249/161, 249/168, 264/313 [51] Int. Cl B28b 7/02 [58] Field of Search 249/35, 47, 112, 161, 162, 249/189, 33, 158, 168; 264/313 [56] References Cited UNITED STATES PATENTS 830,893 9/1906 Engelhardt 249/47 2,453,223 11/1948 Henderson 264/313 X 2,535,277 12/1950 Fama 249/34 3,595,514 7/1971 Sanders. 249/47 X 3,609,830 10/1971 Myklebost 249/162 X 3,628,766 l2/197l Hartmann 3,664,630 5/1972 Maynen et al. 249/1 l2 3,785,608 l/l974 Hcinzman et al 249/161 Primary Examiner-Robert D. Baldwin Assistant Examiner-Robert J. Craig Attorney, Agent, or Firm-Townsend and Townsend 5 7 1 ABSTRACT A textured mold for vertically casting concrete wall slabs. The mold has one mobile vertical form wall mounted on a supporting carriage which runs along a track and a stationary vertical form wall rigidly anchored to a concrete foundation. Each form wall has a textured mold liner permitting various patterns to be impressed upon the surface of the concrete slabs. The carriage of the mobile form permits the mobile form to be removably connected to the stationary form. This concrete mold permits vertically casting concrete wall slabs with textured surfaces formed into the we! concrete.
3 Claims, 6 Drawing Figures TEXTURED CONCRETE MOLD CONSTRUCTION FOR VERTICALLY POURING CONCRETE SLABS BACKGROUND OF THE INVENTION This invention relates to prefabricated concrete building construction and, more particularly, to the methods and molds for producing precast concrete wall slabs.
SUMMARY OF THE INVENTION Precast concrete wall slabs have been used in the building construction industry for many years. Usually, the concrete slabs are poured using production line techniques at a remote factory site and then transported to the various construction sites where the slabs are installed as floors and walls. Generally, the concrete slabs are poured horizontally using the ground to support one side of the form. Heretofore, horizontal casting has been preferred because the ground easily supports the heavy weight of the concrete and an extensive mold supporting structure is not required.
One of the many advantages of precasting concrete walls is the ability to place a texture onto the surface of the wall during its casting. The texture can be either a stylized pattern or a natural finish. In the past, texture was impressed into one side of the wall by placing in the bottom of the form a mold liner having the desired texture. As the concrete hardened, the texture of the mold liner was impressed on the bottom side of the slab.
If a texture was desired on the top side of the slab in addition to a texture on the bottom side, four methods were commonly used. The first method stamped the texture into the wet concrete with an open, grate-like, skeletal frame. The skeletal frame had projecting ribs that forced the impression into the surface of the wet concrete. Stamping down with an unperforated mold on the top side of the slab is unsuccessful because pockets of air are entrapped between the surface of the wet concrete and the surface of the mold. In the second method the top surface is smoothly finished and then after drying, etched with acid. The extent and depth of the texture is achieved by masking the surface and controlling the amount of acid contact. Another technique involves sandblasting the texture into the slab after drying. The fourh method requires plastering the concrete wall after the slab is erected and forming the desired texture in the wet plaster.
The mold construction and vertical pouring method permits concrete wall slabs to be poured so that both surfaces of the wet concrete slab can be impressed with a desired texture. No sandblasting, acid etching, or further finishing is required. The textures are simultaneously cast into the panels. In addition, numerous different texture patterns are possible and each pattern is easily incorporated into the mold. The mold can cast slabs with the identical texture on both surfaces or with a different texture on each side.
The present invention is directed to a mold that can be readily assembled and disassembled for use and reuse in the formation of concrete slabs. The mold includes first and second concrete impervious form members adapted to be disposed in confronting, releasable coupling relationship on a base member. One of the form members is fixedly positioned with respect to the base member while the second form member is generally movable therefrom to enable the width of the concrete slab to be varied and ultimately for the concrete slab to be removed from the mold. The mold further includes a pair of side members for closing relationship with the side openings defined by the first and second members.
The concrete mold of this invention includes a mobile, vertical form wall having a removable mold liner attached to its face. The mobile form wall is erected on a carriage which rolls on at least two rails of a track and which moves along the ground generally perpendicularly to the face of the mold liner. The mold also has a stationary, vertical form wall rigidly mounted on a concrete foundation. On the face of the stationary form wall is another removable mold liner in opposing relationship to the mold liner on the mobile form wall. Since the slab is vertically poured, the tremendous weight of the concrete pushing the forms apart must be restrained. The curbing of the concrete foundation of the stationary form permits the carriage of the mobile form to pass beneath the stationary form and to engage the rear supporting structure of the stationary form thereby locking the forms together. The mobile form and the stationary form are also held together by turnbuckles located around the periphery of the two forms. Two vertical end gates perpendicularly anchored to the forms are the end of the mold and prevent the concrete from slipping out between the ends of the mold liners. The foundation curbing provides the bottom for the mold.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a mobile vertical form;
FIG. 2 is a perspective view partially in section and broken away of a mobile form wall;
FIG. 3 is a perspective view of a stationary form showing the pipes for pouring concrete into the mold;
FIG. 4 is a perspective view partially broken away of the mobile form and the stationary form locked together. (The concrete pouring pipes have been omitted for clarity);
FIG. 5 is a plan view of the top of the mold partially in section taken along line 5-5 of FIG. 4; and
FIG. 6 is a side view partially broken away and in section of the stationary form taken along
line66 of FIG. 5.
DESCRIPTION OF THE PREFERRED EMBODIMENTS Turning to the drawings wherein similar characters of reference represent corresponding parts in each of the several views, mold A is formed of a generally mobile
vertical form10, primarily described in FIGS. 1 and 2 and stationary
vertical form40, primarily described in FIGS. 3 and 4.
Referring first to FIG. 1,
mobile form10 has carriage l2 and
form wall14. The
form wall14 is comprised of mold liner l6 and backing 18.
Mold liner16 is a thick rubber sheet that has a textured surface to be impressed against the wet concrete during casting. The textured surface on mold liner I6 is attached by casting the liner on a primary mold (not shown) in a conventional manner. The mold liner can be fabricated from rubber or any suitable moldable material such as fiberglass, polyvinyl chloride, or cold mold rubber. Rubber is preferred because it is sufficiently pliable so that the mold liner will release itself from around undercuts (indentations) in the textured concrete without breaking the webs of the newly cured concrete.
As can be seen most clearly from FIG. 2,
mold liner16 is formed with
steel fabric wire17 embedded in the rubber. The ends of
fabric wire17 that protrude from the extremities of
mold liner16 are welded to peripheral
angle iron frame19. For clarity,
fabric wire17 and
angle iron frame19 are only shown in FIG. 2. It is intended, however, that FIG. 2 represent the construction of all form walls.
Backing18 is a sheet of exterior plywood cut to the dimensions of the mold liner.
Mold liner16 is permanently attached to backing 18 such as by gluing with conventional contact cement and bolting peripheral
angle iron frame19 to the backing. Thus, mobile form has a rubber stamp-like face backed by a non-compressible wooden sheet.
12 of
mobile form10 is formed of
skeletal framework20 and
horizontal rails22, 23 and 24. The framework is fabricated from standard steel stock and is of conventional design.
Framework20 supports form
wall14 on carriage l2 forcing
form wall14 against the weight of the concrete while the mold is in use.
Rails22, 23 and 24 are also fabricated from standard steel stock and are a structural part of
framework20.
Wheels26 are disposed below
rails22, 23 and 24 to support
mobile form10. The wheels are positioned to engage three
parallel tracks28, 29 and 30. Preferably, the tracks lie perpendicular to the face of
form wall14 to enable the carriage to travel back and forth in front of the stationary mold as hereinafter described.
Randomly'spaced around the top and sides of the
form wall14 are a plurality of
turnbuckles36.
Turnbuckles36 are secured to
mobile form10, for example, by steel eyes welded on to
framework20. The eyes permit
turnbuckles36 to rotate sufficiently enough to engage corresponding
hooks64 on
stationary form40 as hereinafter described. The eyes,
turnbuckles36 and hooks 64 are used to releasably lock
stationary form40 and
mobile form10 together to form mold A, as shown in FIG. 4. A plurality of each is required to counteract the tremendous pressure exerted by the wet concrete that tends to force the two forms apart.
Turnbuckles36 are specifically used because they are adjustable for locking and unlocking purposes and adjustable for varying the spacing between the two forms.
Randomly spaced
cleats38 are welded to the two vertical sides of
mobile form10. The cleats are made of steel and guide the end gates or sides of the mold into place as hereinafter described.
In FIG. 3,
reference numeral40 generally indicates a stationary vertical form comprised of
stationary form wall42 and
framework44.
Framework44 is a steel skeletal structure similar in construction to
framework20.
Framework44 is securely embedded in a concrete foundation to hold
form wall42 in place against the weight of the concrete.
Framework44 is provided with
platform46 that runs along the top of
stationary form wall42 and provides access to the top of mold A for the workmen.
45, mounted to
framework44, is formed of a
vertical section48 along one side of
framework44,
elbow49,
horizontal section50 and
flexible section51. During concrete pouring, the lower end of
vertical section48 is connected to a concrete pump (not shown) and
flexible section51 directed downwardly between the
mobile form wall14 and
stationary form wall42. When a production line having numerous vertical pouring molds is set up, an additional
horizontal pipe52 can be used. Thus, after concrete is poured into mold A, the
flexible section51 is attached to
pipe52 to enable the concrete to flow along the top of
form wall42 and into the next succeeding similarly placed mold (not shown).
42 on
stationary form40 is also formed of a mold liner and a plywood backing. Referring again to FIG. 2,
stationary form wall42 is of similar construction and performs the same function as
form wall14 of
mobile form10. Both of
form walls14 and 42 are removably bolted to their respectiveframeworks so that mold liners can be easily interchanged. In this manner, an inventory of interchangeable form walls having different textured mold liners can be readily maintained. Sutable textures heretofore employed include slumpstone, brick, wood, and rope textures, as well as the texture on existing masonary walls. Removable form walls permit casting slabs to have identical texture on both sides or different textures on each side.
40 is located on top of a
curb54.
Curb54 is preferably of rectangular cross-section and extends for at least the length of
form40. The curb forms the lower boundary of 'mold A and is an integral part of the concrete foundation and framework that supports
form wall42. When
mobile form10 is secured to
stationary form40 as in FIG. 4, the top surface of
curb54 forms the bottom of mold A. Within
curb54 are three
tunnels56, 57 and 58 straddling respective of
tracks28, 29 and 30. The tunnels enable the forward ends of
rails22, 23 and 24 of
mobile form10 to extend through
curb54 beneath
stationary form40.
Rails22, 23 and 24 are provided with respective of
slots32, 33 and 34.
60 indicates a latch made of steel that engages
slot32 on
rail22 to lock
mobile form10 against
curb54.
Additional latches61 and 63 are similarly disposed on
framework44 at the terminal ends of
tracks28 and 29, respectively.
Latches61 and 63 lock into
slot33 on
rail23 and
slot34 on
rail24, respectively. By advancing
rails22, 23 and 24 through
tunnels56, 57 and 58, latches 60, 61 and 62 can be engaged with
slots32, 33 and 34 to retain
mobile form10 adjacent
stationary form40. In FIGS. 3 and 4 the latches are shown for clarity as simple hooks pivotally mounted on
framework44. Alternatively, three turnbuckles, pivotally mounted to
framework44 can be utilized for releasably latching the rails to
framework44. When used, the turnbuckles permit the spacing between the form walls to be varied, thereby changing the width of mold A.
A plurality of randomly spaced
cleats62 is welded on the two vertical sides of
stationary form40.
Cleats62 are made of steel and are intended to cooperate with
cleats38 on
mobile form10.
Cleats38 and 62 are used to hold the sides or end gates of the mold in place as hereinafter described. Around the top and sides of
form wall42 is a series of
hooks64.
Hooks64 are preferably formed of steel that is welded to
framework44. The hooks are engaged by the terminal free ends of
turnbuckles36 on
mobile form10 when the forms are locked together.
In FIG. 4,
reference numeral66 indicates two external, electric vibrators.
Vibrators66 are rigidly attached to
framework44 and provide enough vibration to the mold to insure the complete compaction of the wet concrete within the mold.
Vibrators66 can be of conventional construction commonly used by the building industry in external vibration applications.
In operation, the wet concrete is held in place between forms and 40 by two
end gates68 and 70 located at the sides of mold A. The end gates are rectangular, elongate steel plates that rest on top of the surface of
curb54 after mold A is assembled. The width of the end gates is larger than the unobstructed width between
form walls14 and 42. When the form walls are locked together with the end gates in place, rubber mold liners deform around the edges of
end gates68 and 70. The deformation of the rubber mold liners forms a fluid tight seal for the mold.
The outward facing side of each end gate is provided with a series of
cleats72 welded thereto in registry with
cleats38 on the mobile mold and
cleats62 on the stationary mold when the end gates are in position on the mold. The end gates are held in position when steel bars 74 are slipped between the three sets of cleats as shown most clearly in FIG. 5. The steel bars are nearly the same diameter as the openings in
cleats38 and 62 to provide for frictional capture by them.
When the length of the mold is desired to be decreased,
slip gate76 is used. Slip
gate76 is an elongate, rectangular steel plate having the same dimensions as an end gate and rests on the top surface of
curb54. The slip gate is mounted parallel to end
gate70 and also forms a water tight seal by the deformation of the mold liners about its edges. Cleats have not been found to be required on
slip gate76. Slip
gate76 is retained in place by
support78. Referring to FIG. 6,
support78 is preferably a wooden brace of suitable length disposed between
end gate70 and
slip gate76. The horizontal forces from the wet concrete pushing the slip gate outwardly are resisted by the
support78 acting against
end gate70 held in place by
cleats38, 62, 72 and bars 74.
To utilize the vertical mold of this invention, two
mold liners16 having the desired texture are fabricated. This is usually accomplished by constructing a mock up of the finished wall and then casting either cold mold rubber, fiberglass, or some other suitable compound on the model. It has been found that adobe brick, slumpstone, brick and rough hewn wood are suitable for texture patterns. Referring again to FIG. 2, a piece of
fabric wire17 is implanted in the middle of the
mold liner16 before the liner material hardens. The fabric wire is intended to reinforce mold liner l6 and provide a suitable anchoring foundation to secure
mold liner16 to backing l8.
Backing18 is advantageously fabricated from exterior plywood.
After the liner material has hardened,
mold liner16 is glued to backing l8 and the exposed ends of the
fabric wire17 welded to peripheral
angle iron frame19. The angle iron frame is in turn bolted to
backing18. The rubber mold liner is then glued to the plywood backing using conventional contact cement. The mold liners and backing used on both the mobile and stationary forms are constructed in exactly the same manner, from the same materials and are interchangeable in operation.
The casting process is commenced by first bolting two
form walls14 and 42 to
steel framework20 and 44 of the mobile and stationary forms, respectively. Next, the surfaces that will contact wet cement are coated with a suitable bond breaker. Both soap or oil are among satisfactory materials.
Carriage12 is then advanced along
tracks28, 29 and 30 so that the forward extending portions of
rails24, 23 and 22 will extend into
tunnels58, 57 and 56. The rails are locked into place by inserting
latches60, 63 and 61 on
framework44 into respective of
slots32, 33 and 34 on
rails22, 23 and 24. The latches retain the lower portion of the
mobile form10 securely against
curb54 and prevent the two form walls from being forced apart by the pressure of the wet concrete. The top surface of
curb54 will ultimately form the lower horizontal surface of the mold.
68 and are next positioned so that
bars74 can be inserted through
cleats38, 62 and 72. The bars hold the end gates in position against the pressure of the wet concrete. The end gates form the side surfaces of the mold and keep the concrete from spilling out between the form walls. Because the mold liners are flexible, the mold liners resiliently engage and deform around the edges of the end gates. Thus a water tight, concrete proof barrier is formed. Next,
turnbuckles36 are tightened to engage
hooks64 on the stationary form. The hooks and turnbuckles hold the upper portion of mold together against the pressure of the wet concrete.
When a concrete wall slab is desired that has a smaller length than the distance between the two
end gates68 and 70,
slip gate76 is used. The slip gate is positioned between the form walls at the desired length from one of the end gates. Slip
gate76 rests upon the
curb54 and is braced horizontally from the nearby end
gate using support78. Slip
gate76 provides one of the side surfaces of the mold and keeps the concrete from spilling out between the form walls. The mold liners also resiliently engage and deform around the edges of the slip gate. Referring to FIG. 5, the cavity between
end gate70 and
slip gate76 where
support78 is located is retained free of concrete. The concrete is only poured into the cavity formed between
end gate68 and
slip gate76 shown in FIG. 4.
If internal steel reinforcing bars (not shown) are desired for the concrete slab, a cage of reinforcing bars can be fabricated beforehand. After the forms are locked together, the cage (not shown) can be inserted into the cavity between
end gate68 and either end
gate70 or
slip gate76. The cage can be maintained in position between the form walls by small plastic spacers that are customarily used for horizontally poured wall slabs.
After the form walls have been locked together with the gates in place and the surfaces coated with a bond breaker, the mold is ready to receive the concrete. A conventional concrete pump (not shown) is connected to the lower, vertical end of pouring
pipe48. The end of the
flexible section51 of the pouring pipe is directed into the cavity of mold A. The wet concrete is forced by the concrete pump into the lower end of the pouring
pipe48, out of
flexible section51 and into the cavity formed between the forms and end
gate68 and either end
gate70 or
slip gate76. As the concrete is being poured into mold A,
external vibrators66 on
framework44 are energized to vibrate the whole mold. The vibrators insure that the wet concrete is firmly packed into place and no bubbles are created within the concrete.
After the concrete has hardened sufficiently to permit transportation of the slab, the forms are unlocked.
Although only one embodiment of the present invention has been shown and described, it is obvious that other adaptations and modifications to this invention can be made without departing from the true spirit and scope of this invention.
What is claimed is:
1. An adjustable, reusable mold for forming concrete slabs, comprising: a first concrete impervious form member; a concrete impervious base member having an upper surface; means for fixedly supporting said first form member in a generally upright position on the upper surface of said base member; a second concrete impervious form member; means for supporting said second member in a generally upright position and for mounting said second member for movement toward and away from said first fixed member along a path generally parallel to said upper surface of said base member wherein said path comprises a plurality of rails and said supporting and moving means comprises a wheeled carriage adapted to roll on said rails; means for releasably coupling said second member at a predetermined distance from said first member on said base member; a pair of concrete impervious side members moveable into closing relationship to the side opening defined by said first and second members; and means for retaining said pair of side members in fluid-tight engagement with said first and second upright members and said base member, and said base member is provided with a plurality of slots into which respective of said plurality of rails extends, the fixedly supporting means for said first member including first engagement means, said carriage including a plurality of second engagement means adapted to be extended through said slots and interlock with said first engagement means.
2. A mold in accordance with
claim1 wherein said first engagement means comprises a series of spaced slots and said second engagement means comprises a plurality of hooks whereby said hooks are adapted to be inserted into one of said plurality of slots to retain the second form member at a predetermined distance from said first form member.
3. A mold in accordance with
claim1 wherein the retaining means for said pair of members comprises a plurality of adjustable turnbuckles adapted to retain said pair of side members in confronting fluid-tight engagement along the sides of said first and second form mem-
Claims (3)
1. An adjustable, reusable mold for forming concrete slabs, comprising: a first concrete impervious form member; a concrete impervious base member having an upper surface; means for fixedly supporting said first form member in a generally upright position on the upper surface of said base member; a second concrete impervious form member; means for supporting said second member in a generally upright position and for mounting said second member for movement toward and away from said first fixed member along a path generally parallel to said upper surface of said base member wherein said path comprises a plurality of rails and said supporting and moving means comprises a wheeled carriage adapted to roll on said rails; means for releasably coupling said second member at a predetermined distance from said first member on said base member; a pair of concrete impervious side members moveable into closing relationship to the side opening defined by said first and second members; and means for retaining said pair of side members in fluid-tight engagement with said first and second upright members and said base member, and said base member is provided with a plurality of slots into which respective of said plurality of rails extends, the fixedly supporting means for said first member including first engagement means, said carriage including a plurality of second engagement means adapted to be extended through said slots and interlock with said first engagement means.
2. A mold in accordance with claim 1 wherein said first engagement means comprises a series of spaced slots and saId second engagement means comprises a plurality of hooks whereby said hooks are adapted to be inserted into one of said plurality of slots to retain the second form member at a predetermined distance from said first form member.
3. A mold in accordance with claim 1 wherein the retaining means for said pair of members comprises a plurality of adjustable turnbuckles adapted to retain said pair of side members in confronting fluid-tight engagement along the sides of said first and second form members.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00279406A US3843089A (en) | 1972-08-10 | 1972-08-10 | Textured concrete mold construction for vertically pouring concrete slabs |
US05/505,417 US3954377A (en) | 1972-08-10 | 1974-09-12 | Vertical mold for making textured concrete panels |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00279406A US3843089A (en) | 1972-08-10 | 1972-08-10 | Textured concrete mold construction for vertically pouring concrete slabs |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US05/505,417 Division US3954377A (en) | 1972-08-10 | 1974-09-12 | Vertical mold for making textured concrete panels |
Publications (1)
Publication Number | Publication Date |
---|---|
US3843089A true US3843089A (en) | 1974-10-22 |
Family
ID=23068817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00279406A Expired - Lifetime US3843089A (en) | 1972-08-10 | 1972-08-10 | Textured concrete mold construction for vertically pouring concrete slabs |
Country Status (1)
Country | Link |
---|---|
US (1) | US3843089A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3958790A (en) * | 1974-05-06 | 1976-05-25 | Scott Samuel C | Concrete wall forming panel with inflatable liner means |
US4178343A (en) * | 1977-05-16 | 1979-12-11 | Rojo Agustin Jr | Manufacture of precast concrete units and a building constructed therewith |
US4355782A (en) * | 1981-01-26 | 1982-10-26 | Sierra Precast, Inc. | Mold for forming fireplaces |
US4534924A (en) * | 1983-09-19 | 1985-08-13 | Novi Development Corporation | Method for molding concrete slabs and battery mold therefor |
US5156791A (en) * | 1990-03-26 | 1992-10-20 | Inax Corporation | Depositing method of wall concrete |
US20060011802A1 (en) * | 2002-04-24 | 2006-01-19 | Profast | Vertical casting apparatus and method |
US20060174569A1 (en) * | 2004-10-27 | 2006-08-10 | Stott Gale J | Apparatus for pre-casting concrete structures |
US20070062142A1 (en) * | 2005-09-20 | 2007-03-22 | Stott Gale J | Concrete structure system |
WO2007143569A2 (en) * | 2006-06-02 | 2007-12-13 | Maxam Industries Inc. | Concrete form utilizing flexible material and methods of making and using the same |
US20090173871A1 (en) * | 2008-01-08 | 2009-07-09 | Intellectual Property Management Llc | Method and System for Forming Vertical Pre-Cast Concrete Structures |
US20090173872A1 (en) * | 2008-01-07 | 2009-07-09 | Intellectual Property Management Llc | Method and System for Forming Pre-Cast Concrete Columns |
US20120000593A1 (en) * | 2009-03-12 | 2012-01-05 | Qiangte Energy-Saving Materials Co. Ltd. | Decorative brick mould for in-situ production on building |
US9186819B1 (en) | 2014-08-19 | 2015-11-17 | Cambria Company Llc | Synthetic molded slabs, and systems and methods related thereto |
US9289923B1 (en) | 2015-01-30 | 2016-03-22 | Cambria Company Llc | Synthetic molded slabs, and systems and methods related thereto |
US9613412B1 (en) | 2015-12-21 | 2017-04-04 | Cambria Company Llc | Stone slab manufacturing methods and systems |
US10467352B2 (en) | 2017-04-03 | 2019-11-05 | Cambria Company Llc | Stone slab production methods and systems |
US20200330199A1 (en) * | 2019-04-18 | 2020-10-22 | Ivoclar Vivadent Ag | Dental divestment method and muffle |
US12030260B1 (en) | 2020-01-02 | 2024-07-09 | Cambria Company Llc | Stone slabs, systems, and methods |
US12151395B2 (en) | 2021-05-13 | 2024-11-26 | Cambria Company Llc | Textured stone slabs, systems, and methods |
-
1972
- 1972-08-10 US US00279406A patent/US3843089A/en not_active Expired - Lifetime
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3958790A (en) * | 1974-05-06 | 1976-05-25 | Scott Samuel C | Concrete wall forming panel with inflatable liner means |
US4178343A (en) * | 1977-05-16 | 1979-12-11 | Rojo Agustin Jr | Manufacture of precast concrete units and a building constructed therewith |
US4355782A (en) * | 1981-01-26 | 1982-10-26 | Sierra Precast, Inc. | Mold for forming fireplaces |
US4534924A (en) * | 1983-09-19 | 1985-08-13 | Novi Development Corporation | Method for molding concrete slabs and battery mold therefor |
US5156791A (en) * | 1990-03-26 | 1992-10-20 | Inax Corporation | Depositing method of wall concrete |
US20060011802A1 (en) * | 2002-04-24 | 2006-01-19 | Profast | Vertical casting apparatus and method |
US7665712B2 (en) | 2004-10-27 | 2010-02-23 | Intellectual Property Management, Llc | Apparatus for pre-casting concrete structures |
US20060174569A1 (en) * | 2004-10-27 | 2006-08-10 | Stott Gale J | Apparatus for pre-casting concrete structures |
US20070062142A1 (en) * | 2005-09-20 | 2007-03-22 | Stott Gale J | Concrete structure system |
US7802409B2 (en) | 2005-09-20 | 2010-09-28 | Intellectual Property Management, Llc | System of concrete structures having panel and column portions with rigid member and end of panel portion of one structure received in slot of column portion of adjacent structure |
WO2007143569A2 (en) * | 2006-06-02 | 2007-12-13 | Maxam Industries Inc. | Concrete form utilizing flexible material and methods of making and using the same |
WO2007143569A3 (en) * | 2006-06-02 | 2008-11-20 | Maxam Ind Inc | Concrete form utilizing flexible material and methods of making and using the same |
US20090173872A1 (en) * | 2008-01-07 | 2009-07-09 | Intellectual Property Management Llc | Method and System for Forming Pre-Cast Concrete Columns |
US20090173871A1 (en) * | 2008-01-08 | 2009-07-09 | Intellectual Property Management Llc | Method and System for Forming Vertical Pre-Cast Concrete Structures |
US8162638B2 (en) | 2008-01-08 | 2012-04-24 | Intellectual Property Management Llc | Method and system for forming vertical pre-cast concrete structures |
US20120000593A1 (en) * | 2009-03-12 | 2012-01-05 | Qiangte Energy-Saving Materials Co. Ltd. | Decorative brick mould for in-situ production on building |
US8444789B2 (en) * | 2009-03-12 | 2013-05-21 | Qiangte Energy-Saving Materials Co. Ltd. | Decorative brick mould for in-situ production on building |
US20130234002A1 (en) * | 2009-03-12 | 2013-09-12 | Qiangte Energy-Saving Materials Co. Ltd | Decorative brick mould for in-situ production on building |
US9074380B2 (en) * | 2009-03-12 | 2015-07-07 | Qiangte Energy-Saving Materials Co. Ltd | Decorative brick mould for in-situ production on building |
US10300626B2 (en) | 2014-08-19 | 2019-05-28 | Cambria Company Llc | Synthetic molded slabs, and systems and methods related thereto |
US9186819B1 (en) | 2014-08-19 | 2015-11-17 | Cambria Company Llc | Synthetic molded slabs, and systems and methods related thereto |
US11845235B2 (en) | 2014-08-19 | 2023-12-19 | Cambria Company Llc | Synthetic molded slabs, and systems and methods related thereto |
US9718303B2 (en) | 2014-08-19 | 2017-08-01 | Cambria Company Llc | Processed slabs, and systems and methods related thereto |
US9993942B2 (en) | 2014-08-19 | 2018-06-12 | Cambria Company Llc | Processed slabs, and systems and methods related thereto |
US9993943B2 (en) | 2014-08-19 | 2018-06-12 | Cambria Company Llc | Processed slabs, and systems and methods related thereto |
US11498298B2 (en) | 2014-08-19 | 2022-11-15 | Cambria Company Llc | Synthetic molded slabs, and systems and methods related thereto |
US10981346B2 (en) | 2014-08-19 | 2021-04-20 | Cambria Company Llc | Processed slabs, and systems and methods related thereto |
US9289923B1 (en) | 2015-01-30 | 2016-03-22 | Cambria Company Llc | Synthetic molded slabs, and systems and methods related thereto |
US10195762B2 (en) | 2015-01-30 | 2019-02-05 | Cambria Company Llc | Processed slabs, and systems and methods related thereto |
US11845198B2 (en) | 2015-01-30 | 2023-12-19 | Cambria Company Llc | Processed slabs, and systems and methods related thereto |
US11529752B2 (en) | 2015-01-30 | 2022-12-20 | Cambria Company Llc | Processed slabs, and systems and methods related thereto |
US10773418B2 (en) | 2015-01-30 | 2020-09-15 | Cambria Company Llc | Processed slabs, and systems and methods related thereto |
US10105868B2 (en) | 2015-01-30 | 2018-10-23 | Cambria Company Llc | Processed slabs, and systems and methods related thereto |
US10981293B2 (en) | 2015-01-30 | 2021-04-20 | Cambria Company Llc | Processed slabs, and systems and methods related thereto |
US10252440B2 (en) | 2015-01-30 | 2019-04-09 | Cambria Company Llc | Processed slabs, and systems and methods related thereto |
US10607332B2 (en) | 2015-12-21 | 2020-03-31 | Cambria Company Llc | Stone slab manufacturing methods and systems |
US11741590B2 (en) | 2015-12-21 | 2023-08-29 | Cambria Company Llc | Stone slab manufacturing methods and systems |
US9613412B1 (en) | 2015-12-21 | 2017-04-04 | Cambria Company Llc | Stone slab manufacturing methods and systems |
US11244086B2 (en) | 2017-04-03 | 2022-02-08 | Cambria Company Llc | Stone slab production methods and systems |
US10467352B2 (en) | 2017-04-03 | 2019-11-05 | Cambria Company Llc | Stone slab production methods and systems |
US20200330199A1 (en) * | 2019-04-18 | 2020-10-22 | Ivoclar Vivadent Ag | Dental divestment method and muffle |
US12030260B1 (en) | 2020-01-02 | 2024-07-09 | Cambria Company Llc | Stone slabs, systems, and methods |
US12151395B2 (en) | 2021-05-13 | 2024-11-26 | Cambria Company Llc | Textured stone slabs, systems, and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3954377A (en) | 1976-05-04 | Vertical mold for making textured concrete panels |
US3843089A (en) | 1974-10-22 | Textured concrete mold construction for vertically pouring concrete slabs |
US2208589A (en) | 1940-07-23 | Building material and method |
US2316819A (en) | 1943-04-20 | Wall structure |
US6503025B1 (en) | 2003-01-07 | Precast concrete beam element and methods of making and installing same |
US7661649B2 (en) | 2010-02-16 | System for vertically forming concrete panels |
US20060011802A1 (en) | 2006-01-19 | Vertical casting apparatus and method |
US3879914A (en) | 1975-04-29 | Method of making a platform structure |
AU755253B2 (en) | 2002-12-05 | Block system |
US3785608A (en) | 1974-01-15 | Jig for precasting a plurality of panels |
US3767153A (en) | 1973-10-23 | Platform structure |
US1728265A (en) | 1929-09-17 | Floor construction and method of producing the same |
JPH0579049A (en) | 1993-03-30 | Constructing method for beam and slab in underground body construction work |
KR102214348B1 (en) | 2021-02-09 | the improved PC panel unit manufacturing device |
US2810287A (en) | 1957-10-22 | Wall of pre-cast slabs |
JPH0298406A (en) | 1990-04-10 | Manufacture of precast concrete slab |
JP2002047661A (en) | 2002-02-15 | Building foundation, foundation material, and its execution method |
JPH0218123Y2 (en) | 1990-05-22 | |
JPH1121860A (en) | 1999-01-26 | Construction method for wall-form concrete structure |
JP3126885B2 (en) | 2001-01-22 | Method of manufacturing blocks for stone walls using natural stone |
CN222456782U (en) | 2025-02-11 | Template device for basement post-pouring belt |
EP0096051B1 (en) | 1987-02-04 | Nest-casting of concrete elements |
US4784365A (en) | 1988-11-15 | Apparatus for nest-casting of concrete elements |
JP3010556B1 (en) | 2000-02-21 | Fixing method of precast concrete formwork to underground concrete connecting wall |
JPS5858503B2 (en) | 1983-12-26 | Construction method of reinforced concrete composite wall |