US3848112A - Identification system - Google Patents
- ️Tue Nov 12 1974
US3848112A - Identification system - Google Patents
Identification system Download PDFInfo
-
Publication number
- US3848112A US3848112A US00287925A US28792572A US3848112A US 3848112 A US3848112 A US 3848112A US 00287925 A US00287925 A US 00287925A US 28792572 A US28792572 A US 28792572A US 3848112 A US3848112 A US 3848112A Authority
- US
- United States Prior art keywords
- identification tag
- tag
- patient
- magnetic
- identification Prior art date
- 1970-12-02 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F3/00—Labels, tag tickets, or similar identification or indication means; Seals; Postage or like stamps
- G09F3/005—Identification bracelets, e.g. secured to the arm of a person
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/90—Identification means for patients or instruments, e.g. tags
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/54—Labware with identification means
- B01L3/545—Labware with identification means for laboratory containers
- B01L3/5453—Labware with identification means for laboratory containers for test tubes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/08—Methods or arrangements for sensing record carriers, e.g. for reading patterns by means detecting the change of an electrostatic or magnetic field, e.g. by detecting change of capacitance between electrodes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/66—Trinkets, e.g. shirt buttons or jewellery items
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C9/00—Individual registration on entry or exit
- G07C9/20—Individual registration on entry or exit involving the use of a pass
- G07C9/21—Individual registration on entry or exit involving the use of a pass having a variable access code
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S283/00—Printed matter
- Y10S283/90—Medical record
Definitions
- a portable battery operated cross-check reader compares a magnetically 2,939,ll /1960 Be tt tal 340/l49 A 3,009,636 11 1961 Rul n 340/149 A Coded i f tag tag fmm 3,481,195 12 1969 -Hendrickson 61111.
- This invention relates to an improved identification system particularly adapted for preventing errors in identification of individual patients in medical centers treating a large number of patients.
- a bracelet containing a patient identification number is permanently affixed around the arm of an incoming patient in order to identify the patient during his entire stay. Upon discharge, the bracelet is removed by severing flexible straps which affix the bracelet to the patients arm. Despite this numerous situations arise which result in errors in patient identification.
- the sample When a sample is taken from a patient, the sample must be identified by the the identification (ID) number on the patients bracelet.
- ID identification
- a nurse or a technician may miscopy the number, or may relay on memory or a different data source rather than actually reading the patients bracelet.
- an improved and unique identification system which both initially identifies the patient, and subsequently provides a crosscheck that a particular patient is to receive a particular treatment.
- a patient identification bracelet of simple design is disclosed which can dispense a plurality of magnetically coded tags for attachment to samples, prescriptions and the like, to properly identify the source individual.
- a patient is to receive a treatment
- one tag from his bracelet is placed in a portable cross-check reader which also receives a similar tag identifying the treatment and the patient to whom the treatment is to be administered. Only when the tags are identical is a nurse or technician authorized to administer the treatment.
- One object of the invention is the provision of a patient identification system in which an ID bracelet attached to a patient dispenses a plurality of magnetically coded tages which identify the patient.
- Another object of this invention is the provision of a patient identification system in which a cross-check reader compares treatment identification data with patient identification data taken from the patient immediately before administration of a treatment in order to authorize the administration of the treatment.
- FIG. 1 is a block diagram illustrating the identification system used in a medical center such as a hospital;
- FIG. 2 is a perspective view of one embodiment of an identification braclet for dispensing a plurality of magnetically coded identificaion tags
- FIG. 3 is a cross-section of the identification bracelet, taken along lines 33 of FIG. 2;
- FIG. 4 is a plan view illustrating the magnetic orientation of a tag produced by the identification bracelet
- FIG. 5 is a perspective view of another embodiment of an identification bracelet for dispensing a plurality of magnetically coded identification tags
- FIG. 6 is a perspective view, partly in section, of one tag from the bracelet of FIG. 5;
- FIG. 7 is a cross-section of the identification bracelet, taken along lines 77 of FIG. 5;
- FIG. 8 is a diagrammatic illustration of the crosscheck reader illustrated in perspective view in FIG. 1;
- FIG. 9 is a schematic diagram of the derived clock circuit used in both the cross-check reader of FIG. 8 and the tag reader of FIG. 11;
- FIG. 10 is a schematic diagram of the indicator driver used in the cross-check reader of FIG. 8.
- FIG. 11 is a diagrammatic illustration of the tag reader illustrated in perspective view in FIG. 1.
- FIG. 1 an identification system is illustrated for use in a hospital or other medical treatment center.
- a patient is first admitted in a business and admission office 20, where he or she receives an identification bracelet 22 constructed in accordance with the present invention.
- the bracelet 22 has a conventional strap 23 which is affixed around the arm 25 of the patient in order to retain the bracelet during the patients entire stay in the hospital.
- the patient, wearing the attached bracelet is then transferred to one of a large number of patient rooms 27 for diagnosis and/or treat ment.
- any media concerning the patient including prescriptions, samples of the patients fluids, and the like are identified by magnetically coded carriers or tags 30 which are dispensed by the bracelet 22.
- one magnetically coded tag 30 is attached to a prescription before it is transmitted via a nurses station 32 to a pharmacy 34 where the prescription is to be filled.
- the tag 30 accompanying the prescription is placed in a receptacle in a tray 36 of a tag reader 37, and the tray 36 is manually closed.
- a lever is then moved which actuates circuitry, to be described, which decodes the magnetic information on the tag 30 and produces decoded output indications, including a print-out on a paper strip or web 39.
- a tag similar to tag 30 is attached to the prescription drug bottle or container before being transmitted to the nurses station 32.
- the tag accompanying the treatment includes markings or handwriting which is read by a nurse in order to provide an initial determination of the patient who is to receive the treatment.
- the prescription drug is taken by the nurse to the patients room 27 containing the patient who is to receive the treatment.
- the tag accompanying the prescription drug is then placed in a receptacle 42 in a sliding tray 44 of a cross-check reader 46.
- a new tag 30 is dispensed from the bracelet 22 and placed in another receptacle 48 in the tray 44.
- the tray is then manually closed and a lever is moved to activate the cross-check reader 46.
- a G indicator 50 is energized. This authorizes the nurse to apply the treatment to the patient. If a NO GO indicator 511 should be energized, an error is indicated, and the nurse is not authorized to administer the treatment. The cause of the error can then be traced and corrected.
- tag reader 37 In a clinical laboratory 54 which analyzes samples from patients, another tag reader 37 is located in order to decode coded tags 30 accompanying samples. After analysis, the test results, blood type, or the like, are identified by a tag similar to that provided by the pharmacy 34. Certain data may be transmitted to the patients room 27, and in such instances, the identification tag accompanying the analysis is compared with a tag 30 taken from the bracelet 22 before posting or otherwise entering the data on a patients record. If desired, the nurses station 32, or other stations in the hospital, can also be provided with tag readers 37.
- the information from the magnetically coded tags 30 is also used to supplement information which is transmittedto a central data processing station 60 which provides accounting information for the business office 20.
- Each tag reader 37 includes keys for manually entering data concerning the operation being performed,
- the decoded ID number and the manually entered information produces computer coded data which is transmitted to the center data processing station 60 in order to update the patients personal record and his billing record.
- Bracelet 22 consists of a bottom plate 64 of flexible material such as low density polyethylene, which carries a plurality of magnetized areas 65 arranged to form a unique binary code for identifying one patient.
- each magnetized area 65 may be formed by an embedded permanent magnet formed of a ferrous material, such as alnico blanks 0.030 inches in diameter, which are magnetized during manufacture with a north-south orientation transverse to the direction of movement of the tags 30 through the bracelet 22, see FIG. 4.
- Bracelet 22 includes an upper section spaced from plate 64 to form a channel or slot for passage of tags 30 therethrough.
- the upper section 70 formed of a flexi ble material such as low density polyethylene, similar to the material used for the lower plate 64 is permanently attached at its ends to the lower plate 64 by a pair of rivets 72.
- Section 70 includes a plurality of downwardly extending fingers 74, each finger 74 being located closely adjacent a different one of the permanent magnets 65, so that as the tags 30 are drawn between the fingers 74 and the plate 64, the fingers 74 insure good contact between the tags and the permanent magnets 65.
- the patients name may be entered by any suitable means on a name card 80, and the card slid between current channel members in section 70 and over a locking tab 82, see FIG. 3, for retention within a channel.
- the upper, central section of the channel is open, as seen in FIG. 2, to expose the name on the name card 80.
- the digital equivalent of the binary coding of the permanent mag nets 65 may be prestamped in a lower surface 86 of the channel for the name tag.
- a plurality of separable tags 30 are dispensed at one time by placing a magnetizable card or form 90 into the slit opening between the teeth 74 and the lower plate 64, and manually pushing and then pulling the form 90 through the bracelet, as seen in FIG. 2.
- Form 90 is composed of a layer 92 of magnetizable material, as a ferrite coating, uniformly applied over one side of a flexible carrier layer 94.
- the opposite side of layer 94 is coated with an adhesive backing 96 for attaching individual tags, i.e., sections of the form 90, to prescriptions, sample bottles, and the like.
- a thin layer of paper 98 covers the adhesive backing 96, and can be peeled away to expose the adhesive backing when an individual tag 30 is to be attached to an item.
- the form 90 contains perforations 100 between each separable section, so that an individual tag 30 may be separated from the form 90.
- an orientation key 102 is notched in the center of each tag 30 to provide a reference for orienting the tag in the cross-check reader and the tag reader to be described.
- a space 104 is provided for noting the patients name and number, but such identification is for purposes of convenience only, and is not used for actual identification purposes since it is subject to the same types of errors as presently occur in identification systems.
- Space 104 may also contain instructions for passing the form 90 through a bracelet 22, and may include other means for insuring that all forms are passes through the bracelets in the same manner, as for example, by color coding the area around the orientation notches 102 and similarly'color coding one end of the bracelet 22.
- an edge 106 of form 90 is scalloped to prevent wrong end insertion of the form.
- the ferrite coating 92 becomes magnetized in longitudinal strips extending the length of the form. These strips have a magnetic orientation corresponding to the north-south orientation of the permanent magnets 65 embedded in the plate 64.
- the tag 30 illustrated in FIG. 4 has been magnetized in binary coded decimal (BCD) to form the 24 bit word 0001 0010 0000 0100 0000 1000, corresponding to the digital ID number 120408.
- FIGS. 5-7 another embodiment of the bracelet 22 is illustrated in detail.
- This bracelet is more economical and of simpler construction than the bracelet of FIGS. 2-4, but requires manual refilling at periodic intervals.
- the bracelet serves as a storage unit and dispenser of individual, precoded tags 30 which are magnetized before loading into the bracelet. Except for being precoded, each tag 30, FIG. 6, is similar to the tag 30 in FIG. 2.
- a flexible layer 1 has deposited thereon a ferrite coating, permanently magnetized during manufacture of the tag to create 24 magnetically oriented tracks.
- the magnetic tracks are similar to the magnetic tracks illustrated for the tag in FIG. 4, and thus the tags 30 dispensed from the bracelet in FIGS. 5-7 are magnetically compatible with tags 30 produced by the bracelet of FIGS. 2-4.
- the tags are also mechanically and physically compatible, so that both type of bracelets could be used in the same hospital identification system. Similar to tag 30 in FIG. 2, the tag 30 of FIG. 6 has an adhesive layer 112 placed over the magnetized layer 110. Finally, a thin paper backing 114 is placed over the adhesive layer 112 so that the layer 114 can be peeled away and removed in order to attach the tag 30 to an item which is to be identified.
- the paper backing 114 may contain a decimal number corresponding to the binary coding of the magnetically oriented tracks in layer 110.
- bracelet 22 consists of a flexible bottom plate 116, formed of low density polyethylene, and an upper plate 120, formed of similar material, and joined at its right hand end in the drawing to plate 116 by a rivet 72.
- the space between the plates 120 and 116 defines a storage area which holds a plurality of stacked, premagnetized tags 30.
- a layer of foam rubber 122 serves to urge the tags 30 upward against the plate 120.
- a locking tab 126 attached to plate 116 by a rivet 72, serves to retain the tags within the storage compartment.
- plate 120 has a central opening 130 which exposes the topmost tag 30.
- a finger or thumb By placing a finger or thumb through the opening 130, a person can urge the topmost tag aginst and over the locking tab 126, thereby dispensing a single tab from the end of the braclet 22. After movement of the finger or thumb urges a single tag part way out of the bracelet, the tag can be entirely removed by grasping it between the fingers and pulling.
- the bracelet 22 of FIGS. 5-7 is intended to hold a number of tags sufficient for identification purposes during a single stay of a typical patient.
- the bracelet is refillable by insertingtags through the same opening which is used to dispense tags.
- the plate 120 can be pivotally mounted to plate 116 so as to snap open for a refill operation.
- a refill operation increases the possibility of error, the procedure for refilling bracelets would desirably include several crosschecks to prevent mistake.
- bracelets of different heights to hold different numbers of stacked tags may be provided, with bracelets of greater storage capacity being attached to patients expected to have a longer stay in the hospital.
- the cross-check reader 46 is diagrammatically illustrated. Since the cross-check reader is both portable and self-contained, a dual power system is provided to insure long life.
- the system consists of a mechanical energy source which stores operator supplied energy, and an electrical energy source consisting of a pair of batteries 150, providing for example 4.5 volts DC.
- the batteries 150 are switched to power the circuitry only when necessary. This switching system, in conjunction with the mechanical storage system, produces a reader of low electrical energy consumption and hence long battery life.
- the I mechanical storage system consists of a coil spring 152 captured between a frame or base 154, which mounts the mechanical and electrical devices within the housing for the reader, and a plate 156 attached to a platen 158.
- Platen 158 includes a locking notch 160 into which a latch 162 is driven when the platen 158 is depressed during a reset operation by manual operator motion.
- Platen 158 forms a part of the sliding tray 44 which has the tag receptacles 42 and 48 located thereon. After individual tags 30 are placed within the receptacles 42 and 48, the sliding drawer 44 is closed, moving the platen 158 downwardly to the position illustrated by dashed lines, at which position the latch 162 is driven into the notch 160.
- Latch 162 includes a coiled spring 166 trapped between a shoulder 164 and a post 168 affixed to the frame 154.
- a trigger 170 extending through the housing for the reader is manually rotated clockwise about a pivot point 172.
- the speed of movement of platen 158 is controlled by a pneumatic damper which comprises a cylinder 182 enclosing a piston connected through a piston shaft 184 with plate 156.
- a pair of air vents 186 and 194 allows air trapped within the cylinder 182 to be vented to the atmosphere as the spring 152 drives the plate 156 and attached piston shaft 154 upward.
- the size of the openings 186 and 194 are chosen to produce the desired speed of movement of the platen 158 for the period of time that the tag receptacles 42 and 48 are being driven passed magnetic read heads 190. After passing the read heads, the piston is so located as to block the opening 186, allowing air to vent through the remaining smaller opening 194. This causes the speed of movement of the platen 158 to be substantially reduced, controlling the time that the indicator 50 or 51 is energized.
- the movement of the platen 158 during the operate or read mode causes the sliding tray 44 to be driven out of the housing to its intial open position, allowing the operator to remove the tags 30 in preparation for a subsequent cross-check operation.
- a new reading is to be taken, another pair of tags 30 are placed in the receptacles 42 and 48, and the unit is reset by the operator closing the sliding drawer and thus moving the platen 158 downward until latch 162 is driven by spring 166 into the notch 160. Any energization of the indicators is disregarded during a reset operation.
- a pair of channels 213 and 214 are provided for the receptacles 42 and 48, respectively.
- Each channel contains similar circuits, as follows.
- a magnetic read head 190 has a gap located adjacent the tag 30 being read thereby.
- Receptacles 42 and 48 orient the tags 30 so that the magnetized tracks are located transverse to the direction of movement of the platen 158.
- the first track in each tag 30 is located at the uppermost position in FIG. 8, such that when the trigger 170 is actuated, each of the 24 tracks is in turn driven passed its read head at the same time that the corresponding track on the opposite tag 30 is driven passed the other read head.
- Each head 190 is connected to a read amplifier 200 of conventional construction, producing amplified pulses which are coupled to a derived clock circuit 292, illustrated in detail in FIG. 10.
- the output from the derived clock circuit 202 consists of data pulses, on a line 204, and clock pulses, on a line 205.
- the clock pulse cause the data to be entered into a 24 bit shift register 207 of conventional construction.
- Shift register 207 has 24 output lines 210, individually labeled 1 through 24 to correspond with the bits being stored in the corresponding shift register storage unit.
- the output lines 210 of the shift registers 207 in both channels 213 and 214 are coupled to a pair of inputs of a comparator 212.
- a logic 1 bit output is provided on an output line 216 of comparator 212.
- This logic bit is coupled to an indicator driver 220, shown in detail in FIG. 11, to energize one of the indicators 50 and 51. If a 1 output indicating a match is present, GO indicator 50 is energized; and correspondingly, if a output indicating no match is present, NO GO indicator 51 is energized.
- Energization of the circuit of FIG, 8 is controlled by a power cam 222 and an indicator cam 224, both affixed to platen 158.
- the battery 150 is connected between a source of reference potential or gound 226, and a positive line which leads to a pair of switches 230 and 232, each of the single-pole, single-throw type.
- Switch 230 has a movable contact 234 which closes when a link 236 abuts or engages the power cam 222.
- the switch 232 has a movable contact 240 which closes when a link 242 engages the indicator cam 224.
- Power cam 222 has a width ap proximately equal to the width of the receptacles 42 and 48, and is located so link 236 engages power cam 222 during the same period of time that the gaps in the read heads 190 are positioned adjacent the tags 30. Power is supplied to line 245 just prior to the time the first track on the tags 30 is driven past the read heads 190. Power is disconnected from line 245 shortly after the last track on the tags 30 has passed the corresponding read heads.
- Indicator cam 224 is located so that it engages link 242 after the last rack on the tags 30 has been read, but before the disconnection of power on line 245.
- switch 240 closes, a potential line 250 energizes the indicator driver 220.
- one of the indicators 50 or 51 is energized, and remains energized until the indicator cam 224 is driven beyond the link 242.
- the derived clock circuit 202 is illustrated in detail.
- the signal from the magnetic read amplifier 200 is coupled through a 10 kilohm resistor 260 to an operational amplifier 262 connected to function as a DC coupled inverter.
- the output of the inverter is coupled through a ohm resistor 264 to a trigger input 266 of a one shot multivibrator 268, such as a type SN74121, manufactured by Texas Instruments.
- a diode 270 shunts input 266 to ground 226 in order to clamp the input to a maximum negative potential of minus 0.6 volts.
- the signal from the magnetic read amplifier 200 is also coupled through a 150 ohm resistor 274 to a trigger input 276 ofa one shot multivibrator 278 of similar type to multivibrator 268.
- a diode 280 shunts the trigger input to ground 226 in order to clamp the input to a maxiumu netative potential of minus 06 volts.
- Each multivibrator has a 2 millisecond one shot period, determined by an RC network consisting of a 15 kilohm resistor 282 and a 0.47 microfarad capacitor 284, connected to multivibrator 268, and a 15 kilohm resistor 286 and a 0.47 microfarad capacitor 288 connected in multivibrator 278.
- each multivibrator on a line labled Q, is coupled through respective 0.l microfarad capacitors 290 and 292 to a NAND gate 294 having an output coupled to a second NAND gate 296 to produce an output on line 205 corresponding to the clock or timing pulses.
- the capacitors 290 and 292 are chosen to have values which couple rather than differentiate the outputs of the one shot multivibrators.
- NAND gate 294 is normally held at a logic 1 level or high by a pair of 10 kilohm resistors 300 and 301, connected between the inputs of the NAND gate 294 and the positive potential line 245.
- the pair of multivibrators are cross coupled by connecting the 6 output of multivibrator 268 to an inhibit input 304 of multivibrator 278, and by coupling the Q output of multivibrator 278 to an inhibit input 306 of multivibrator 268.
- the Q output of multivibrator 278 corresponds to line 204 and produces the data output pulses.
- Both one shot multivibrators 268 and 278 are of the type that are only susceptable to triggering when the inhibiting input is held low (0 volts or negative).
- the multivibrators trigger when the trigger input thereafter goes high (positive potential), producing a high or positive going pulse on the Q output and a low or negative going pulse on the complementary 6 output.
- the spring 152 and the pneumatic damper of FIG. 8 are selected to have values which cause each channel of data on each tag 30 to be driven past the magnetic read heads once each 200 milliseconds, when the RC networks have the previously disclosed values which produce a 2 millisecond one shot period.
- the operation of the FIG. 9 circuit is as follows. When a 1 bit is detected, a positive going pulse from amplifier 200 occurs at the time the leading edge of a magnetic track passes a magnetic head 190. This pulse is coupled to both resistors 260 and 274. The positive pulse will have no initial effect on trigger input 266, but the pulse will trigger input 276. Initially, it will be assumed that the output Q is high from both milivibrators, so the Q output is low to both inhibit inputs.
- the cross connection prevents false triggering by insuring that only one multivibrator is energized for each detection of a magnetic track.
- the multivibrato 268 would have been actuated. This would cause the Q output tl ereof'to go low, and the Q output to go high.
- the low Q output is coupled through capacitor 290 and produces a high output from gate 294. This is inverted by gate 296 to produce a low going pulse on clock line 205.
- the absence of a simultaneous appearance of a positive pulse on line 204 now indicates a zero had been read.
- the indicator driver 220 is illustrated in I detail.
- Line 216 from the comparator is coupled through a NAND gate 310 and a resistor 312 to the gate input 314 of a three terminal switching device such as an SCI-I 316.
- the gate input 314 is shunted to ground 226 through a resistor 318.
- the SCR 316 controls the NO GO indicator 51.
- the positive potential line 250 from switch 240 is coupled through a resistor 322'and a light emitting diode (LED) 324 to the anode of SCR 316.
- the cathode of the SCR is directly coupled to ground 226.
- resistor 322 is also coupled through a second light emitting diode (LED) 330 to the anode of an SCR 332 having its cathode directly coupled to ground 226.
- the gate input 334 for SCR 332 is coupled to ground 226 through a resistor 340, and is coupled through a resistor 342 to the output of a NOT gate 344.
- the input of NOT gate 344 is coupled to'the output of NOT gate 310.
- line 216 goes positive when a match is indicated by the comparator. This produces a negative signal to gate 314 and a positive signal to gate 334.
- switch 240 is closed to indicate that valid inforrriation is present on line 216, SCR 332 is triggered into conduction, thereby completing a current path to ground through the LED 330. This produces a visual GO indication, authorizing a nurse or technicain to apply a treatment to a patient.
- SCR 316 would be energized, causing LED 324 to be illuminated to provide a NO GO indication. The energized LED continues to produce a visual output until the cir cuit is broken by the opening of switch 240.
- the tag reader 37 is diagrammatically illustrated. Parts serving corresponding functions to parts in the cross-check reader 46 of FIG. 8 have been identified by the same reference numeral, and will only be briefly described in this section.
- the sliding tray 36 has a platen driver and a latch mechanism identical with that previously described for the sliding tray 44 of FIG. 8.
- the individual tag 30 to be read is located in a receptacle 350, only one receptacle being provided since a pair of tags are not to be compared.
- Platen 158 includes a print cam 352 which actuates a linkage 354 after the tag 30 has been driven completely passed read head 190, thereby closing a switch 356 in order to ground an input and initiate a print cycle, as will appear.
- the tag reader 37 Since-the tag reader 37 is not intended to be portable, it can be located near an external source of AC power, and hence battery operation is not provided.
- the reader 37 may be powered by a conventional power supply (not illustrated), connected to a conventional source of AC line voltage.
- a conventional power supply not illustrated
- the only timing provided by the platen 158 is for automatically intitating a print cycle.
- a series of pulses are amplitied in read amplifier 200 and coupled to the derived clock circuit 202, illustrated in detail in FIG. 9, in order to produce data pulses on line 204 and clock pulses on line 205.
- a 24 bit shift register 207 steps the data through storage units in response to the clock pulses. When all bits have been stored, the 24 output lines, collectively labeled 210, have valid information. These lines are coupled to a printer electronics control unit 360, of known design, which controls a conventional printer mechanism 362 in order to print the data being inputted to the control 360 on the paper strip or web 39.
- the printer electronics control unit 360 includes a BCD to decimal converter, so that the data output includes the decimal equivalent of the patient ID number.
- the printer selected for this purpose is of the type which can simultaneously or serially print 21 spaces or characters of information across the web 39.
- the spaces may be allocated for data information of the type illustratively shown in the drawing.
- Control unit 360 has a number of sets of inputs corresponding to the number of items to be printed. Any conventional control for printing plural.
- data can be used as unit 360, and the data can be sampled, or enteredas serial or parallel words, as desired.
- a number of different types of data may be inputted to the control unit 360 for printing at the same time that the patient ID number is recorded.
- a service code generator 370 includes six thumbwheel selectable switches 372, each switch having a wheel with l0 decimal digits 0 through 9.
- the switches 372 are of the known type which have a direct output in BCD, four lines for each switch, thus producing on a calbe 376 a 24 bit parallel word corresponding to the selected six digit service code.
- each station in the hospital is assigned a service code or a block of service codes. Referring to FIG. 1, the clinical laboratory 54 could be assigned decimal numbers from 100,000 to 199,999, for example. Individual numbers within this range would be assigned to services and tests performed in the Iabroatory.
- Number 100,001 could stand for a glucose test, number l00,002 for a CPK test, and so on.
- a similar procedure would apply for the pharmacy 34, which could be assigned numbers in the range 200,000 to 299,999.
- Commonly prescribed drugs would be assigned a range of individual numbers with individual numbers within the range indicating the dosage of the drug.
- a date set unit 380 includes a plurality of switches 382 which provide a bit paralle word on a cable 384, which word indicates the date.
- An electronic clock 386 can be provided, of the type which maintains the correct time after being initially set to the correct time when the unit is first turned on.
- This known clock 386 has a plurality of time set buttons 390 for resetting time after the unit has been turned off.
- a digital clock converter 392 which produces a 16 bit parallel word on a cable 394, which word corresponds to the present time.
- the data input cables 210, 376, 384 and 394 all input to the control 360, which operates to actuate the printer mechanism 362 only when a print signal is received from a NAND gate 400.
- One input of gate 400 is coupled to the terminal of switch 356 which is closed by engagement of linkage 354 with the print cam 352.
- the other input of gate 400 is coupled to a 24 bit clock test electronics unit 402 whose input is coupled to the clock line 205.
- Unit 402 may be a 24 bit counter for producing an output after counting 24 clock pulses. Only when unit 402 has an output and the switch 356 closes is a print signal generated. Thus, unit 402 prevents a print operation should less than 24 bits be read from tag 30, or should more than 24 bits be read, due to a malfunction.
- printer 360 has a serial digital data output line 404 which may be coupled to a conventional ASC II code converter 406 having an output directly coupled to the central data processing 60, FIG. 1.
- the converter 406 can operate a known type of card punch, in order to produce an IBM card or the like I which contains data corresponding to the data printed on paper web 39.
- Other data providing units or different combinations of units may also be utilized in the tag reader 37.
- cross-check means for insuring that an identifying i'tem corresponds to an identified patient, comprising:
- first identification tag means adapted to be dispensed from bracelet means attached to a single patient
- said first identification tag means carrying thereon magnetic means having a plurality of magnetic fields arranged to form a unique magnetic code for identifying a single patient;
- second identification tag means adapted to be dispensed from the bracelet means and carrying thereon magnetic means having a plurality of magentic fields corresponding to the plurality of magnetic fields carried by said first identification tag means to form the unique magnetic code thereon;
- first and second identification tag means for comparing the unique codes of said first and second identification tag means comprising plate means mounted for movement along a predetermined path between first and second positions, first and second input receptacles for rc spectively receiving said first and second identification tag means, said receptacles being disposed on said plate means for simultaneous movement therewith, first and second magnetic read heads disposed adjacent said path for respective association with said first and second input receptacles, energy storage means coupled to said plate means for storing energy in response to movement of said plate means from said first position to said second position, said plate means being movable from said second position to said first position by the energy stored in said storage means for moving said first and second identification tag means relative to said first and second read heads to produce a first series of signals corresponding to the unique magnetic code of said first identification tag means and a second series of signals corresponding to the unique magnetic code of said second identification tag means, circuitry means responsive to said first and second series of signals for producing a signal comparison, and means responsive to said signal comparison to provide a match
- said energy storage means includes spring means for normally urging said plate means toward said first position, damper means for controlling the speed of movement of said plate means from said second position to said first position, and said attaching means includes an adhesive layer on said second identification tag means.
Landscapes
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Theoretical Computer Science (AREA)
- Surgery (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Analytical Chemistry (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Accommodation For Nursing Or Treatment Tables (AREA)
Abstract
An identification bracelet attached to the arm of each patient entering a hospital dispenses a plurality of magnetically coded tags having an adhesive backing for attachment to samples, prescriptions and the like to uniquely identify the source individual. Tag readers located throughout the hospital decode the magnetic tags in order to correlate an analysis with the proper patient. In the patient''s room, a portable battery operated cross-check reader compares a magnetically coded treatment tag with an identification tag from the patient''s bracelet to prevent a treatment from being given to the wrong patient.
Description
United States Patent 1191 Weichselbaum et al.
14 1 Nov. 12,1974
[ 4] IDENTIFICATION SYSTEM 3,673,389 6/l972 KflpSdmbBlIS et 61. 235/617 B [75] Inventors: Theodore E. Weichselbaum, St. OTHER PUBLICATIONS 683 33 322 wllhelmson Femon Kuntzleman et al., Automated Blood Typing, IBM Technical Bulletin, Vol. 10, No. 10, Mar. 1968. pp. [73] Assignee: Sherwood Medical Industries Inc., l,450l ,45 l.
St. Louis, Mo. 2 Filed; Sept 11 1972 Primary Examiner-Daryl W. Cook Attorney, Agent, or FirmStanley N. Garber; William [21-] App]. No.: 287,925 OMeam Related US. Application Data [62] Division ofSer. N0. 94,452,'1)66. 2, 1970. [57] ABSTRACT I An identification bracelet attached to the arm of each [52] U.S.C|. 235/6L7 R, 235/61. D patient enmring a hospital dispenses a plurality of hit. Cl 606k 5/00, 606k 7/08 g i y Coded g h g an adhesive bucking [58] F'eld of Search 235/6111 61-12 for attachment to samples, prescriptions and the like 235/61-7 61-11 61-11 C; to uniquely identify the source individual. Tag readers 5Q 149 A located throu hout the hospital decode the ma netic g g [56] References Cited tags in order to correlate an analysis with the proper UNITED STATES PATENTS patient. In the patients room, a portable battery operated cross-check reader compares a magnetically 2,939,ll /1960 Be tt tal 340/l49 A 3,009,636 11 1961 Rul n 340/149 A Coded i f tag tag fmm 3,481,195 12 1969 -Hendrickson 61111. 235 617 B w bracelet to Pi treatment from 3,513,441 5/1970 Schwend 235/6l.7 B bemg glven to the Wrong P 3,593,291 7/1971 Carter 235/6l.7 B 3,671,717 6 1972 Bieser 235/617 13 2 Clams ll Draw'ng guns CODED T465 son/ 156 WITH copcp T465 NURSES $7W77ON SERVICE CHARGE D197 1 T T 01/42 5 pom lift/6'5 WITH CODE D T9 G5 PRL'SCK/PT/ON W/Tl/ (0175.0 7455 05/1/77?! 179 4 ROCESS/N BUSINESS Uri-7C5 ADMISSION OFF/CE SHEU 1 0f 6 mwoR QwAou PATENIH,
r z nv1 21974 PATENTE NOV] 2 m4 SHEEIZOF 6 IIIIIII AIS PATENIL; z-
esv1 21974
sum 5w6 IDENTIFICATION SYSTEM This is a division, of application Ser. No. 94,452, filed Dec. 2, 1970.
This invention relates to an improved identification system particularly adapted for preventing errors in identification of individual patients in medical centers treating a large number of patients.
In most hospitals and clinical laboratories, a bracelet containing a patient identification number is permanently affixed around the arm of an incoming patient in order to identify the patient during his entire stay. Upon discharge, the bracelet is removed by severing flexible straps which affix the bracelet to the patients arm. Despite this numerous situations arise which result in errors in patient identification. When a sample is taken from a patient, the sample must be identified by the the identification (ID) number on the patients bracelet. In transferring the patients ID number, a nurse or a technician may miscopy the number, or may relay on memory or a different data source rather than actually reading the patients bracelet. In an attempt to overcome this problem, it has been proposed to attach a notched token to the patients arm, which can be read by an electromechanical reader in order to control a punch which reproduces the notched identification scheme in a card attached to a sample. Such a system is extremely costly, and not readily adapted for use in many practical situations which occur in a medical center.
An even more serious problem previously unresolved, occurs when an individual patient is to receive a treatment. Many prescription drugs and injections are identified merely by slips of paper on which the pateints name and ID number has been handwritten by a nurse or technician who is to administer the treatment. For a variety of reasons, such as the transfer of patients to differentbeds, and errors in marking the slip of paper, the wrong patient may be given a treatment. While apparatus has been proposed for correlating the results of a sample analysis with the source sample such as a blood supply container, it has not previously been suggested that such a correlation could be applied to a patient about to receive a treatment. Furthermore, the equipment used in correlating a sample analysis with a container is not readily adapted nor practical for the latter purpose.
In accordance with the present invention, an improved and unique identification system is disclosed which both initially identifies the patient, and subsequently provides a crosscheck that a particular patient is to receive a particular treatment. A patient identification bracelet of simple design is disclosed which can dispense a plurality of magnetically coded tags for attachment to samples, prescriptions and the like, to properly identify the source individual. When a patient is to receive a treatment, one tag from his bracelet is placed in a portable cross-check reader which also receives a similar tag identifying the treatment and the patient to whom the treatment is to be administered. Only when the tags are identical is a nurse or technician authorized to administer the treatment.
One object of the invention is the provision of a patient identification system in which an ID bracelet attached to a patient dispenses a plurality of magnetically coded tages which identify the patient.
Another object of this invention is the provision of a patient identification system in which a cross-check reader compares treatment identification data with patient identification data taken from the patient immediately before administration of a treatment in order to authorize the administration of the treatment.
Further advantages and features of the invention will be apparent from the following description, and from the drawings, in which:
FIG. 1 is a block diagram illustrating the identification system used in a medical center such as a hospital;
FIG. 2 is a perspective view of one embodiment of an identification braclet for dispensing a plurality of magnetically coded identificaion tags;
FIG. 3 is a cross-section of the identification bracelet, taken along lines 33 of FIG. 2;
FIG. 4 is a plan view illustrating the magnetic orientation of a tag produced by the identification bracelet,
and taken along
lines44 of FIG. 2;
FIG. 5 is a perspective view of another embodiment of an identification bracelet for dispensing a plurality of magnetically coded identification tags;
FIG. 6 is a perspective view, partly in section, of one tag from the bracelet of FIG. 5;
FIG. 7 is a cross-section of the identification bracelet, taken along lines 77 of FIG. 5;
FIG. 8 is a diagrammatic illustration of the crosscheck reader illustrated in perspective view in FIG. 1;
FIG. 9 is a schematic diagram of the derived clock circuit used in both the cross-check reader of FIG. 8 and the tag reader of FIG. 11;
FIG. 10 is a schematic diagram of the indicator driver used in the cross-check reader of FIG. 8; and
FIG. 11 is a diagrammatic illustration of the tag reader illustrated in perspective view in FIG. 1.
While illustrative embodiments of the invention are shown in the drawings and will be described in detail herein, the invention is susceptible of embodiment in many different forms and it should be understood that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the invention to the embodiments illustrated. Throughout the specification, values and type designations will be given for certain of the components in order to disclose a complete, operative embodiment of the invention. However, it should be understood that such values and type designations are merely representative and are not critical unless specifically so stated.
Turning to FIG. 1, an identification system is illustrated for use in a hospital or other medical treatment center. A patient is first admitted in a business and admission office 20, where he or she receives an
identification bracelet22 constructed in accordance with the present invention. The
bracelet22 has a
conventional strap23 which is affixed around the
arm25 of the patient in order to retain the bracelet during the patients entire stay in the hospital. The patient, wearing the attached bracelet, is then transferred to one of a large number of
patient rooms27 for diagnosis and/or treat ment.
In accordance with the present invention, any media concerning the patient, including prescriptions, samples of the patients fluids, and the like are identified by magnetically coded carriers or
tags30 which are dispensed by the
bracelet22. For example, one magnetically coded
tag30 is attached to a prescription before it is transmitted via a
nurses station32 to a pharmacy 34 where the prescription is to be filled. The
tag30 accompanying the prescription is placed in a receptacle in a
tray36 of a
tag reader37, and the
tray36 is manually closed. A lever is then moved which actuates circuitry, to be described, which decodes the magnetic information on the
tag30 and produces decoded output indications, including a print-out on a paper strip or
web39.
After the prescription is filled, a tag similar to
tag30 is attached to the prescription drug bottle or container before being transmitted to the
nurses station32. The tag accompanying the treatment includes markings or handwriting which is read by a nurse in order to provide an initial determination of the patient who is to receive the treatment. The prescription drug is taken by the nurse to the
patients room27 containing the patient who is to receive the treatment. The tag accompanying the prescription drug is then placed in a receptacle 42 in a sliding
tray44 of a
cross-check reader46. At this time, a
new tag30 is dispensed from the
bracelet22 and placed in another receptacle 48 in the
tray44. The tray is then manually closed and a lever is moved to activate the
cross-check reader46. If the magnetically coded tag accompanying the drug matches the magnetically coded tag from the
pateints bracelet22, a
G indicator50 is energized. This authorizes the nurse to apply the treatment to the patient. If a NO GO indicator 511 should be energized, an error is indicated, and the nurse is not authorized to administer the treatment. The cause of the error can then be traced and corrected.
In a clinical laboratory 54 which analyzes samples from patients, another
tag reader37 is located in order to decode coded
tags30 accompanying samples. After analysis, the test results, blood type, or the like, are identified by a tag similar to that provided by the pharmacy 34. Certain data may be transmitted to the
patients room27, and in such instances, the identification tag accompanying the analysis is compared with a
tag30 taken from the
bracelet22 before posting or otherwise entering the data on a patients record. If desired, the
nurses station32, or other stations in the hospital, can also be provided with
tag readers37.
The information from the magnetically coded
tags30 is also used to supplement information which is transmittedto a central
data processing station60 which provides accounting information for the business office 20. Each
tag reader37 includes keys for manually entering data concerning the operation being performed,
as analysis, drug perscription and the like, which information is automatically printed on
paper strips39 along with the patients number from a tag being decoded. At the same time, the decoded ID number and the manually entered information produces computer coded data which is transmitted to the center
data processing station60 in order to update the patients personal record and his billing record.
In FIGS. 2-4, one embodiment of the
patient bracelet22 is illustrated in detail.
Bracelet22 consists of a bottom plate 64 of flexible material such as low density polyethylene, which carries a plurality of
magnetized areas65 arranged to form a unique binary code for identifying one patient. By way of example, each
magnetized area65 may be formed by an embedded permanent magnet formed of a ferrous material, such as alnico blanks 0.030 inches in diameter, which are magnetized during manufacture with a north-south orientation transverse to the direction of movement of the
tags30 through the
bracelet22, see FIG. 4.
22 includes an upper section spaced from plate 64 to form a channel or slot for passage of
tags30 therethrough. The
upper section70, formed of a flexi ble material such as low density polyethylene, similar to the material used for the lower plate 64 is permanently attached at its ends to the lower plate 64 by a pair of
rivets72.
Section70 includes a plurality of downwardly extending
fingers74, each
finger74 being located closely adjacent a different one of the
permanent magnets65, so that as the
tags30 are drawn between the
fingers74 and the plate 64, the
fingers74 insure good contact between the tags and the
permanent magnets65.
In order to provide an initial determination of patient identity, the patients name may be entered by any suitable means on a
name card80, and the card slid between current channel members in
section70 and over a
locking tab82, see FIG. 3, for retention within a channel. The upper, central section of the channel is open, as seen in FIG. 2, to expose the name on the
name card80. For permanent identification, the digital equivalent of the binary coding of the permanent mag nets 65 may be prestamped in a
lower surface86 of the channel for the name tag.
, A plurality of
separable tags30 are dispensed at one time by placing a magnetizable card or form 90 into the slit opening between the
teeth74 and the lower plate 64, and manually pushing and then pulling the form 90 through the bracelet, as seen in FIG. 2. Form 90 is composed of a
layer92 of magnetizable material, as a ferrite coating, uniformly applied over one side of a flexible carrier layer 94. The opposite side of layer 94 is coated with an
adhesive backing96 for attaching individual tags, i.e., sections of the form 90, to prescriptions, sample bottles, and the like. A thin layer of
paper98 covers the
adhesive backing96, and can be peeled away to expose the adhesive backing when an
individual tag30 is to be attached to an item.
For convenience, the form 90 contains
perforations100 between each separable section, so that an
individual tag30 may be separated from the form 90. Desirably, an
orientation key102 is notched in the center of each
tag30 to provide a reference for orienting the tag in the cross-check reader and the tag reader to be described. At the end of form 90, a
space104 is provided for noting the patients name and number, but such identification is for purposes of convenience only, and is not used for actual identification purposes since it is subject to the same types of errors as presently occur in identification systems.
Space104 may also contain instructions for passing the form 90 through a
bracelet22, and may include other means for insuring that all forms are passes through the bracelets in the same manner, as for example, by color coding the area around the
orientation notches102 and similarly'color coding one end of the
bracelet22. In addition, an
edge106 of form 90 is scalloped to prevent wrong end insertion of the form.
As the form 90 is drawn through the bracelet, the
ferrite coating92 becomes magnetized in longitudinal strips extending the length of the form. These strips have a magnetic orientation corresponding to the north-south orientation of the
permanent magnets65 embedded in the plate 64. By way of illustration, the
tag30 illustrated in FIG. 4 has been magnetized in binary coded decimal (BCD) to form the 24 bit word 0001 0010 0000 0100 0000 1000, corresponding to the
digital ID number120408.
In FIGS. 5-7, another embodiment of the
bracelet22 is illustrated in detail. This bracelet is more economical and of simpler construction than the bracelet of FIGS. 2-4, but requires manual refilling at periodic intervals. The bracelet serves as a storage unit and dispenser of individual,
precoded tags30 which are magnetized before loading into the bracelet. Except for being precoded, each
tag30, FIG. 6, is similar to the
tag30 in FIG. 2. A
flexible layer1 has deposited thereon a ferrite coating, permanently magnetized during manufacture of the tag to create 24 magnetically oriented tracks. The magnetic tracks are similar to the magnetic tracks illustrated for the tag in FIG. 4, and thus the
tags30 dispensed from the bracelet in FIGS. 5-7 are magnetically compatible with
tags30 produced by the bracelet of FIGS. 2-4.
The tags are also mechanically and physically compatible, so that both type of bracelets could be used in the same hospital identification system. Similar to tag 30 in FIG. 2, the
tag30 of FIG. 6 has an
adhesive layer112 placed over the
magnetized layer110. Finally, a
thin paper backing114 is placed over the
adhesive layer112 so that the
layer114 can be peeled away and removed in order to attach the
tag30 to an item which is to be identified. The
paper backing114 may contain a decimal number corresponding to the binary coding of the magnetically oriented tracks in
layer110.
As seen in FIG. 7,
bracelet22 consists of a
flexible bottom plate116, formed of low density polyethylene, and an
upper plate120, formed of similar material, and joined at its right hand end in the drawing to plate 116 by a
rivet72. The space between the
plates120 and 116 defines a storage area which holds a plurality of stacked, premagnetized tags 30. A layer of
foam rubber122 serves to urge the
tags30 upward against the
plate120. A locking tab 126, attached to plate 116 by a
rivet72, serves to retain the tags within the storage compartment.
In order to dispense tags,
plate120 has a
central opening130 which exposes the topmost tag 30.= By placing a finger or thumb through the
opening130, a person can urge the topmost tag aginst and over the locking tab 126, thereby dispensing a single tab from the end of the
braclet22. After movement of the finger or thumb urges a single tag part way out of the bracelet, the tag can be entirely removed by grasping it between the fingers and pulling.
The
bracelet22 of FIGS. 5-7 is intended to hold a number of tags sufficient for identification purposes during a single stay of a typical patient. The bracelet is refillable by insertingtags through the same opening which is used to dispense tags. If desired, the
plate120 can be pivotally mounted to plate 116 so as to snap open for a refill operation. Although a refill operation increases the possibility of error, the procedure for refilling bracelets would desirably include several crosschecks to prevent mistake. Furthermore, it is contemplated that bracelets of different heights to hold different numbers of stacked tags may be provided, with bracelets of greater storage capacity being attached to patients expected to have a longer stay in the hospital.
In FIG. 8, the
cross-check reader46 is diagrammatically illustrated. Since the cross-check reader is both portable and self-contained, a dual power system is provided to insure long life. The system consists of a mechanical energy source which stores operator supplied energy, and an electrical energy source consisting of a pair of
batteries150, providing for example 4.5 volts DC. The
batteries150, as will appear, are switched to power the circuitry only when necessary. This switching system, in conjunction with the mechanical storage system, produces a reader of low electrical energy consumption and hence long battery life.
The I mechanical storage system consists of a
coil spring152 captured between a frame or
base154, which mounts the mechanical and electrical devices within the housing for the reader, and a
plate156 attached to a
platen158.
Platen158 includes a locking
notch160 into which a
latch162 is driven when the
platen158 is depressed during a reset operation by manual operator motion.
158 forms a part of the sliding
tray44 which has the tag receptacles 42 and 48 located thereon. After
individual tags30 are placed within the receptacles 42 and 48, the sliding
drawer44 is closed, moving the
platen158 downwardly to the position illustrated by dashed lines, at which position the
latch162 is driven into the
notch160.
Latch162 includes a
coiled spring166 trapped between a
shoulder164 and a
post168 affixed to the
frame154. In order to activate the
reader46, a
trigger170 extending through the housing for the reader is manually rotated clockwise about a
pivot point172. This laterally moves a connecting
link174 which attaches through an opening in
post168 with
latch162, causing
spring166 to be compressed while the
latch162 moves out of engagement with the
notch160.
Platen158 is then driven upward by action of the
compressed spring152.
The speed of movement of
platen158 is controlled by a pneumatic damper which comprises a
cylinder182 enclosing a piston connected through a
piston shaft184 with
plate156. A pair of
air vents186 and 194 allows air trapped within the
cylinder182 to be vented to the atmosphere as the
spring152 drives the
plate156 and attached
piston shaft154 upward. The size of the
openings186 and 194 are chosen to produce the desired speed of movement of the
platen158 for the period of time that the tag receptacles 42 and 48 are being driven passed magnetic read heads 190. After passing the read heads, the piston is so located as to block the
opening186, allowing air to vent through the remaining
smaller opening194. This causes the speed of movement of the
platen158 to be substantially reduced, controlling the time that the
indicator50 or 51 is energized.
The movement of the
platen158 during the operate or read mode causes the sliding
tray44 to be driven out of the housing to its intial open position, allowing the operator to remove the
tags30 in preparation for a subsequent cross-check operation. When a new reading is to be taken, another pair of
tags30 are placed in the receptacles 42 and 48, and the unit is reset by the operator closing the sliding drawer and thus moving the
platen158 downward until
latch162 is driven by
spring166 into the
notch160. Any energization of the indicators is disregarded during a reset operation.
In order to read the pair of magnetically coded tags, a pair of
channels213 and 214 are provided for the receptacles 42 and 48, respectively. Each channel contains similar circuits, as follows. A
magnetic read head190 has a gap located adjacent the
tag30 being read thereby. Receptacles 42 and 48 orient the
tags30 so that the magnetized tracks are located transverse to the direction of movement of the
platen158. The first track in each
tag30 is located at the uppermost position in FIG. 8, such that when the
trigger170 is actuated, each of the 24 tracks is in turn driven passed its read head at the same time that the corresponding track on the
opposite tag30 is driven passed the other read head.
Each
head190 is connected to a
read amplifier200 of conventional construction, producing amplified pulses which are coupled to a derived
clock circuit292, illustrated in detail in FIG. 10. The output from the derived
clock circuit202 consists of data pulses, on a
line204, and clock pulses, on a
line205. The clock pulse cause the data to be entered into a 24
bit shift register207 of conventional construction.
Shift register207 has 24
output lines210, individually labeled 1 through 24 to correspond with the bits being stored in the corresponding shift register storage unit.
The
output lines210 of the shift registers 207 in both
channels213 and 214 are coupled to a pair of inputs of a comparator 212. When allbits on the
lines210 from both channels match, a
logic1 bit output is provided on an
output line216 of comparator 212. This logic bit is coupled to an
indicator driver220, shown in detail in FIG. 11, to energize one of the
indicators50 and 51. If a 1 output indicating a match is present,
GO indicator50 is energized; and correspondingly, if a output indicating no match is present, NO
GO indicator51 is energized.
Energization of the circuit of FIG, 8 is controlled by a
power cam222 and an
indicator cam224, both affixed to platen 158. The
battery150 is connected between a source of reference potential or
gound226, and a positive line which leads to a pair of
switches230 and 232, each of the single-pole, single-throw type.
Switch230 has a movable contact 234 which closes when a
link236 abuts or engages the
power cam222. Similarly, the
switch232 has a
movable contact240 which closes when a
link242 engages the
indicator cam224.
When
switch230 closes, power is supplied via a positive
potential line245 to the read
amplifiers200, the derive
clock circuits202, the shift registers 207, and the comparator 212.
Power cam222 has a width ap proximately equal to the width of the receptacles 42 and 48, and is located so link 236 engages
power cam222 during the same period of time that the gaps in the read heads 190 are positioned adjacent the
tags30. Power is supplied to
line245 just prior to the time the first track on the
tags30 is driven past the read heads 190. Power is disconnected from
line245 shortly after the last track on the
tags30 has passed the corresponding read heads.
224 is located so that it engages link 242 after the last rack on the
tags30 has been read, but before the disconnection of power on
line245. When
switch240 closes, a
potential line250 energizes the
indicator driver220. Depending on the signal on
line216, one of the
indicators50 or 51 is energized, and remains energized until the
indicator cam224 is driven beyond the
link242. During the
time cam224 is abutting
link242 and hence actuating
switch240, the piston speed is controlled by the
singal air vent194, causing the
platen158 to move slowly and hence energize the
driver220 for several seconds, sufficient to allow the operator time to read th indicators.v When the piston rises further and blocks the
air vent194, further movement of the
platen158 is terminated, and the sliding
tray44 is located at its fully open position. In this position, both
links236 and 242 are located off of their
corresponding cams222 and 224, thus denergizing the circuit.
In FIG. 9, the derived
clock circuit202 is illustrated in detail. The signal from the
magnetic read amplifier200 is coupled through a 10
kilohm resistor260 to an
operational amplifier262 connected to function as a DC coupled inverter. The output of the inverter is coupled through a
ohm resistor264 to a
trigger input266 of a one
shot multivibrator268, such as a type SN74121, manufactured by Texas Instruments. A
diode270
shunts input266 to
ground226 in order to clamp the input to a maximum negative potential of minus 0.6 volts.
The signal from the
magnetic read amplifier200 is also coupled through a 150
ohm resistor274 to a
trigger input276 ofa one
shot multivibrator278 of similar type to
multivibrator268. A
diode280 shunts the trigger input to
ground226 in order to clamp the input to a maxiumu netative potential of minus 06 volts. Each multivibrator has a 2 millisecond one shot period, determined by an RC network consisting of a 15
kilohm resistor282 and a 0.47
microfarad capacitor284, connected to
multivibrator268, and a 15
kilohm resistor286 and a 0.47
microfarad capacitor288 connected in
multivibrator278. The output of each multivibrator, on a line labled Q, is coupled through respective 0.
l microfarad capacitors290 and 292 to a
NAND gate294 having an output coupled to a
second NAND gate296 to produce an output on
line205 corresponding to the clock or timing pulses. The
capacitors290 and 292 are chosen to have values which couple rather than differentiate the outputs of the one shot multivibrators.
294 is normally held at a
logic1 level or high by a pair of 10
kilohm resistors300 and 301, connected between the inputs of the
NAND gate294 and the positive
potential line245. The pair of multivibrators are cross coupled by connecting the 6 output of
multivibrator268 to an inhibit
input304 of
multivibrator278, and by coupling the Q output of
multivibrator278 to an inhibit
input306 of
multivibrator268. The Q output of
multivibrator278 corresponds to
line204 and produces the data output pulses.
Both one shot
multivibrators268 and 278 are of the type that are only susceptable to triggering when the inhibiting input is held low (0 volts or negative). The multivibrators trigger when the trigger input thereafter goes high (positive potential), producing a high or positive going pulse on the Q output and a low or negative going pulse on the complementary 6 output.
The
spring152 and the pneumatic damper of FIG. 8 are selected to have values which cause each channel of data on each
tag30 to be driven past the magnetic read heads once each 200 milliseconds, when the RC networks have the previously disclosed values which produce a 2 millisecond one shot period. The operation of the FIG. 9 circuit is as follows. When a 1 bit is detected, a positive going pulse from
amplifier200 occurs at the time the leading edge of a magnetic track passes a
magnetic head190. This pulse is coupled to both
resistors260 and 274. The positive pulse will have no initial effect on
trigger input266, but the pulse will trigger
input276. Initially, it will be assumed that the output Q is high from both milivibrators, so the Q output is low to both inhibit inputs. When the positive input pulse triggers multivibrator 278 a positive pulse is put out on
data line204. The Q output goes low causbit passes the
magnetic head190. This negative going pulse must be completely ignored by the circuit for proper decoding. When a zero bit is detected a negative pulse appears on
line200 followed by a positive pulse. Likewise, this positive pulse must be ignored for proper decoding.
The c ss connection of
multibrators268 and 278, via the Q outputs, inhibits the opposite multivibrator during a 2 millisecond period following the first triggering of one of the multivibrators. This time period blanks out the circuit during the time that the magnetic read heads produce a signal on detecting the trailing edge of the magnetic track. Thus, the cross connection prevents false triggering by insuring that only one multivibrator is energized for each detection of a magnetic track.
If the initial input from the read
amplifier200 had been a negative going pulse, the
multivibrato268 would have been actuated. This would cause the Q output tl ereof'to go low, and the Q output to go high. The low Q output is coupled through
capacitor290 and produces a high output from
gate294. This is inverted by
gate296 to produce a low going pulse on
clock line205. The absence of a simultaneous appearance of a positive pulse on
line204 now indicates a zero had been read.
In FIG. 10, the
indicator driver220 is illustrated in I detail.
Line216 from the comparator is coupled through a
NAND gate310 and a
resistor312 to the
gate input314 of a three terminal switching device such as an SCI-
I316. The
gate input314 is shunted to ground 226 through a
resistor318. The
SCR316 controls the
NO GO indicator51. The positive
potential line250 from
switch240 is coupled through a resistor 322'and a light emitting diode (LED) 324 to the anode of
SCR316. The cathode of the SCR is directly coupled to
ground226.
To control the
GO indicator50,
resistor322 is also coupled through a second light emitting diode (LED) 330 to the anode of an
SCR332 having its cathode directly coupled to
ground226. The
gate input334 for
SCR332 is coupled to
ground226 through a resistor 340, and is coupled through a
resistor342 to the output of a
NOT gate344. The input of
NOT gate344 is coupled to'the output of
NOT gate310.
- In operation,
line216 goes positive when a match is indicated by the comparator. This produces a negative signal to
gate314 and a positive signal to
gate334. When
switch240 is closed to indicate that valid inforrriation is present on
line216,
SCR332 is triggered into conduction, thereby completing a current path to ground through the
LED330. This produces a visual GO indication, authorizing a nurse or technicain to apply a treatment to a patient. Alternatively, if
line216 had a zero output when
switch240 was closed,
SCR316 would be energized, causing
LED324 to be illuminated to provide a NO GO indication. The energized LED continues to produce a visual output until the cir cuit is broken by the opening of
switch240.
In FIG. 11, the
tag reader37 is diagrammatically illustrated. Parts serving corresponding functions to parts in the
cross-check reader46 of FIG. 8 have been identified by the same reference numeral, and will only be briefly described in this section. The sliding
tray36 has a platen driver and a latch mechanism identical with that previously described for the sliding
tray44 of FIG. 8. The
individual tag30 to be read is located in a
receptacle350, only one receptacle being provided since a pair of tags are not to be compared.
Platen158 includes a
print cam352 which actuates a
linkage354 after the
tag30 has been driven completely passed read
head190, thereby closing a
switch356 in order to ground an input and initiate a print cycle, as will appear. Since-the
tag reader37 is not intended to be portable, it can be located near an external source of AC power, and hence battery operation is not provided. The
reader37 may be powered by a conventional power supply (not illustrated), connected to a conventional source of AC line voltage. Thus, the only timing provided by the
platen158 is for automatically intitating a print cycle.
As the magnetically coded
tag30 is driven passed the
magnetic read head190, by the platen driver mechanism previously described, a series of pulses are amplitied in
read amplifier200 and coupled to the derived
clock circuit202, illustrated in detail in FIG. 9, in order to produce data pulses on
line204 and clock pulses on
line205. A 24
bit shift register207 steps the data through storage units in response to the clock pulses. When all bits have been stored, the 24 output lines, collectively labeled 210, have valid information. These lines are coupled to a printer
electronics control unit360, of known design, which controls a
conventional printer mechanism362 in order to print the data being inputted to the
control360 on the paper strip or
web39. Desirably, the printer
electronics control unit360 includes a BCD to decimal converter, so that the data output includes the decimal equivalent of the patient ID number. The printer selected for this purpose is of the type which can simultaneously or serially print 21 spaces or characters of information across the
web39. By way of example, the spaces may be allocated for data information of the type illustratively shown in the drawing.
Control unit360 has a number of sets of inputs corresponding to the number of items to be printed. Any conventional control for printing plural.
data can be used as
unit360, and the data can be sampled, or enteredas serial or parallel words, as desired.
A number of different types of data may be inputted to the
control unit360 for printing at the same time that the patient ID number is recorded. A
service code generator370 includes six thumbwheel selectable switches 372, each switch having a wheel with l0 decimal digits 0 through 9. The switches 372 are of the known type which have a direct output in BCD, four lines for each switch, thus producing on a calbe 376 a 24 bit parallel word corresponding to the selected six digit service code. In operation, each station in the hospital is assigned a service code or a block of service codes. Referring to FIG. 1, the clinical laboratory 54 could be assigned decimal numbers from 100,000 to 199,999, for example. Individual numbers within this range would be assigned to services and tests performed in the Iabroatory. Number 100,001 could stand for a glucose test, number l00,002 for a CPK test, and so on. A similar procedure would apply for the pharmacy 34, which could be assigned numbers in the range 200,000 to 299,999. Commonly prescribed drugs would be assigned a range of individual numbers with individual numbers within the range indicating the dosage of the drug.
A date set
unit380 includes a plurality of
switches382 which provide a bit paralle word on a cable 384, which word indicates the date.
An
electronic clock386 can be provided, of the type which maintains the correct time after being initially set to the correct time when the unit is first turned on. This known
clock386 has a plurality of time set
buttons390 for resetting time after the unit has been turned off. Associated with
clock386 is a
digital clock converter392 which produces a 16 bit parallel word on a
cable394, which word corresponds to the present time.
The
data input cables210, 376, 384 and 394, all input to the
control360, which operates to actuate the
printer mechanism362 only when a print signal is received from a
NAND gate400. One input of
gate400 is coupled to the terminal of
switch356 which is closed by engagement of
linkage354 with the
print cam352. The other input of
gate400 is coupled to a 24 bit clock test electronics unit 402 whose input is coupled to the
clock line205. Unit 402 may be a 24 bit counter for producing an output after counting 24 clock pulses. Only when unit 402 has an output and the
switch356 closes is a print signal generated. Thus, unit 402 prevents a print operation should less than 24 bits be read from
tag30, or should more than 24 bits be read, due to a malfunction.
Desirably,
printer360 has a serial digital
data output line404 which may be coupled to a conventional ASC
II code converter406 having an output directly coupled to the
central data processing60, FIG. 1. Alternatively, the
converter406 can operate a known type of card punch, in order to produce an IBM card or the like I which contains data corresponding to the data printed on
paper web39. Other data providing units or different combinations of units may also be utilized in the
tag reader37.
We claim:
1. In an identification system for relating items with patients, cross-check means for insuring that an identifying i'tem corresponds to an identified patient, comprising:
first identification tag means adapted to be dispensed from bracelet means attached to a single patient;
said first identification tag means carrying thereon magnetic means having a plurality of magnetic fields arranged to form a unique magnetic code for identifying a single patient;
second identification tag means adapted to be dispensed from the bracelet means and carrying thereon magnetic means having a plurality of magentic fields corresponding to the plurality of magnetic fields carried by said first identification tag means to form the unique magnetic code thereon;
means for removably attaching said second identification tag means to an item which is to be associated with said single patient;
and reader means for comparing the unique codes of said first and second identification tag means comprising plate means mounted for movement along a predetermined path between first and second positions, first and second input receptacles for rc spectively receiving said first and second identification tag means, said receptacles being disposed on said plate means for simultaneous movement therewith, first and second magnetic read heads disposed adjacent said path for respective association with said first and second input receptacles, energy storage means coupled to said plate means for storing energy in response to movement of said plate means from said first position to said second position, said plate means being movable from said second position to said first position by the energy stored in said storage means for moving said first and second identification tag means relative to said first and second read heads to produce a first series of signals corresponding to the unique magnetic code of said first identification tag means and a second series of signals corresponding to the unique magnetic code of said second identification tag means, circuitry means responsive to said first and second series of signals for producing a signal comparison, and means responsive to said signal comparison to provide a match indication when the magnetic codes of said first and second identification tag means are identical.
2. The identification system of
claim1 wherein said energy storage means includes spring means for normally urging said plate means toward said first position, damper means for controlling the speed of movement of said plate means from said second position to said first position, and said attaching means includes an adhesive layer on said second identification tag means.
l i= l
Claims (2)
1. In an identification system for relating items with patients, cross-check means for insuring that an identifying item corresponds to an identified patient, comprising: first identification tag means adapted to be dispensed from bracelet means attached to a single patient; said first identification tag means carrying thereon magnetic means having a plurality of magnetic fields arranged to form a unique magnetic code for identifying a single patient; second identification tag means adapted to be dispensed from the bracelet means and carrying thereon magnetic means having a plurality of magentic fields corresponding to the plurality of magnetic fields carried by said first identification tag means to form the unique magnetic code thereon; means for removably attaching said second Identification tag means to an item which is to be associated with said single patient; and reader means for comparing the unique codes of said first and second identification tag means comprising plate means mounted for movement along a predetermined path between first and second positions, first and second input receptacles for respectively receiving said first and second identification tag means, said receptacles being disposed on said plate means for simultaneous movement therewith, first and second magnetic read heads disposed adjacent said path for respective association with said first and second input receptacles, energy storage means coupled to said plate means for storing energy in response to movement of said plate means from said first position to said second position, said plate means being movable from said second position to said first position by the energy stored in said storage means for moving said first and second identification tag means relative to said first and second read heads to produce a first series of signals corresponding to the unique magnetic code of said first identification tag means and a second series of signals corresponding to the unique magnetic code of said second identification tag means, circuitry means responsive to said first and second series of signals for producing a signal comparison, and means responsieve to said signal comparison to provide a match indication when the magnetic codes of said first and second identification tag means are identical.
2. The identification system of claim 1 wherein said energy storage means includes spring means for normally urging said plate means toward said first position, damper means for controlling the speed of movement of said plate means from said second position to said first position, and said attaching means includes an adhesive layer on said second identification tag means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US00287925A US3848112A (en) | 1970-12-02 | 1972-09-11 | Identification system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9445270A | 1970-12-02 | 1970-12-02 | |
US00287925A US3848112A (en) | 1970-12-02 | 1972-09-11 | Identification system |
Publications (1)
Publication Number | Publication Date |
---|---|
US3848112A true US3848112A (en) | 1974-11-12 |
Family
ID=26788897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00287925A Expired - Lifetime US3848112A (en) | 1970-12-02 | 1972-09-11 | Identification system |
Country Status (1)
Country | Link |
---|---|
US (1) | US3848112A (en) |
Cited By (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4194685A (en) * | 1976-09-17 | 1980-03-25 | Dynetics Engineering Corp. | Verifying insertion system apparatus and method of operation |
US4268179A (en) * | 1979-10-29 | 1981-05-19 | E. I. Du Pont De Nemours And Company | Method and system for reproducing identification characters |
US4429217A (en) | 1976-09-17 | 1984-01-31 | Dynetics Engineering Corp. | Verifying insertion system and apparatus |
US4455483A (en) * | 1980-10-24 | 1984-06-19 | Schoenhuber Max J | System for recording data relating to specific lots of materials, particularly to milk lots |
US4460824A (en) * | 1980-02-26 | 1984-07-17 | Olympus Optical Co. Ltd. | Test requisition card for automatic analyzing apparatus |
US4476381A (en) * | 1982-02-24 | 1984-10-09 | Rubin Martin I | Patient treatment method |
US4614366A (en) * | 1983-11-18 | 1986-09-30 | Exactident, Inc. | Nail identification wafer |
US4622457A (en) * | 1981-03-09 | 1986-11-11 | Spectra-Physics, Inc. | Autosampler mechanism |
US4628193A (en) * | 1980-01-30 | 1986-12-09 | Blum Alvin S | Code reading operations supervisor |
WO1987000659A1 (en) * | 1985-07-19 | 1987-01-29 | Clinicom Incorporated | Patient identification and verification system and method |
US4645916A (en) * | 1983-09-09 | 1987-02-24 | Eltrax Systems, Inc. | Encoding method and related system and product |
US4678894A (en) * | 1985-04-18 | 1987-07-07 | Baxter Travenol Laboratories, Inc. | Sample identification system |
US4730849A (en) * | 1987-02-05 | 1988-03-15 | Seigel Family Revocable Trust | Medication dispensing identifier method |
US4732411A (en) * | 1987-02-05 | 1988-03-22 | Siegel Family Revocable Trust | Medication dispensing identifier system |
US4800512A (en) * | 1985-06-28 | 1989-01-24 | Pruftechnik Dieter Busch & Partner Gmbh & Co. | Method and apparatus for determining and detecting data indicative of the condition of machines through a unique data probe including a test data probe portion and an identifying data sensing probe portion |
US4835372A (en) * | 1985-07-19 | 1989-05-30 | Clincom Incorporated | Patient care system |
US4850009A (en) * | 1986-05-12 | 1989-07-18 | Clinicom Incorporated | Portable handheld terminal including optical bar code reader and electromagnetic transceiver means for interactive wireless communication with a base communications station |
US4853521A (en) * | 1987-12-28 | 1989-08-01 | Claeys Ronald W | System for verifying and recording drug administration to a patient |
US4857713A (en) * | 1986-02-14 | 1989-08-15 | Brown Jack D | Hospital error avoidance system |
US4857716A (en) * | 1986-05-12 | 1989-08-15 | Clinicom Incorporated | Patient identification and verification system and method |
EP0380061A1 (en) * | 1989-01-25 | 1990-08-01 | Morris H. Shamos | Patient identification system |
US5012229A (en) * | 1987-04-29 | 1991-04-30 | Charles A. Lennon | User wearable personal/medical information device |
US5071168A (en) * | 1989-01-25 | 1991-12-10 | Shamos Morris H | Patient identification system |
US5153416A (en) * | 1989-09-20 | 1992-10-06 | Neeley William E | Procedure and assembly for drawing blood |
US5166498A (en) * | 1989-09-20 | 1992-11-24 | Neeley William E | Procedure and assembly for drawing blood |
US5171977A (en) * | 1990-05-14 | 1992-12-15 | Sunquest Information Systems, Inc. | Portable medical specimen data collection system |
US5193855A (en) * | 1989-01-25 | 1993-03-16 | Shamos Morris H | Patient and healthcare provider identification system |
WO1993007006A1 (en) * | 1991-10-09 | 1993-04-15 | Kiwisoft Programs Limited | Identification system |
US5292029A (en) * | 1989-11-08 | 1994-03-08 | Pearson Walter G | Patient medication dispensing and associated record |
US5401059A (en) * | 1990-12-21 | 1995-03-28 | Healtech S.A. | Process and unit for univocal pairing of drugs corresponding to a prescribed treatment with a given patient |
US5405048A (en) * | 1993-06-22 | 1995-04-11 | Kvm Technologies, Inc. | Vacuum operated medicine dispenser |
US5490610A (en) * | 1994-03-07 | 1996-02-13 | Pearson; Walter G. | Semi-automated medication dispenser |
DE19523965A1 (en) * | 1995-01-26 | 1996-08-01 | Manfred Kemmler | Electronic identification system for patients or other individuals |
US5592374A (en) * | 1993-07-02 | 1997-01-07 | Eastman Kodak Company | Patient identification and x-ray exam data collection bar code system |
US5607187A (en) * | 1991-10-09 | 1997-03-04 | Kiwisoft Programs Limited | Method of identifying a plurality of labels having data fields within a machine readable border |
US5653472A (en) * | 1995-07-25 | 1997-08-05 | The Standard Register Company | Form having detachable wristband and labels |
US5673647A (en) * | 1994-10-31 | 1997-10-07 | Micro Chemical, Inc. | Cattle management method and system |
USRE35743E (en) * | 1988-09-12 | 1998-03-17 | Pearson Ventures, L.L.C. | Patient medication dispensing and associated record keeping system |
US5766075A (en) * | 1996-10-03 | 1998-06-16 | Harrah's Operating Company, Inc. | Bet guarantee system |
US5781442A (en) * | 1995-05-15 | 1998-07-14 | Alaris Medical Systems, Inc. | System and method for collecting data and managing patient care |
US5803906A (en) * | 1987-08-12 | 1998-09-08 | Micro Chemical, Inc. | Method and system for providing animal health histories and tracking inventory of related drug usage |
EP0774737A3 (en) * | 1995-11-16 | 1998-11-04 | Ncr International Inc. | An authorization device |
US5965214A (en) * | 1996-04-23 | 1999-10-12 | Flying Null Limited | Methods for coding magnetic tags |
US5979941A (en) * | 1996-11-19 | 1999-11-09 | Mosher, Jr.; Walter W. | Linkage identification system |
US5992237A (en) * | 1997-07-22 | 1999-11-30 | Skf Condition Monitoring, Inc. | Digital vibration coupling stud |
US5996889A (en) * | 1996-04-15 | 1999-12-07 | Aesculap Ag & Co. Kg | Process and device for the monitoring and control of the flow of material in a hospital |
US6006164A (en) * | 1997-07-22 | 1999-12-21 | Skf Condition Monitoring, Inc. | Portable vibration monitor |
US6058876A (en) * | 1998-09-17 | 2000-05-09 | Keene; Douglas | Blood type-specific safety labeling system for patients and blood products |
EP1003577A1 (en) * | 1997-07-25 | 2000-05-31 | Bristol-Myers Squibb Company | Blood product delivery system |
US6070761A (en) * | 1997-08-22 | 2000-06-06 | Deka Products Limited Partnership | Vial loading method and apparatus for intelligent admixture and delivery of intravenous drugs |
US6138906A (en) * | 1992-06-09 | 2000-10-31 | Mcbride & Costello, Inc. | Method of installing and identifying the locations of installed products |
US6144304A (en) * | 1995-08-16 | 2000-11-07 | Webb; Nicholas J. | Methods and apparatus for the secure identification of infants and parents in health care institutions |
US6200210B1 (en) | 1996-11-12 | 2001-03-13 | Micro Beef Technologies, Inc. | Ruminant tissue analysis at packing plants for electronic cattle management and grading meat |
US6202491B1 (en) | 1997-07-22 | 2001-03-20 | Skf Condition Monitoring, Inc. | Digital vibration coupling stud |
US6349493B1 (en) | 1994-01-03 | 2002-02-26 | Moore Business Forms, Inc. | Debit wristbands |
KR20020023814A (en) * | 2001-12-20 | 2002-03-29 | 김용신 | MES(Medical Examination System) |
EP1249206A1 (en) * | 2001-04-14 | 2002-10-16 | Agilent Technologies, Inc. (a Delaware corporation) | Measurement of patient data requiring operator and patient identification |
KR20020084636A (en) * | 2001-05-04 | 2002-11-09 | 박선우 | Point of care management method using bar code system |
US20030040835A1 (en) * | 2001-04-28 | 2003-02-27 | Baxter International Inc. | A system and method for managing inventory of blood component collection soft goods in a blood component collection facility |
US6535129B1 (en) | 2000-11-17 | 2003-03-18 | Moore North America, Inc. | Chain of custody business form with automated wireless data logging feature |
US6592517B2 (en) | 1987-08-12 | 2003-07-15 | Micro Beef Technologies, Ltd. | Method and system for providing animal health histories and tracking inventory of related drug usage |
US20030140929A1 (en) * | 2002-01-29 | 2003-07-31 | Wilkes Gordon J. | Infusion therapy bar coding system and method |
US20030187736A1 (en) * | 2002-04-02 | 2003-10-02 | David Teague | Patron tracking system |
US20030222548A1 (en) * | 2002-05-31 | 2003-12-04 | Richardson William R. | Storage device for health care facility |
US6671563B1 (en) | 1995-05-15 | 2003-12-30 | Alaris Medical Systems, Inc. | System and method for collecting data and managing patient care |
US20040010425A1 (en) * | 2002-01-29 | 2004-01-15 | Wilkes Gordon J. | System and method for integrating clinical documentation with the point of care treatment of a patient |
US6725723B2 (en) | 1996-07-05 | 2004-04-27 | Spm Instrument Ab | Device for mounting on a machine |
US20040113421A1 (en) * | 2002-12-17 | 2004-06-17 | Oswaldo Penuela | Multi-part form having detachable wristband, labels and cards or the like |
US20040193325A1 (en) * | 2003-03-25 | 2004-09-30 | David Bonderud | Method and apparatus to prevent medication error in a networked infusion system |
US20050049801A1 (en) * | 1996-07-05 | 2005-03-03 | Stefan Lindberg | Analysis system |
US20050086072A1 (en) * | 2003-10-15 | 2005-04-21 | Fox Charles S.Jr. | Task-based system and method for managing patient care through automated recognition |
US20050139651A1 (en) * | 2003-11-21 | 2005-06-30 | Vasogen Ireland Limited | Medical treatment management systems |
US20050177333A1 (en) * | 2002-01-18 | 2005-08-11 | Stefan Lindberg | Apparatus for analysing the condition of a machine |
US20050251418A1 (en) * | 2003-10-15 | 2005-11-10 | Cerner Innovation, Inc. | System and method for processing ad hoc orders in an automated patient care environment |
US6985870B2 (en) | 2002-01-11 | 2006-01-10 | Baxter International Inc. | Medication delivery system |
US20060057555A1 (en) * | 2002-06-27 | 2006-03-16 | Udi Damari | Method and system for controlling the development of biological entities |
US20060148120A1 (en) * | 2005-01-04 | 2006-07-06 | Omnivision Technologies, Inc. | Deuterium alloy process for image sensors |
US20060149599A1 (en) * | 2005-01-03 | 2006-07-06 | Cerner Innovation, Inc. | System and method for automatically generating physician orders for urgent care |
US20060178579A1 (en) * | 2004-11-30 | 2006-08-10 | Haynes John T | Determining respiratory or circulatory health condition in animals for improved management |
US7236936B2 (en) | 1999-12-01 | 2007-06-26 | B. Braun Medical, Inc. | Security infusion pump with bar code reader |
US20080086489A1 (en) * | 2006-10-05 | 2008-04-10 | David Wilkes | Low error rate interface for untrained users based on a method and system for event tracking |
US20080118045A1 (en) * | 2006-11-22 | 2008-05-22 | Evercom Sustems, Inc. | Systems And Methods For Visitation Terminal User Identification |
US20090203329A1 (en) * | 1999-12-01 | 2009-08-13 | B. Braun Medical, Inc. | Patient Medication IV Delivery Pump with Wireless Communication to a Hospital Information Management System |
US7681527B2 (en) | 2005-01-19 | 2010-03-23 | Micro Beef Technologies, Ltd. | Method and system for tracking and managing animals and/or food products |
US7765728B1 (en) | 2006-09-28 | 2010-08-03 | The Standard Register Company | Wristband form including a wristband and an extension therefor |
US7828147B2 (en) | 2004-04-24 | 2010-11-09 | Inrange Systems, Inc. | Multi-layer medication carrier |
US7860583B2 (en) | 2004-08-25 | 2010-12-28 | Carefusion 303, Inc. | System and method for dynamically adjusting patient therapy |
US8019471B2 (en) | 2004-04-24 | 2011-09-13 | Inrange Systems, Inc. | Integrated, non-sequential, remote medication management and compliance system |
US8038593B2 (en) | 2003-12-05 | 2011-10-18 | Carefusion 303, Inc. | System and method for network monitoring of multiple medical devices |
US8234128B2 (en) | 2002-04-30 | 2012-07-31 | Baxter International, Inc. | System and method for verifying medical device operational parameters |
US8775196B2 (en) | 2002-01-29 | 2014-07-08 | Baxter International Inc. | System and method for notification and escalation of medical data |
US9069887B2 (en) | 2000-05-18 | 2015-06-30 | Carefusion 303, Inc. | Patient-specific medication management system |
US9330579B2 (en) | 2012-04-23 | 2016-05-03 | Medirex Systems Inc. | Patient wristband |
US9427520B2 (en) | 2005-02-11 | 2016-08-30 | Carefusion 303, Inc. | Management of pending medication orders |
USD782053S1 (en) | 2016-01-05 | 2017-03-21 | Rhonda Ferguson-Shakir | Diagnostic wrist band |
USD782052S1 (en) | 2016-01-05 | 2017-03-21 | Rhonda Ferguson-Shakir | Diagnostic wrist band |
US9600633B2 (en) | 2000-05-18 | 2017-03-21 | Carefusion 303, Inc. | Distributed remote asset and medication management drug delivery system |
US9741001B2 (en) | 2000-05-18 | 2017-08-22 | Carefusion 303, Inc. | Predictive medication safety |
US10016554B2 (en) | 2008-07-09 | 2018-07-10 | Baxter International Inc. | Dialysis system including wireless patient data |
US10029047B2 (en) | 2013-03-13 | 2018-07-24 | Carefusion 303, Inc. | Patient-specific medication management system |
US10061899B2 (en) | 2008-07-09 | 2018-08-28 | Baxter International Inc. | Home therapy machine |
US10062457B2 (en) | 2012-07-26 | 2018-08-28 | Carefusion 303, Inc. | Predictive notifications for adverse patient events |
US10173008B2 (en) | 2002-01-29 | 2019-01-08 | Baxter International Inc. | System and method for communicating with a dialysis machine through a network |
US10347374B2 (en) | 2008-10-13 | 2019-07-09 | Baxter Corporation Englewood | Medication preparation system |
US10353856B2 (en) | 2011-03-17 | 2019-07-16 | Carefusion 303, Inc. | Scalable communication system |
US10430554B2 (en) | 2013-05-23 | 2019-10-01 | Carefusion 303, Inc. | Medication preparation queue |
US10552577B2 (en) | 2012-08-31 | 2020-02-04 | Baxter Corporation Englewood | Medication requisition fulfillment system and method |
US10646405B2 (en) | 2012-10-26 | 2020-05-12 | Baxter Corporation Englewood | Work station for medical dose preparation system |
US10818387B2 (en) | 2014-12-05 | 2020-10-27 | Baxter Corporation Englewood | Dose preparation data analytics |
US10867265B2 (en) | 2013-03-13 | 2020-12-15 | Carefusion 303, Inc. | Predictive medication safety |
US10971257B2 (en) | 2012-10-26 | 2021-04-06 | Baxter Corporation Englewood | Image acquisition for medical dose preparation system |
US11087873B2 (en) | 2000-05-18 | 2021-08-10 | Carefusion 303, Inc. | Context-aware healthcare notification system |
US11107574B2 (en) | 2014-09-30 | 2021-08-31 | Baxter Corporation Englewood | Management of medication preparation with formulary management |
US11182728B2 (en) | 2013-01-30 | 2021-11-23 | Carefusion 303, Inc. | Medication workflow management |
US11367533B2 (en) | 2014-06-30 | 2022-06-21 | Baxter Corporation Englewood | Managed medical information exchange |
US11495334B2 (en) | 2015-06-25 | 2022-11-08 | Gambro Lundia Ab | Medical device system and method having a distributed database |
US11516183B2 (en) | 2016-12-21 | 2022-11-29 | Gambro Lundia Ab | Medical device system including information technology infrastructure having secure cluster domain supporting external domain |
US11575673B2 (en) | 2014-09-30 | 2023-02-07 | Baxter Corporation Englewood | Central user management in a distributed healthcare information management system |
US11630969B2 (en) | 2019-02-25 | 2023-04-18 | Fund For Medical Research Development Of Infrastructure & Health Services By Barzilai Medical Center | Identity verifying device and methods |
US11948112B2 (en) | 2015-03-03 | 2024-04-02 | Baxter Corporation Engelwood | Pharmacy workflow management with integrated alerts |
US12079742B2 (en) | 2013-05-22 | 2024-09-03 | Carefusion 303, Inc. | Medication workflow management |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2939110A (en) * | 1954-02-04 | 1960-05-31 | Ibm | Comparing device for employment in a record card collator or like machine |
US3009636A (en) * | 1959-11-16 | 1961-11-21 | Ibm | Data comparing system |
US3481195A (en) * | 1965-05-03 | 1969-12-02 | Ibm | Record card machine |
US3513441A (en) * | 1967-10-16 | 1970-05-19 | Clary Corp | Verification system |
US3593291A (en) * | 1969-01-24 | 1971-07-13 | Thomas W Sullivan | Automatic identification system and method |
US3671717A (en) * | 1969-10-24 | 1972-06-20 | Albert H Bieser | Credit card verification system |
US3673389A (en) * | 1970-03-02 | 1972-06-27 | Computer Identics Corp | Identification and registration system |
-
1972
- 1972-09-11 US US00287925A patent/US3848112A/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2939110A (en) * | 1954-02-04 | 1960-05-31 | Ibm | Comparing device for employment in a record card collator or like machine |
US3009636A (en) * | 1959-11-16 | 1961-11-21 | Ibm | Data comparing system |
US3481195A (en) * | 1965-05-03 | 1969-12-02 | Ibm | Record card machine |
US3513441A (en) * | 1967-10-16 | 1970-05-19 | Clary Corp | Verification system |
US3593291A (en) * | 1969-01-24 | 1971-07-13 | Thomas W Sullivan | Automatic identification system and method |
US3671717A (en) * | 1969-10-24 | 1972-06-20 | Albert H Bieser | Credit card verification system |
US3673389A (en) * | 1970-03-02 | 1972-06-27 | Computer Identics Corp | Identification and registration system |
Non-Patent Citations (1)
Title |
---|
Kuntzleman et al., Automated Blood Typing, IBM Technical Bulletin, Vol. 10, No. 10, Mar. 1968, pp. 1,450 1,451. * |
Cited By (217)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4429217A (en) | 1976-09-17 | 1984-01-31 | Dynetics Engineering Corp. | Verifying insertion system and apparatus |
US4194685A (en) * | 1976-09-17 | 1980-03-25 | Dynetics Engineering Corp. | Verifying insertion system apparatus and method of operation |
US4268179A (en) * | 1979-10-29 | 1981-05-19 | E. I. Du Pont De Nemours And Company | Method and system for reproducing identification characters |
US4628193A (en) * | 1980-01-30 | 1986-12-09 | Blum Alvin S | Code reading operations supervisor |
US4460824A (en) * | 1980-02-26 | 1984-07-17 | Olympus Optical Co. Ltd. | Test requisition card for automatic analyzing apparatus |
US4455483A (en) * | 1980-10-24 | 1984-06-19 | Schoenhuber Max J | System for recording data relating to specific lots of materials, particularly to milk lots |
US4622457A (en) * | 1981-03-09 | 1986-11-11 | Spectra-Physics, Inc. | Autosampler mechanism |
US4476381A (en) * | 1982-02-24 | 1984-10-09 | Rubin Martin I | Patient treatment method |
US4645916A (en) * | 1983-09-09 | 1987-02-24 | Eltrax Systems, Inc. | Encoding method and related system and product |
US4614366A (en) * | 1983-11-18 | 1986-09-30 | Exactident, Inc. | Nail identification wafer |
US4678894A (en) * | 1985-04-18 | 1987-07-07 | Baxter Travenol Laboratories, Inc. | Sample identification system |
US4800512A (en) * | 1985-06-28 | 1989-01-24 | Pruftechnik Dieter Busch & Partner Gmbh & Co. | Method and apparatus for determining and detecting data indicative of the condition of machines through a unique data probe including a test data probe portion and an identifying data sensing probe portion |
EP0230458A4 (en) * | 1985-07-19 | 1990-12-27 | Clinicom Incorporated | Patient identification and verification system and method |
EP0230458A1 (en) * | 1985-07-19 | 1987-08-05 | Clinicom Incorporated | Patient identification and verification system and method |
US4835372A (en) * | 1985-07-19 | 1989-05-30 | Clincom Incorporated | Patient care system |
WO1987000659A1 (en) * | 1985-07-19 | 1987-01-29 | Clinicom Incorporated | Patient identification and verification system and method |
US4857713A (en) * | 1986-02-14 | 1989-08-15 | Brown Jack D | Hospital error avoidance system |
US4850009A (en) * | 1986-05-12 | 1989-07-18 | Clinicom Incorporated | Portable handheld terminal including optical bar code reader and electromagnetic transceiver means for interactive wireless communication with a base communications station |
US4857716A (en) * | 1986-05-12 | 1989-08-15 | Clinicom Incorporated | Patient identification and verification system and method |
US4730849A (en) * | 1987-02-05 | 1988-03-15 | Seigel Family Revocable Trust | Medication dispensing identifier method |
US4732411A (en) * | 1987-02-05 | 1988-03-22 | Siegel Family Revocable Trust | Medication dispensing identifier system |
US5012229A (en) * | 1987-04-29 | 1991-04-30 | Charles A. Lennon | User wearable personal/medical information device |
US6592517B2 (en) | 1987-08-12 | 2003-07-15 | Micro Beef Technologies, Ltd. | Method and system for providing animal health histories and tracking inventory of related drug usage |
US6547726B2 (en) | 1987-08-12 | 2003-04-15 | Micro Beef Technologies, Ltd. | Method and system for providing animal health histories and tracking inventory of related drug usage |
US5803906A (en) * | 1987-08-12 | 1998-09-08 | Micro Chemical, Inc. | Method and system for providing animal health histories and tracking inventory of related drug usage |
US4853521A (en) * | 1987-12-28 | 1989-08-01 | Claeys Ronald W | System for verifying and recording drug administration to a patient |
USRE35743E (en) * | 1988-09-12 | 1998-03-17 | Pearson Ventures, L.L.C. | Patient medication dispensing and associated record keeping system |
US5562232A (en) * | 1988-09-12 | 1996-10-08 | Pearson; Walter G. | Semi-automated medication dispenser |
US5193855A (en) * | 1989-01-25 | 1993-03-16 | Shamos Morris H | Patient and healthcare provider identification system |
US5071168A (en) * | 1989-01-25 | 1991-12-10 | Shamos Morris H | Patient identification system |
US5381487A (en) * | 1989-01-25 | 1995-01-10 | Shamos; Morris H. | Patient identification system |
EP0380061A1 (en) * | 1989-01-25 | 1990-08-01 | Morris H. Shamos | Patient identification system |
US5166498A (en) * | 1989-09-20 | 1992-11-24 | Neeley William E | Procedure and assembly for drawing blood |
US5153416A (en) * | 1989-09-20 | 1992-10-06 | Neeley William E | Procedure and assembly for drawing blood |
US5292029A (en) * | 1989-11-08 | 1994-03-08 | Pearson Walter G | Patient medication dispensing and associated record |
US5171977A (en) * | 1990-05-14 | 1992-12-15 | Sunquest Information Systems, Inc. | Portable medical specimen data collection system |
US5401059A (en) * | 1990-12-21 | 1995-03-28 | Healtech S.A. | Process and unit for univocal pairing of drugs corresponding to a prescribed treatment with a given patient |
US5607187A (en) * | 1991-10-09 | 1997-03-04 | Kiwisoft Programs Limited | Method of identifying a plurality of labels having data fields within a machine readable border |
WO1993007006A1 (en) * | 1991-10-09 | 1993-04-15 | Kiwisoft Programs Limited | Identification system |
US6138906A (en) * | 1992-06-09 | 2000-10-31 | Mcbride & Costello, Inc. | Method of installing and identifying the locations of installed products |
US5405048A (en) * | 1993-06-22 | 1995-04-11 | Kvm Technologies, Inc. | Vacuum operated medicine dispenser |
US5592374A (en) * | 1993-07-02 | 1997-01-07 | Eastman Kodak Company | Patient identification and x-ray exam data collection bar code system |
US6349493B1 (en) | 1994-01-03 | 2002-02-26 | Moore Business Forms, Inc. | Debit wristbands |
US5490610A (en) * | 1994-03-07 | 1996-02-13 | Pearson; Walter G. | Semi-automated medication dispenser |
US7607405B2 (en) | 1994-10-31 | 2009-10-27 | Micro Beef Technologies, Ltd. | Cattle management method and system |
US7836849B2 (en) | 1994-10-31 | 2010-11-23 | Micro Beef Technologies, Ltd. | Cattle management method and system |
US20070131175A1 (en) * | 1994-10-31 | 2007-06-14 | Micro Beef Technologies, Ltd. | Cattle management method and system |
US7347161B2 (en) | 1994-10-31 | 2008-03-25 | Micro Beef Technologies, Ltd. | Cattle management method and system |
US20080190369A1 (en) * | 1994-10-31 | 2008-08-14 | Micro Beef Technologies, Ltd. | Cattle management method and system |
US20080270173A1 (en) * | 1994-10-31 | 2008-10-30 | Micro Beef Technologies, Ltd. | Cattle management method and system |
US6000361A (en) * | 1994-10-31 | 1999-12-14 | Micro Chemical, Inc. | Cattle Management method and system |
US20050000458A1 (en) * | 1994-10-31 | 2005-01-06 | Micro Beef Technologies, Ltd. | Cattle management method and system |
US8474405B1 (en) | 1994-10-31 | 2013-07-02 | Mwi Veterinary Supply Co. | Cattle management method and system |
US7464667B2 (en) | 1994-10-31 | 2008-12-16 | Pratt William C | Cattle management method and system |
US8261694B2 (en) | 1994-10-31 | 2012-09-11 | Mwi Veterinary Supply Co. | Cattle management method and system |
US6135055A (en) * | 1994-10-31 | 2000-10-24 | Micro Beef Technologies, Inc. | Cattle management method and system |
US6805075B2 (en) | 1994-10-31 | 2004-10-19 | Micro Beef Technologies, Ltd. | Cattle management method and system |
US7464666B2 (en) | 1994-10-31 | 2008-12-16 | Micro Beef Technologies, Ltd. | Cattle management method and system |
US8028657B2 (en) | 1994-10-31 | 2011-10-04 | Micro Beef Technologies, Ltd. | Cattle management method and system |
US20090031961A1 (en) * | 1994-10-31 | 2009-02-05 | Micro Beef Technologies, Ltd. | Cattle management method and system |
US6516746B2 (en) | 1994-10-31 | 2003-02-11 | Micro Beef Technologies, Ltd. | Cattle management method and system |
US6318289B1 (en) | 1994-10-31 | 2001-11-20 | Micro Beef Technologies, Ltd. | Cattle management method and system |
US5673647A (en) * | 1994-10-31 | 1997-10-07 | Micro Chemical, Inc. | Cattle management method and system |
US20090307111A1 (en) * | 1994-10-31 | 2009-12-10 | Micro Beef Technologies, Ltd | Cattle management method and system |
US7827934B2 (en) | 1994-10-31 | 2010-11-09 | Micro Beef Technologies, Ltd. | Cattle management method and system |
US7748345B2 (en) | 1994-10-31 | 2010-07-06 | Micro Beef Technologies, Ltd. | Cattle management method and system |
US7726258B2 (en) | 1994-10-31 | 2010-06-01 | Micro Beef Technologies, Ltd. | Cattle management method and system |
DE19523965A1 (en) * | 1995-01-26 | 1996-08-01 | Manfred Kemmler | Electronic identification system for patients or other individuals |
US7171277B2 (en) | 1995-05-15 | 2007-01-30 | Cardinal Health 303, Inc. | System and method for controlling the delivery of medication to a patient |
US7096072B2 (en) | 1995-05-15 | 2006-08-22 | Cardinal Health 303, Inc. | System and method for recording medication delivery to a patient |
US20040143459A1 (en) * | 1995-05-15 | 2004-07-22 | Engleson Joseph J. | System and method for collecting data and managing patient care |
US7483756B2 (en) | 1995-05-15 | 2009-01-27 | Cardinal Health 303, Inc. | System and method for controlling the delivery of medication to a patient |
US6731989B2 (en) | 1995-05-15 | 2004-05-04 | Alaris Medical Systems, Inc. | System and method for collecting data and managing patient care |
US5781442A (en) * | 1995-05-15 | 1998-07-14 | Alaris Medical Systems, Inc. | System and method for collecting data and managing patient care |
US20070124177A1 (en) * | 1995-05-15 | 2007-05-31 | Cardinal Health 303, Inc. | System and method for controlling the delivery of medication to a patient |
US7117041B2 (en) | 1995-05-15 | 2006-10-03 | Cardinal Health 303, Inc. | System and method for programming a clinical device |
US7107106B2 (en) | 1995-05-15 | 2006-09-12 | Cardinal Health 303, Inc. | System and method for collecting data and managing patient care |
US6915170B2 (en) | 1995-05-15 | 2005-07-05 | Alaris Medical Systems, Inc. | System and method for collecting data and managing patient care |
US6671563B1 (en) | 1995-05-15 | 2003-12-30 | Alaris Medical Systems, Inc. | System and method for collecting data and managing patient care |
US7103419B2 (en) | 1995-05-15 | 2006-09-05 | Cardinal Health 303, Inc. | System and method for monitoring medication delivery to a patient |
US5653472A (en) * | 1995-07-25 | 1997-08-05 | The Standard Register Company | Form having detachable wristband and labels |
US6144304A (en) * | 1995-08-16 | 2000-11-07 | Webb; Nicholas J. | Methods and apparatus for the secure identification of infants and parents in health care institutions |
EP0774737A3 (en) * | 1995-11-16 | 1998-11-04 | Ncr International Inc. | An authorization device |
US5996889A (en) * | 1996-04-15 | 1999-12-07 | Aesculap Ag & Co. Kg | Process and device for the monitoring and control of the flow of material in a hospital |
US5965214A (en) * | 1996-04-23 | 1999-10-12 | Flying Null Limited | Methods for coding magnetic tags |
US6725723B2 (en) | 1996-07-05 | 2004-04-27 | Spm Instrument Ab | Device for mounting on a machine |
US20050049801A1 (en) * | 1996-07-05 | 2005-03-03 | Stefan Lindberg | Analysis system |
US5766075A (en) * | 1996-10-03 | 1998-06-16 | Harrah's Operating Company, Inc. | Bet guarantee system |
US6200210B1 (en) | 1996-11-12 | 2001-03-13 | Micro Beef Technologies, Inc. | Ruminant tissue analysis at packing plants for electronic cattle management and grading meat |
US5979941A (en) * | 1996-11-19 | 1999-11-09 | Mosher, Jr.; Walter W. | Linkage identification system |
US6202491B1 (en) | 1997-07-22 | 2001-03-20 | Skf Condition Monitoring, Inc. | Digital vibration coupling stud |
US6006164A (en) * | 1997-07-22 | 1999-12-21 | Skf Condition Monitoring, Inc. | Portable vibration monitor |
US5992237A (en) * | 1997-07-22 | 1999-11-30 | Skf Condition Monitoring, Inc. | Digital vibration coupling stud |
EP1003577A1 (en) * | 1997-07-25 | 2000-05-31 | Bristol-Myers Squibb Company | Blood product delivery system |
EP1003577A4 (en) * | 1997-07-25 | 2001-02-14 | Bristol Myers Squibb Co | Blood product delivery system |
US6070761A (en) * | 1997-08-22 | 2000-06-06 | Deka Products Limited Partnership | Vial loading method and apparatus for intelligent admixture and delivery of intravenous drugs |
US6058876A (en) * | 1998-09-17 | 2000-05-09 | Keene; Douglas | Blood type-specific safety labeling system for patients and blood products |
US6363878B1 (en) | 1998-09-17 | 2002-04-02 | Douglas Keene | Blood type-specific safety labeling system for patients and blood products |
US7645258B2 (en) | 1999-12-01 | 2010-01-12 | B. Braun Medical, Inc. | Patient medication IV delivery pump with wireless communication to a hospital information management system |
US7236936B2 (en) | 1999-12-01 | 2007-06-26 | B. Braun Medical, Inc. | Security infusion pump with bar code reader |
US8486019B2 (en) | 1999-12-01 | 2013-07-16 | B. Braun Medical, Inc. | Patient medication IV delivery pump with wireless communication to a hospital information management system |
US20090203329A1 (en) * | 1999-12-01 | 2009-08-13 | B. Braun Medical, Inc. | Patient Medication IV Delivery Pump with Wireless Communication to a Hospital Information Management System |
US11087873B2 (en) | 2000-05-18 | 2021-08-10 | Carefusion 303, Inc. | Context-aware healthcare notification system |
US9741001B2 (en) | 2000-05-18 | 2017-08-22 | Carefusion 303, Inc. | Predictive medication safety |
US9600633B2 (en) | 2000-05-18 | 2017-03-21 | Carefusion 303, Inc. | Distributed remote asset and medication management drug delivery system |
US9069887B2 (en) | 2000-05-18 | 2015-06-30 | Carefusion 303, Inc. | Patient-specific medication management system |
US11823791B2 (en) | 2000-05-18 | 2023-11-21 | Carefusion 303, Inc. | Context-aware healthcare notification system |
US10275571B2 (en) | 2000-05-18 | 2019-04-30 | Carefusion 303, Inc. | Distributed remote asset and medication management drug delivery system |
US6535129B1 (en) | 2000-11-17 | 2003-03-18 | Moore North America, Inc. | Chain of custody business form with automated wireless data logging feature |
WO2002085209A1 (en) * | 2001-04-14 | 2002-10-31 | Koninklijke Philips Electronics N.V. | Measurement of patient data requiring operator and patient identification |
EP1249206A1 (en) * | 2001-04-14 | 2002-10-16 | Agilent Technologies, Inc. (a Delaware corporation) | Measurement of patient data requiring operator and patient identification |
US20030078805A1 (en) * | 2001-04-28 | 2003-04-24 | Baxter International Inc. | A system and method for managing a procedure in a blood component collection facility |
US20030078808A1 (en) * | 2001-04-28 | 2003-04-24 | Baxter International Inc. | A system and method for managing inventory of blood component collection soft goods and for preventing the use of quarantined soft goods |
US20030040835A1 (en) * | 2001-04-28 | 2003-02-27 | Baxter International Inc. | A system and method for managing inventory of blood component collection soft goods in a blood component collection facility |
US20030069480A1 (en) * | 2001-04-28 | 2003-04-10 | Baxter International Inc. | A system and method for networking blood collection instruments within a blood collection facility |
KR20020084636A (en) * | 2001-05-04 | 2002-11-09 | 박선우 | Point of care management method using bar code system |
KR20020023814A (en) * | 2001-12-20 | 2002-03-29 | 김용신 | MES(Medical Examination System) |
US7668731B2 (en) | 2002-01-11 | 2010-02-23 | Baxter International Inc. | Medication delivery system |
US6985870B2 (en) | 2002-01-11 | 2006-01-10 | Baxter International Inc. | Medication delivery system |
US7313484B2 (en) | 2002-01-18 | 2007-12-25 | Spm Instrument Ab | Analysis system |
US7167814B2 (en) | 2002-01-18 | 2007-01-23 | Spm Instrument Ab | Analysis system for analyzing the condition of a machine |
US7949496B2 (en) | 2002-01-18 | 2011-05-24 | Spm Instrument Ab | Analysis system |
US7200519B2 (en) | 2002-01-18 | 2007-04-03 | Spm Instrument Ab | Analysis system for analyzing the condition of a machine |
US20050177333A1 (en) * | 2002-01-18 | 2005-08-11 | Stefan Lindberg | Apparatus for analysing the condition of a machine |
US20050209811A1 (en) * | 2002-01-18 | 2005-09-22 | Stefan Lindberg | Analysis system for analysing the condition of a machine |
US7324919B2 (en) | 2002-01-18 | 2008-01-29 | Spm Instrument Ab | Apparatus for analysing the condition of a machine |
US7774166B2 (en) | 2002-01-18 | 2010-08-10 | Spm Instrument Ab | Analysis system |
US20080071500A1 (en) * | 2002-01-18 | 2008-03-20 | Spm Instrument Ab | Analysis system |
US20080059117A1 (en) * | 2002-01-18 | 2008-03-06 | Spm Instrument Ab | Analysis system |
US7711519B2 (en) | 2002-01-18 | 2010-05-04 | Spm Instrument Ab | Analysis system |
US20040010425A1 (en) * | 2002-01-29 | 2004-01-15 | Wilkes Gordon J. | System and method for integrating clinical documentation with the point of care treatment of a patient |
US20030140929A1 (en) * | 2002-01-29 | 2003-07-31 | Wilkes Gordon J. | Infusion therapy bar coding system and method |
US10173008B2 (en) | 2002-01-29 | 2019-01-08 | Baxter International Inc. | System and method for communicating with a dialysis machine through a network |
US10556062B2 (en) | 2002-01-29 | 2020-02-11 | Baxter International Inc. | Electronic medication order transfer and processing methods and apparatus |
US8775196B2 (en) | 2002-01-29 | 2014-07-08 | Baxter International Inc. | System and method for notification and escalation of medical data |
US20030187736A1 (en) * | 2002-04-02 | 2003-10-02 | David Teague | Patron tracking system |
US8234128B2 (en) | 2002-04-30 | 2012-07-31 | Baxter International, Inc. | System and method for verifying medical device operational parameters |
US20030222548A1 (en) * | 2002-05-31 | 2003-12-04 | Richardson William R. | Storage device for health care facility |
US20060057555A1 (en) * | 2002-06-27 | 2006-03-16 | Udi Damari | Method and system for controlling the development of biological entities |
US20040113421A1 (en) * | 2002-12-17 | 2004-06-17 | Oswaldo Penuela | Multi-part form having detachable wristband, labels and cards or the like |
US7322613B2 (en) | 2002-12-17 | 2008-01-29 | Precision Dynamic, Corporation | Multi-part form having detachable wristband, labels and cards or the like |
US20040193325A1 (en) * | 2003-03-25 | 2004-09-30 | David Bonderud | Method and apparatus to prevent medication error in a networked infusion system |
US20050086072A1 (en) * | 2003-10-15 | 2005-04-21 | Fox Charles S.Jr. | Task-based system and method for managing patient care through automated recognition |
US20050251418A1 (en) * | 2003-10-15 | 2005-11-10 | Cerner Innovation, Inc. | System and method for processing ad hoc orders in an automated patient care environment |
US20050139651A1 (en) * | 2003-11-21 | 2005-06-30 | Vasogen Ireland Limited | Medical treatment management systems |
US8038593B2 (en) | 2003-12-05 | 2011-10-18 | Carefusion 303, Inc. | System and method for network monitoring of multiple medical devices |
US7828147B2 (en) | 2004-04-24 | 2010-11-09 | Inrange Systems, Inc. | Multi-layer medication carrier |
US8019471B2 (en) | 2004-04-24 | 2011-09-13 | Inrange Systems, Inc. | Integrated, non-sequential, remote medication management and compliance system |
US9307907B2 (en) | 2004-08-25 | 2016-04-12 | CareFusion 303,Inc. | System and method for dynamically adjusting patient therapy |
US8630722B2 (en) | 2004-08-25 | 2014-01-14 | Carefusion 303, Inc. | System and method for dynamically adjusting patient therapy |
US8340792B2 (en) | 2004-08-25 | 2012-12-25 | Carefusion 303, Inc. | System and method for dynamically adjusting patient therapy |
US7860583B2 (en) | 2004-08-25 | 2010-12-28 | Carefusion 303, Inc. | System and method for dynamically adjusting patient therapy |
US10064579B2 (en) | 2004-08-25 | 2018-09-04 | Carefusion 303, Inc. | System and method for dynamically adjusting patient therapy |
US8282557B2 (en) | 2004-11-30 | 2012-10-09 | Mwi Veterinary Supply Co. | Determining respiratory or circulatory health condition in animals for improved management |
US7931593B2 (en) | 2004-11-30 | 2011-04-26 | Micro Beef Technologies, Ltd. | Determining respiratory or circulatory health condition in animals for improved management |
US20060178579A1 (en) * | 2004-11-30 | 2006-08-10 | Haynes John T | Determining respiratory or circulatory health condition in animals for improved management |
US7670292B2 (en) | 2004-11-30 | 2010-03-02 | Micro Beef Technologies, Ltd. | Determining respiratory or circulatory health condition in animals for improved management |
US8929971B2 (en) | 2004-11-30 | 2015-01-06 | Mwi Veterinary Supply Co. | Determining respiratory or circulatory health condition in animals for improved management |
US20060149599A1 (en) * | 2005-01-03 | 2006-07-06 | Cerner Innovation, Inc. | System and method for automatically generating physician orders for urgent care |
US20060148120A1 (en) * | 2005-01-04 | 2006-07-06 | Omnivision Technologies, Inc. | Deuterium alloy process for image sensors |
US7810451B2 (en) | 2005-01-19 | 2010-10-12 | Micro Beef Technologies, Ltd. | Method and system for tracking and managing animals and/or food products |
US8505488B2 (en) * | 2005-01-19 | 2013-08-13 | Mwi Veterinary Supply Co. | Method and system for tracking and managing animals and/or food products |
US7836850B2 (en) | 2005-01-19 | 2010-11-23 | Micro Beef Technologies, Ltd. | Method and system for tracking and managing animals and/or food products |
US8256381B2 (en) * | 2005-01-19 | 2012-09-04 | Mwi Veterinary Supply Co. | Method and system for tracking and managing animals and/or food products |
US8037846B2 (en) * | 2005-01-19 | 2011-10-18 | Micro Beef Technologies, Ltd. | Method and system for tracking and managing animals and/or food products |
US20120176238A1 (en) * | 2005-01-19 | 2012-07-12 | Micro Beef Technologies, Ltd. | Method and system for tracking and managing animals and/or food products |
US7681527B2 (en) | 2005-01-19 | 2010-03-23 | Micro Beef Technologies, Ltd. | Method and system for tracking and managing animals and/or food products |
US10668211B2 (en) | 2005-02-11 | 2020-06-02 | Carefusion 303, Inc. | Management of pending medication orders |
US9427520B2 (en) | 2005-02-11 | 2016-08-30 | Carefusion 303, Inc. | Management of pending medication orders |
US11590281B2 (en) | 2005-02-11 | 2023-02-28 | Carefusion 303, Inc. | Management of pending medication orders |
US9981085B2 (en) | 2005-02-11 | 2018-05-29 | Carefusion, 303, Inc. | Management of pending medication orders |
US7765728B1 (en) | 2006-09-28 | 2010-08-03 | The Standard Register Company | Wristband form including a wristband and an extension therefor |
US20110185612A1 (en) * | 2006-09-28 | 2011-08-04 | Waggoner Bryce C | Wristband form including a wristband and an extension therefor |
US8327566B2 (en) | 2006-09-28 | 2012-12-11 | The Standard Register Company | Wristband form including a wristband and an extension therefor |
US20080086489A1 (en) * | 2006-10-05 | 2008-04-10 | David Wilkes | Low error rate interface for untrained users based on a method and system for event tracking |
US8031850B2 (en) * | 2006-11-22 | 2011-10-04 | Securus Technologies, Inc. | Systems and methods for visitation terminal user identification |
US20080118045A1 (en) * | 2006-11-22 | 2008-05-22 | Evercom Sustems, Inc. | Systems And Methods For Visitation Terminal User Identification |
US10272190B2 (en) | 2008-07-09 | 2019-04-30 | Baxter International Inc. | Renal therapy system including a blood pressure monitor |
US10646634B2 (en) | 2008-07-09 | 2020-05-12 | Baxter International Inc. | Dialysis system and disposable set |
US11918721B2 (en) | 2008-07-09 | 2024-03-05 | Baxter International Inc. | Dialysis system having adaptive prescription management |
US10095840B2 (en) | 2008-07-09 | 2018-10-09 | Baxter International Inc. | System and method for performing renal therapy at a home or dwelling of a patient |
US11311658B2 (en) | 2008-07-09 | 2022-04-26 | Baxter International Inc. | Dialysis system having adaptive prescription generation |
US10224117B2 (en) | 2008-07-09 | 2019-03-05 | Baxter International Inc. | Home therapy machine allowing patient device program selection |
US10061899B2 (en) | 2008-07-09 | 2018-08-28 | Baxter International Inc. | Home therapy machine |
US10016554B2 (en) | 2008-07-09 | 2018-07-10 | Baxter International Inc. | Dialysis system including wireless patient data |
US10068061B2 (en) | 2008-07-09 | 2018-09-04 | Baxter International Inc. | Home therapy entry, modification, and reporting system |
US10347374B2 (en) | 2008-10-13 | 2019-07-09 | Baxter Corporation Englewood | Medication preparation system |
US10353856B2 (en) | 2011-03-17 | 2019-07-16 | Carefusion 303, Inc. | Scalable communication system |
US11734222B2 (en) | 2011-03-17 | 2023-08-22 | Carefusion 303, Inc. | Scalable communication system |
US10983946B2 (en) | 2011-03-17 | 2021-04-20 | Carefusion 303, Inc. | Scalable communication system |
US11366781B2 (en) | 2011-03-17 | 2022-06-21 | Carefusion 303, Inc. | Scalable communication system |
US9812039B2 (en) | 2012-04-23 | 2017-11-07 | Medirex Systems Inc. | Patient wristband |
US9330579B2 (en) | 2012-04-23 | 2016-05-03 | Medirex Systems Inc. | Patient wristband |
US10089443B2 (en) | 2012-05-15 | 2018-10-02 | Baxter International Inc. | Home medical device systems and methods for therapy prescription and tracking, servicing and inventory |
US10062457B2 (en) | 2012-07-26 | 2018-08-28 | Carefusion 303, Inc. | Predictive notifications for adverse patient events |
US10552577B2 (en) | 2012-08-31 | 2020-02-04 | Baxter Corporation Englewood | Medication requisition fulfillment system and method |
US10971257B2 (en) | 2012-10-26 | 2021-04-06 | Baxter Corporation Englewood | Image acquisition for medical dose preparation system |
US10646405B2 (en) | 2012-10-26 | 2020-05-12 | Baxter Corporation Englewood | Work station for medical dose preparation system |
US11182728B2 (en) | 2013-01-30 | 2021-11-23 | Carefusion 303, Inc. | Medication workflow management |
US11615871B2 (en) | 2013-03-13 | 2023-03-28 | Carefusion 303, Inc. | Patient-specific medication management system |
US12001981B2 (en) | 2013-03-13 | 2024-06-04 | Carefusion 303, Inc. | Predictive medication safety |
US10937530B2 (en) | 2013-03-13 | 2021-03-02 | Carefusion 303, Inc. | Patient-specific medication management system |
US10867265B2 (en) | 2013-03-13 | 2020-12-15 | Carefusion 303, Inc. | Predictive medication safety |
US10029047B2 (en) | 2013-03-13 | 2018-07-24 | Carefusion 303, Inc. | Patient-specific medication management system |
US12079742B2 (en) | 2013-05-22 | 2024-09-03 | Carefusion 303, Inc. | Medication workflow management |
US10430554B2 (en) | 2013-05-23 | 2019-10-01 | Carefusion 303, Inc. | Medication preparation queue |
US11367533B2 (en) | 2014-06-30 | 2022-06-21 | Baxter Corporation Englewood | Managed medical information exchange |
US11575673B2 (en) | 2014-09-30 | 2023-02-07 | Baxter Corporation Englewood | Central user management in a distributed healthcare information management system |
US11107574B2 (en) | 2014-09-30 | 2021-08-31 | Baxter Corporation Englewood | Management of medication preparation with formulary management |
US10818387B2 (en) | 2014-12-05 | 2020-10-27 | Baxter Corporation Englewood | Dose preparation data analytics |
US11948112B2 (en) | 2015-03-03 | 2024-04-02 | Baxter Corporation Engelwood | Pharmacy workflow management with integrated alerts |
US11495334B2 (en) | 2015-06-25 | 2022-11-08 | Gambro Lundia Ab | Medical device system and method having a distributed database |
USD782053S1 (en) | 2016-01-05 | 2017-03-21 | Rhonda Ferguson-Shakir | Diagnostic wrist band |
USD782052S1 (en) | 2016-01-05 | 2017-03-21 | Rhonda Ferguson-Shakir | Diagnostic wrist band |
US11516183B2 (en) | 2016-12-21 | 2022-11-29 | Gambro Lundia Ab | Medical device system including information technology infrastructure having secure cluster domain supporting external domain |
US11630969B2 (en) | 2019-02-25 | 2023-04-18 | Fund For Medical Research Development Of Infrastructure & Health Services By Barzilai Medical Center | Identity verifying device and methods |
US12198000B2 (en) | 2019-02-25 | 2025-01-14 | Fund for Medical Research Development of Infrastructure & Health Services by Barzilal Medical Center | Identity verifying device and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3848112A (en) | 1974-11-12 | Identification system |
US3715570A (en) | 1973-02-06 | Identification system |
US6112502A (en) | 2000-09-05 | Restocking method for medical item dispensing system |
US4415802A (en) | 1983-11-15 | Cross identification system and lock |
US8700420B2 (en) | 2014-04-15 | Method of dispensing and tracking the giving of medical items to patients |
US5272318A (en) | 1993-12-21 | Electronically readable medical locking system |
EP1470465B1 (en) | 2008-03-26 | Dynamic control containment unit |
US4164320A (en) | 1979-08-14 | Patient and specimen identification means and system employing same |
US8423180B1 (en) | 2013-04-16 | System for tracking and dispensing medical items from environmentally controlled storage area |
US7440817B2 (en) | 2008-10-21 | Method and control unit for medication administering devices |
US7175081B2 (en) | 2007-02-13 | Pharmaceutical tracking |
US5153416A (en) | 1992-10-06 | Procedure and assembly for drawing blood |
DK170722B1 (en) | 1995-12-18 | Storage system with adjacent cabinets controlled by a microprocessor device |
US8479988B2 (en) | 2013-07-09 | System for pharmacy tracking and customer id verification |
US3584958A (en) | 1971-06-15 | Identification system |
US20100318218A1 (en) | 2010-12-16 | Pill Dispenser and Method |
US3985264A (en) | 1976-10-12 | Security system for controlled drugs |
US20050019943A1 (en) | 2005-01-27 | Automatic blood analysis and identification system |
CN102903069A (en) | 2013-01-30 | Medical management system and method |
EP0152678A2 (en) | 1985-08-28 | Electronic lock and key system for hotels and the like |
NL8100652A (en) | 1981-09-16 | PLAYING EQUIPMENT AS A LEARNING AGENT AND A METHOD FOR ENCOURAGING LEARNING, IN PARTICULAR IN SUCH A DEVICE AND A SIMILAR PROCESS WHICH PROMOTES A CHILD TO FIND A STANDARD WITH A CHARGE IN A CONFIRMATION WITH A CHARGE. |
JPS63500546A (en) | 1988-02-25 | Patient identification and matching systems and methods |
US3610889A (en) | 1971-10-05 | Identification card control system |
US3430200A (en) | 1969-02-25 | Validator apparatus for magnetic credit cards and the like |
JP2000154673A (en) | 2000-06-06 | Safekeeping control device for deleterious poisonous substance and electronic weighing instrument therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
1983-04-18 | AS | Assignment |
Owner name: SHERWOOD MEDICAL COMPANY Free format text: MERGER;ASSIGNOR:SHERWOOD MEDICAL INDUSTRIES INC. (INTO);REEL/FRAME:004123/0634 Effective date: 19820412 |
1991-08-01 | AS | Assignment |
Owner name: A. B. DICK COMPANY, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:ITEK GRAPHIX CORP.;REEL/FRAME:005800/0562 Effective date: 19890401 |