US7387448B2 - Optical component, method for connecting the same, and optical module having the optical component - Google Patents
- ️Tue Jun 17 2008
Info
-
Publication number
- US7387448B2 US7387448B2 US11/828,072 US82807207A US7387448B2 US 7387448 B2 US7387448 B2 US 7387448B2 US 82807207 A US82807207 A US 82807207A US 7387448 B2 US7387448 B2 US 7387448B2 Authority
- US
- United States Prior art keywords
- optical component
- optical
- capillary
- side plane
- plane portion Prior art date
- 2004-08-17 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/3628—Mechanical coupling means for mounting fibres to supporting carriers
- G02B6/3648—Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures
- G02B6/3652—Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures the additional structures being prepositioning mounting areas, allowing only movement in one dimension, e.g. grooves, trenches or vias in the microbench surface, i.e. self aligning supporting carriers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/264—Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/30—Optical coupling means for use between fibre and thin-film device
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/32—Optical coupling means having lens focusing means positioned between opposed fibre ends
- G02B6/327—Optical coupling means having lens focusing means positioned between opposed fibre ends with angled interfaces to reduce reflections
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/3628—Mechanical coupling means for mounting fibres to supporting carriers
- G02B6/3632—Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
- G02B6/3636—Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the mechanical coupling means being grooves
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/3628—Mechanical coupling means for mounting fibres to supporting carriers
- G02B6/3632—Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
- G02B6/3644—Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the coupling means being through-holes or wall apertures
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4216—Packages, e.g. shape, construction, internal or external details incorporating polarisation-maintaining fibres
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4219—Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
- G02B6/4233—Active alignment along the optical axis and passive alignment perpendicular to the optical axis
Definitions
- the present invention relates to an optical component having a substantially cylindrical external shape, to a method for connecting the same, and to an optical module having the optical component.
- a capillary for an optical fiber is disclosed in Japanese Unexamined Patent Application Publication No. 11-160563 as an example of an optical component used for connecting an optical fiber to another optical fiber or optical device in the field of optical communications.
- An optical fiber is positioned so that the optical fiber optically connects with another optical fiber or optical device while the glass portion thereof is being inserted in the capillary.
- the capillary is generally cylindrical in shape, and is formed from ceramics or glass.
- a capillary formed from glass can be manufactured at low cost and with good precision of dimensions and symmetry by extending cylindrical glass tube to a small diameter.
- Such cylindrical optical component can be easily positioned with respect to all degrees of freedom other than the azimuthal angle about the cylinder axis, using the lateral surface of the cylinder as a reference.
- a cylindrical optical component such as the one described above is polished on the end face thereof or positioned with respect to another optical component or optical device
- the lateral surface of the cylinder is gripped by a gripping member. Since the optical component and the gripping member come into contact with each other only at a point or a line parallel to the cylinder axis on the lateral surface of the cylinder, it is difficult to obtain a gripping force (frictional force) sufficient to position or fix the optical component.
- the optical component comes out of position while polishing its end face, and polishing cannot be performed correctly, and the component becomes misaligned during connection to another optical component or optical device due to shrinkage of the adhesive when cured.
- the force with which the optical component is gripped is increased in order to obtain adequate gripping force, the optical component may be damaged if it is composed of glass or another fragile material.
- An object of the present invention is to provide a substantially cylindrical optical component to which adequate gripping force can be exerted during positioning or fixing of the optical component, and which can be aligned in the azimuthal angle about the cylinder axis, a method for connecting the optical component, and an optical module having the optical component.
- an optical component comprises a substantially cylindrical elongated member, an outer peripheral portion of which includes a cylindrical portion and a side plane portion that has a flat surface, the flat surface being parallel to a central axis to the elongated member.
- the elongated member may be composed of a rod lens.
- the rod lens may have an end face portion having a flat surface tilted with respect to the central axis of the elongated member.
- the optical component may also have an optical fiber fixed at one end to the other end of the rod lens.
- the elongated member may also be composed of a lens and a lens holder.
- the elongated member may be composed of an optical fiber capillary having one or more holes for insertion of an optical fiber parallel to the central axis of the elongated member.
- the capillary may have a plurality of holes.
- the capillary may have an end face portion having a flat surface tilted with respect to the central axis of the elongated member.
- the optical component may also have an optical fiber fixed at one end portion in the one or more holes.
- the optical fiber may be a polarization maintaining fiber.
- the optical module may be composed of a rod lens as the elongated member, an optical fiber being fixed to the rod lens, and a planar light circuit device connected to the other end face of the rod lens.
- the optical module may be composed of a capillary as the elongated member, an optical fiber being fixed to the capillary, and a planar light circuit device connected to the capillary.
- Yet another aspect of the present invention is a method for connecting an optical component whereby the optical component of the present invention is positioned and connected to another optical component using the side plane portion thereof as a reference.
- FIG. 1 is a perspective view of a first embodiment of the optical component according to the present invention
- FIG. 2 is a cross-sectional view showing the manner in which the optical component of the first embodiment is gripped
- FIG. 3 is a cross-sectional view showing the manner in which a conventional optical component is gripped
- FIG. 4 is a perspective view of a second embodiment of the optical component according to the present invention.
- FIG. 5 is a perspective view of a third embodiment of the optical component according to the present invention.
- FIG. 6 is a perspective view of a first embodiment of the optical module according to the present invention.
- FIG. 7 is a perspective view of a second embodiment of the optical module according to the present invention.
- FIGS. 8A and 8B are schematic drawings of a fourth embodiment of the optical component according to the present invention, wherein FIG. 8A is a perspective view showing a case in which the elongated member does not have a holder, and FIG. 8B is a perspective view of a case in which the elongated member has a holder; and
- FIG. 9 is a perspective view of a third embodiment of the optical module according to the present invention.
- FIG. 1 is a perspective view of a first embodiment of the optical component according to the present invention.
- the optical component shown in FIG. 1 is an elongated member, so-called capillary 10 into which an optical fiber is inserted.
- the capillary 10 has a cylindrical portion 11 that is a portion of the lateral surface of the capillary 10 .
- the coordinate system XYZ is a Cartesian coordinate system, wherein the central axis of the cylinder lies along the Z-axis.
- An optical fiber retaining hole 13 for insertion of an optical fiber is provided inside the capillary 10 parallel to the central axis of the cylinder so as to have a slightly larger internal diameter than the external diameter of the optical fiber.
- the central axis of the optical fiber retaining hole 13 coincides with the Z-axis.
- An optical fiber 20 is fixed within the capillary 10 with an adhesive in a state in which one end portion of the optical fiber 20 is inserted into the optical fiber retaining hole 13 .
- the optical axis of the optical fiber 20 substantially coincides with the Z-axis at the one end portion thereof.
- One end of the optical fiber 20 is positioned so as to substantially coincide with the connecting end face (the front end face in FIG. 1 ) 14 of the capillary 10 , and is polished together with the connecting end face 14 of the capillary 10 .
- the other end portion of the optical fiber 20 protrudes from the back end face 15 of the capillary 10 .
- the connecting end face 14 which is the end face that is to be connected to another optical component or the like, includes the X-axis and is somewhat tilted with respect to the XY-plane.
- the angle ⁇ of this tilt is 8°, for example.
- a side plane portion 12 having a flat surface parallel to the central axis of the cylinder is provided to a portion of the lateral surface of the capillary 10 .
- This side plane portion 12 is adapted for gripping the capillary 10 .
- FIG. 2 is a cross-sectional view showing the manner in which the optical component of the first embodiment is gripped.
- the cylindrical portion 11 can be in contact with the gripping member 50 along the lines that extend in the Z-axis direction through points A and B and the side plane portion 12 can be in contact with the surface of the gripping member 51 in the area C extending in the Z-axis direction.
- the gripping force exerted on the capillary 10 can thus be increased, and when the connecting end face 14 is polished, or when the capillary 10 is aligned with and connected to another optical component, the capillary 10 can be held with adequate force, while securing satisfactory precision. Furthermore, in aligning the azimuthal angle about the Z-axis of the connecting end face 14 with that of the connecting surface of another optical component, the azimuthal angle about the Z-axis can be easily aligned with respect to the side plane portion 12 . By keeping the side plane portion parallel to the Z-axis, it is possible to determine the direction of the Z-axis from the lateral flat surface, which is the external shape. Thus, the cylindrical axis of the elongated member or the central axis of the optical fiber can be easily aligned using the flat portion of the lateral surface as a reference.
- FIG. 3 is a cross-sectional view showing the manner in which a conventional optical component is gripped.
- the lateral surface of the cylinder of the capillary 100 is in contact with the gripping members 50 and 51 along only the lines that extend in the Z-axis direction through points A, B, and C, so an adequate gripping force is difficult to obtain.
- the capillary 10 of the present embodiment may be formed from quartz glass, plastic, zirconia, stainless steel, or another material.
- the side plane portion 12 may be formed by being polished with an abrasive or ground with a rotary blade.
- an ultraviolet-curable adhesive may be used as the adhesive for affixing the optical fiber 20 inside the optical fiber retaining hole 13 .
- the optical fiber 20 may be a polarization-maintaining fiber.
- the direction of the polarization plane, in which linear polarization is maintained can be determined from the position of the side plane portion 12 by arranging its polarization plane perpendicular or parallel to the side plane portion 12 .
- the azimuthal angle about the Z-axis of the capillary 10 can thereby be aligned using the side plane portion 12 as a reference when the capillary 10 is connected to another optical component or the like, and the polarization plane of the optical fiber 20 can be arranged in any desired direction.
- FIG. 4 is a perspective view of a second embodiment of the optical component according to the present invention.
- the optical component shown in FIG. 4 is an elongated member, so-called capillary 10 a , in which a plurality of optical fiber retaining holes 13 is formed parallel to the Z-axis.
- the optical fiber retaining holes 13 is desirably arranged symmetrically with respect to the YZ plane, and the side plane portion 12 is desirably parallel to the XZ plane.
- the azimuthal angle about the Z-axis is also aligned for the capillary 10 a in order to align the optical axis thereof for connection to another optical component or optical device.
- the azimuthal angle about the Z-axis of the capillary 10 a can easily be aligned using the side plane portion 12 as a reference.
- FIG. 5 is a perspective view of a third embodiment of the optical component according to the present invention.
- the optical component shown in FIG. 5 is an elongated member, so-called capillary 10 b , in which a side plane portion 12 a is formed in only a portion of the capillary 10 b in the longitudinal direction of the capillary 10 b .
- the force for fixing the capillary 10 b tends to decrease so as to be commensurate with a reduction in the surface area of the side plane portion 12 b.
- FIGS. 8A and 8B are schematic drawings of a fourth embodiment of the optical component according to the present invention
- FIG. 8A is a perspective view showing a case in which the elongated member does not have a lens holder.
- XYZ is a Cartesian coordinate system.
- the optical component 80 is composed of an elongated member, so called rod lens 81 , and an optical fiber 82 .
- the rod lens 81 has a cylindrical surface portion 83 that is a portion of the lateral surface of the cylinder.
- the rod lens 81 also has a side plane portion 84 having a flat surface parallel to the central axis Z of the cylinder, and an end face portion 85 having a flat surface tilted with respect to the central axis Z of the cylinder.
- the end face includes the X-axis and is tilted at an angle ⁇ with respect to the Y-axis.
- the side plane portion 84 is formed parallel to the XZ plane.
- the optical fiber 85 is joined
- FIG. 8B is a perspective view showing a case in which the elongated member has a lens holder.
- the optical component is an elongated member, so called lens module 46 , composed of a lens main body 44 and a cylindrical lens holder 45 on the outside thereof.
- lens module 46 an elongated member, so called lens module 46 , composed of a lens main body 44 and a cylindrical lens holder 45 on the outside thereof.
- a configuration may be adopted in which a side plane portion 42 is not provided to the lens main body portion, and the side plane portion 42 is formed only in the external peripheral portion of the lens holder 45 .
- FIG. 6 is a perspective view of a first embodiment of the optical module according to the present invention.
- the optical module 30 is composed of the capillary 10 , which is the first embodiment of the optical component according to the present invention, and a planar light circuit device 31 connected to the capillary 10 .
- the tilted connecting end face 14 of the capillary 10 is joined by an adhesive to the connecting end face 34 tilted at an 8-degree angle in the planar light circuit device 31 , whereby the optical fiber 20 inserted into the capillary 10 and guided out from the end face 15 is optically connected to the planar light circuit device 31 .
- the capillary 10 undergoes high-precision end face processing while being gripped using the side plane portion 12 as the contacting surface, and is connected to the planar light circuit device 31 while the optical axes are aligned with each other with high-precision as the capillary is gripped using the side plane portion 12 as the contacting surface, whereby extremely low connection loss can be achieved.
- the azimuthal angle about the Z-axis of the capillary 10 is aligned in order to match the azimuth angles of the connecting end face 14 and the connecting end face 34
- the azimuthal angle about the cylinder axis can be aligned with high precision by aligning the side plane portion 12 parallel to, for example, the bottom surface 36 of the waveguide base 32 , using the side plane portion 12 as a reference.
- An optical module of a light circuit device type having low transmission loss can thereby be obtained. Besides ease of alignment, yield with respect to a prescribed specification also increases, and the cost of the corresponding optical module is reduced.
- the planar light circuit device 31 may be a waveguide-type optical component having a function as an optical splitter.
- the planar light circuit device 31 is configured so that a waveguide pattern is formed by CVD, etching, or another method on the top surface of the waveguide base 32 , and a reinforcing plate 33 is further provided thereon.
- the above-mentioned capillary 10 is connected to the connecting end face 34 , and an optical fiber array 35 having a plurality of parallelly arranged optical fibers 21 is connected to the other end face of the planar light circuit device 31 .
- the optical fiber array 35 has a plurality of V-shaped grooves formed therein for positioning the optical fibers 21 and can arrange, for example, 48 strands of optical fibers 21 .
- FIG. 7 is a perspective view of a second embodiment of the optical module according to the present invention.
- the optical module of the second embodiment is a so-called collimator 40 , in which the substantially cylindrical rod lens 41 , which is the optical component of the present invention, is connected to the connecting end face 14 of the capillary 10 a .
- the cylinder axis of the rod lens 41 is arranged so as to coincide with the cylinder axis of the capillary 10 a , and the azimuthal angle about he axis are aligned so that the side plane portion 42 , which is formed in the same manner as the capillary 10 a , is parallel to the side plane portion 12 of the capillary 10 a .
- Both end faces of the lens 41 are also formed in a plane that is tilted substantially 8° with respect to the YX plane in the drawing so as to have the same tilt angle as the connecting end face 14 of the capillary 10 a.
- the rod lens 41 is a so-called grin (GRIN) lens, which has the function to collimate the light that enters from one end and emitting the collimated light from the other end.
- a GRIN lens is a lens made of quartz glass that has the highest index of refraction in the central axis portion, with the index of refraction gradually decreasing toward the outside in the radial direction from the central axis portion.
- the collimator 40 of the present embodiment light entering from the optical fiber 20 held in the capillary 10 a is emitted from the end face 43 so as to be parallel to the central axis.
- the collimated light entering from the end face 43 is emitted towards the optical fibers 20 in a condensed state.
- the optical module can be made into a collimation conversion system.
- FIG. 9 is a perspective view of a third embodiment of the optical module according to the present invention.
- collimators 96 each having a capillary 93 , a rod lens 94 , and an optical fiber 95 are disposed on both end portions of a base 92 , and a bandpass filter 97 is disposed between the collimators so as to act as a filter for allowing only a prescribed wavelength of light to pass through.
- the side plane portions of the collimators 40 are positioned as the contacting surfaces when the collimator 40 is bonded and fixed to the base 92 .
- adequate fixing force is exerted with respect to the curing shrinkage of the adhesive, and a high-precision optical module 91 can be manufactured.
- the optical component may also be an optical waveguide device, an optical wavelength filter member, an optical crystal member, or an optical diffraction grating.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
There are provided a substantially cylindrical optical component, a method for connecting the same, and an optical module having the optical component, whereby adequate gripping force can be exerted during positioning or fixing, and the position in the azimuthal angle about the cylinder axis can be easily aligned. The optical component comprises a substantially cylindrical elongated member, an outer peripheral portion of which includes a cylindrical portion and a side plane portion that has a flat surface, the flat surface being parallel to a central axis to the elongated member. The optical module is composed of a planar light circuit device connected to a rod lens or capillary. With the method for connecting the optical component, the optical component of the present invention is positioned using the side plane portion as a reference, and is connected to another optical component.
Description
This application is a divisional application of U.S. patent application Ser. No. 11/198,303 filed on Aug. 8, 2005, now abandoned. The entire disclosures of U.S. patent application Ser. No. 11/198,303 is hereby incorporated herein by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to an optical component having a substantially cylindrical external shape, to a method for connecting the same, and to an optical module having the optical component.
2. Description of the Related Art
A capillary for an optical fiber is disclosed in Japanese Unexamined Patent Application Publication No. 11-160563 as an example of an optical component used for connecting an optical fiber to another optical fiber or optical device in the field of optical communications. An optical fiber is positioned so that the optical fiber optically connects with another optical fiber or optical device while the glass portion thereof is being inserted in the capillary. The capillary is generally cylindrical in shape, and is formed from ceramics or glass. A capillary formed from glass can be manufactured at low cost and with good precision of dimensions and symmetry by extending cylindrical glass tube to a small diameter. Such cylindrical optical component can be easily positioned with respect to all degrees of freedom other than the azimuthal angle about the cylinder axis, using the lateral surface of the cylinder as a reference.
While a cylindrical optical component such as the one described above is polished on the end face thereof or positioned with respect to another optical component or optical device, the lateral surface of the cylinder is gripped by a gripping member. Since the optical component and the gripping member come into contact with each other only at a point or a line parallel to the cylinder axis on the lateral surface of the cylinder, it is difficult to obtain a gripping force (frictional force) sufficient to position or fix the optical component. The optical component then comes out of position while polishing its end face, and polishing cannot be performed correctly, and the component becomes misaligned during connection to another optical component or optical device due to shrinkage of the adhesive when cured. When the force with which the optical component is gripped is increased in order to obtain adequate gripping force, the optical component may be damaged if it is composed of glass or another fragile material.
With an optical component whose end face is polished at an inclination angle with respect to the plane orthogonal to the cylinder axis, or an optical component such as one in which a plurality of optical fibers are inserted, its azimuthal angle about the cylinder axis must be aligned when the component is to be connected to another optical component or optical device. However, since the external peripheral shape of a cylindrical optical component is rotationally symmetrical with respect to the central axis of the cylinder, it is impossible to align the azimuthal angle about the cylinder axis using the external periphery as a reference.
SUMMARY OF THE INVENTIONAn object of the present invention is to provide a substantially cylindrical optical component to which adequate gripping force can be exerted during positioning or fixing of the optical component, and which can be aligned in the azimuthal angle about the cylinder axis, a method for connecting the optical component, and an optical module having the optical component.
In order to achieve the above-mentioned objects, an optical component comprises a substantially cylindrical elongated member, an outer peripheral portion of which includes a cylindrical portion and a side plane portion that has a flat surface, the flat surface being parallel to a central axis to the elongated member.
The elongated member may be composed of a rod lens. In this case, the rod lens may have an end face portion having a flat surface tilted with respect to the central axis of the elongated member. The optical component may also have an optical fiber fixed at one end to the other end of the rod lens. The elongated member may also be composed of a lens and a lens holder.
Alternatively, the elongated member may be composed of an optical fiber capillary having one or more holes for insertion of an optical fiber parallel to the central axis of the elongated member. In this case, the capillary may have a plurality of holes. The capillary may have an end face portion having a flat surface tilted with respect to the central axis of the elongated member. The optical component may also have an optical fiber fixed at one end portion in the one or more holes. The optical fiber may be a polarization maintaining fiber.
An optical module composed of the optical component of the present invention is provided as an aspect of the present invention. The optical module may be composed of a rod lens as the elongated member, an optical fiber being fixed to the rod lens, and a planar light circuit device connected to the other end face of the rod lens. The optical module may be composed of a capillary as the elongated member, an optical fiber being fixed to the capillary, and a planar light circuit device connected to the capillary. Yet another aspect of the present invention is a method for connecting an optical component whereby the optical component of the present invention is positioned and connected to another optical component using the side plane portion thereof as a reference.
BRIEF DESCRIPTION OF THE DRAWINGSThese and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
is a perspective view of a first embodiment of the optical component according to the present invention;
is a cross-sectional view showing the manner in which the optical component of the first embodiment is gripped;
is a cross-sectional view showing the manner in which a conventional optical component is gripped;
is a perspective view of a second embodiment of the optical component according to the present invention;
is a perspective view of a third embodiment of the optical component according to the present invention;
is a perspective view of a first embodiment of the optical module according to the present invention;
is a perspective view of a second embodiment of the optical module according to the present invention;
are schematic drawings of a fourth embodiment of the optical component according to the present invention, wherein
FIG. 8Ais a perspective view showing a case in which the elongated member does not have a holder, and
FIG. 8Bis a perspective view of a case in which the elongated member has a holder; and
is a perspective view of a third embodiment of the optical module according to the present invention.
is a perspective view of a first embodiment of the optical component according to the present invention. The optical component shown in
FIG. 1is an elongated member, so-called
capillary10 into which an optical fiber is inserted. The
capillary10 has a
cylindrical portion11 that is a portion of the lateral surface of the
capillary10. The coordinate system XYZ is a Cartesian coordinate system, wherein the central axis of the cylinder lies along the Z-axis. An optical
fiber retaining hole13 for insertion of an optical fiber is provided inside the capillary 10 parallel to the central axis of the cylinder so as to have a slightly larger internal diameter than the external diameter of the optical fiber. The central axis of the optical
fiber retaining hole13 coincides with the Z-axis.
An
optical fiber20 is fixed within the
capillary10 with an adhesive in a state in which one end portion of the
optical fiber20 is inserted into the optical
fiber retaining hole13. The optical axis of the
optical fiber20 substantially coincides with the Z-axis at the one end portion thereof. One end of the
optical fiber20 is positioned so as to substantially coincide with the connecting end face (the front end face in
FIG. 1) 14 of the
capillary10, and is polished together with the connecting
end face14 of the
capillary10. The other end portion of the
optical fiber20 protrudes from the
back end face15 of the
capillary10.
The connecting
end face14, which is the end face that is to be connected to another optical component or the like, includes the X-axis and is somewhat tilted with respect to the XY-plane. The angle θ of this tilt is 8°, for example. By polishing the connecting
end face14 to a mirror finish at an angle, the effects of backward propagation light due to Fresnel reflection can be minimized when the optical component is connected to another optical component or the like. The
back end face15 is fitted inside another cylindrical member not shown in the drawing, whereby a ferrule having the capillary 10 is formed. The ferrule is placed in an optical connector.
A
side plane portion12 having a flat surface parallel to the central axis of the cylinder is provided to a portion of the lateral surface of the capillary 10. This
side plane portion12 is adapted for gripping the capillary 10.
is a cross-sectional view showing the manner in which the optical component of the first embodiment is gripped. When the capillary 10 is gripped by a gripping
member50 having a V-shaped groove and flat planar gripping
member51, the
cylindrical portion11 can be in contact with the gripping
member50 along the lines that extend in the Z-axis direction through points A and B and the
side plane portion12 can be in contact with the surface of the gripping
member51 in the area C extending in the Z-axis direction.
The gripping force exerted on the capillary 10 can thus be increased, and when the connecting
end face14 is polished, or when the capillary 10 is aligned with and connected to another optical component, the capillary 10 can be held with adequate force, while securing satisfactory precision. Furthermore, in aligning the azimuthal angle about the Z-axis of the connecting
end face14 with that of the connecting surface of another optical component, the azimuthal angle about the Z-axis can be easily aligned with respect to the
side plane portion12. By keeping the side plane portion parallel to the Z-axis, it is possible to determine the direction of the Z-axis from the lateral flat surface, which is the external shape. Thus, the cylindrical axis of the elongated member or the central axis of the optical fiber can be easily aligned using the flat portion of the lateral surface as a reference.
is a cross-sectional view showing the manner in which a conventional optical component is gripped. In the conventional capillary, the lateral surface of the cylinder of the capillary 100 is in contact with the gripping
members50 and 51 along only the lines that extend in the Z-axis direction through points A, B, and C, so an adequate gripping force is difficult to obtain.
The
capillary10 of the present embodiment may be formed from quartz glass, plastic, zirconia, stainless steel, or another material. The
side plane portion12 may be formed by being polished with an abrasive or ground with a rotary blade. When the capillary 10 is formed from quartz glass or another transparent member, an ultraviolet-curable adhesive may be used as the adhesive for affixing the
optical fiber20 inside the optical
fiber retaining hole13.
The
optical fiber20 may be a polarization-maintaining fiber. In this case, the direction of the polarization plane, in which linear polarization is maintained, can be determined from the position of the
side plane portion12 by arranging its polarization plane perpendicular or parallel to the
side plane portion12. The azimuthal angle about the Z-axis of the capillary 10 can thereby be aligned using the
side plane portion12 as a reference when the capillary 10 is connected to another optical component or the like, and the polarization plane of the
optical fiber20 can be arranged in any desired direction. Thus, it is possible to achieve a connection having good polarization maintaining characteristics.
is a perspective view of a second embodiment of the optical component according to the present invention. The optical component shown in
FIG. 4is an elongated member, so-called capillary 10 a, in which a plurality of optical fiber retaining holes 13 is formed parallel to the Z-axis. In this case, the optical fiber retaining holes 13 is desirably arranged symmetrically with respect to the YZ plane, and the
side plane portion12 is desirably parallel to the XZ plane. The azimuthal angle about the Z-axis is also aligned for the capillary 10 a in order to align the optical axis thereof for connection to another optical component or optical device. In this regard, the azimuthal angle about the Z-axis of the capillary 10 a can easily be aligned using the
side plane portion12 as a reference.
is a perspective view of a third embodiment of the optical component according to the present invention. The optical component shown in
FIG. 5is an elongated member, so-called
capillary10 b, in which a
side plane portion12 a is formed in only a portion of the capillary 10 b in the longitudinal direction of the capillary 10 b. However, the force for fixing the capillary 10 b tends to decrease so as to be commensurate with a reduction in the surface area of the side plane portion 12 b.
are schematic drawings of a fourth embodiment of the optical component according to the present invention, and
FIG. 8Ais a perspective view showing a case in which the elongated member does not have a lens holder. XYZ is a Cartesian coordinate system. The
optical component80 is composed of an elongated member, so called
rod lens81, and an
optical fiber82. The
rod lens81 has a
cylindrical surface portion83 that is a portion of the lateral surface of the cylinder. The
rod lens81 also has a
side plane portion84 having a flat surface parallel to the central axis Z of the cylinder, and an
end face portion85 having a flat surface tilted with respect to the central axis Z of the cylinder. The end face includes the X-axis and is tilted at an angle θ with respect to the Y-axis. The
side plane portion84 is formed parallel to the XZ plane. The
optical fiber85 is joined and fixed to the end face of the rod lens.
is a perspective view showing a case in which the elongated member has a lens holder. The optical component is an elongated member, so called
lens module46, composed of a lens
main body44 and a
cylindrical lens holder45 on the outside thereof. In this case, a configuration may be adopted in which a
side plane portion42 is not provided to the lens main body portion, and the
side plane portion42 is formed only in the external peripheral portion of the
lens holder45.
is a perspective view of a first embodiment of the optical module according to the present invention. The
optical module30 is composed of the capillary 10, which is the first embodiment of the optical component according to the present invention, and a planar
light circuit device31 connected to the capillary 10. The tilted connecting
end face14 of the capillary 10 is joined by an adhesive to the connecting
end face34 tilted at an 8-degree angle in the planar
light circuit device31, whereby the
optical fiber20 inserted into the capillary 10 and guided out from the
end face15 is optically connected to the planar
light circuit device31.
The capillary 10 undergoes high-precision end face processing while being gripped using the
side plane portion12 as the contacting surface, and is connected to the planar
light circuit device31 while the optical axes are aligned with each other with high-precision as the capillary is gripped using the
side plane portion12 as the contacting surface, whereby extremely low connection loss can be achieved. When the azimuthal angle about the Z-axis of the capillary 10 is aligned in order to match the azimuth angles of the connecting
end face14 and the connecting
end face34, the azimuthal angle about the cylinder axis can be aligned with high precision by aligning the
side plane portion12 parallel to, for example, the
bottom surface36 of the
waveguide base32, using the
side plane portion12 as a reference. An optical module of a light circuit device type having low transmission loss can thereby be obtained. Besides ease of alignment, yield with respect to a prescribed specification also increases, and the cost of the corresponding optical module is reduced.
The planar
light circuit device31 may be a waveguide-type optical component having a function as an optical splitter. The planar
light circuit device31 is configured so that a waveguide pattern is formed by CVD, etching, or another method on the top surface of the
waveguide base32, and a reinforcing
plate33 is further provided thereon. The above-mentioned
capillary10 is connected to the connecting
end face34, and an
optical fiber array35 having a plurality of parallelly arranged
optical fibers21 is connected to the other end face of the planar
light circuit device31. The
optical fiber array35 has a plurality of V-shaped grooves formed therein for positioning the
optical fibers21 and can arrange, for example, 48 strands of
optical fibers21. With the
optical module30 having this type of configuration, light transmitted through the
optical fiber20 inserted in the capillary 10 can be split and transmitted to each of the
optical fibers21.
is a perspective view of a second embodiment of the optical module according to the present invention. The optical module of the second embodiment is a so-called
collimator40, in which the substantially
cylindrical rod lens41, which is the optical component of the present invention, is connected to the connecting
end face14 of the capillary 10 a. The cylinder axis of the
rod lens41 is arranged so as to coincide with the cylinder axis of the capillary 10 a, and the azimuthal angle about he axis are aligned so that the
side plane portion42, which is formed in the same manner as the capillary 10 a, is parallel to the
side plane portion12 of the capillary 10 a. Both end faces of the
lens41 are also formed in a plane that is tilted substantially 8° with respect to the YX plane in the drawing so as to have the same tilt angle as the connecting
end face14 of the capillary 10 a.
The
rod lens41 is a so-called grin (GRIN) lens, which has the function to collimate the light that enters from one end and emitting the collimated light from the other end. A GRIN lens is a lens made of quartz glass that has the highest index of refraction in the central axis portion, with the index of refraction gradually decreasing toward the outside in the radial direction from the central axis portion. By arranging the
side plane portion42 parallel to the
side plane portion12 of the capillary 10 a, the optical characteristics of the
rod lens41 can be equalized for the two strands of
optical fiber20.
In the
collimator40 of the present embodiment, light entering from the
optical fiber20 held in the capillary 10 a is emitted from the
end face43 so as to be parallel to the central axis. The collimated light entering from the
end face43 is emitted towards the
optical fibers20 in a condensed state. Specifically, by providing two of the
collimators40 shown in
FIG. 7while aligning their axes with the end faces 43 facing each other, and aligning the azimuthal angle about the axes using the
side plane portion42 as a reference, the optical module can be made into a collimation conversion system.
is a perspective view of a third embodiment of the optical module according to the present invention. In the
optical module91,
collimators96 each having a capillary 93, a
rod lens94, and an
optical fiber95 are disposed on both end portions of a
base92, and a
bandpass filter97 is disposed between the collimators so as to act as a filter for allowing only a prescribed wavelength of light to pass through. The side plane portions of the
collimators40 are positioned as the contacting surfaces when the
collimator40 is bonded and fixed to the
base92. Thus, adequate fixing force is exerted with respect to the curing shrinkage of the adhesive, and a high-precision
optical module91 can be manufactured.
While this invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, the invention is not limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Although a capillary for an optical fiber, a rod lens, and a lens module were described as examples of the optical component, but the optical component may also be an optical waveguide device, an optical wavelength filter member, an optical crystal member, or an optical diffraction grating.
The entire disclosure of Japanese Patent Application No. 2004-237349 filed on Aug. 17, 2004 including specification, claims, drawings, and summary is incorporated herein by reference in its entirety.
Claims (4)
1. A method of making an optical module, comprising:
preparing a first optical component having a substantially cylindrical elongated member, an outer peripheral portion of which includes a cylindrical portion and a side plane portion that has a flat surface, the flat surface being parallel to a central axis of the elongated member;
processing an end face of the first optical component while the first optical component is gripped using the side plane portion as a contacting surface;
positioning the first optical component while the first optical component is gripped using the side plane portion as a positioning reference; and
forming a connection to a second optical component, wherein
said positioning step includes aligning the azimuthal angle about the Z-axis of the first optical component while the first optical component is gripped using the side plane portion as a positioning reference.
2. The method of making an optical module according to
claim 1, wherein
said connection forming step is performed by adhesive.
3. The method of making an optical module according to
claim 1, wherein
said preparing step includes providing the first optical component and the second optical component with tilted connecting end faces, respectively.
4. The method of making an optical module according to
claim 1, wherein
in said preparing step the connecting end faces of the first optical component and the second optical component are tilted at a same angle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/828,072 US7387448B2 (en) | 2004-08-17 | 2007-07-25 | Optical component, method for connecting the same, and optical module having the optical component |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004-237349 | 2004-08-17 | ||
JP2004237349A JP2006058369A (en) | 2004-08-17 | 2004-08-17 | Optical component, method of connecting the same, and optical module |
US11/198,303 US20060039650A1 (en) | 2004-08-17 | 2005-08-08 | Optical component, method for connecting the same, and optical module having the optical component |
US11/828,072 US7387448B2 (en) | 2004-08-17 | 2007-07-25 | Optical component, method for connecting the same, and optical module having the optical component |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/198,303 Division US20060039650A1 (en) | 2004-08-17 | 2005-08-08 | Optical component, method for connecting the same, and optical module having the optical component |
Publications (2)
Publication Number | Publication Date |
---|---|
US20070263962A1 US20070263962A1 (en) | 2007-11-15 |
US7387448B2 true US7387448B2 (en) | 2008-06-17 |
Family
ID=35909716
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/198,303 Abandoned US20060039650A1 (en) | 2004-08-17 | 2005-08-08 | Optical component, method for connecting the same, and optical module having the optical component |
US11/828,072 Expired - Fee Related US7387448B2 (en) | 2004-08-17 | 2007-07-25 | Optical component, method for connecting the same, and optical module having the optical component |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/198,303 Abandoned US20060039650A1 (en) | 2004-08-17 | 2005-08-08 | Optical component, method for connecting the same, and optical module having the optical component |
Country Status (3)
Country | Link |
---|---|
US (2) | US20060039650A1 (en) |
JP (1) | JP2006058369A (en) |
CN (1) | CN100476474C (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070189674A1 (en) * | 2006-02-14 | 2007-08-16 | Joseph Scheibenreif | Ferrule for optical fiber connector |
US20110158592A1 (en) * | 2009-12-30 | 2011-06-30 | Kerr Sean M | Ferrules Having An Anti-Rotation Feature And Fiber Optic Connectors Using The Same |
US10558001B2 (en) | 2017-07-25 | 2020-02-11 | Canon U.S.A., Inc. | Optical alignment of fiber-optic rotary joint assembly |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080298748A1 (en) * | 2007-05-31 | 2008-12-04 | Terry Dean Cox | Direct-connect optical splitter module |
US20080298743A1 (en) * | 2007-05-31 | 2008-12-04 | Konstantinos Saravanos | Microsplitter module for optical connectivity |
US8798427B2 (en) | 2007-09-05 | 2014-08-05 | Corning Cable Systems Llc | Fiber optic terminal assembly |
JP2011511967A (en) * | 2008-02-13 | 2011-04-14 | 株式会社オプトエレクトロニクス | Mounting method and structure of optical lens |
US7894146B2 (en) * | 2008-02-13 | 2011-02-22 | Optoelectronics Co., Ltd. | Method and structure for mounting an optical lens |
WO2010040256A1 (en) | 2008-10-09 | 2010-04-15 | Corning Cable Systems Llc | Fiber optic terminal having adapter panel supporting both input and output fibers from an optical splitter |
US8879882B2 (en) | 2008-10-27 | 2014-11-04 | Corning Cable Systems Llc | Variably configurable and modular local convergence point |
EP2237091A1 (en) | 2009-03-31 | 2010-10-06 | Corning Cable Systems LLC | Removably mountable fiber optic terminal |
US8467651B2 (en) | 2009-09-30 | 2013-06-18 | Ccs Technology Inc. | Fiber optic terminals configured to dispose a fiber optic connection panel(s) within an optical fiber perimeter and related methods |
US9547144B2 (en) | 2010-03-16 | 2017-01-17 | Corning Optical Communications LLC | Fiber optic distribution network for multiple dwelling units |
US8792767B2 (en) | 2010-04-16 | 2014-07-29 | Ccs Technology, Inc. | Distribution device |
WO2012054454A2 (en) | 2010-10-19 | 2012-04-26 | Corning Cable Systems Llc | Transition box for multiple dwelling unit fiber optic distribution network |
US9219546B2 (en) | 2011-12-12 | 2015-12-22 | Corning Optical Communications LLC | Extremely high frequency (EHF) distributed antenna systems, and related components and methods |
US10110307B2 (en) | 2012-03-02 | 2018-10-23 | Corning Optical Communications LLC | Optical network units (ONUs) for high bandwidth connectivity, and related components and methods |
US9004778B2 (en) | 2012-06-29 | 2015-04-14 | Corning Cable Systems Llc | Indexable optical fiber connectors and optical fiber connector arrays |
US9049500B2 (en) | 2012-08-31 | 2015-06-02 | Corning Cable Systems Llc | Fiber optic terminals, systems, and methods for network service management |
US8909019B2 (en) | 2012-10-11 | 2014-12-09 | Ccs Technology, Inc. | System comprising a plurality of distribution devices and distribution device |
JP2015068892A (en) * | 2013-09-27 | 2015-04-13 | 株式会社中原光電子研究所 | Optical connection component |
JP6992648B2 (en) * | 2018-03-28 | 2022-01-13 | 住友電気工業株式会社 | Manufacturing method of multi-core optical fiber and multi-core optical fiber |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5159655A (en) | 1991-01-31 | 1992-10-27 | Adc Telecommunications, Inc. | Optical fiber crimp |
US5351327A (en) * | 1993-06-25 | 1994-09-27 | Minnesota Mining And Manufacturing Company | Polished fiber optic ferrules |
US5764836A (en) * | 1996-06-11 | 1998-06-09 | The Whitaker Corporation | Pigtailed package for an optoelectronic device |
JPH11160563A (en) | 1997-11-26 | 1999-06-18 | Sumitomo Electric Ind Ltd | Mechanical splice optical connector and method of manufacturing the same |
US6217231B1 (en) | 1997-04-23 | 2001-04-17 | Fujitsu Limited | Optical fiber assembly, optical module including an optical fiber assembly, and a manufacturing process thereof |
JP2002006178A (en) | 2000-06-21 | 2002-01-09 | Kohoku Kogyo Kk | Optical fiber connecting and fixing mechanism |
US6404954B1 (en) | 2000-08-31 | 2002-06-11 | Oplink Communications, Inc. | Angled-axis fiber-optic couplers |
US20020118929A1 (en) | 2000-06-22 | 2002-08-29 | Brun Marc G. | Precision fiber ferrules |
CN1409144A (en) | 2001-09-27 | 2003-04-09 | 松下电器产业株式会社 | Stick shape non-spherical lens and its producing method |
US6599029B2 (en) * | 2000-09-18 | 2003-07-29 | Fujitsu Limited | Ferrule assembly and receptacle type optical transmission module |
US6701040B2 (en) | 2001-10-15 | 2004-03-02 | Ac Photonics, Inc. | Dense wavelength division multiplexer configuration |
US20040062478A1 (en) | 2002-10-01 | 2004-04-01 | Eastman Kodak Company | Symmetric, bi-aspheric lens for use in optical fiber collimator assemblies |
US6744944B2 (en) * | 2001-10-05 | 2004-06-01 | The Furukawa Electric Co., Ltd. | Optical coupling module having a first and second ferrules |
-
2004
- 2004-08-17 JP JP2004237349A patent/JP2006058369A/en active Pending
-
2005
- 2005-08-08 US US11/198,303 patent/US20060039650A1/en not_active Abandoned
- 2005-08-17 CN CNB2005100905141A patent/CN100476474C/en not_active Expired - Fee Related
-
2007
- 2007-07-25 US US11/828,072 patent/US7387448B2/en not_active Expired - Fee Related
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5159655A (en) | 1991-01-31 | 1992-10-27 | Adc Telecommunications, Inc. | Optical fiber crimp |
US5351327A (en) * | 1993-06-25 | 1994-09-27 | Minnesota Mining And Manufacturing Company | Polished fiber optic ferrules |
US5764836A (en) * | 1996-06-11 | 1998-06-09 | The Whitaker Corporation | Pigtailed package for an optoelectronic device |
US6217231B1 (en) | 1997-04-23 | 2001-04-17 | Fujitsu Limited | Optical fiber assembly, optical module including an optical fiber assembly, and a manufacturing process thereof |
JPH11160563A (en) | 1997-11-26 | 1999-06-18 | Sumitomo Electric Ind Ltd | Mechanical splice optical connector and method of manufacturing the same |
JP2002006178A (en) | 2000-06-21 | 2002-01-09 | Kohoku Kogyo Kk | Optical fiber connecting and fixing mechanism |
US20020118929A1 (en) | 2000-06-22 | 2002-08-29 | Brun Marc G. | Precision fiber ferrules |
US6404954B1 (en) | 2000-08-31 | 2002-06-11 | Oplink Communications, Inc. | Angled-axis fiber-optic couplers |
US6599029B2 (en) * | 2000-09-18 | 2003-07-29 | Fujitsu Limited | Ferrule assembly and receptacle type optical transmission module |
CN1409144A (en) | 2001-09-27 | 2003-04-09 | 松下电器产业株式会社 | Stick shape non-spherical lens and its producing method |
US20030081897A1 (en) | 2001-09-27 | 2003-05-01 | Nobuki Itoh | Aspherical rod lens and method of manufacturing aspherical rod lens |
US6744944B2 (en) * | 2001-10-05 | 2004-06-01 | The Furukawa Electric Co., Ltd. | Optical coupling module having a first and second ferrules |
US6701040B2 (en) | 2001-10-15 | 2004-03-02 | Ac Photonics, Inc. | Dense wavelength division multiplexer configuration |
US20040062478A1 (en) | 2002-10-01 | 2004-04-01 | Eastman Kodak Company | Symmetric, bi-aspheric lens for use in optical fiber collimator assemblies |
CN1497281A (en) | 2002-10-01 | 2004-05-19 | 伊斯曼柯达公司 | Symmetric double-nonspherical lens for optical fibre collimator assembly |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070189674A1 (en) * | 2006-02-14 | 2007-08-16 | Joseph Scheibenreif | Ferrule for optical fiber connector |
US7566175B2 (en) * | 2006-02-14 | 2009-07-28 | Emcore Corporation | Ferrule for optical fiber connector |
US20110158592A1 (en) * | 2009-12-30 | 2011-06-30 | Kerr Sean M | Ferrules Having An Anti-Rotation Feature And Fiber Optic Connectors Using The Same |
US8496386B2 (en) | 2009-12-30 | 2013-07-30 | Corning Cable Systems Llc | Ferrules having an anti-rotation feature and fiber optic connectors using the same |
US10558001B2 (en) | 2017-07-25 | 2020-02-11 | Canon U.S.A., Inc. | Optical alignment of fiber-optic rotary joint assembly |
Also Published As
Publication number | Publication date |
---|---|
US20060039650A1 (en) | 2006-02-23 |
CN100476474C (en) | 2009-04-08 |
CN1737623A (en) | 2006-02-22 |
JP2006058369A (en) | 2006-03-02 |
US20070263962A1 (en) | 2007-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7387448B2 (en) | 2008-06-17 | Optical component, method for connecting the same, and optical module having the optical component |
US6823109B2 (en) | 2004-11-23 | Optical fiber-lens array |
US9897763B2 (en) | 2018-02-20 | Transceiver interface having staggered cleave positions |
US9625661B2 (en) | 2017-04-18 | Multiple purpose optical connecting element |
US5617495A (en) | 1997-04-01 | Optical semiconductor device and connection structure therefor |
TWI410688B (en) | 2013-10-01 | Optical component and lens assembly |
JP2005521070A (en) | 2005-07-14 | Optical fiber bending into the backplane |
CN101004467A (en) | 2007-07-25 | Optical component for optical communication |
JP2014526719A5 (en) | 2017-01-19 | |
WO2005006032A1 (en) | 2005-01-20 | Optical path change type optical coupling element |
CA2963128C (en) | 2021-07-20 | Optical assembly and method for coupling a waveguide array to a photonic-integrated circuit |
US11086085B2 (en) | 2021-08-10 | Optical connector for connecting multicore optical fiber to single core optical fibers using intermediate optical waveguide array |
EP1457795B1 (en) | 2009-01-28 | Optical collimator structure |
US6550981B1 (en) | 2003-04-22 | Optical module having an optical coupling between an optical fiber and a laser diode |
US7076132B2 (en) | 2006-07-11 | Optical devices and methods |
JPH11160569A (en) | 1999-06-18 | Optical coupling circuit |
JP3259746B2 (en) | 2002-02-25 | Optical fiber array unit |
US20030152325A1 (en) | 2003-08-14 | Optical module |
WO2001069295A1 (en) | 2001-09-20 | High precision optical collimator for optical waveguide |
JPH05203841A (en) | 1993-08-13 | Optical coupling structure of semiconductor laser array and single mode fiber array |
US20020131717A1 (en) | 2002-09-19 | Precision optical centering device and method |
JP2004302429A (en) | 2004-10-28 | Optical collimator |
JP2006267585A (en) | 2006-10-05 | Optical module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
2007-10-31 | FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
2008-05-28 | STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
2011-09-20 | FPAY | Fee payment |
Year of fee payment: 4 |
2015-12-02 | FPAY | Fee payment |
Year of fee payment: 8 |
2020-02-03 | FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
2020-07-20 | LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
2020-07-20 | STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
2020-08-11 | FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20200617 |