US8382842B2 - Expandable support device and method of use - Google Patents
- ️Tue Feb 26 2013
US8382842B2 - Expandable support device and method of use - Google Patents
Expandable support device and method of use Download PDFInfo
-
Publication number
- US8382842B2 US8382842B2 US12/780,744 US78074410A US8382842B2 US 8382842 B2 US8382842 B2 US 8382842B2 US 78074410 A US78074410 A US 78074410A US 8382842 B2 US8382842 B2 US 8382842B2 Authority
- US
- United States Prior art keywords
- expandable support
- support device
- load
- port
- ramps Prior art date
- 2009-05-14 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires 2030-11-08
Links
- 238000000034 method Methods 0.000 title abstract description 34
- 125000006850 spacer group Chemical group 0.000 claims description 5
- 238000013519 translation Methods 0.000 claims description 4
- 239000007943 implant Substances 0.000 claims 1
- 210000000988 bone and bone Anatomy 0.000 abstract description 25
- 210000001519 tissue Anatomy 0.000 abstract description 13
- 206010010214 Compression fracture Diseases 0.000 abstract description 12
- 230000008439 repair process Effects 0.000 abstract description 5
- 210000004872 soft tissue Anatomy 0.000 abstract description 2
- 230000017423 tissue regeneration Effects 0.000 abstract 1
- 230000006378 damage Effects 0.000 description 31
- 239000000463 material Substances 0.000 description 17
- 230000004927 fusion Effects 0.000 description 14
- 239000004568 cement Substances 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- -1 polyethylene Polymers 0.000 description 7
- 238000001356 surgical procedure Methods 0.000 description 7
- 210000002105 tongue Anatomy 0.000 description 7
- 239000003102 growth factor Substances 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 210000005036 nerve Anatomy 0.000 description 6
- 239000000945 filler Substances 0.000 description 5
- 230000000921 morphogenic effect Effects 0.000 description 5
- 210000003205 muscle Anatomy 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 208000001132 Osteoporosis Diseases 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000001506 calcium phosphate Substances 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 208000014674 injury Diseases 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 235000018102 proteins Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 210000000130 stem cell Anatomy 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 4
- 102000008186 Collagen Human genes 0.000 description 3
- 108010035532 Collagen Proteins 0.000 description 3
- 206010061246 Intervertebral disc degeneration Diseases 0.000 description 3
- 239000004696 Poly ether ether ketone Substances 0.000 description 3
- 239000004098 Tetracycline Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 239000002639 bone cement Substances 0.000 description 3
- 230000008468 bone growth Effects 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 229920001436 collagen Polymers 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910001000 nickel titanium Inorganic materials 0.000 description 3
- 230000002188 osteogenic effect Effects 0.000 description 3
- 229920002530 polyetherether ketone Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 229930101283 tetracycline Natural products 0.000 description 3
- 229960002180 tetracycline Drugs 0.000 description 3
- 235000019364 tetracycline Nutrition 0.000 description 3
- 150000003522 tetracyclines Chemical class 0.000 description 3
- 208000010392 Bone Fractures Diseases 0.000 description 2
- 108010037464 Cyclooxygenase 1 Proteins 0.000 description 2
- 229920004934 Dacron® Polymers 0.000 description 2
- 239000004812 Fluorinated ethylene propylene Substances 0.000 description 2
- 206010017076 Fracture Diseases 0.000 description 2
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 2
- 102000002274 Matrix Metalloproteinases Human genes 0.000 description 2
- 108010000684 Matrix Metalloproteinases Proteins 0.000 description 2
- 102000001776 Matrix metalloproteinase-9 Human genes 0.000 description 2
- 108010015302 Matrix metalloproteinase-9 Proteins 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229920000954 Polyglycolide Polymers 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 102100038277 Prostaglandin G/H synthase 1 Human genes 0.000 description 2
- 206010041541 Spinal compression fracture Diseases 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 2
- 208000002223 abdominal aortic aneurysm Diseases 0.000 description 2
- 210000003489 abdominal muscle Anatomy 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000001185 bone marrow Anatomy 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000007850 degeneration Effects 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920009441 perflouroethylene propylene Polymers 0.000 description 2
- 229920001652 poly(etherketoneketone) Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 239000004632 polycaprolactone Substances 0.000 description 2
- 229920001610 polycaprolactone Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000120 polyethyl acrylate Polymers 0.000 description 2
- 239000004633 polyglycolic acid Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 2
- 235000019731 tricalcium phosphate Nutrition 0.000 description 2
- 229940078499 tricalcium phosphate Drugs 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- UKVFUEBRZQZUSZ-BRPMRXRMSA-N (8r,9s,10s,13r,14s,17r)-10,13-dimethyl-17-[(2r)-pent-4-en-2-yl]-2,3,4,5,6,7,8,9,11,12,14,15,16,17-tetradecahydro-1h-cyclopenta[a]phenanthrene Chemical compound C1CC2CCCC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@@H](CC=C)C)[C@@]1(C)CC2 UKVFUEBRZQZUSZ-BRPMRXRMSA-N 0.000 description 1
- DSUFPYCILZXJFF-UHFFFAOYSA-N 4-[[4-[[4-(pentoxycarbonylamino)cyclohexyl]methyl]cyclohexyl]carbamoyloxy]butyl n-[4-[[4-(butoxycarbonylamino)cyclohexyl]methyl]cyclohexyl]carbamate Chemical compound C1CC(NC(=O)OCCCCC)CCC1CC1CCC(NC(=O)OCCCCOC(=O)NC2CCC(CC3CCC(CC3)NC(=O)OCCCC)CC2)CC1 DSUFPYCILZXJFF-UHFFFAOYSA-N 0.000 description 1
- BSYNRYMUTXBXSQ-FOQJRBATSA-N 59096-14-9 Chemical compound CC(=O)OC1=CC=CC=C1[14C](O)=O BSYNRYMUTXBXSQ-FOQJRBATSA-N 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 description 1
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241001647372 Chlamydia pneumoniae Species 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 1
- 108010037462 Cyclooxygenase 2 Proteins 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 208000003618 Intervertebral Disc Displacement Diseases 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 102000010445 Lactoferrin Human genes 0.000 description 1
- 108010063045 Lactoferrin Proteins 0.000 description 1
- 229910001182 Mo alloy Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920008285 Poly(ether ketone) PEK Polymers 0.000 description 1
- 229920002614 Polyether block amide Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 102100038280 Prostaglandin G/H synthase 2 Human genes 0.000 description 1
- 229910000691 Re alloy Inorganic materials 0.000 description 1
- 206010058907 Spinal deformity Diseases 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000003187 abdominal effect Effects 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229940013181 advil Drugs 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 208000007474 aortic aneurysm Diseases 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000005313 bioactive glass Substances 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- WMWLMWRWZQELOS-UHFFFAOYSA-N bismuth(III) oxide Inorganic materials O=[Bi]O[Bi]=O WMWLMWRWZQELOS-UHFFFAOYSA-N 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000002805 bone matrix Anatomy 0.000 description 1
- 229940112869 bone morphogenetic protein Drugs 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229940047495 celebrex Drugs 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229920006018 co-polyamide Polymers 0.000 description 1
- 239000010952 cobalt-chrome Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229940111134 coxibs Drugs 0.000 description 1
- 239000003260 cyclooxygenase 1 inhibitor Substances 0.000 description 1
- 239000003255 cyclooxygenase 2 inhibitor Substances 0.000 description 1
- 230000002559 cytogenic effect Effects 0.000 description 1
- 239000000824 cytostatic agent Substances 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 208000018180 degenerative disc disease Diseases 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 238000002224 dissection Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000002884 effect on inflammation Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000001513 elbow Anatomy 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 229910000701 elgiloys (Co-Cr-Ni Alloy) Inorganic materials 0.000 description 1
- 210000003989 endothelium vascular Anatomy 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 239000002783 friction material Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 230000001146 hypoxic effect Effects 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229940125721 immunosuppressive agent Drugs 0.000 description 1
- 239000003018 immunosuppressive agent Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 229960000905 indomethacin Drugs 0.000 description 1
- 239000005550 inflammation mediator Substances 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003601 intercostal effect Effects 0.000 description 1
- 208000021600 intervertebral disc degenerative disease Diseases 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- CSSYQJWUGATIHM-IKGCZBKSSA-N l-phenylalanyl-l-lysyl-l-cysteinyl-l-arginyl-l-arginyl-l-tryptophyl-l-glutaminyl-l-tryptophyl-l-arginyl-l-methionyl-l-lysyl-l-lysyl-l-leucylglycyl-l-alanyl-l-prolyl-l-seryl-l-isoleucyl-l-threonyl-l-cysteinyl-l-valyl-l-arginyl-l-arginyl-l-alanyl-l-phenylal Chemical compound C([C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 CSSYQJWUGATIHM-IKGCZBKSSA-N 0.000 description 1
- 229940078795 lactoferrin Drugs 0.000 description 1
- 235000021242 lactoferrin Nutrition 0.000 description 1
- 238000002684 laminectomy Methods 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- HYYBABOKPJLUIN-UHFFFAOYSA-N mefenamic acid Chemical compound CC1=CC=CC(NC=2C(=CC=CC=2)C(O)=O)=C1C HYYBABOKPJLUIN-UHFFFAOYSA-N 0.000 description 1
- 229960003464 mefenamic acid Drugs 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 230000002138 osteoinductive effect Effects 0.000 description 1
- 229940124641 pain reliever Drugs 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 description 1
- 229920006260 polyaryletherketone Polymers 0.000 description 1
- 239000000622 polydioxanone Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 229940099538 rapamune Drugs 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- DECCZIUVGMLHKQ-UHFFFAOYSA-N rhenium tungsten Chemical compound [W].[Re] DECCZIUVGMLHKQ-UHFFFAOYSA-N 0.000 description 1
- RZJQGNCSTQAWON-UHFFFAOYSA-N rofecoxib Chemical compound C1=CC(S(=O)(=O)C)=CC=C1C1=C(C=2C=CC=CC=2)C(=O)OC1 RZJQGNCSTQAWON-UHFFFAOYSA-N 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000000278 spinal cord Anatomy 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 210000000115 thoracic cavity Anatomy 0.000 description 1
- 230000002885 thrombogenetic effect Effects 0.000 description 1
- 230000008467 tissue growth Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 230000008736 traumatic injury Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 229940087652 vioxx Drugs 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000009763 wire-cut EDM Methods 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- 210000002517 zygapophyseal joint Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/44—Joints for the spine, e.g. vertebrae, spinal discs
- A61F2/4455—Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
- A61F2/447—Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages substantially parallelepipedal, e.g. having a rectangular or trapezoidal cross-section
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/88—Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
- A61B17/885—Tools for expanding or compacting bones or discs or cavities therein
- A61B17/8852—Tools for expanding or compacting bones or discs or cavities therein capable of being assembled or enlarged, or changing shape, inside the bone or disc
- A61B17/8858—Tools for expanding or compacting bones or discs or cavities therein capable of being assembled or enlarged, or changing shape, inside the bone or disc laterally or radially expansible
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/46—Special tools for implanting artificial joints
- A61F2/4603—Special tools for implanting artificial joints for insertion or extraction of endoprosthetic joints or of accessories thereof
- A61F2/4611—Special tools for implanting artificial joints for insertion or extraction of endoprosthetic joints or of accessories thereof of spinal prostheses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
- A61F2002/2817—Bone stimulation by chemical reactions or by osteogenic or biological products for enhancing ossification, e.g. by bone morphogenetic or morphogenic proteins [BMP] or by transforming growth factors [TGF]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
- A61F2002/2835—Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/3006—Properties of materials and coating materials
- A61F2002/3008—Properties of materials and coating materials radio-opaque, e.g. radio-opaque markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30003—Material related properties of the prosthesis or of a coating on the prosthesis
- A61F2002/3006—Properties of materials and coating materials
- A61F2002/30082—Properties of materials and coating materials radioactive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30331—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
- A61F2002/30362—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit with possibility of relative movement between the protrusion and the recess
- A61F2002/3037—Translation along the common longitudinal axis, e.g. piston
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30331—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit
- A61F2002/30362—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementarily-shaped recess, e.g. held by friction fit with possibility of relative movement between the protrusion and the recess
- A61F2002/3037—Translation along the common longitudinal axis, e.g. piston
- A61F2002/30372—Translation along the common longitudinal axis, e.g. piston with additional means for limiting said translation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30383—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30383—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by laterally inserting a protrusion, e.g. a rib into a complementarily-shaped groove
- A61F2002/30403—Longitudinally-oriented cooperating ribs and grooves on mating lateral surfaces of a mainly longitudinal connection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30476—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
- A61F2002/30507—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a threaded locking member, e.g. a locking screw or a set screw
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30518—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements with possibility of relative movement between the prosthetic parts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30329—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2002/30518—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements with possibility of relative movement between the prosthetic parts
- A61F2002/3052—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements with possibility of relative movement between the prosthetic parts unrestrained in only one direction, e.g. moving unidirectionally
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30537—Special structural features of bone or joint prostheses not otherwise provided for adjustable
- A61F2002/30556—Special structural features of bone or joint prostheses not otherwise provided for adjustable for adjusting thickness
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30579—Special structural features of bone or joint prostheses not otherwise provided for with mechanically expandable devices, e.g. fixation devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2002/30001—Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
- A61F2002/30316—The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30535—Special structural features of bone or joint prostheses not otherwise provided for
- A61F2002/30593—Special structural features of bone or joint prostheses not otherwise provided for hollow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30721—Accessories
- A61F2/30734—Modular inserts, sleeves or augments, e.g. placed on proximal part of stem for fixation purposes or wedges for bridging a bone defect
- A61F2002/30736—Augments or augmentation pieces, e.g. wedges or blocks for bridging a bone defect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/3082—Grooves
- A61F2002/30827—Plurality of grooves
- A61F2002/30828—Plurality of grooves parallel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/30—Joints
- A61F2/30767—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
- A61F2/30771—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
- A61F2002/30904—Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves serrated profile, i.e. saw-toothed
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2210/00—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2210/0095—Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof radioactive
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0033—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0004—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable
- A61F2250/0009—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable for adjusting thickness
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0096—Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
- A61F2250/0098—Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00017—Iron- or Fe-based alloys, e.g. stainless steel
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00023—Titanium or titanium-based alloys, e.g. Ti-Ni alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00029—Cobalt-based alloys, e.g. Co-Cr alloys or Vitallium
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00035—Other metals or alloys
- A61F2310/00071—Nickel or Ni-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00035—Other metals or alloys
- A61F2310/00083—Zinc or Zn-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00035—Other metals or alloys
- A61F2310/00101—Molybdenum or Mo-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00035—Other metals or alloys
- A61F2310/00131—Tantalum or Ta-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00035—Other metals or alloys
- A61F2310/00137—Tungsten or W-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00011—Metals or alloys
- A61F2310/00035—Other metals or alloys
- A61F2310/00155—Gold or Au-based alloys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00353—Bone cement, e.g. polymethylmethacrylate or PMMA
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00005—The prosthesis being constructed from a particular material
- A61F2310/00365—Proteins; Polypeptides; Degradation products thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2310/00—Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
- A61F2310/00389—The prosthesis being coated or covered with a particular material
- A61F2310/00976—Coating or prosthesis-covering structure made of proteins or of polypeptides, e.g. of bone morphogenic proteins BMP or of transforming growth factors TGF
Definitions
- This invention relates to devices for providing support for biological tissue, for example to fuse vertebral bodies, repair herniated discs, and/or repair spinal compression fractures, and methods of using the same.
- Some conditions of the spine result from degradation or injury to the bone structures of the spine, typically the vertebral body. These can be the result of bone degeneration such as through osteoporosis or trauma, such as compression fractures. breakdown or injury to the boney structures in the spine can result in pain and spinal deformity with comorbidities.
- Vertebroplasty is an image-guided, minimally invasive, nonsurgical therapy used to strengthen a broken vertebra that has been weakened by disease, such as osteoporosis or cancer. Vertebroplasty is often used to treat compression fractures, such as those caused by osteoporosis, cancer, or stress.
- Vertebroplasty is often performed on patients too elderly or frail to tolerate open spinal surgery, or with bones too weak for surgical spinal repair. Patients with vertebral damage due to a malignant tumor may sometimes benefit from vertebroplasty. The procedure can also be used in younger patients whose osteoporosis is caused by long-term steroid treatment or a metabolic disorder.
- Vertebroplasty can increase the patient's functional abilities, allow a return to the previous level of activity, and prevent further vertebral collapse. Vertebroplasty attempts to also alleviate the pain caused by a compression fracture.
- Vertebroplasty is often accomplished by injecting an orthopedic cement mixture through a needle into the fractured bone.
- the cement mixture can leak from the bone, potentially entering a dangerous location such as the spinal canal.
- the cement mixture which is naturally viscous, is difficult to inject through small diameter needles, and thus many practitioners choose to “thin out” the cement mixture to improve cement injection, which ultimately exacerbates the leakage problems.
- the flow of the cement liquid also naturally follows the path of least resistance once it enters the bone—naturally along the cracks formed during the compression fracture. This further exacerbates the leakage.
- the mixture also fills or substantially fills the cavity of the compression fracture and is limited to certain chemical composition, thereby limiting the amount of otherwise beneficial compounds that can be added to the fracture zone to improve healing.
- a balloon is first inserted in the compression fracture and the vertebra and is expanded to create a void before the cement is injected into the newly formed space.
- a vertebroplasty device and method that eliminates or reduces the risks and complexity of the existing art is desired.
- a vertebroplasty device and method that may reduce or eliminate the need to inject a liquid directly into the compression fracture zone is also desired.
- disc degeneration can cause pain and other complications.
- Conservative treatment can include non-operative treatment requiring patients to adjust their lifestyles and submit to pain relievers and a level of underlying pain.
- Operative treatment options include disc removal. This can relieve pain in the short term, but also often increases the risk of long-term problems and can result in motor and sensory deficiencies resulting from the surgery.
- Disc removal and more generally disc degeneration disease are likely to lead to a need for surgical treatment in subsequent years. The fusion or fixation will minimize or substantially eliminate relative motion between the fixed or fused vertebrae.
- adjacent vertebra can be fixated or fused to each other using devices or bone grafts.
- bone grafts may include, for example, screw and rod systems, interbody spacers (e.g., PEEK spacers or allograft bone grafts) threaded fusion cages and the like.
- fixation or fusion devices are attached to the vertebra from the posterior side.
- the device will protrude and result in additional length (i.e., needed to overlap the vertebrae) and additional hardware to separately attach to each vertebrae.
- Fusion cages and allografts are contained within the intervertebral space, but must be inserted into the intervertebral space in the same dimensions as desired to occupy the intervertebral space. This requires that an opening sufficient to allow the cage or graft must be created through surrounding tissue to permit the cage or graft to be inserted into the intervertebral space.
- a spinal fixation or fusion device that can be implanted with or without the need for additional hardware is desired. Also desired is a fixation or fusion device that can be deployed in a configuration where overlapping the fixated or fused vertebrae is not required.
- an intervertebral device the may be inserted in to the intervertebral space at a first smaller dimension and deployed to a second, larger dimension to occupy the intervertebral space.
- the ability to insert an intervertebral spacer at a dimension smaller than the deployed dimension would permit less disruption of soft and boney tissue in order to access the intervertebral space.
- a vertebral fusion technique that can be used subsequent to a discectomy is desired.
- the expandable support device can have a longitudinal axis and a radial axis.
- the expandable support device can be configured to expand in a radial direction, for example constrained to expansion in a single dimension. The expansion can occur perpendicular to the longitudinal axis of the device.
- the device can have top and/or middle and/or bottom components.
- the top and/or middle and/or bottom components can have ramps or wedges that produce an opposing force to expand the device when the top and/or middle and/or bottom components are translated relative to each other in the longitudinal direction.
- the device can expand radially (e.g., solely in height or width) when compressed longitudinally.
- the device can be configured to expand in a single direction.
- the device can be configured to expand in two directions.
- the device can have a locking pin.
- the locking pin can be interference fit with the device, for example with the first strut, and/or with a longitudinal port of the device.
- the expandable support device can be deployed, for example, by longitudinal compression.
- the longitudinal compression can result in radial expansion of the expandable support device.
- the expandable support device can be deployed in an intravertebral site.
- the expandable support device can be deployed in an intervertebral site.
- Tools for deploying the expandable support device can be configured to apply a compressive force on the expandable support device along the expandable support device's longitudinal axis.
- the tools can be configured to securely engage the expandable support device.
- the tools can be configured to removably attach to opposing points at or near opposing longitudinal ends of the expandable support device. Actuation of the tool to apply a compressive force may include squeezing two handles together or rotating a knob or handle.
- the expandable device can be filled with a material, such as a biocompatible material such as a bone morphogenic protein, bone cement or any other material listed herein and combinations thereof.
- a material such as bone cement, tissue or bone growth factors, bone morphogenic proteins, stem cells, carriers for any of the foregoing, or mixtures thereof can be inserted within the expandable device to provide support, fixation and/or improved bone structure. Growth factors or stem cells can be obtained autologously, such as from the patient's own blood or bone marrow aspirate.
- the expandable device can be filled with autograft, allograft, bone extenders (e.g., calcium phosphate or tricalcium phosphate or mixtures thereof or other similar materials), bone growth factors, bone morphogenic proteins, stem cells, carriers for any of the foregoing, and mixtures thereof, for example, when the device is used as an intervertebral spacer for fusion.
- bone extenders e.g., calcium phosphate or tricalcium phosphate or mixtures thereof or other similar materials
- bone growth factors e.g., calcium phosphate or tricalcium phosphate or mixtures thereof or other similar materials
- bone growth factors e.g., calcium phosphate or tricalcium phosphate or mixtures thereof or other similar materials
- bone growth factors e.g., calcium phosphate or tricalcium phosphate or mixtures thereof or other similar materials
- bone growth factors e.g., calcium phosphate or tricalcium phosphate or mixtures thereof or other similar materials
- stem cells e.g.,
- the ratio of the expansion for the expandable devices may be from 1:2 to 1:5 or greater.
- the device can have expansion ratios of from about 1:3 to about 1:4.
- the device can have an initial height or diameter from about 4 mm (0.16 in.) to about 8 mm (0.31 in.) and an expanded height or diameter from about 7 mm (0.28 in.) to about 18 mm (0.71 in.).
- FIG. 1 a illustrates an exploded view of a variation of the device.
- FIG. 1 b is a variation of cross-section 1 a.
- FIG. 2 a illustrates a variation of the device in a height-contracted configuration.
- FIG. 2 b is a variation of cross-section B-B of FIG. 2 a.
- FIG. 3 a illustrates a variation of the device in a height-expanded configuration.
- FIG. 3 b is a variation of cross-section C-C of FIG. 3 a.
- FIG. 4 a is a top view of a variation of the device in a height-contracted configuration.
- FIG. 4 b is a top view of a variation of the device in a height-expanded.
- FIGS. 5 a and 5 b illustrate a variation of a method of expanding the device, shown in cross-sections B-B and C-C, respectively, of FIGS. 2 a and 3 a.
- FIG. 5 c and 5 d illustrate variations of a method for using the device having a variation of a cross-section C-C of FIG. 3 a with a deployment tool and/or locking rod.
- FIGS. 5 e through 5 g are a close up view of a method of using the deployment rod or locking pin with the second side port shown in a cross-sectional view.
- FIGS. 6 and 7 illustrate a variation of a method for using a delivery system for the expandable support element.
- FIGS. 8 through 10 illustrate a variation of a method for accessing a damage site in the vertebra.
- FIG. 11 illustrates two methods for delivering expandable support devices to the vertebral column.
- FIGS. 12 through 17 illustrate various methods for deploying the expandable support device into the damage site in the vertebra.
- FIGS. 18 and 19 illustrate a variation of a method for deploying one or more expandable support devices into one or more damage sites in the vertebra.
- FIG. 20 illustrates a variation of a method for deploying the expandable support device into the damage site in the vertebra.
- FIG. 21 illustrates variations of methods for deploying the expandable support device into the damage site in the vertebra.
- FIGS. 22 and 23 illustrate a variation of a method for deploying the expandable support device into the damage site in the vertebra.
- FIGS. 24 through 27 illustrate a variation of a method for deploying the expandable support device between adjacent vertebrae.
- FIGS. 28 through 31 illustrate a variation of a method for deploying the expandable support device between adjacent vertebrae.
- FIGS. 32 and 33 illustrate a variation of a method for deploying a locking pin into the expandable support device in the damage site in the vertebra.
- FIGS. 32 and 33 illustrate a variation of a method for deploying a locking pin into the expandable support device in the damage site in the vertebra.
- FIGS. 34 a and 34 b illustrate variations of methods for inserting one or more devices into one or more target sites.
- FIGS. 1 a and 1 b illustrate an exploded view of an expandable support device 2 that can be implanted in a bone, such as a compression fracture in a vertebra, in the intervertebral space between two vertebrae, or in soft tissue, such as a herniated intervertebral disc.
- the expandable support device 2 can be biocompatible.
- the expandable support device 2 can be used, for example, for methods of repairing vertebral bone fractures or supporting adjacent vertebral bodies for fusion.
- the expandable support device 2 can have a first longitudinal end and a second longitudinal end along a longitudinal axis 4 .
- the expandable support device 2 can have a base or bottom 6 (base and bottom are used interchangeably), a middle 8 , and a top 10 .
- the base or bottom 6 and top 10 can be or have plates, panels, struts (e.g., legs), ports, cells, and combinations thereof.
- the base 6 and top 10 can be configured to be slidably attachable to the middle 8 .
- Either the top 10 , the base 6 , or neither, (shown in the figures as the base) can be slidably attached to the middle 8 in a plane parallel with the longitudinal axis 4 .
- Either the top 10 , the base 6 , or neither, (shown in the figures as the top 10 ) can be slidably attached to the middle 8 in a plane substantially perpendicular to the longitudinal axis 4 .
- the top 10 can have one or more top stability bars 12 .
- the top stability bars 12 can extend from the lateral sides of the top 10 .
- the top stability bars 12 can extend from the top 10 in the direction of the base 6 .
- the base 6 can have one or more base stability grooves 14 .
- Each top stability bar 12 can be configured to be slidably attachable to a corresponding base stability groove 14 .
- the top 10 can have two sets of one, two or more symmetrically opposite, laterally located top stability bars 12 .
- the base 6 can have two or more sets of two symmetrically opposite, laterally located base stability grooves 14 , as shown.
- the base 6 can have one or more base stability bars 16 .
- the base stability bars 16 can extend from the lateral sides of the base 6 .
- the base stability bars 16 can extend from the bas 6 in the direction of the top 10 .
- the top 10 can have one or more top stability grooves 18 .
- the base stability bars 16 can each be configured to be slidably attachable to a corresponding top stability groove 18 .
- the base 6 can have two sets of one, two, three (as shown) or more symmetrically opposite, laterally located base stability bars 16 .
- the top 10 can have two or more sets of two, three (as shown) or more symmetrically opposite, laterally located top stability grooves 18 , as shown.
- the slidable attachment of the top 10 and base 6 can permit the base 6 to move radially (with respect to the longitudinal axis 4 ) relative to the top and vice versa.
- the top 10 can have a high-friction and/or low-friction texture extending away from the base 6 .
- the top 10 can have one or numerous rows of top teeth 20 .
- the bottom 6 can have a high-friction and/or low-friction texture extending away from the base 6 .
- the bottom 6 can have one or numerous rows of bottom teeth 22 .
- the top teeth 20 and the bottom teeth 22 can be arranged to have ridges parallel with the longitudinal access, transverse the parallel axis, a non-zero and non-right angle to the longitudinal axis 4 , or combinations thereof.
- the top 10 can have one or more side ports and/or top ports 26 .
- the base 6 can have one or more base ports 28 and/or side ports.
- the ports can be circular, square, triangular, oval, elongated in the longitudinal direction, elongated in the radial direction, or combinations thereof.
- the top 10 and/or base 6 can have atraumatic edges, such as chamfered edges.
- the chamfers can extend along the perimeter of the base 6 and/or top 10 .
- the expandable support device 2 can have one, two, three or more sets of interacting wedges or ramps.
- the sets of ramps can be distributed substantially evenly along the length of the device, or the sets of ramps can be distributed unevenly along the length of the base 6 .
- the ramps can all be oriented in the same direction (e.g., all ramps facing proximally, or all ramps facing distally), or can be oriented in different directions (e.g., some ramps facing distally and some ramps facing proximally).
- the top 10 and/or base 6 can have a series of unidirectional and/or bidirectional ramps.
- the unidirectional ramps can be configured to have a ramp stop 30 at one longitudinal end of the ramp.
- the middle 8 can have a series of unidirectional and/or bidrectional ramps.
- the unidirectional ramps can be configured to have a ramp stop 30 at one longitudinal end of the ramp.
- the ramps can have ramp tongues and grooves 32 .
- Ramp tongue and grooves 32 on corresponding ramps can be configured to slidably attach to the opposing tongues and grooves.
- the top ramps 34 , 36 can have top tongues and grooves.
- the middle ramps 38 , 40 , 42 can have middle tongues and grooves that can slidably engage the top tongues and grooves.
- the ramps can have ramp angles 44 with respect to the longitudinal axis 4 .
- the ramp angle 44 can be from about 15° to about 75°, more narrowly from about 20° to about 60°, for example about 35°.
- One or more of the ramps can have a ramp stop 30 .
- the ramp stops 30 can be configured to abut and interference fit against a corresponding ramp stop 30 on the adjacent element (i.e., the top 10 can be adjacent to the middle 8 ).
- the base 6 (as shown) and/or top 10 can have a first side plate 46 .
- the base 6 can have a base rail 48 .
- the middle 8 can have a middle rail 50 .
- the middle rail 50 can be slidably fed onto or under the base rail 48 .
- the base rail 48 and the middle rail 50 can constrain relative motion between the middle 8 and the base 6 to the dimension of the longitudinal axis 4 .
- the first side port 52 can have a first side outer port 54 on the first side plate 46 .
- the first side port 52 can have a first side central port 56 in the top 10 .
- the first side central port 56 can be open on the bottom 6 , for example to allow the first side central port 56 to move away from the first side outer port 54 without constraining any rod or other elongated element positioned through the first side port 52 .
- the middle 8 can have a first side inner port 58 through the middle first ramp 38 .
- the first side outer 54 , central 56 , inner port 58 or a combination thereof can be internally threaded.
- the first side outer port 54 can form a recess in the first side plate 46 , for example to receive the head of a rod.
- the base 6 can have one or more seat ramps, for example, the seat ramps can be positioned to correspond with and receive one or more of the top ramps, for example when the device is in a height-contracted configuration.
- the ramps can be positioned laterally symmetrically on the top 10 .
- the ramps can be evenly distributed along the length of the top 10 .
- the ramp seats can be positioned laterally symmetrically on the base 6 .
- the ramps can be evenly distributed along the length of the base 6 .
- FIGS. 2 a and 2 b illustrate that the device 2 can have a height-contracted configuration.
- Top ramps can receive the middle ramps.
- the ramp stops of the top ramps can interference fit against the ramp stops of the middle ramps.
- FIGS. 3 a and 3 b illustrate that the device can have a height-expanded configuration.
- the middle 8 can be slidably translated toward the first end.
- the stability bar can be configured to not directly attach to the top 10 when the top stability bar 12 is translated toward the base stability groove 14 , and/or the stability bars can be configured to bias inward against and frictionally hold the top 10 when the top 10 is translated into the base 6 .
- the top 10 and the base 6 can be pressed into or otherwise translated toward each other.
- the surrounding tissue in the in vivo environment can naturally compress the expandable support device 2 .
- the ramps can have ratchets on their surface, in the tongue and groove or otherwise to prevent contraction once the device 2 is expanded.
- the device 2 can be filled by a material, and/or the deployment rod can be fixed to the first side outer port 54 and the second port.
- the respective surfaces can have high friction surfaces, for example a textured (e.g., knurled) surface and/or coated with a high friction material.
- FIGS. 4 a and 4 b illustrate that the top port 26 , middle port 27 and base port 28 substantially align transverse with the longitudinal axis 4 .
- the top/middle/base ports form a concurrent vertical port through the device 2 .
- the concurrent vertical port can be filled with any material disclosed herein or left empty.
- the concurrent vertical port can be partially obstructed by the middle 8 , including the middle first ramp 38 , when the device 2 is in a height-contracted configuration, as shown in FIG. 4 a .
- the concurrent vertical port can be less obstructed, or substantially unobstructed when the device 2 is in a height-expanded configuration, as shown in FIG. 4 b.
- FIG. 4 a illustrates that the middle 8 can protrude outside of the footprint of the the top 10 and bottom 6 when the device 2 is viewed from above or below in a height-contracted configuration.
- FIG. 4 b from a top or bottom view, the middle 8 can be substantially flush with the top 10 and bottom 6 when viewed from above or below when the device 2 is in a height-contracted configuration.
- FIGS. 5 a and 5 b illustrate. the height expansion, as shown by arrow, of the top 10 away from the base 6 .
- the height expansion can occur when the device 2 is longitudinally compressed, and/or when the middle 8 is slid with respect to the base 6 toward the first side.
- FIG. 5 b illustrates that the middle ramps slip, as shown by arrows, against the top ramps when the device 2 is expanded.
- FIG. 5 c illustrates that the middle 8 can have a second side port 68 .
- a deployment tool and/or locking rod 70 can be inserted through the first port and the second side port 68 .
- the deployment rod 70 can have an attached or integral deployment rod cap 72 or nut that can be outside the first port and interference fit with the wall surrounding the first port.
- the rod 72 can be pulled (as shown by arrow), while a resistive force (shown by arrow) is applied to the device 2 to oppose the pulling force (to expand the device 2 rather than solely pulling the device 2 toward the user).
- the deployment rod 70 or locking pin can have a pin shaft with a driver slot, for example, configured to receive a screw driver or drill bit.
- the pin shaft can have pin thread configured to releasably or fixedly attach to one or both of the ramp ports.
- the pin thread can extend along all or part of the length of the pin shaft.
- the locking pin can be inserted, as shown by arrow, through the threaded ramp port.
- the deployment rod 70 and locking pin can be the same or different elements.
- the second side ramp 74 and/or the top 10 and/or the bottom 6 can have a ramp abutment section, such as the ramp stops 30 .
- the ramp abutment section can be configured to interference fit with and/of fixedly attach to the abutment end.
- a rod detent 76 can be fitted onto or through the deployment tool or locking rod 70 .
- the user can deploy a force against the detent 76 .
- the detent 76 can be a clip, nut, brad, lockable slide, or combinations thereof.
- the detent 76 can fix to the deployment rod 70 or locking pin and interference fit against the middle 8 .
- the middle 8 can then be fixed between the rod detent 76 and the first side plate 46 .
- FIG. 5 d illustrates that the deployment rod or locking pin 80 can be integral or attached to the middle 8 , for example at the second side plate 47 .
- the middle port can be unobstructed by the rod or pin.
- the deployment rod 70 can be removably attached from the remainder of the device 2 , for example after the device 2 is deployed.
- the deployment rod 70 can be used to position and expand the device 2 .
- FIG. 5 e illustrates that the second side port 68 can have port thread 78 on all or a portion of the inside of the port.
- the second side port 68 can have port thread 78 on about half of the surface of the inside of the port, for example from angles about 0 degrees to about 180 degrees when measured from a longitudinal axis 4 passing through the center of the second side port 78 (as shown), or from about 0 degrees to about 90 degrees and then again from about 180 degrees to about 270 degrees.
- the deployment rod or locking pin 80 can have rod/pin thread 82 on a portion of the surface of the rod or pin 80 corresponding to and substantially equal to or less than the portion of the surface of the inside of the port covered by port thread 78 .
- the rod or pin 80 can have rod/pin thread 82 on about half of the surface of the outside of the rod or pin 80 , for example from angles about 0 degrees to about 180 degrees when measured from a longitudinal axis 4 passing through the center of the rod or pin 80 (as shown), or from about 0 degrees to about 90 degrees and then again from about 180 degrees to about 270 degrees.
- the non-threaded portion of the surface of the rod 80 can be angularly aligned with the threaded portion of the surface of the second side port 68
- FIG. 5 f illustrates that the rod or pin 80 can be translated into or through the second side port 68 .
- the rod/pin thread 82 can slidably pass across the inner surface of the second side port 68 not having port thread 78 .
- the port thread 78 can slide past the outer surface of the second side port 68 not having port thread 78 .
- FIG. 5 g illustrates that when the rod or pin 80 is at a desired position, the rod or pin 80 can be rotated to align the rod/pin thread 82 with the port thread 78 .
- the rod or pin 80 can be translatably fixed with respect to the second side port 68 .
- the partial-thread shown on the second side port 68 in FIGS. 5 e through 5 g can be on a separate nut rotatably attached to the second side port 68 .
- the nut can be rotated with respect to the rod or pin 80 to longitudinally fix the position of the rod or pin 80 with respect to the nut and therefore the second side port 68 .
- a biocompatible adhesive or epoxy can be applied to the pin thread 82 , threaded ramp port, abutment end, ramp abutment section, or combinations thereof.
- One, two or more locking pin channels can be inserted longitudinally into the expandable support device 2 .
- One, two or more locking pins 80 can be inserted into the same or separate ports, for example during or after deployment of the remainder of the expandable support device 2 .
- the locking pins 80 can prevent overexpansion and/or overcompression and/or disassembly of the expandable support device 2 .
- the ramps can have locking pins 80 therethrough.
- the locking pin 80 can be cylindrical.
- the locking pin channel and locking pin port can have elongated cross-sections, such as an oval or rectangular or oblong cross-sections.
- the locking pin 80 can be free to move vertically within a range of motion within the locking pin port.
- the locking pin 80 can be a substantially similar shape and size as the locking pin channel.
- the locking pin 80 can be substantially unmovable within the locking pin port.
- the locking pin 80 , locking pin channel and locking pin port can all have elongated cross-sections, such as an oval or rectangular or oblong cross-sections.
- the ramps can have first fixing teeth or ratchets.
- the first fixing teeth can be in contact with the top 10 and/or the bottom 6 .
- the top and/or the bottom can have second fixing teeth.
- the first fixing teeth can mechanically interact with the second fixing teeth to allow relative translation in a first direction.
- the first fixing teeth and the second fixing teeth can interact to obstruct (e.g., by interference fitting the first fixing teeth against the second fixing teeth) relative translation in a second direction.
- the fixing teeth can obstruct the top ramps from moving one way, for example not allowing the device to contract, and obstruct the top from moving closer to the bottom.
- the fixing teeth can allow relative translation of the side ramps toward each other, for example, to allow the top to move away from the bottom.
- the second side ramp 74 can have a first end.
- the first end can be configured to dissect tissue.
- the first end can have a blunt or sharp point.
- the second side ramp 74 can have a tool connector, such as an externally and/or internally threaded cylinder extending longitudinally from the second side ramp away from the first side ramp.
- the tool connector can be configured to removably attach to a deployment tool.
- the first fixing teeth can unidirectionally interference fit the second fixing teeth.
- the unidirectional interference fit of the first fixing teeth and the second fixing teeth can substantially impede or prevent the opposite ramps from moving longitudinally away from each other, for example, therefore impede or preventing compression of the top toward the bottom and vice versa.
- the unidirectional interference fit of the first fixing teeth and the second fixing teeth can allow the opposite ramps to move longitudinally toward each other, for example, therefore allowing the top to expand away from the bottom and vice versa.
- An external deployment tool can be attached to the first side plate 46 and the second port 68 of the side of the device, and apply a compressive force across the device 2 .
- the base 6 and top 10 can expand away from each other, as shown by arrows.
- the expandable support device 2 When the expandable support device 2 is in a deployed configuration in vivo, the expandable support device 2 can be partially or substantially filled with a liquid, gel, or solid (e.g., in small parts or granules) filler material, or combinations thereof, such as bone morphogenic powder or any other material disclosed herein or combinations thereof.
- the filler material can contact or be in near contact with the surrounding tissue near the edge of the ports
- the expandable support devices 2 can have textured and/or porous surfaces for example, to increase friction against bone surfaces, and/or promote tissue ingrowth.
- the expandable support devices 2 can be coated with a bone growth factor, such as a calcium base.
- the expandable support device 2 can be covered by a thin metal screen, for example over at least the top and/or base ports.
- the thin metal screen can expand and/or open when the expandable support device 2 expands.
- any or all elements of the expandable support device 2 and/or other devices or apparatuses described herein can be made from, for example, a single or multiple stainless steel alloys, nickel titanium alloys (e.g., Nitinol), cobalt-chrome alloys (e.g., ELGILOY® from Elgin Specialty Metals, Elgin, Ill.; CONICHROME® from Carpenter Metals Corp., Wyomissing, Pa.), nickel-cobalt alloys (e.g., MP35N® from Magellan Industrial Trading Company, Inc., Westport, Conn.), molybdenum alloys (e.g., molybdenum TZM alloy, for example as disclosed in International Pub. No.
- WO 03/082363 A2 published 9 Oct. 2003, which is herein incorporated by reference in its entirety
- tungsten-rhenium alloys for example, as disclosed in International Pub. No. WO 03/082363
- polymers such as polyethylene teraphathalate (PET)/polyester (e.g., DACRON® from E. I.
- PGA polyglycolic acid
- PLA polylactic
- any or all elements of the expandable support device 2 and/or other devices or apparatuses described herein can be, have, and/or be completely or partially coated with agents and/or a matrix a matrix for cell ingrowth or used with a fabric, for example a covering (not shown) that acts as a matrix for cell ingrowth.
- the matrix and/or fabric can be, for example, polyester (e.g., DACRON® from E. I. Du Pont de Nemours and Company, Wilmington, Del.), polypropylene, PTFE, ePTFE, nylon, extruded collagen, silicone or combinations thereof.
- the expandable support device 2 and/or elements of the expandable support device 2 and/or other devices or apparatuses described herein and/or the fabric can be filled, coated, layered and/or otherwise made with and/or from cements, fillers, glues, and/or an agent delivery matrix known to one having ordinary skill in the art and/or a therapeutic and/or diagnostic agent. Any of these cements and/or fillers and/or glues can be osteogenic and osteoinductive growth factors.
- cements and/or fillers examples include bone chips, demineralized bone matrix (DBM), calcium sulfate, coralline hydroxyapatite, biocoral, tricalcium phosphate, calcium phosphate, polymethyl methacrylate (PMMA), biodegradable ceramics, bioactive glasses, hyaluronic acid, lactoferrin, bone morphogenic proteins (BMPs) such as recombinant human bone morphogenetic proteins (rhBMPs), other materials described herein, or combinations thereof.
- DBM demineralized bone matrix
- PMMA polymethyl methacrylate
- BMPs bone morphogenic proteins
- rhBMPs recombinant human bone morphogenetic proteins
- the agents within these matrices can include any agent disclosed herein or combinations thereof, including radioactive materials; radiopaque materials; cytogenic agents; cytotoxic agents; cytostatic agents; thrombogenic agents, for example polyurethane, cellulose acetate polymer mixed with bismuth trioxide, and ethylene vinyl alcohol; lubricious, hydrophilic materials; phosphor cholene; anti-inflammatory agents, for example non-steroidal anti-inflammatories (NSAIDs) such as cyclooxygenase-1 (COX-1) inhibitors (e.g., acetylsalicylic acid, for example ASPIRIN® from Bayer AG, Leverkusen, Germany; ibuprofen, for example ADVIL® from Wyeth, Collegeville, Pa.; indomethacin; mefenamic acid), COX-2 inhibitors (e.g., VIOXX® from Merck & Co., Inc., Whitehouse Station, N.J.; CELEBREX®
- the expandable support devices 2 can be laser cut, machined, cut by wire electrical discharge machining (“EDM”) or made by other suitable techniques.
- EDM electrical discharge machining
- the expandable support device 2 can be cut in a fully contracted or unexpanded configuration or may be cut in a partially opened pattern, then loaded (e.g., crimped) onto a deployment tool 84 (e.g., balloon).
- the loaded expandable support device 2 can have a smaller profile while plastically deforming the struts past their limits.
- the expandable support device 2 can be longitudinally segmented. Multiple expandable support devices 2 can be attached first end to second end, and/or a single expandable support device 2 can be severed longitudinally into multiple expandable support devices 2 .
- FIG. 6 illustrates that the expandable support device 2 can be loaded in a collapsed (i.e., contracted) configuration onto a deployment tool 84 .
- the deployment tool 84 can be configured to removably attach to the first side ramp and the second side ramp.
- One or more deployment tools can be configured to control the position of the expandable support device 2 (e.g., to rigidly attach to the expandable support device 2 ) and/or to longitudinally compress the second side ramps 74 , and/or to deploy one or more locking pins in the expandable support device 2 .
- the deployment tool 84 can include a rigid or flexible catheter 86 .
- FIG. 7 illustrates that the deployment tool 86 can longitudinally compress the expandable support device 2 , for example causing the expandable support device 2 to vertically expand as shown by arrows.
- FIGS. 8 (side view) and 9 (top view) illustrate a vertebral column 88 that can have one or more vertebra 90 separated from the other vertebra 90 by discs 92 .
- the vertebra 90 can have a damage site 94 , for example a compression fracture.
- An access tool 96 can be used to gain access to the damage site 94 and or increase the size of the damage site 94 to allow deployment of the expandable support device 2 .
- the access tool 96 can be a rotating or vibrating drill 98 that can have a handle 100 .
- the drill 98 may oscillate, as shown by arrows 102 .
- the drill 98 can then be translated, as shown by arrow 104 , toward and into the vertebra 90 so as to pass into the damage site 94 .
- FIG. 10 illustrates that the access tool 96 can be translated, as shown by arrow 106 , to remove tissue at the damage site 94 .
- the access tool 96 can create an access port 108 at the surface of the vertebra 90 .
- the access port 108 can open to the damage site 94 .
- the access tool 96 can then be removed from the vertebra 90 .
- FIG. 11 illustrates that a first deployment tool 110 can enter posteriorly through the subject's back.
- the first deployment tool 110 can enter through a first incision 112 in the skin 114 on the posterior side 116 of the subject near the vertebral column 88 .
- the first deployment tool 110 can be translated, as shown by arrow 118 , to position a first expandable support device 120 into a first damage site 122 .
- the first access port 124 can be on the posterior side 116 of the vertebra 90 .
- a second deployment tool 126 can enter through a second incision 128 (as shown) in the skin 114 .
- the second incision 130 may be posterior (as shown) or may be anterior, lateral, posterior lateral, or the like.
- the second deployment tool 126 can be translated through muscle (not shown), around nerves 132 , the spinal cord 134 , and anterior 136 of the vertebral column 88 .
- the second deployment tool 126 can be steerable.
- the second deployment tool 126 can be steered, as shown by arrow 138 , to align the distal tip of the second expandable support device 140 with a second access port 142 on a second damage site 144 .
- the second access port 142 can face anteriorly 136 .
- the second deployment tool can translate, as shown by arrow 146 , to position the second expandable support device 140 in the second damage site 144 .
- the vertebra 90 can have multiple damage sites and expandable support devices deployed therein.
- the expandable support devices can be deployed from the anterior 136 , posterior 116 , both lateral, superior, inferior, any angle, or combinations of the directions thereof.
- a single device may be deployed from one direction rather than multiple devices from multiple directions.
- FIGS. 12 and 13 illustrate translating, as shown by arrow, the deployment tool 84 loaded with the expandable support device 2 through the access port 108 from the anterior side 136 of the vertebral column 88 .
- FIGS. 14 and 15 illustrate that the deployment tool 84 can be deployed from the posterior side 116 of the vertebral column 88 .
- the deployment tool 84 can be deployed off-center, for example, when approaching the posterior side 116 of the vertebral column 88 .
- FIG. 16 illustrates that deployment tool 84 can position the expandable support device 2 in the vertebra 90 and into the damage site 94 .
- FIG. 17 illustrates that the expandable support device 2 can be longitudinally compressed (i.e., vertically expanded) until the expandable support device 2 is substantially fixed to the vertebra 90 .
- the expandable support device 2 can reshape the vertebral column 88 to a more natural configuration during expansion of the device.
- FIGS. 18 and 19 illustrate that first and second deployment tools 110 and 126 can position and deploy first and second expandable support devices 120 and 140 simultaneously, and/or in the same vertebra 90 and into the same or different damage sites 122 and 144 .
- FIG. 20 illustrates that the access port 108 can be made close to the disc 92 , for example when the damage site 94 is close to the disc 92 .
- the deployment tool 84 can be inserted through the access port 108 and the expandable support device 2 can be deployed as described supra.
- FIG. 21 a front view of the vertebral column 88 , illustrates that more than one expandable support device 2 can be deployed into a single vertebra 90 .
- a first expandable support device (not shown) can be inserted through a first access port 124 and deployed in a first damage site 122
- a second expandable support device (not shown) can be inserted through a first access port 124 and deployed in a second damage site 144 .
- the first access port 124 can be substantially centered with respect to the first damage site 122 .
- the first expandable support device (not shown) can expand, as shown by arrows 148 , substantially superiorly and inferiorly, aligned with the center of the first access port 124 .
- the second access port 142 can be substantially not centered with respect to the second damage site 144 .
- the second expandable support device can substantially anchor to a side of the damage site 94 and/or the surface of the disc 92 , and then expand, as shown by arrows 150 , substantially directionally away from the disc 92 .
- FIG. 22 illustrates that when compressive tension from the deployment tool 84 is no longer exerted on the expandable support device 2 , the expandable support device 2 can be self-locking and/or a fixation pin can be inserted before, during or after the compressive tension is stopped. The expandable support device 2 can then be substantially fixed to the vertebra 90 at the damage site 94 . For example, the expandable support device 2 can be subject to biomechanical compression within one or between two vertebrae 90 .
- the access port 108 can have an access port diameter 152 .
- the access port diameter 152 can be from about 1.5 mm (0.060 in.) to about 40 mm (2 in.), for example about 8 mm (0.3 in.).
- the access port diameter 152 can be a result of the size of the access tool 96 and in the unexpanded expandable support device 2 .
- the damage site 94 can have a deployed diameter 154 .
- the deployed diameter 154 can be from about 1.5 mm (0.060 in.) to about 120 mm (4.7 in.), for example from about 10 mm (0.4 in.) to about 20 mm (0.8 in.), or from about 12 mm (0.47 in.) to about 16 mm (0.63 in.).
- the deployed diameter 154 can be greater than, equal to, or less than the access port diameter 152 .
- FIG. 23 illustrates that the deployment tool 84 can be removed, as shown, from the vertebra 90 after the expandable support device 2 is deployed.
- FIG. 24 illustrates that the expandable support device 2 can be loaded onto the deployment tool 84 .
- the expandable support device 2 can be positioned adjacent to the disc 92 .
- the disc 92 can be between a first vertebra 90 a and a second vertebra 90 b.
- FIG. 25 illustrates that the expandable support device 2 can be inserted into the disc 92 , for example into the nuclear space or into the annular space. Removal of none, part or all of the nucleus and/or annulus can be performed before placing the expandable support device 2 in the disc 92 .
- FIG. 26 illustrates that the expandable support device 2 can be radially expanded, as shown by arrows, in the space of the disc 92 a .
- Rough texturing, ingrowth matrix, teeth, or combinations thereof on the top or bottom of the expandable support device 2 can engage the first or second vertebrae 90 a or 90 b or both.
- the expandable support device 2 can fuse or fix the first vertebra 90 a to the second vertebra 90 b .
- the expandable support device 2 can increase the gap between the first vertebra 90 a and the second vertebra 90 b (e.g., to restore proper or original biomechanics and/or anatomical geometry).
- FIG. 27 illustrates that the deployment tool 84 can be disconnected from the expandable support device 2 .
- the deployment tool 84 can be removed from the space of the disc 92 a with or without the expandable support device 2 .
- FIGS. 28 through 31 illustrate a method of deploying the variation of the expandable support device 2 .
- FIG. 28 illustrates that the expandable support device 2 can be attached to the deployment tool 84 .
- the expandable support device 2 can be positioned adjacent to the target site, such as the disc space 92 a and/or a vertebra 90 .
- FIG. 29 illustrates that the deployment tool 84 can translate and rotate the expandable support device 2 to the target site.
- FIG. 30 illustrates that the expandable support device 2 can be longitudinally compressed and radially expanded, as shown by arrows.
- FIG. 31 illustrates that the deployment tool 84 can be separated from the expandable support device 2 .
- the deployment tool 84 can be removed from the target site.
- the expandable support device 2 can be left in the target site or removed.
- FIGS. 32 and 33 illustrate that a locking pin 80 can be inserted, as shown by arrow, into the deployed expandable support device 2 , for example, after the expandable support device 2 is deployed in the vertebra 90 .
- the locking pin 80 can prevent the expandable support device 2 from collapsing after the expandable support device 2 is deployed in the vertebra 90 .
- the locking pin 80 can form an interference fit with the expandable support device 2 or may include features to hold the locking pin in place.
- FIG. 34 a illustrates that one, two or more devices 2 , such as a first device 120 and a second device 140 , can be inserted, deployed and/or implanted the target site, such as in a vertebral body 158 or on a vertebral body 158 (e.g., between adjacent vertebral bodies).
- the devices 2 can be oriented so the longitudinal axes 4 of the devices 2 are substantially parallel with an anterior-posterior axis 160 of the patient.
- the first device 120 can be oriented so the first device longitudinal axis 4 a can be substantially parallel with the anterior-posterior axis 160 .
- the second device 140 can be oriented so the second device longitudinal axis 4 b can be substantially parallel with the anterior-posterior axis 160 .
- the second device 140 can be positioned in a substantially symmetric location and angular orientation to the first device 120 with respect to the anterior-posterior axis 160 .
- the device 2 can be longitudinally contracted and radially expanded.
- the second device 140 has been radially expanded, and the first device 120 has been delivered to the target site and not yet radially expanded.
- Multiple devices can be delivered concurrently or sequentially.
- Multiple devices can be radially expanded sequentially or concurrently.
- the devices can be inserted with a surgical technique such as an Anterior Lumbar Interbody Fusion (ALIF), shown by arrow 162 , Posterior Lumbar Interbody Fusion (PLIF), shown by arrow 164 , Transforaminal Lumbar interbody Fusion (TLIF), shown by arrow 166 , a direct linear lateral delivery, as shown by arrow 168 , a curvilinear lateral delivery initially inserted posteriorly, as shown by arrow 170 , or other methods or combinations thereof.
- ALIF Anterior Lumbar Interbody Fusion
- PLIF Posterior Lumbar Interbody Fusion
- TLIF Transforaminal Lumbar interbody Fusion
- Operative planning and templating can be performed using MRI and CAT imaging scans to determine what size device fits the patient's anatomy and pathology.
- the disc (i.e., intervertebral) space or other target site can then be prepared.
- the vertebrae can be accessed through an incision in the patient's back (i.e., posterior to the vertebrae). Depending on the number of vertebral levels to be fused, about a 3-6 inch incision can be made in the patient's back.
- the spinal muscles can then be retracted (or separated), for example, to allow access to the target vertebral discs.
- the lamina can then be removed (i.e., a laminectomy), for example, to be able to see and access the nerve roots.
- the facet joints, which can lie directly over the nerve roots, can be trimmed, for example, to allow more room for the nerve roots.
- the target disc and surrounding tissue can then be removed and the bone surfaces of adjacent vertebrae can be prepared (e.g., cleaned, abraded, debrided, textured, scored, coated with osteogenic powders or other agents, or combinations thereof).
- the devices 2 can then be inserted into the target site.
- One or more devices 2 and/or bone graft e.g., autograft, allograft, xenograft), BMP, or combinations thereof, can be inserted into the target site or disc space, for example, to promote fusion between the vertebrae.
- Additional instrumentation e.g., rods or screws
- rods or screws can also be used at this time to further stabilize the spine.
- TLIF can include delivering the device 2 to the spine in a path more from the side of the spinal canal than a PLIF approach and through a midline incision in the patient's back. TLIF can reduce the amount of surgical muscle dissection and can minimizes nerve manipulation required to access the vertebrae, discs and nerves.
- TLIF can include removing disc material from the spine and inserting the device(s) 2 and bone graft, BMP, screws, rods, or combinations thereof.
- ALIF is performed inserting from the front (anterior) of the body, usually through a 3-5 inch incision in the lower abdominal area or on the side. This incision may involve cutting through, and later repairing, the muscles in the lower abdomen.
- a mini open ALIF approach can be performed.
- a mini open ALIF can preserves the muscles and allow access to the front of the spine through an incision. This approach maintains abdominal muscle strength and function and can be used to fuse the L5-S1 disc space, for example
- the disc material can be removed.
- the surgeon can then insert the devices 2 and/or bone graft, rods, screws, BMP, or combinations thereof, for example to stabilize the spine and facilitate fusion.
- the target site for the device(s) 2 can be between sacral, lumbar, thoracic, cervical vertebrae, or combinations thereof.
- the target site can be between other bones, such as intercostal (between ribs), in the knee, elbow, wrist, ankle, or combinations thereof.
- FIG. 34 b illustrates that one (as shown) or more devices 2 can be inserted into the target site, such as in a vertebral body 158 or on a vertebral body 158 (e.g., between adjacent vertebral bodies).
- the longitudinal axis 4 of the device 2 can be oriented substantially perpendicular to the anterior-posterior axis 160 (i.e., parallel to a lateral axis).
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Neurology (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Transplantation (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Prostheses (AREA)
- Surgical Instruments (AREA)
Abstract
An expandable support device for tissue repair is disclosed. The device can be used to repair hard or soft tissue, such as bone or vertebral discs. A method of repairing tissue is also disclosed. The device and method can be used to treat compression fractures. The compression fractures can be in the spine. The device can be deployed by compressing the device longitudinally resulting in radial expansion.
Description
This application claims the benefit of U.S. Provisional Application No. 61/178,355, filed 14 May 2009, which is herein incorporated by reference in its entirety.
BACKGROUND OF THE INVENTION1. Field of the Invention
This invention relates to devices for providing support for biological tissue, for example to fuse vertebral bodies, repair herniated discs, and/or repair spinal compression fractures, and methods of using the same.
2. Description of Related Art
Some conditions of the spine result from degradation or injury to the bone structures of the spine, typically the vertebral body. These can be the result of bone degeneration such as through osteoporosis or trauma, such as compression fractures. breakdown or injury to the boney structures in the spine can result in pain and spinal deformity with comorbidities.
Vertebroplasty is an image-guided, minimally invasive, nonsurgical therapy used to strengthen a broken vertebra that has been weakened by disease, such as osteoporosis or cancer. Vertebroplasty is often used to treat compression fractures, such as those caused by osteoporosis, cancer, or stress.
Vertebroplasty is often performed on patients too elderly or frail to tolerate open spinal surgery, or with bones too weak for surgical spinal repair. Patients with vertebral damage due to a malignant tumor may sometimes benefit from vertebroplasty. The procedure can also be used in younger patients whose osteoporosis is caused by long-term steroid treatment or a metabolic disorder.
Vertebroplasty can increase the patient's functional abilities, allow a return to the previous level of activity, and prevent further vertebral collapse. Vertebroplasty attempts to also alleviate the pain caused by a compression fracture.
Vertebroplasty is often accomplished by injecting an orthopedic cement mixture through a needle into the fractured bone. The cement mixture can leak from the bone, potentially entering a dangerous location such as the spinal canal. The cement mixture, which is naturally viscous, is difficult to inject through small diameter needles, and thus many practitioners choose to “thin out” the cement mixture to improve cement injection, which ultimately exacerbates the leakage problems. The flow of the cement liquid also naturally follows the path of least resistance once it enters the bone—naturally along the cracks formed during the compression fracture. This further exacerbates the leakage.
The mixture also fills or substantially fills the cavity of the compression fracture and is limited to certain chemical composition, thereby limiting the amount of otherwise beneficial compounds that can be added to the fracture zone to improve healing. In an alternative procedure known as kyphoplasty, a balloon is first inserted in the compression fracture and the vertebra and is expanded to create a void before the cement is injected into the newly formed space.
A vertebroplasty device and method that eliminates or reduces the risks and complexity of the existing art is desired. A vertebroplasty device and method that may reduce or eliminate the need to inject a liquid directly into the compression fracture zone is also desired.
Other ailments of the spine result in degeneration of the spinal disc in the intervertebral space between the vertebral bodies. These include degenerative disc disease and traumatic injuries. In either case, disc degeneration can cause pain and other complications. Conservative treatment can include non-operative treatment requiring patients to adjust their lifestyles and submit to pain relievers and a level of underlying pain. Operative treatment options include disc removal. This can relieve pain in the short term, but also often increases the risk of long-term problems and can result in motor and sensory deficiencies resulting from the surgery. Disc removal and more generally disc degeneration disease are likely to lead to a need for surgical treatment in subsequent years. The fusion or fixation will minimize or substantially eliminate relative motion between the fixed or fused vertebrae. In surgical treatments, adjacent vertebra can be fixated or fused to each other using devices or bone grafts. These may include, for example, screw and rod systems, interbody spacers (e.g., PEEK spacers or allograft bone grafts) threaded fusion cages and the like.
Some fixation or fusion devices are attached to the vertebra from the posterior side. The device will protrude and result in additional length (i.e., needed to overlap the vertebrae) and additional hardware to separately attach to each vertebrae. Fusion cages and allografts are contained within the intervertebral space, but must be inserted into the intervertebral space in the same dimensions as desired to occupy the intervertebral space. This requires that an opening sufficient to allow the cage or graft must be created through surrounding tissue to permit the cage or graft to be inserted into the intervertebral space.
A spinal fixation or fusion device that can be implanted with or without the need for additional hardware is desired. Also desired is a fixation or fusion device that can be deployed in a configuration where overlapping the fixated or fused vertebrae is not required.
Also desired is an intervertebral device the may be inserted in to the intervertebral space at a first smaller dimension and deployed to a second, larger dimension to occupy the intervertebral space. The ability to insert an intervertebral spacer at a dimension smaller than the deployed dimension would permit less disruption of soft and boney tissue in order to access the intervertebral space.
An effective therapy for following up a discectomy is desired. A vertebral fusion technique that can be used subsequent to a discectomy is desired.
SUMMARY OF THE INVENTIONAn expandable support device that can be used to repair fractures and stabilize hard tissue, such as via intravertebral or intervertebral deployment; is disclosed. The expandable support device can have a longitudinal axis and a radial axis. The expandable support device can be configured to expand in a radial direction, for example constrained to expansion in a single dimension. The expansion can occur perpendicular to the longitudinal axis of the device. The device can have top and/or middle and/or bottom components. The top and/or middle and/or bottom components can have ramps or wedges that produce an opposing force to expand the device when the top and/or middle and/or bottom components are translated relative to each other in the longitudinal direction. For example, the device can expand radially (e.g., solely in height or width) when compressed longitudinally.
The device can be configured to expand in a single direction. The device can be configured to expand in two directions.
The device can have a locking pin. The locking pin can be interference fit with the device, for example with the first strut, and/or with a longitudinal port of the device.
Methods for deploying an expandable support device in the spine are disclosed. The expandable support device can be deployed, for example, by longitudinal compression. The longitudinal compression can result in radial expansion of the expandable support device. The expandable support device can be deployed in an intravertebral site. The expandable support device can be deployed in an intervertebral site.
Tools for deploying the expandable support device can be configured to apply a compressive force on the expandable support device along the expandable support device's longitudinal axis. The tools can be configured to securely engage the expandable support device. The tools can be configured to removably attach to opposing points at or near opposing longitudinal ends of the expandable support device. Actuation of the tool to apply a compressive force may include squeezing two handles together or rotating a knob or handle.
The expandable device can be filled with a material, such as a biocompatible material such as a bone morphogenic protein, bone cement or any other material listed herein and combinations thereof. For example, when used to treat compression fractures, a material such bone cement, tissue or bone growth factors, bone morphogenic proteins, stem cells, carriers for any of the foregoing, or mixtures thereof can be inserted within the expandable device to provide support, fixation and/or improved bone structure. Growth factors or stem cells can be obtained autologously, such as from the patient's own blood or bone marrow aspirate. The expandable device can be filled with autograft, allograft, bone extenders (e.g., calcium phosphate or tricalcium phosphate or mixtures thereof or other similar materials), bone growth factors, bone morphogenic proteins, stem cells, carriers for any of the foregoing, and mixtures thereof, for example, when the device is used as an intervertebral spacer for fusion. The growth factors and stem cells used can be those commercially available and/or can be extracted from the patient's own blood or bone marrow aspirate.
In addition, the ratio of the expansion for the expandable devices (the ratio of the unexpanded height or diameter, depending on configuration, to the expanded height or diameter) may be from 1:2 to 1:5 or greater. For intravertebral and intervertebral applications, the device can have expansion ratios of from about 1:3 to about 1:4. For vertebroplasty or interbody applications, the device can have an initial height or diameter from about 4 mm (0.16 in.) to about 8 mm (0.31 in.) and an expanded height or diameter from about 7 mm (0.28 in.) to about 18 mm (0.71 in.).
BRIEF DESCRIPTION OF THE DRAWINGSa illustrates an exploded view of a variation of the device.
b is a variation of cross-section 1 a.
a illustrates a variation of the device in a height-contracted configuration.
b is a variation of cross-section B-B of
FIG. 2a.
a illustrates a variation of the device in a height-expanded configuration.
b is a variation of cross-section C-C of
FIG. 3a.
a is a top view of a variation of the device in a height-contracted configuration.
b is a top view of a variation of the device in a height-expanded.
a and 5 b illustrate a variation of a method of expanding the device, shown in cross-sections B-B and C-C, respectively, of
FIGS. 2a and 3 a.
c and 5 d illustrate variations of a method for using the device having a variation of a cross-section C-C of
FIG. 3a with a deployment tool and/or locking rod.
e through 5 g are a close up view of a method of using the deployment rod or locking pin with the second side port shown in a cross-sectional view.
illustrate a variation of a method for using a delivery system for the expandable support element.
illustrate a variation of a method for accessing a damage site in the vertebra.
illustrates two methods for delivering expandable support devices to the vertebral column.
illustrate various methods for deploying the expandable support device into the damage site in the vertebra.
illustrate a variation of a method for deploying one or more expandable support devices into one or more damage sites in the vertebra.
illustrates a variation of a method for deploying the expandable support device into the damage site in the vertebra.
illustrates variations of methods for deploying the expandable support device into the damage site in the vertebra.
illustrate a variation of a method for deploying the expandable support device into the damage site in the vertebra.
illustrate a variation of a method for deploying the expandable support device between adjacent vertebrae.
illustrate a variation of a method for deploying the expandable support device between adjacent vertebrae.
illustrate a variation of a method for deploying a locking pin into the expandable support device in the damage site in the vertebra.
illustrate a variation of a method for deploying a locking pin into the expandable support device in the damage site in the vertebra.
a and 34 b illustrate variations of methods for inserting one or more devices into one or more target sites.
a and 1 b illustrate an exploded view of an
expandable support device2 that can be implanted in a bone, such as a compression fracture in a vertebra, in the intervertebral space between two vertebrae, or in soft tissue, such as a herniated intervertebral disc. The
expandable support device2 can be biocompatible. The
expandable support device2 can be used, for example, for methods of repairing vertebral bone fractures or supporting adjacent vertebral bodies for fusion. The
expandable support device2 can have a first longitudinal end and a second longitudinal end along a
longitudinal axis4.
The
expandable support device2 can have a base or bottom 6 (base and bottom are used interchangeably), a middle 8, and a top 10. The base or bottom 6 and top 10 can be or have plates, panels, struts (e.g., legs), ports, cells, and combinations thereof. The base 6 and top 10 can be configured to be slidably attachable to the middle 8. Either the top 10, the base 6, or neither, (shown in the figures as the base) can be slidably attached to the middle 8 in a plane parallel with the
longitudinal axis4. Either the top 10, the base 6, or neither, (shown in the figures as the top 10) can be slidably attached to the middle 8 in a plane substantially perpendicular to the
longitudinal axis4.
The top 10 can have one or more top stability bars 12. For example, the top stability bars 12 can extend from the lateral sides of the top 10. The top stability bars 12 can extend from the top 10 in the direction of the base 6. The base 6 can have one or more
base stability grooves14. Each
top stability bar12 can be configured to be slidably attachable to a corresponding
base stability groove14. For example, the top 10 can have two sets of one, two or more symmetrically opposite, laterally located top stability bars 12. The base 6 can have two or more sets of two symmetrically opposite, laterally located
base stability grooves14, as shown.
The base 6 can have one or more base stability bars 16. For example, the base stability bars 16 can extend from the lateral sides of the base 6. The base stability bars 16 can extend from the bas 6 in the direction of the top 10. The top 10 can have one or more
top stability grooves18. The base stability bars 16 can each be configured to be slidably attachable to a corresponding
top stability groove18. For example, the base 6 can have two sets of one, two, three (as shown) or more symmetrically opposite, laterally located base stability bars 16. The top 10 can have two or more sets of two, three (as shown) or more symmetrically opposite, laterally located
top stability grooves18, as shown.
The slidable attachment of the top 10 and base 6 can permit the base 6 to move radially (with respect to the longitudinal axis 4) relative to the top and vice versa.
The top 10 can have a high-friction and/or low-friction texture extending away from the base 6. For example, the top 10 can have one or numerous rows of
top teeth20. The bottom 6 can have a high-friction and/or low-friction texture extending away from the base 6. For example, the bottom 6 can have one or numerous rows of bottom teeth 22. The
top teeth20 and the bottom teeth 22. The teeth can be arranged to have ridges parallel with the longitudinal access, transverse the parallel axis, a non-zero and non-right angle to the
longitudinal axis4, or combinations thereof.
The top 10 can have one or more side ports and/or
top ports26. The base 6 can have one or
more base ports28 and/or side ports. The ports can be circular, square, triangular, oval, elongated in the longitudinal direction, elongated in the radial direction, or combinations thereof.
The top 10 and/or base 6 can have atraumatic edges, such as chamfered edges. The chamfers can extend along the perimeter of the base 6 and/or top 10.
The
expandable support device2 can have one, two, three or more sets of interacting wedges or ramps. The sets of ramps can be distributed substantially evenly along the length of the device, or the sets of ramps can be distributed unevenly along the length of the base 6. The ramps can all be oriented in the same direction (e.g., all ramps facing proximally, or all ramps facing distally), or can be oriented in different directions (e.g., some ramps facing distally and some ramps facing proximally).
The top 10 and/or base 6 can have a series of unidirectional and/or bidirectional ramps. The unidirectional ramps can be configured to have a
ramp stop30 at one longitudinal end of the ramp.
The middle 8 can have a series of unidirectional and/or bidrectional ramps. The unidirectional ramps can be configured to have a
ramp stop30 at one longitudinal end of the ramp.
The ramps can have ramp tongues and
grooves32. Ramp tongue and
grooves32 on corresponding ramps can be configured to slidably attach to the opposing tongues and grooves. For example, the top ramps 34, 36 can have top tongues and grooves. The middle ramps 38, 40, 42 can have middle tongues and grooves that can slidably engage the top tongues and grooves.
The ramps can have ramp angles 44 with respect to the
longitudinal axis4. The
ramp angle44 can be from about 15° to about 75°, more narrowly from about 20° to about 60°, for example about 35°.
One or more of the ramps can have a
ramp stop30. The ramp stops 30 can be configured to abut and interference fit against a corresponding ramp stop 30 on the adjacent element (i.e., the top 10 can be adjacent to the middle 8).
The base 6 (as shown) and/or top 10 can have a
first side plate46.
The base 6 can have a
base rail48. The middle 8 can have a
middle rail50. The
middle rail50 can be slidably fed onto or under the
base rail48. The
base rail48 and the
middle rail50 can constrain relative motion between the middle 8 and the base 6 to the dimension of the
longitudinal axis4.
The
first side port52 can have a first side
outer port54 on the
first side plate46. The
first side port52 can have a first side
central port56 in the top 10. The first side
central port56 can be open on the bottom 6, for example to allow the first side
central port56 to move away from the first side
outer port54 without constraining any rod or other elongated element positioned through the
first side port52. The middle 8 can have a first side
inner port58 through the middle
first ramp38. The first side outer 54, central 56,
inner port58 or a combination thereof can be internally threaded. The first side
outer port54 can form a recess in the
first side plate46, for example to receive the head of a rod.
The base 6 can have one or more seat ramps, for example, the seat ramps can be positioned to correspond with and receive one or more of the top ramps, for example when the device is in a height-contracted configuration.
The ramps can be positioned laterally symmetrically on the top 10. The ramps can be evenly distributed along the length of the top 10. The ramp seats can be positioned laterally symmetrically on the base 6. The ramps can be evenly distributed along the length of the base 6.
a and 2 b illustrate that the
device2 can have a height-contracted configuration. Top ramps can receive the middle ramps. The ramp stops of the top ramps can interference fit against the ramp stops of the middle ramps.
a and 3 b illustrate that the device can have a height-expanded configuration. The middle 8 can be slidably translated toward the first end.
The stability bar can be configured to not directly attach to the top 10 when the
top stability bar12 is translated toward the
base stability groove14, and/or the stability bars can be configured to bias inward against and frictionally hold the top 10 when the top 10 is translated into the base 6.
The top 10 and the base 6 can be pressed into or otherwise translated toward each other. For example, after implantation of the
expandable support device2, the surrounding tissue in the in vivo environment can naturally compress the
expandable support device2.
The ramps can have ratchets on their surface, in the tongue and groove or otherwise to prevent contraction once the
device2 is expanded. The
device2 can be filled by a material, and/or the deployment rod can be fixed to the first side
outer port54 and the second port.
In place of, or in addition to, the base teeth 22 and/or the
top teeth20, the respective surfaces can have high friction surfaces, for example a textured (e.g., knurled) surface and/or coated with a high friction material.
a and 4 b illustrate that the
top port26,
middle port27 and
base port28 substantially align transverse with the
longitudinal axis4. The top/middle/base ports form a concurrent vertical port through the
device2. The concurrent vertical port can be filled with any material disclosed herein or left empty. The concurrent vertical port can be partially obstructed by the middle 8, including the middle
first ramp38, when the
device2 is in a height-contracted configuration, as shown in
FIG. 4a. The concurrent vertical port can be less obstructed, or substantially unobstructed when the
device2 is in a height-expanded configuration, as shown in
FIG. 4b.
a illustrates that the middle 8 can protrude outside of the footprint of the the top 10 and bottom 6 when the
device2 is viewed from above or below in a height-contracted configuration. As shown by
FIG. 4b, from a top or bottom view, the middle 8 can be substantially flush with the top 10 and bottom 6 when viewed from above or below when the
device2 is in a height-contracted configuration.
a and 5 b illustrate. the height expansion, as shown by arrow, of the top 10 away from the base 6. The height expansion can occur when the
device2 is longitudinally compressed, and/or when the middle 8 is slid with respect to the base 6 toward the first side.
b illustrates that the middle ramps slip, as shown by arrows, against the top ramps when the
device2 is expanded.
c illustrates that the middle 8 can have a
second side port68. A deployment tool and/or locking rod 70 can be inserted through the first port and the
second side port68. The deployment rod 70 can have an attached or integral
deployment rod cap72 or nut that can be outside the first port and interference fit with the wall surrounding the first port.
The
rod72 can be pulled (as shown by arrow), while a resistive force (shown by arrow) is applied to the
device2 to oppose the pulling force (to expand the
device2 rather than solely pulling the
device2 toward the user).
The deployment rod 70 or locking pin can have a pin shaft with a driver slot, for example, configured to receive a screw driver or drill bit. The pin shaft can have pin thread configured to releasably or fixedly attach to one or both of the ramp ports. The pin thread can extend along all or part of the length of the pin shaft.
The locking pin can be inserted, as shown by arrow, through the threaded ramp port. The deployment rod 70 and locking pin can be the same or different elements.
The second side ramp 74 and/or the top 10 and/or the bottom 6 can have a ramp abutment section, such as the ramp stops 30. The ramp abutment section can be configured to interference fit with and/of fixedly attach to the abutment end.
A
rod detent76 can be fitted onto or through the deployment tool or locking rod 70. The user can deploy a force against the
detent76. The
detent76 can be a clip, nut, brad, lockable slide, or combinations thereof. The
detent76 can fix to the deployment rod 70 or locking pin and interference fit against the middle 8. For example, the middle 8 can then be fixed between the
rod detent76 and the
first side plate46.
d illustrates that the deployment rod or locking
pin80 can be integral or attached to the middle 8, for example at the
second side plate47. The middle port can be unobstructed by the rod or pin.
The deployment rod 70 can be removably attached from the remainder of the
device2, for example after the
device2 is deployed. The deployment rod 70 can be used to position and expand the
device2.
e illustrates that the
second side port68 can have
port thread78 on all or a portion of the inside of the port. For example, the
second side port68 can have
port thread78 on about half of the surface of the inside of the port, for example from angles about 0 degrees to about 180 degrees when measured from a
longitudinal axis4 passing through the center of the second side port 78 (as shown), or from about 0 degrees to about 90 degrees and then again from about 180 degrees to about 270 degrees.
The deployment rod or locking
pin80 can have rod/
pin thread82 on a portion of the surface of the rod or pin 80 corresponding to and substantially equal to or less than the portion of the surface of the inside of the port covered by
port thread78. For example, the rod or
pin80 can have rod/
pin thread82 on about half of the surface of the outside of the rod or
pin80, for example from angles about 0 degrees to about 180 degrees when measured from a
longitudinal axis4 passing through the center of the rod or pin 80 (as shown), or from about 0 degrees to about 90 degrees and then again from about 180 degrees to about 270 degrees.
The non-threaded portion of the surface of the
rod80 can be angularly aligned with the threaded portion of the surface of the
second side port68
f illustrates that the rod or
pin80 can be translated into or through the
second side port68. The rod/
pin thread82 can slidably pass across the inner surface of the
second side port68 not having
port thread78. The
port thread78 can slide past the outer surface of the
second side port68 not having
port thread78.
g illustrates that when the rod or
pin80 is at a desired position, the rod or
pin80 can be rotated to align the rod/
pin thread82 with the
port thread78. The rod or
pin80 can be translatably fixed with respect to the
second side port68.
The partial-thread shown on the
second side port68 in
FIGS. 5e through 5 g can be on a separate nut rotatably attached to the
second side port68. For example, once the rod or
pin80 is in a desired position, the nut can be rotated with respect to the rod or
pin80 to longitudinally fix the position of the rod or pin 80 with respect to the nut and therefore the
second side port68.
A biocompatible adhesive or epoxy can be applied to the
pin thread82, threaded ramp port, abutment end, ramp abutment section, or combinations thereof.
One, two or more locking pin channels can be inserted longitudinally into the
expandable support device2. One, two or more locking pins 80 can be inserted into the same or separate ports, for example during or after deployment of the remainder of the
expandable support device2. The locking pins 80 can prevent overexpansion and/or overcompression and/or disassembly of the
expandable support device2.
Once the
device2 is expanded and/or before expansion, the ramps can have
locking pins80 therethrough.
The locking
pin80 can be cylindrical. The locking pin channel and locking pin port can have elongated cross-sections, such as an oval or rectangular or oblong cross-sections. The locking
pin80 can be free to move vertically within a range of motion within the locking pin port.
The locking
pin80 can be a substantially similar shape and size as the locking pin channel. The locking
pin80 can be substantially unmovable within the locking pin port. The locking
pin80, locking pin channel and locking pin port can all have elongated cross-sections, such as an oval or rectangular or oblong cross-sections.
The ramps can have first fixing teeth or ratchets. The first fixing teeth can be in contact with the top 10 and/or the bottom 6. The top and/or the bottom can have second fixing teeth.
The first fixing teeth can mechanically interact with the second fixing teeth to allow relative translation in a first direction. The first fixing teeth and the second fixing teeth can interact to obstruct (e.g., by interference fitting the first fixing teeth against the second fixing teeth) relative translation in a second direction. For example, the fixing teeth can obstruct the top ramps from moving one way, for example not allowing the device to contract, and obstruct the top from moving closer to the bottom. Also for example, the fixing teeth can allow relative translation of the side ramps toward each other, for example, to allow the top to move away from the bottom.
The second side ramp 74 can have a first end. The first end can be configured to dissect tissue. The first end can have a blunt or sharp point.
The second side ramp 74 can have a tool connector, such as an externally and/or internally threaded cylinder extending longitudinally from the second side ramp away from the first side ramp. The tool connector can be configured to removably attach to a deployment tool.
The first fixing teeth can unidirectionally interference fit the second fixing teeth. The unidirectional interference fit of the first fixing teeth and the second fixing teeth can substantially impede or prevent the opposite ramps from moving longitudinally away from each other, for example, therefore impede or preventing compression of the top toward the bottom and vice versa.
The unidirectional interference fit of the first fixing teeth and the second fixing teeth can allow the opposite ramps to move longitudinally toward each other, for example, therefore allowing the top to expand away from the bottom and vice versa.
An external deployment tool can be attached to the
first side plate46 and the
second port68 of the side of the device, and apply a compressive force across the
device2. The base 6 and top 10 can expand away from each other, as shown by arrows.
When the
expandable support device2 is in a deployed configuration in vivo, the
expandable support device2 can be partially or substantially filled with a liquid, gel, or solid (e.g., in small parts or granules) filler material, or combinations thereof, such as bone morphogenic powder or any other material disclosed herein or combinations thereof. The filler material can contact or be in near contact with the surrounding tissue near the edge of the ports
The
expandable support devices2 can have textured and/or porous surfaces for example, to increase friction against bone surfaces, and/or promote tissue ingrowth. The
expandable support devices2 can be coated with a bone growth factor, such as a calcium base.
The
expandable support device2 can be covered by a thin metal screen, for example over at least the top and/or base ports. The thin metal screen can expand and/or open when the
expandable support device2 expands.
Any or all elements of the
expandable support device2 and/or other devices or apparatuses described herein can be made from, for example, a single or multiple stainless steel alloys, nickel titanium alloys (e.g., Nitinol), cobalt-chrome alloys (e.g., ELGILOY® from Elgin Specialty Metals, Elgin, Ill.; CONICHROME® from Carpenter Metals Corp., Wyomissing, Pa.), nickel-cobalt alloys (e.g., MP35N® from Magellan Industrial Trading Company, Inc., Westport, Conn.), molybdenum alloys (e.g., molybdenum TZM alloy, for example as disclosed in International Pub. No. WO 03/082363 A2, published 9 Oct. 2003, which is herein incorporated by reference in its entirety), tungsten-rhenium alloys, for example, as disclosed in International Pub. No. WO 03/082363, polymers such as polyethylene teraphathalate (PET)/polyester (e.g., DACRON® from E. I. Du Pont de Nemours and Company, Wilmington, Del.), polypropylene, (PET), polytetrafluoroethylene (PTFE), expanded PTFE (ePTFE), polyether ketone (PEK), polyether ether ketone (PEEK), poly ether ketone ketone (PEKK) (also poly aryl ether ketone ketone), nylon, polyether-block co-polyamide polymers (e.g., PEBAX® from ATOFINA, Paris, France), aliphatic polyether polyurethanes (e.g., TECOFLEX® from Thermedics Polymer Products, Wilmington, Mass.), polyvinyl chloride (PVC), polyurethane, thermoplastic, fluorinated ethylene propylene (FEP), absorbable or resorbable polymers such as polyglycolic acid (PGA), polylactic acid (PLA), polycaprolactone (PCL), polyethyl acrylate (PEA), polydioxanone (PDS), and pseudo-polyamino tyrosine-based acids, extruded collagen, silicone, zinc, echogenic, radioactive, radiopaque materials, a biomaterial (e.g., cadaver tissue, collagen, allograft, autograft, xenograft, bone cement, morselized bone, osteogenic powder, beads of bone) any of the other materials listed herein or combinations thereof. Examples of radiopaque materials are barium sulfate, zinc oxide, titanium, stainless steel, nickel-titanium alloys, tantalum and gold.
Any or all elements of the
expandable support device2 and/or other devices or apparatuses described herein, can be, have, and/or be completely or partially coated with agents and/or a matrix a matrix for cell ingrowth or used with a fabric, for example a covering (not shown) that acts as a matrix for cell ingrowth. The matrix and/or fabric can be, for example, polyester (e.g., DACRON® from E. I. Du Pont de Nemours and Company, Wilmington, Del.), polypropylene, PTFE, ePTFE, nylon, extruded collagen, silicone or combinations thereof.
The
expandable support device2 and/or elements of the
expandable support device2 and/or other devices or apparatuses described herein and/or the fabric can be filled, coated, layered and/or otherwise made with and/or from cements, fillers, glues, and/or an agent delivery matrix known to one having ordinary skill in the art and/or a therapeutic and/or diagnostic agent. Any of these cements and/or fillers and/or glues can be osteogenic and osteoinductive growth factors.
Examples of such cements and/or fillers includes bone chips, demineralized bone matrix (DBM), calcium sulfate, coralline hydroxyapatite, biocoral, tricalcium phosphate, calcium phosphate, polymethyl methacrylate (PMMA), biodegradable ceramics, bioactive glasses, hyaluronic acid, lactoferrin, bone morphogenic proteins (BMPs) such as recombinant human bone morphogenetic proteins (rhBMPs), other materials described herein, or combinations thereof.
The agents within these matrices can include any agent disclosed herein or combinations thereof, including radioactive materials; radiopaque materials; cytogenic agents; cytotoxic agents; cytostatic agents; thrombogenic agents, for example polyurethane, cellulose acetate polymer mixed with bismuth trioxide, and ethylene vinyl alcohol; lubricious, hydrophilic materials; phosphor cholene; anti-inflammatory agents, for example non-steroidal anti-inflammatories (NSAIDs) such as cyclooxygenase-1 (COX-1) inhibitors (e.g., acetylsalicylic acid, for example ASPIRIN® from Bayer AG, Leverkusen, Germany; ibuprofen, for example ADVIL® from Wyeth, Collegeville, Pa.; indomethacin; mefenamic acid), COX-2 inhibitors (e.g., VIOXX® from Merck & Co., Inc., Whitehouse Station, N.J.; CELEBREX® from Pharmacia Corp., Peapack, N.J.; COX-1 inhibitors); immunosuppressive agents, for example Sirolimus (RAPAMUNE®, from Wyeth, Collegeville, Pa.), or matrix metalloproteinase (MMP) inhibitors (e.g., tetracycline and tetracycline derivatives) that act early within the pathways of an inflammatory response. Examples of other agents are provided in Walton et al, Inhibition of Prostoglandin E2 Synthesis in Abdominal Aortic Aneurysms, Circulation, Jul. 6, 1999, 48-54; Tambiah et al, Provocation of Experimental Aortic Inflammation Mediators and Chlamydia Pneumoniae, Brit. J. Surgery 88 (7), 935-940; Franklin et al, Uptake of Tetracycline by Aortic Aneurysm Wall and Its Effect on Inflammation and Proteolysis, Brit. J. Surgery 86 (6), 771-775; Xu et al, Sp1 Increases Expression of Cyclooxygenase-2 in Hypoxic Vascular Endothelium, J. Biological Chemistry 275 (32) 24583-24589; and Pyo et al, Targeted Gene Disruption of Matrix Metalloproteinase-9 (Gelatinase B) Suppresses Development of Experimental Abdominal Aortic Aneurysms, J. Clinical Investigation 105 (11), 1641-1649 which are all incorporated by reference in their entireties.
The
expandable support devices2 can be laser cut, machined, cut by wire electrical discharge machining (“EDM”) or made by other suitable techniques. The
expandable support device2 can be cut in a fully contracted or unexpanded configuration or may be cut in a partially opened pattern, then loaded (e.g., crimped) onto a deployment tool 84 (e.g., balloon). The loaded
expandable support device2 can have a smaller profile while plastically deforming the struts past their limits.
The
expandable support device2 can be longitudinally segmented. Multiple
expandable support devices2 can be attached first end to second end, and/or a single
expandable support device2 can be severed longitudinally into multiple
expandable support devices2.
Method of Use
illustrates that the
expandable support device2 can be loaded in a collapsed (i.e., contracted) configuration onto a
deployment tool84. The
deployment tool84 can be configured to removably attach to the first side ramp and the second side ramp. One or more deployment tools can be configured to control the position of the expandable support device 2 (e.g., to rigidly attach to the expandable support device 2) and/or to longitudinally compress the second side ramps 74, and/or to deploy one or more locking pins in the
expandable support device2. The
deployment tool84 can include a rigid or
flexible catheter86.
illustrates that the
deployment tool86 can longitudinally compress the
expandable support device2, for example causing the
expandable support device2 to vertically expand as shown by arrows.
(side view) and 9 (top view) illustrate a
vertebral column88 that can have one or
more vertebra90 separated from the
other vertebra90 by
discs92. The
vertebra90 can have a
damage site94, for example a compression fracture.
An
access tool96 can be used to gain access to the
damage site94 and or increase the size of the
damage site94 to allow deployment of the
expandable support device2. The
access tool96 can be a rotating or vibrating drill 98 that can have a
handle100. Optionally, the drill 98 may oscillate, as shown by
arrows102. The drill 98 can then be translated, as shown by
arrow104, toward and into the
vertebra90 so as to pass into the
damage site94.
illustrates that the
access tool96 can be translated, as shown by
arrow106, to remove tissue at the
damage site94. The
access tool96 can create an
access port108 at the surface of the
vertebra90. The
access port108 can open to the
damage site94. The
access tool96 can then be removed from the
vertebra90.
illustrates that a
first deployment tool110 can enter posteriorly through the subject's back. The
first deployment tool110 can enter through a
first incision112 in the
skin114 on the
posterior side116 of the subject near the
vertebral column88. The
first deployment tool110 can be translated, as shown by
arrow118, to position a first
expandable support device120 into a
first damage site122. The
first access port124 can be on the
posterior side116 of the
vertebra90.
A
second deployment tool126 can enter through a second incision 128 (as shown) in the
skin114. The second incision 130 may be posterior (as shown) or may be anterior, lateral, posterior lateral, or the like. The
second deployment tool126 can be translated through muscle (not shown), around
nerves132, the
spinal cord134, and anterior 136 of the
vertebral column88. The
second deployment tool126 can be steerable. The
second deployment tool126 can be steered, as shown by
arrow138, to align the distal tip of the second
expandable support device140 with a
second access port142 on a
second damage site144. The
second access port142 can face anteriorly 136. The second deployment tool can translate, as shown by arrow 146, to position the second
expandable support device140 in the
second damage site144.
As illustrated, the
vertebra90 can have multiple damage sites and expandable support devices deployed therein. The expandable support devices can be deployed from the anterior 136,
posterior116, both lateral, superior, inferior, any angle, or combinations of the directions thereof. Of course, a single device may be deployed from one direction rather than multiple devices from multiple directions.
illustrate translating, as shown by arrow, the
deployment tool84 loaded with the
expandable support device2 through the
access port108 from the
anterior side136 of the
vertebral column88.
FIGS. 14 and 15illustrate that the
deployment tool84 can be deployed from the
posterior side116 of the
vertebral column88. The
deployment tool84 can be deployed off-center, for example, when approaching the
posterior side116 of the
vertebral column88.
illustrates that
deployment tool84 can position the
expandable support device2 in the
vertebra90 and into the
damage site94.
illustrates that the
expandable support device2 can be longitudinally compressed (i.e., vertically expanded) until the
expandable support device2 is substantially fixed to the
vertebra90. The
expandable support device2 can reshape the
vertebral column88 to a more natural configuration during expansion of the device.
illustrate that first and
second deployment tools110 and 126 can position and deploy first and second
expandable support devices120 and 140 simultaneously, and/or in the
same vertebra90 and into the same or
different damage sites122 and 144.
illustrates that the
access port108 can be made close to the
disc92, for example when the
damage site94 is close to the
disc92. The
deployment tool84 can be inserted through the
access port108 and the
expandable support device2 can be deployed as described supra.
, a front view of the
vertebral column88, illustrates that more than one
expandable support device2 can be deployed into a
single vertebra90. For example, a first expandable support device (not shown) can be inserted through a
first access port124 and deployed in a
first damage site122, and a second expandable support device (not shown) can be inserted through a
first access port124 and deployed in a
second damage site144.
The
first access port124 can be substantially centered with respect to the
first damage site122. The first expandable support device (not shown) can expand, as shown by
arrows148, substantially superiorly and inferiorly, aligned with the center of the
first access port124. The
second access port142 can be substantially not centered with respect to the
second damage site144. The second expandable support device can substantially anchor to a side of the
damage site94 and/or the surface of the
disc92, and then expand, as shown by arrows 150, substantially directionally away from the
disc92.
illustrates that when compressive tension from the
deployment tool84 is no longer exerted on the
expandable support device2, the
expandable support device2 can be self-locking and/or a fixation pin can be inserted before, during or after the compressive tension is stopped. The
expandable support device2 can then be substantially fixed to the
vertebra90 at the
damage site94. For example, the
expandable support device2 can be subject to biomechanical compression within one or between two
vertebrae90.
The
access port108 can have an
access port diameter152. The
access port diameter152 can be from about 1.5 mm (0.060 in.) to about 40 mm (2 in.), for example about 8 mm (0.3 in.). The
access port diameter152 can be a result of the size of the
access tool96 and in the unexpanded
expandable support device2. After the
expandable support device2 is deployed the
damage site94 can have a deployed diameter 154. The deployed diameter 154 can be from about 1.5 mm (0.060 in.) to about 120 mm (4.7 in.), for example from about 10 mm (0.4 in.) to about 20 mm (0.8 in.), or from about 12 mm (0.47 in.) to about 16 mm (0.63 in.). The deployed diameter 154 can be greater than, equal to, or less than the
access port diameter152.
illustrates that the
deployment tool84 can be removed, as shown, from the
vertebra90 after the
expandable support device2 is deployed.
illustrates that the
expandable support device2 can be loaded onto the
deployment tool84. The
expandable support device2 can be positioned adjacent to the
disc92. The
disc92 can be between a
first vertebra90 a and a
second vertebra90 b.
illustrates that the
expandable support device2 can be inserted into the
disc92, for example into the nuclear space or into the annular space. Removal of none, part or all of the nucleus and/or annulus can be performed before placing the
expandable support device2 in the
disc92.
illustrates that the
expandable support device2 can be radially expanded, as shown by arrows, in the space of the
disc92 a. Rough texturing, ingrowth matrix, teeth, or combinations thereof on the top or bottom of the
expandable support device2 can engage the first or
second vertebrae90 a or 90 b or both. The
expandable support device2 can fuse or fix the
first vertebra90 a to the
second vertebra90 b. The
expandable support device2 can increase the gap between the
first vertebra90 a and the
second vertebra90 b (e.g., to restore proper or original biomechanics and/or anatomical geometry).
illustrates that the
deployment tool84 can be disconnected from the
expandable support device2. The
deployment tool84 can be removed from the space of the
disc92 a with or without the
expandable support device2.
illustrate a method of deploying the variation of the
expandable support device2.
FIG. 28illustrates that the
expandable support device2 can be attached to the
deployment tool84. The
expandable support device2 can be positioned adjacent to the target site, such as the
disc space92 a and/or a
vertebra90.
FIG. 29illustrates that the
deployment tool84 can translate and rotate the
expandable support device2 to the target site.
FIG. 30illustrates that the
expandable support device2 can be longitudinally compressed and radially expanded, as shown by arrows.
FIG. 31illustrates that the
deployment tool84 can be separated from the
expandable support device2. The
deployment tool84 can be removed from the target site. The
expandable support device2 can be left in the target site or removed.
illustrate that a locking
pin80 can be inserted, as shown by arrow, into the deployed
expandable support device2, for example, after the
expandable support device2 is deployed in the
vertebra90. The locking
pin80 can prevent the
expandable support device2 from collapsing after the
expandable support device2 is deployed in the
vertebra90. The locking
pin80 can form an interference fit with the
expandable support device2 or may include features to hold the locking pin in place.
a illustrates that one, two or
more devices2, such as a
first device120 and a
second device140, can be inserted, deployed and/or implanted the target site, such as in a
vertebral body158 or on a vertebral body 158 (e.g., between adjacent vertebral bodies). The
devices2 can be oriented so the
longitudinal axes4 of the
devices2 are substantially parallel with an anterior-
posterior axis160 of the patient.
The
first device120 can be oriented so the first device longitudinal axis 4 a can be substantially parallel with the anterior-
posterior axis160.
The
second device140 can be oriented so the second device
longitudinal axis4 b can be substantially parallel with the anterior-
posterior axis160. The
second device140 can be positioned in a substantially symmetric location and angular orientation to the
first device120 with respect to the anterior-
posterior axis160.
After placed into position at the target site, the
device2 can be longitudinally contracted and radially expanded. For example, as shown, the
second device140 has been radially expanded, and the
first device120 has been delivered to the target site and not yet radially expanded. Multiple devices can be delivered concurrently or sequentially. Multiple devices can be radially expanded sequentially or concurrently.
The devices can be inserted with a surgical technique such as an Anterior Lumbar Interbody Fusion (ALIF), shown by
arrow162, Posterior Lumbar Interbody Fusion (PLIF), shown by
arrow164, Transforaminal Lumbar interbody Fusion (TLIF), shown by
arrow166, a direct linear lateral delivery, as shown by
arrow168, a curvilinear lateral delivery initially inserted posteriorly, as shown by
arrow170, or other methods or combinations thereof.
Operative planning and templating can be performed using MRI and CAT imaging scans to determine what size device fits the patient's anatomy and pathology.
The disc (i.e., intervertebral) space or other target site can then be prepared. For PLIF procedures, the vertebrae can be accessed through an incision in the patient's back (i.e., posterior to the vertebrae). Depending on the number of vertebral levels to be fused, about a 3-6 inch incision can be made in the patient's back. The spinal muscles can then be retracted (or separated), for example, to allow access to the target vertebral discs. The lamina can then be removed (i.e., a laminectomy), for example, to be able to see and access the nerve roots. The facet joints, which can lie directly over the nerve roots, can be trimmed, for example, to allow more room for the nerve roots. The target disc and surrounding tissue can then be removed and the bone surfaces of adjacent vertebrae can be prepared (e.g., cleaned, abraded, debrided, textured, scored, coated with osteogenic powders or other agents, or combinations thereof).
The
devices2 can then be inserted into the target site. One or
more devices2 and/or bone graft (e.g., autograft, allograft, xenograft), BMP, or combinations thereof, can be inserted into the target site or disc space, for example, to promote fusion between the vertebrae. Additional instrumentation (e.g., rods or screws) can also be used at this time to further stabilize the spine.
TLIF can include delivering the
device2 to the spine in a path more from the side of the spinal canal than a PLIF approach and through a midline incision in the patient's back. TLIF can reduce the amount of surgical muscle dissection and can minimizes nerve manipulation required to access the vertebrae, discs and nerves.
TLIF can include removing disc material from the spine and inserting the device(s) 2 and bone graft, BMP, screws, rods, or combinations thereof.
ALIF is performed inserting from the front (anterior) of the body, usually through a 3-5 inch incision in the lower abdominal area or on the side. This incision may involve cutting through, and later repairing, the muscles in the lower abdomen.
A mini open ALIF approach can be performed. A mini open ALIF can preserves the muscles and allow access to the front of the spine through an incision. This approach maintains abdominal muscle strength and function and can be used to fuse the L5-S1 disc space, for example
Once the incision is made and the vertebrae are accessed, and after the abdominal muscles and blood vessels have been retracted, the disc material can be removed. The surgeon can then insert the
devices2 and/or bone graft, rods, screws, BMP, or combinations thereof, for example to stabilize the spine and facilitate fusion.
The target site for the device(s) 2 can be between sacral, lumbar, thoracic, cervical vertebrae, or combinations thereof. The target site can be between other bones, such as intercostal (between ribs), in the knee, elbow, wrist, ankle, or combinations thereof.
b illustrates that one (as shown) or
more devices2 can be inserted into the target site, such as in a
vertebral body158 or on a vertebral body 158 (e.g., between adjacent vertebral bodies). The
longitudinal axis4 of the
device2 can be oriented substantially perpendicular to the anterior-posterior axis 160 (i.e., parallel to a lateral axis).
PCT Application No. US2005/034,728, Publication No. WO 2006/068,682, entitled “Expandable Support Device and Method of Use”, filed 26 Sep. 2005, and U.S. Provisional Patent Application No.: 60/612,728, filed on 24 Sep. 2004, are herein incorporated by reference in their entireties.
It is apparent to one skilled in the art that various changes and modifications can be made to this disclosure, and equivalents employed, without departing from the spirit and scope of the invention. Elements shown with any variation are exemplary for the specific variation and can be used on other variations within this disclosure. Any elements described herein as singular can be pluralized (i.e., anything described as “one” can be more than one). Any species element of a genus element can have the characteristics or elements of any other species element of that genus. The above-described configurations, elements or complete assemblies and methods and their elements for carrying out the invention, and variations of aspects of the invention can be combined and modified with each other in any combination.
Claims (8)
1. An expandable implant device comprising an intervertebral spacer comprising:
a first load-bearing element;
a second load-hearing element;
a sliding element slidably attached to the first load-hearing element and the second load-bearing element,
wherein the sliding element has first and second sliding element ramps and
wherein the first load-bearing element has first and second load bearing ramps, and
wherein the first and second sliding element ramps are configured to press against the first and second load-bearing ramps, respectively, when the sliding element is translated with respect to the first load-hearing element, and
wherein the translation of the sliding element with respect to the first load-bearing element causes the first load-bearing element to move away from the second load-bearing element, and
wherein the first load-bearing element and the second load-bearing element and the sliding element have respective centrally located openings therethrough, and the respective openings at least partially align with each other along a direction from the first load-bearing element to the second load-bearing element.
2. The device of
claim 1, wherein the first sliding element ramp has a first tooth configured to allow unidirectional sliding against the first load-bearing element.
3. The device of
claim 2, wherein the first load-bearing ramp is configured to allow unidirectional sliding against the first sliding element.
4. The device of
claim 1. higher comprising a locking pin.
5. The device of
claim 4, wherein the locking, pin is attached to the first load-bearing element.
6. The device of
claim 4, wherein the locking pin is attached to the sliding element.
7. The device of
claim 1, wherein the first load-bearing element has a third load-bearing ramp.
8. The device of
claim 1, wherein the sliding element has a third sliding element ramp.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/780,744 US8382842B2 (en) | 2009-05-14 | 2010-05-14 | Expandable support device and method of use |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17835509P | 2009-05-14 | 2009-05-14 | |
US12/780,744 US8382842B2 (en) | 2009-05-14 | 2010-05-14 | Expandable support device and method of use |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100292796A1 US20100292796A1 (en) | 2010-11-18 |
US8382842B2 true US8382842B2 (en) | 2013-02-26 |
Family
ID=43069162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/780,744 Active 2030-11-08 US8382842B2 (en) | 2009-05-14 | 2010-05-14 | Expandable support device and method of use |
Country Status (2)
Country | Link |
---|---|
US (1) | US8382842B2 (en) |
WO (1) | WO2010132841A1 (en) |
Cited By (156)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120245691A1 (en) * | 2011-03-23 | 2012-09-27 | Alphatec Spine, Inc. | Expandable interbody spacer |
US20120323327A1 (en) * | 2011-06-17 | 2012-12-20 | Mcafee Paul C | Expandable Spinal Implant and Flexible Driver |
US20130123927A1 (en) * | 2010-07-15 | 2013-05-16 | Spine Wave, Inc. | Plastically deformable inter-osseous device |
US20130304214A1 (en) * | 2011-07-14 | 2013-11-14 | Nlt Spine Ltd. | Laterally Deflectable Implant |
US20140163682A1 (en) * | 2012-12-11 | 2014-06-12 | Expandable Vertebral Implant | Expandable Vertebral Implant |
US8771277B2 (en) | 2012-05-08 | 2014-07-08 | Globus Medical, Inc | Device and a method for implanting a spinous process fixation device |
US8828019B1 (en) | 2013-03-13 | 2014-09-09 | Spine Wave, Inc. | Inserter for expanding an expandable interbody fusion device |
US20140343677A1 (en) * | 2013-05-14 | 2014-11-20 | Spine View, Inc. | Intervertebral devices and related methods |
US8900312B2 (en) | 2013-03-12 | 2014-12-02 | Spine Wave, Inc. | Expandable interbody fusion device with graft chambers |
US9011493B2 (en) | 2012-12-31 | 2015-04-21 | Globus Medical, Inc. | Spinous process fixation system and methods thereof |
US9023108B2 (en) | 2005-04-21 | 2015-05-05 | Globus Medical Inc | Expandable vertebral prosthesis |
US9028498B2 (en) | 2013-03-14 | 2015-05-12 | Innovasis, Inc. | Modular bone fixation plate assembly |
US9034045B2 (en) | 2013-03-15 | 2015-05-19 | Globus Medical, Inc | Expandable intervertebral implant |
US9078767B1 (en) | 2014-03-06 | 2015-07-14 | Spine Wave, Inc. | Expandable spinal interbody fusion device |
US9101489B2 (en) | 2013-10-07 | 2015-08-11 | Spine Wave, Inc. | Expandable anterior lumbar interbody fusion device |
WO2015120235A1 (en) * | 2014-02-07 | 2015-08-13 | Globus Medical, Inc. | Variable lordosis spacer and related methods of use |
US9149367B2 (en) | 2013-03-15 | 2015-10-06 | Globus Medical Inc | Expandable intervertebral implant |
US9186258B2 (en) | 2013-03-15 | 2015-11-17 | Globus Medical, Inc. | Expandable intervertebral implant |
US9198697B2 (en) | 2013-03-13 | 2015-12-01 | Globus Medical, Inc. | Spinous process fixation system and methods thereof |
US9204972B2 (en) | 2013-03-01 | 2015-12-08 | Globus Medical, Inc. | Articulating expandable intervertebral implant |
US9216096B2 (en) | 2010-03-16 | 2015-12-22 | Pinnacle Spine Group, Llc | Intervertebral implants and related tools |
WO2016019230A1 (en) * | 2014-08-01 | 2016-02-04 | Globus Medical, Inc. | Variable lordosis spacer and related methods of use |
US9265623B2 (en) | 2014-03-06 | 2016-02-23 | Spine Wave, Inc. | Method of expanding a spinal interbody fusion device |
US9295562B2 (en) | 2008-01-17 | 2016-03-29 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
US9320615B2 (en) | 2010-06-29 | 2016-04-26 | DePuy Synthes Products, Inc. | Distractible intervertebral implant |
US9320614B2 (en) | 2006-07-31 | 2016-04-26 | DePuy Synthes Products, Inc. | Spinal fusion implant |
US9333091B2 (en) | 2003-02-14 | 2016-05-10 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US9351848B2 (en) | 2010-09-03 | 2016-05-31 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US9380932B1 (en) | 2011-11-02 | 2016-07-05 | Pinnacle Spine Group, Llc | Retractor devices for minimally invasive access to the spine |
US9393130B2 (en) | 2013-05-20 | 2016-07-19 | K2M, Inc. | Adjustable implant and insertion tool |
US9402738B2 (en) | 2013-02-14 | 2016-08-02 | Globus Medical, Inc. | Devices and methods for correcting vertebral misalignment |
US9402737B2 (en) | 2007-06-26 | 2016-08-02 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
US9414934B2 (en) | 2008-04-05 | 2016-08-16 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US9414936B2 (en) | 2011-12-19 | 2016-08-16 | Warsaw Orthopedic, Inc. | Expandable interbody implant and methods of use |
US9439783B2 (en) | 2014-03-06 | 2016-09-13 | Spine Wave, Inc. | Inserter for expanding body tissue |
USD766346S1 (en) | 2013-11-21 | 2016-09-13 | Ergotron, Inc. | Recirculating bearing |
US9445920B2 (en) | 2014-06-03 | 2016-09-20 | Atlas Spine, Inc. | Spinal implant device |
US9445921B2 (en) | 2014-03-06 | 2016-09-20 | Spine Wave, Inc. | Device for expanding and supporting body tissue |
US9445919B2 (en) | 2011-12-19 | 2016-09-20 | Warsaw Orthopedic, Inc. | Expandable interbody implant and methods of use |
US9486251B2 (en) | 2012-12-31 | 2016-11-08 | Globus Medical, Inc. | Spinous process fixation system and methods thereof |
WO2016200631A1 (en) * | 2015-06-11 | 2016-12-15 | Spine Wave, Inc. | Device for expanding and supporting body tissue |
US9526620B2 (en) | 2009-03-30 | 2016-12-27 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
US9561117B2 (en) | 2012-07-26 | 2017-02-07 | DePuy Synthes Products, Inc. | Expandable implant |
US9566167B2 (en) | 2013-08-22 | 2017-02-14 | K2M, Inc. | Expandable spinal implant |
US9566168B2 (en) | 2010-09-03 | 2017-02-14 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US9585765B2 (en) | 2013-02-14 | 2017-03-07 | Globus Medical, Inc | Devices and methods for correcting vertebral misalignment |
US9592063B2 (en) | 2010-06-24 | 2017-03-14 | DePuy Synthes Products, Inc. | Universal trial for lateral cages |
US9599153B2 (en) | 2014-12-03 | 2017-03-21 | Ergotron, Inc. | Bearing assembly and method |
US9622876B1 (en) | 2012-04-25 | 2017-04-18 | Theken Spine, Llc | Expandable support device and method of use |
US9662224B2 (en) | 2014-02-07 | 2017-05-30 | Globus Medical, Inc. | Variable lordosis spacer and related methods of use |
US9700425B1 (en) | 2011-03-20 | 2017-07-11 | Nuvasive, Inc. | Vertebral body replacement and insertion methods |
US9713536B2 (en) | 2015-08-12 | 2017-07-25 | Warsaw Orthopedic, Inc. | Expandable spinal implant and method of implanting same |
US9717601B2 (en) | 2013-02-28 | 2017-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US9730806B2 (en) | 2014-10-27 | 2017-08-15 | Warsaw Orthopedic, Inc. | Spinal implant system and method |
US9750552B2 (en) | 2009-07-06 | 2017-09-05 | DePuy Synthes Products, Inc. | Expandable fixation assemblies |
US9782265B2 (en) | 2013-02-15 | 2017-10-10 | Globus Medical, Inc | Articulating and expandable vertebral implant |
US9788971B1 (en) | 2013-05-22 | 2017-10-17 | Nuvasive, Inc. | Expandable fusion implant and related methods |
US9801734B1 (en) | 2013-08-09 | 2017-10-31 | Nuvasive, Inc. | Lordotic expandable interbody implant |
US9801725B2 (en) | 2009-12-09 | 2017-10-31 | DePuy Synthes Products, Inc. | Aspirating implants and method of bony regeneration |
US9827025B2 (en) | 2015-11-20 | 2017-11-28 | Globus Medical, Inc. | Expandable intramedullary systems and methods of using the same |
US9833334B2 (en) | 2010-06-24 | 2017-12-05 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
US9839528B2 (en) | 2014-02-07 | 2017-12-12 | Globus Medical, Inc. | Variable lordosis spacer and related methods of use |
US9907670B2 (en) | 2015-01-21 | 2018-03-06 | Warsaw Orthopedic, Inc. | Unitarily formed expandable spinal implant and method of manufacturing and implanting same |
US9913727B2 (en) | 2015-07-02 | 2018-03-13 | Medos International Sarl | Expandable implant |
US9931224B2 (en) | 2009-11-05 | 2018-04-03 | DePuy Synthes Products, Inc. | Self-pivoting spinal implant and associated instrumentation |
US9937053B2 (en) | 2014-11-04 | 2018-04-10 | Warsaw Orthopedic, Inc. | Expandable interbody implant |
US9937054B2 (en) | 2016-01-28 | 2018-04-10 | Warsaw Orthopedic, Inc. | Expandable implant and insertion tool |
USD816844S1 (en) | 2017-06-29 | 2018-05-01 | American Medical Ortho Systems LLC | Lumbar interbody implant |
US9956087B2 (en) | 2015-07-17 | 2018-05-01 | Globus Medical, Inc | Intervertebral spacer and plate |
US9974581B2 (en) | 2015-11-20 | 2018-05-22 | Globus Medical, Inc. | Expandable intramedullary systems and methods of using the same |
US9987144B2 (en) | 2015-07-17 | 2018-06-05 | Globus Medical, Inc. | Intervertebral spacer and plate |
US9993349B2 (en) | 2002-06-27 | 2018-06-12 | DePuy Synthes Products, Inc. | Intervertebral disc |
US10016282B2 (en) | 2015-07-17 | 2018-07-10 | Globus Medical, Inc. | Intervertebral spacer and plate |
US10016284B2 (en) | 2005-04-12 | 2018-07-10 | Moskowitz Family Llc | Zero-profile expandable intervertebral spacer devices for distraction and spinal fusion and a universal tool for their placement and expansion |
US10022245B2 (en) | 2012-12-17 | 2018-07-17 | DePuy Synthes Products, Inc. | Polyaxial articulating instrument |
US10070970B2 (en) | 2013-03-14 | 2018-09-11 | Pinnacle Spine Group, Llc | Interbody implants and graft delivery systems |
US10076423B2 (en) | 2016-01-04 | 2018-09-18 | Warsaw Orthopedic, Inc. | Pivoting wedge expanding spinal implant and method of implanting same |
US10092333B2 (en) | 2015-11-20 | 2018-10-09 | Globus Medical, Inc. | Expandable intramedullary systems and methods of using the same |
US10105239B2 (en) | 2013-02-14 | 2018-10-23 | Globus Medical, Inc. | Devices and methods for correcting vertebral misalignment |
US10117754B2 (en) | 2013-02-25 | 2018-11-06 | Globus Medical, Inc. | Expandable intervertebral implant |
WO2018208583A1 (en) * | 2017-05-08 | 2018-11-15 | Medos International Sàrl | Expandable cage |
US10137006B2 (en) | 2016-01-28 | 2018-11-27 | Warsaw Orthopedic, Inc. | Geared cam expandable interbody implant and method of implanting same |
US10159582B2 (en) | 2011-09-16 | 2018-12-25 | DePuy Synthes Products, Inc. | Removable, bone-securing cover plate for intervertebral fusion cage |
US10188526B2 (en) | 2015-10-26 | 2019-01-29 | Warsaw Orthopedic, Inc. | Spinal implant system and method |
US10195053B2 (en) | 2009-09-18 | 2019-02-05 | Spinal Surgical Strategies, Llc | Bone graft delivery system and method for using same |
USD841167S1 (en) | 2017-08-16 | 2019-02-19 | American Medical Ortho Systems LLC | Lumbar interbody implant |
US10245159B1 (en) | 2009-09-18 | 2019-04-02 | Spinal Surgical Strategies, Llc | Bone graft delivery system and method for using same |
US10299934B2 (en) | 2012-12-11 | 2019-05-28 | Globus Medical, Inc | Expandable vertebral implant |
US10363142B2 (en) | 2014-12-11 | 2019-07-30 | K2M, Inc. | Expandable spinal implants |
US10369015B2 (en) | 2010-09-23 | 2019-08-06 | DePuy Synthes Products, Inc. | Implant inserter having a laterally-extending dovetail engagement feature |
US10376377B2 (en) | 2015-07-17 | 2019-08-13 | Globus Medical, Inc. | Intervertebral spacer and plate |
US10390963B2 (en) | 2006-12-07 | 2019-08-27 | DePuy Synthes Products, Inc. | Intervertebral implant |
US10441430B2 (en) | 2017-07-24 | 2019-10-15 | K2M, Inc. | Expandable spinal implants |
US10500062B2 (en) | 2009-12-10 | 2019-12-10 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
US10537436B2 (en) | 2016-11-01 | 2020-01-21 | DePuy Synthes Products, Inc. | Curved expandable cage |
US10610376B2 (en) | 2015-10-16 | 2020-04-07 | Warsaw Orthopedic, Inc. | Expandable spinal implant system and method |
US10779955B2 (en) | 2015-10-26 | 2020-09-22 | Warsaw Orthopedic, Inc. | Spinal implant system and method |
US10888433B2 (en) | 2016-12-14 | 2021-01-12 | DePuy Synthes Products, Inc. | Intervertebral implant inserter and related methods |
US10940016B2 (en) | 2017-07-05 | 2021-03-09 | Medos International Sarl | Expandable intervertebral fusion cage |
US10966843B2 (en) | 2017-07-18 | 2021-04-06 | DePuy Synthes Products, Inc. | Implant inserters and related methods |
US10973656B2 (en) | 2009-09-18 | 2021-04-13 | Spinal Surgical Strategies, Inc. | Bone graft delivery system and method for using same |
US11045326B2 (en) | 2015-07-17 | 2021-06-29 | Global Medical Inc | Intervertebral spacer and plate |
US11045331B2 (en) | 2017-08-14 | 2021-06-29 | DePuy Synthes Products, Inc. | Intervertebral implant inserters and related methods |
US11051951B2 (en) | 2013-03-15 | 2021-07-06 | Spectrum Spine Ip Holdings, Llc | Expandable inter-body fusion devices and methods |
US11065132B2 (en) | 2014-03-06 | 2021-07-20 | Spine Wave, Inc. | Method of expanding a space between opposing tissue surfaces |
US11083595B2 (en) | 2014-10-28 | 2021-08-10 | Spectrum Spine Ip Holdings, Llc | Expandable, adjustable inter-body fusion devices and methods |
USRE48719E1 (en) | 2014-10-09 | 2021-09-07 | K2M, Inc. | Expandable spinal interbody spacer and method of use |
US11285014B1 (en) | 2020-11-05 | 2022-03-29 | Warsaw Orthopedic, Inc. | Expandable inter-body device, system, and method |
US11291554B1 (en) | 2021-05-03 | 2022-04-05 | Medtronic, Inc. | Unibody dual expanding interbody implant |
US11344424B2 (en) | 2017-06-14 | 2022-05-31 | Medos International Sarl | Expandable intervertebral implant and related methods |
US11369490B2 (en) | 2011-03-22 | 2022-06-28 | DePuy Synthes Products, Inc. | Universal trial for lateral cages |
US11369483B2 (en) | 2015-07-17 | 2022-06-28 | Expanding Innovations, Inc. | Intervertebral devices and related methods |
US11376134B1 (en) | 2020-11-05 | 2022-07-05 | Warsaw Orthopedic, Inc. | Dual expanding spinal implant, system, and method of use |
US11395743B1 (en) | 2021-05-04 | 2022-07-26 | Warsaw Orthopedic, Inc. | Externally driven expandable interbody and related methods |
US11426286B2 (en) | 2020-03-06 | 2022-08-30 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
US11426290B2 (en) | 2015-03-06 | 2022-08-30 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US11446156B2 (en) | 2018-10-25 | 2022-09-20 | Medos International Sarl | Expandable intervertebral implant, inserter instrument, and related methods |
US11452607B2 (en) | 2010-10-11 | 2022-09-27 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
US11464648B2 (en) | 2019-09-09 | 2022-10-11 | Amplify Surgical, Inc. | Multi-portal surgical systems |
US11491028B2 (en) | 2016-02-26 | 2022-11-08 | K2M, Inc. | Insertion instrument for expandable spinal implants |
US11510788B2 (en) | 2016-06-28 | 2022-11-29 | Eit Emerging Implant Technologies Gmbh | Expandable, angularly adjustable intervertebral cages |
US11517443B2 (en) | 2020-11-05 | 2022-12-06 | Warsaw Orthopedic, Inc. | Dual wedge expandable implant, system and method of use |
US11523915B2 (en) | 2014-10-28 | 2022-12-13 | Spectrum Spine Ip Holdings, Llc | Expandable, adjustable inter-body fusion devices and methods |
US11554020B2 (en) | 2020-09-08 | 2023-01-17 | Life Spine, Inc. | Expandable implant with pivoting control assembly |
US11564809B2 (en) | 2020-03-05 | 2023-01-31 | Alphatec Spine, Inc. | Expandable interbodies and related methods |
US11564724B2 (en) | 2020-11-05 | 2023-01-31 | Warsaw Orthopedic, Inc. | Expandable inter-body device, system and method |
US11583412B2 (en) | 2017-05-25 | 2023-02-21 | Stryker European Operations Holdings Llc | Fusion cage with integrated fixation and insertion features |
US11596523B2 (en) | 2016-06-28 | 2023-03-07 | Eit Emerging Implant Technologies Gmbh | Expandable and angularly adjustable articulating intervertebral cages |
US11602440B2 (en) | 2020-06-25 | 2023-03-14 | Life Spine, Inc. | Expandable implant assembly |
US11602439B2 (en) | 2020-04-16 | 2023-03-14 | Life Spine, Inc. | Expandable implant assembly |
US11612493B2 (en) | 2003-06-30 | 2023-03-28 | DePuy Synthes Products, Inc. | Intervertebral implant with conformable endplate |
US11612499B2 (en) | 2021-06-24 | 2023-03-28 | Warsaw Orthopedic, Inc. | Expandable interbody implant |
US11638653B2 (en) | 2020-11-05 | 2023-05-02 | Warsaw Orthopedic, Inc. | Surgery instruments with a movable handle |
US11678906B2 (en) | 2019-09-09 | 2023-06-20 | Amplify Surgical, Inc. | Multi-portal surgical systems, cannulas, and related technologies |
US11730608B2 (en) | 2021-07-13 | 2023-08-22 | Warsaw Orthopedic, Inc. | Monoblock expandable interbody implant |
US11744715B2 (en) | 2016-11-01 | 2023-09-05 | Warsaw Orthopedic, Inc. | Expandable spinal implant system with a biased tip and method of using same |
US11752009B2 (en) | 2021-04-06 | 2023-09-12 | Medos International Sarl | Expandable intervertebral fusion cage |
US11806250B2 (en) | 2018-02-22 | 2023-11-07 | Warsaw Orthopedic, Inc. | Expandable spinal implant system and method of using same |
US11833059B2 (en) | 2020-11-05 | 2023-12-05 | Warsaw Orthopedic, Inc. | Expandable inter-body device, expandable plate system, and associated methods |
US11850164B2 (en) | 2013-03-07 | 2023-12-26 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11850160B2 (en) | 2021-03-26 | 2023-12-26 | Medos International Sarl | Expandable lordotic intervertebral fusion cage |
US11850163B2 (en) | 2022-02-01 | 2023-12-26 | Warsaw Orthopedic, Inc. | Interbody implant with adjusting shims |
US11857432B2 (en) | 2020-04-13 | 2024-01-02 | Life Spine, Inc. | Expandable implant assembly |
US11896494B2 (en) | 2017-07-10 | 2024-02-13 | Life Spine, Inc. | Expandable implant assembly |
US11911284B2 (en) | 2020-11-19 | 2024-02-27 | Spinal Elements, Inc. | Curved expandable interbody devices and deployment tools |
US11950770B1 (en) | 2022-12-01 | 2024-04-09 | Amplify Surgical, Inc. | Multi-portal split cannulas, endoscopic hemostatic dispensers and surgical tools |
US11963881B2 (en) | 2020-11-05 | 2024-04-23 | Warsaw Orthopedic, Inc. | Expandable inter-body device, system, and method |
US11986398B2 (en) | 2013-03-13 | 2024-05-21 | Life Spine, Inc. | Expandable implant assembly |
US12042395B2 (en) | 2019-06-11 | 2024-07-23 | Life Spine, Inc. | Expandable implant assembly |
US12090064B2 (en) | 2022-03-01 | 2024-09-17 | Medos International Sarl | Stabilization members for expandable intervertebral implants, and related systems and methods |
US12121453B2 (en) | 2020-11-05 | 2024-10-22 | Warsaw Orthopedic, Inc. | Dual wedge expandable implant with eyelets, system, and method of use |
US12138179B2 (en) | 2019-06-10 | 2024-11-12 | Life Spine, Inc. | Expandable implant assembly with compression features |
US12171439B2 (en) | 2020-11-05 | 2024-12-24 | Warsaw Orthopedic, Inc. | Protected drill |
US12178712B2 (en) | 2020-09-10 | 2024-12-31 | Warsaw Orthopedic, Inc. | Spinal implant with features facilitating independent expansion of portions thereof and method for use thereof |
US12193948B2 (en) | 2013-03-13 | 2025-01-14 | Life Spine, Inc. | Expandable implant assembly |
US12239544B2 (en) | 2020-11-05 | 2025-03-04 | Warsaw Orthopedic, Inc. | Rhomboid shaped implants |
Families Citing this family (123)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7753958B2 (en) | 2003-08-05 | 2010-07-13 | Gordon Charles R | Expandable intervertebral implant |
WO2006034436A2 (en) | 2004-09-21 | 2006-03-30 | Stout Medical Group, L.P. | Expandable support device and method of use |
US8597360B2 (en) | 2004-11-03 | 2013-12-03 | Neuropro Technologies, Inc. | Bone fusion device |
EP1814474B1 (en) | 2004-11-24 | 2011-09-14 | Samy Abdou | Devices for inter-vertebral orthopedic device placement |
JP5542273B2 (en) | 2006-05-01 | 2014-07-09 | スタウト メディカル グループ,エル.ピー. | Expandable support device and method of use |
US9526525B2 (en) | 2006-08-22 | 2016-12-27 | Neuropro Technologies, Inc. | Percutaneous system for dynamic spinal stabilization |
US7959677B2 (en) | 2007-01-19 | 2011-06-14 | Flexuspine, Inc. | Artificial functional spinal unit system and method for use |
US8328818B1 (en) | 2007-08-31 | 2012-12-11 | Globus Medical, Inc. | Devices and methods for treating bone |
US8267939B2 (en) | 2008-02-28 | 2012-09-18 | Stryker Spine | Tool for implanting expandable intervertebral implant |
US20100211176A1 (en) | 2008-11-12 | 2010-08-19 | Stout Medical Group, L.P. | Fixation device and method |
WO2010056895A1 (en) | 2008-11-12 | 2010-05-20 | Stout Medical Group, L.P. | Fixation device and method |
US9050194B2 (en) | 2009-05-06 | 2015-06-09 | Stryker Spine | Expandable spinal implant apparatus and method of use |
US8709086B2 (en) | 2009-10-15 | 2014-04-29 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US11103366B2 (en) * | 2009-10-15 | 2021-08-31 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US8679183B2 (en) | 2010-06-25 | 2014-03-25 | Globus Medical | Expandable fusion device and method of installation thereof |
US8556979B2 (en) | 2009-10-15 | 2013-10-15 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US10098758B2 (en) * | 2009-10-15 | 2018-10-16 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US8685098B2 (en) | 2010-06-25 | 2014-04-01 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US8062375B2 (en) | 2009-10-15 | 2011-11-22 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US8764806B2 (en) | 2009-12-07 | 2014-07-01 | Samy Abdou | Devices and methods for minimally invasive spinal stabilization and instrumentation |
US8795366B2 (en) * | 2010-01-11 | 2014-08-05 | Innova Spinal Technologies, Llc | Expandable intervertebral implant and associated surgical method |
US8894712B2 (en) * | 2010-01-11 | 2014-11-25 | Innova Spinal Technologies, Llc | Expandable intervertebral implant and associated surgical method |
US8894711B2 (en) * | 2010-01-11 | 2014-11-25 | Innova Spinal Technologies, Llc | Expandable intervertebral implant and associated surgical method |
CA3002234C (en) | 2010-01-13 | 2020-07-28 | Jcbd, Llc | Sacroiliac joint fixation fusion system |
WO2014015309A1 (en) | 2012-07-20 | 2014-01-23 | Jcbd, Llc | Orthopedic anchoring system and methods |
US9333090B2 (en) * | 2010-01-13 | 2016-05-10 | Jcbd, Llc | Systems for and methods of fusing a sacroiliac joint |
US9421109B2 (en) | 2010-01-13 | 2016-08-23 | Jcbd, Llc | Systems and methods of fusing a sacroiliac joint |
US9788961B2 (en) | 2010-01-13 | 2017-10-17 | Jcbd, Llc | Sacroiliac joint implant system |
US9757154B2 (en) | 2010-01-13 | 2017-09-12 | Jcbd, Llc | Systems and methods for fusing a sacroiliac joint and anchoring an orthopedic appliance |
US9381045B2 (en) | 2010-01-13 | 2016-07-05 | Jcbd, Llc | Sacroiliac joint implant and sacroiliac joint instrument for fusing a sacroiliac joint |
US8535380B2 (en) * | 2010-05-13 | 2013-09-17 | Stout Medical Group, L.P. | Fixation device and method |
US8506635B2 (en) * | 2010-06-02 | 2013-08-13 | Warsaw Orthopedic, Inc. | System and methods for a laterally expanding implant |
US9597200B2 (en) | 2010-06-25 | 2017-03-21 | Globus Medical, Inc | Expandable fusion device and method of installation thereof |
WO2012027490A2 (en) | 2010-08-24 | 2012-03-01 | Stout Medical Group, L.P. | Support device and method for use |
US8435298B2 (en) | 2010-09-03 | 2013-05-07 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US8632595B2 (en) | 2010-09-03 | 2014-01-21 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US8491659B2 (en) | 2010-09-03 | 2013-07-23 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US9474625B2 (en) | 2010-09-03 | 2016-10-25 | Globus Medical, Inc | Expandable fusion device and method of installation thereof |
US20210378833A1 (en) | 2010-09-03 | 2021-12-09 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US8852279B2 (en) | 2010-09-03 | 2014-10-07 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US8845731B2 (en) | 2010-09-03 | 2014-09-30 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US9855151B2 (en) | 2010-09-03 | 2018-01-02 | Globus Medical, Inc | Expandable fusion device and method of installation thereof |
US8845734B2 (en) * | 2010-09-03 | 2014-09-30 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US9149286B1 (en) | 2010-11-12 | 2015-10-06 | Flexmedex, LLC | Guidance tool and method for use |
US8876866B2 (en) | 2010-12-13 | 2014-11-04 | Globus Medical, Inc. | Spinous process fusion devices and methods thereof |
US20120197405A1 (en) * | 2011-01-31 | 2012-08-02 | Interventional Spine, Inc. | Intervertebral implant |
EP2685921B1 (en) | 2011-03-18 | 2019-03-13 | Raed M. Ali, M.D., Inc. | Transpedicular access to intervertebral spaces and related spinal fusion systems and methods |
US9265620B2 (en) | 2011-03-18 | 2016-02-23 | Raed M. Ali, M.D., Inc. | Devices and methods for transpedicular stabilization of the spine |
US8388687B2 (en) | 2011-03-25 | 2013-03-05 | Flexuspine, Inc. | Interbody device insertion systems and methods |
US10420654B2 (en) | 2011-08-09 | 2019-09-24 | Neuropro Technologies, Inc. | Bone fusion device, system and method |
WO2013023096A1 (en) | 2011-08-09 | 2013-02-14 | Neuropro Technologies, Inc. | Bone fusion device, system and method |
WO2013023098A1 (en) | 2011-08-09 | 2013-02-14 | Neuropro Spinal Jaxx Inc. | Bone fusion device, apparatus and method |
WO2013025876A1 (en) | 2011-08-16 | 2013-02-21 | Stryker Spine | Expandable implant |
JP2014529445A (en) | 2011-08-23 | 2014-11-13 | フレックスメデックス,エルエルシー | Tissue removal apparatus and method |
US8845728B1 (en) | 2011-09-23 | 2014-09-30 | Samy Abdou | Spinal fixation devices and methods of use |
US8864833B2 (en) * | 2011-09-30 | 2014-10-21 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US9526627B2 (en) | 2011-11-17 | 2016-12-27 | Exactech, Inc. | Expandable interbody device system and method |
US9233007B2 (en) * | 2012-02-13 | 2016-01-12 | Blue Tip Biologics, Llc | Expandable self-anchoring interbody cage for orthopedic applications |
US20130226240A1 (en) | 2012-02-22 | 2013-08-29 | Samy Abdou | Spinous process fixation devices and methods of use |
WO2013148176A1 (en) * | 2012-03-28 | 2013-10-03 | Innova Spinal Technologies, Llc | Expandable intervertebral implant and associated surgical method |
WO2013152257A1 (en) * | 2012-04-05 | 2013-10-10 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US10159583B2 (en) | 2012-04-13 | 2018-12-25 | Neuropro Technologies, Inc. | Bone fusion device |
US9532883B2 (en) | 2012-04-13 | 2017-01-03 | Neuropro Technologies, Inc. | Bone fusion device |
AU2013267749B2 (en) * | 2012-05-29 | 2017-06-01 | Neuropro Technologies, Inc. | Bone fusion device |
US9198767B2 (en) | 2012-08-28 | 2015-12-01 | Samy Abdou | Devices and methods for spinal stabilization and instrumentation |
US20140067069A1 (en) | 2012-08-30 | 2014-03-06 | Interventional Spine, Inc. | Artificial disc |
US9320617B2 (en) | 2012-10-22 | 2016-04-26 | Cogent Spine, LLC | Devices and methods for spinal stabilization and instrumentation |
CN104812338B (en) * | 2012-11-16 | 2017-09-29 | 茵秋创新有限责任公司 | Oblique expansion type fusion device apparatus and method |
US8715351B1 (en) | 2012-11-29 | 2014-05-06 | Spine Wave, Inc. | Expandable interbody fusion device with graft chambers |
US8663332B1 (en) | 2012-12-13 | 2014-03-04 | Ouroboros Medical, Inc. | Bone graft distribution system |
EP2742914A1 (en) * | 2012-12-14 | 2014-06-18 | FACET-LINK Inc. | Infinitely height-adjustable vertebral fusion implant |
US9492288B2 (en) | 2013-02-20 | 2016-11-15 | Flexuspine, Inc. | Expandable fusion device for positioning between adjacent vertebral bodies |
US10342675B2 (en) | 2013-03-11 | 2019-07-09 | Stryker European Holdings I, Llc | Expandable implant |
EP2967909A4 (en) | 2013-03-14 | 2016-10-05 | Raed M Ali M D Inc | Lateral interbody fusion devices, systems and methods |
US10687962B2 (en) | 2013-03-14 | 2020-06-23 | Raed M. Ali, M.D., Inc. | Interbody fusion devices, systems and methods |
US9474622B2 (en) * | 2013-03-15 | 2016-10-25 | Globus Medical, Inc | Expandable intervertebral implant |
WO2014151934A1 (en) | 2013-03-15 | 2014-09-25 | Neuropro Technologies, Inc. | Bodiless bone fusion device, apparatus and method |
US9717539B2 (en) | 2013-07-30 | 2017-08-01 | Jcbd, Llc | Implants, systems, and methods for fusing a sacroiliac joint |
US9826986B2 (en) | 2013-07-30 | 2017-11-28 | Jcbd, Llc | Systems for and methods of preparing a sacroiliac joint for fusion |
US9572677B2 (en) | 2013-03-15 | 2017-02-21 | Globus Medical, Inc. | Expandable intervertebral implant |
US9456906B2 (en) * | 2013-03-15 | 2016-10-04 | Globus Medical, Inc. | Expandable intervertebral implant |
US10245087B2 (en) | 2013-03-15 | 2019-04-02 | Jcbd, Llc | Systems and methods for fusing a sacroiliac joint and anchoring an orthopedic appliance |
WO2015017593A1 (en) | 2013-07-30 | 2015-02-05 | Jcbd, Llc | Systems for and methods of fusing a sacroiliac joint |
US9186259B2 (en) | 2013-09-09 | 2015-11-17 | Ouroboros Medical, Inc. | Expandable trials |
US9642720B2 (en) * | 2013-12-19 | 2017-05-09 | Amendia, Inc. | Expandable spinal implant |
US9517144B2 (en) | 2014-04-24 | 2016-12-13 | Exactech, Inc. | Limited profile intervertebral implant with incorporated fastening mechanism |
US10398565B2 (en) | 2014-04-24 | 2019-09-03 | Choice Spine, Llc | Limited profile intervertebral implant with incorporated fastening and locking mechanism |
US9801546B2 (en) | 2014-05-27 | 2017-10-31 | Jcbd, Llc | Systems for and methods of diagnosing and treating a sacroiliac joint disorder |
US10322011B2 (en) | 2014-06-03 | 2019-06-18 | Atlas Spine, Inc. | Spinal implant device with bone screws |
US10610377B2 (en) | 2014-06-03 | 2020-04-07 | Atlas Spine, Inc. | Spinal implant device |
US9060876B1 (en) | 2015-01-20 | 2015-06-23 | Ouroboros Medical, Inc. | Stabilized intervertebral scaffolding systems |
EP3253335B1 (en) * | 2015-02-05 | 2019-08-14 | Spectrum Spine IP Holdings, LLC | Expandable, adjustable inter-body fusion devices |
CH711040A1 (en) * | 2015-05-05 | 2016-11-15 | Rs-Technik Cad-Cam Gmbh | Intervertebral implant. |
US9814602B2 (en) | 2015-05-14 | 2017-11-14 | Globus Medical, Inc. | Expandable intervertebral implants and methods of installation thereof |
US10857003B1 (en) | 2015-10-14 | 2020-12-08 | Samy Abdou | Devices and methods for vertebral stabilization |
US10219914B2 (en) | 2015-11-10 | 2019-03-05 | Globus Medical, Inc. | Stabilized expandable intervertebral spacer |
US10369004B2 (en) | 2015-12-16 | 2019-08-06 | Globus Medical, Inc. | Expandable intervertebralspacer |
US9974662B2 (en) * | 2016-06-29 | 2018-05-22 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US10052215B2 (en) * | 2016-06-29 | 2018-08-21 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US9883953B1 (en) | 2016-09-21 | 2018-02-06 | Integrity Implants Inc. | Stabilized laterovertically-expanding fusion cage systems with tensioner |
US10744000B1 (en) | 2016-10-25 | 2020-08-18 | Samy Abdou | Devices and methods for vertebral bone realignment |
US10973648B1 (en) | 2016-10-25 | 2021-04-13 | Samy Abdou | Devices and methods for vertebral bone realignment |
TR201620372A3 (en) * | 2016-12-30 | 2018-08-27 | Tobb Ekonomi Ve Teknoloji Ueniversitesi | AN EXTENDABLE CAGE |
CN110402124B (en) | 2017-01-10 | 2022-03-15 | 整体植入有限公司 | Expandable intervertebral fusion device |
US10213321B2 (en) | 2017-01-18 | 2019-02-26 | Neuropro Technologies, Inc. | Bone fusion system, device and method including delivery apparatus |
US10973657B2 (en) | 2017-01-18 | 2021-04-13 | Neuropro Technologies, Inc. | Bone fusion surgical system and method |
US10729560B2 (en) | 2017-01-18 | 2020-08-04 | Neuropro Technologies, Inc. | Bone fusion system, device and method including an insertion instrument |
US10111760B2 (en) | 2017-01-18 | 2018-10-30 | Neuropro Technologies, Inc. | Bone fusion system, device and method including a measuring mechanism |
US10111755B2 (en) * | 2017-02-24 | 2018-10-30 | Warsaw, Orthopedic, Inc. | Expanding interbody implant and articulating inserter and methods of use |
CN107411853B (en) * | 2017-03-28 | 2023-03-21 | 广州爱锘德医疗器械有限公司 | Intervertebral fusion device |
US10470894B2 (en) * | 2017-04-06 | 2019-11-12 | Warsaw Orthopedic, Inc. | Expanding interbody implant and articulating inserter and methods of use |
US10327909B2 (en) * | 2017-05-31 | 2019-06-25 | Atlas Spine, Inc. | Cervical cage |
AU2018308092A1 (en) | 2017-07-24 | 2020-02-20 | Integrity Implants Inc. | Surgical implant and related methods |
US10709578B2 (en) | 2017-08-25 | 2020-07-14 | Integrity Implants Inc. | Surgical biologics delivery system and related methods |
US10603055B2 (en) | 2017-09-15 | 2020-03-31 | Jcbd, Llc | Systems for and methods of preparing and fusing a sacroiliac joint |
JP7572857B2 (en) | 2018-03-01 | 2024-10-24 | インテグリティ インプランツ インコーポレイテッド | Expandable Fusion Device with Independent Deployment System |
US11179248B2 (en) | 2018-10-02 | 2021-11-23 | Samy Abdou | Devices and methods for spinal implantation |
US20220168113A1 (en) * | 2019-04-11 | 2022-06-02 | Am Solutions Holding B.V. | Implantable expandable bone support device |
US11298240B2 (en) * | 2020-06-16 | 2022-04-12 | Globus Medical, Inc. | Expanding intervertebral implants |
CN111839830B (en) * | 2020-07-23 | 2021-09-14 | 山东第一医科大学附属省立医院(山东省立医院) | Fixable intervertebral fusion cage under self-guiding distraction mirror |
CN111759436B (en) * | 2020-07-23 | 2021-09-21 | 山东第一医科大学附属省立医院(山东省立医院) | Self-guiding four-side expandable under-mirror bone grafting interbody fusion cage |
JP7270659B2 (en) * | 2021-01-04 | 2023-05-10 | アピフィックス・リミテッド | adjustable spine cage |
NL2034450B1 (en) * | 2023-03-29 | 2024-10-08 | C1 Connections Holding B V | Actuator for use in an expansion connector |
Citations (32)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3604414A (en) | 1968-08-29 | 1971-09-14 | Nicomedes Borges | Bone setting device |
US3659595A (en) | 1969-10-22 | 1972-05-02 | Edward J Haboush | Compensating plates for bone fractures |
US5616142A (en) | 1994-07-20 | 1997-04-01 | Yuan; Hansen A. | Vertebral auxiliary fixation device |
US5672177A (en) | 1996-01-31 | 1997-09-30 | The General Hospital Corporation | Implantable bone distraction device |
US5827286A (en) | 1997-02-14 | 1998-10-27 | Incavo; Stephen J. | Incrementally adjustable tibial osteotomy fixation device and method |
US5895387A (en) | 1996-10-09 | 1999-04-20 | Romulo Guerrero | Method of craniofacial bone distraction |
US6093188A (en) | 1997-11-10 | 2000-07-25 | Murray; William M. | Adjustable bone fixation plate |
US6402756B1 (en) | 2001-02-15 | 2002-06-11 | Third Millennium Engineering, Llc | Longitudinal plate assembly having an adjustable length |
US20020188296A1 (en) | 2001-06-06 | 2002-12-12 | Michelson Gary K. | Dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments, instrumentation, and method for installation thereof |
US6503250B2 (en) | 2000-11-28 | 2003-01-07 | Kamaljit S. Paul | Bone support assembly |
US6679883B2 (en) | 2001-10-31 | 2004-01-20 | Ortho Development Corporation | Cervical plate for stabilizing the human spine |
US20040019353A1 (en) | 2002-02-01 | 2004-01-29 | Freid James M. | Spinal plate system for stabilizing a portion of a spine |
US6689134B2 (en) | 2002-02-13 | 2004-02-10 | Third Millennium Engineering, Llc | Longitudinal plate assembly having an adjustable length |
US6719796B2 (en) | 1999-07-26 | 2004-04-13 | Advanced Prosthetic Technologies, Inc. | Spinal surgical prosthesis |
US20040153065A1 (en) | 2003-02-03 | 2004-08-05 | Lim Roy K. | Expanding interbody implant and articulating inserter and method |
US20040162618A1 (en) | 2003-02-14 | 2004-08-19 | Centerpulse Spine-Tech, Inc. | Expandable intervertebral implant cage |
WO2004110300A2 (en) | 2001-07-25 | 2004-12-23 | Disc Orthopaedic Technologies Inc. | Deformable tools and implants |
US6852113B2 (en) | 2001-12-14 | 2005-02-08 | Orthopaedic Designs, Llc | Internal osteotomy fixation device |
US20050043732A1 (en) | 2003-08-18 | 2005-02-24 | Dalton Brian E. | Cervical compression plate assembly |
US6932820B2 (en) | 2002-01-08 | 2005-08-23 | Said G. Osman | Uni-directional dynamic spinal fixation device |
US20050209698A1 (en) | 2003-08-05 | 2005-09-22 | Gordon Charles R | Expandable intervertebral implant |
US20060015103A1 (en) | 2004-07-19 | 2006-01-19 | Shawn Burke | I-beam configuration bone plate |
WO2006042334A2 (en) | 2004-10-12 | 2006-04-20 | Stout Medical Group, L.P. | Expandable support device and method of use |
US20060116683A1 (en) | 2004-12-01 | 2006-06-01 | Barrall Benjamin S | Unidirectional translation system for bone fixation |
US20060129244A1 (en) | 2004-10-25 | 2006-06-15 | Alphaspine, Inc. | Expandable intervertebral spacer method and apparatus |
WO2006068682A1 (en) | 2004-09-24 | 2006-06-29 | Stout Medical Group, L.P. | Expandable support device and method of use |
US7118573B2 (en) | 2001-06-04 | 2006-10-10 | Sdgi Holdings, Inc. | Dynamic anterior cervical plate system having moveable segments, instrumentation, and method for installation thereof |
US20060235398A1 (en) | 2005-04-05 | 2006-10-19 | Sdgi Holdings, Inc. | Ratcheting fixation plate |
US7137984B2 (en) | 1997-02-11 | 2006-11-21 | Warsaw Orthopedic, Inc. | Single-lock anterior cervical plate and method |
US20060276794A1 (en) | 2005-05-12 | 2006-12-07 | Stern Joseph D | Revisable anterior cervical plating system |
US7214243B2 (en) * | 2002-10-21 | 2007-05-08 | 3Hbfm, Llc | Intervertebral disk prosthesis |
US20100145386A1 (en) | 2007-09-19 | 2010-06-10 | Stout Medical, Inc. | Implantable support device and method of use |
-
2010
- 2010-05-14 US US12/780,744 patent/US8382842B2/en active Active
- 2010-05-14 WO PCT/US2010/035009 patent/WO2010132841A1/en active Application Filing
Patent Citations (35)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3604414A (en) | 1968-08-29 | 1971-09-14 | Nicomedes Borges | Bone setting device |
US3659595A (en) | 1969-10-22 | 1972-05-02 | Edward J Haboush | Compensating plates for bone fractures |
US5616142A (en) | 1994-07-20 | 1997-04-01 | Yuan; Hansen A. | Vertebral auxiliary fixation device |
US5672177A (en) | 1996-01-31 | 1997-09-30 | The General Hospital Corporation | Implantable bone distraction device |
US5895387A (en) | 1996-10-09 | 1999-04-20 | Romulo Guerrero | Method of craniofacial bone distraction |
US7137984B2 (en) | 1997-02-11 | 2006-11-21 | Warsaw Orthopedic, Inc. | Single-lock anterior cervical plate and method |
US5827286A (en) | 1997-02-14 | 1998-10-27 | Incavo; Stephen J. | Incrementally adjustable tibial osteotomy fixation device and method |
US5964763A (en) | 1997-02-14 | 1999-10-12 | Incavo; Stephen J. | Incrementally adjustable tibial osteotomy fixation device and method |
US6093188A (en) | 1997-11-10 | 2000-07-25 | Murray; William M. | Adjustable bone fixation plate |
US6719796B2 (en) | 1999-07-26 | 2004-04-13 | Advanced Prosthetic Technologies, Inc. | Spinal surgical prosthesis |
US6503250B2 (en) | 2000-11-28 | 2003-01-07 | Kamaljit S. Paul | Bone support assembly |
US6402756B1 (en) | 2001-02-15 | 2002-06-11 | Third Millennium Engineering, Llc | Longitudinal plate assembly having an adjustable length |
US7118573B2 (en) | 2001-06-04 | 2006-10-10 | Sdgi Holdings, Inc. | Dynamic anterior cervical plate system having moveable segments, instrumentation, and method for installation thereof |
US20020188296A1 (en) | 2001-06-06 | 2002-12-12 | Michelson Gary K. | Dynamic, modular, multilock anterior cervical plate system having detachably fastened assembleable and moveable segments, instrumentation, and method for installation thereof |
WO2004110300A2 (en) | 2001-07-25 | 2004-12-23 | Disc Orthopaedic Technologies Inc. | Deformable tools and implants |
US6679883B2 (en) | 2001-10-31 | 2004-01-20 | Ortho Development Corporation | Cervical plate for stabilizing the human spine |
US6852113B2 (en) | 2001-12-14 | 2005-02-08 | Orthopaedic Designs, Llc | Internal osteotomy fixation device |
US20050240184A1 (en) | 2002-01-08 | 2005-10-27 | Osman Said G | Method for postoperatively compressing a bone graft |
US6932820B2 (en) | 2002-01-08 | 2005-08-23 | Said G. Osman | Uni-directional dynamic spinal fixation device |
US20040019353A1 (en) | 2002-02-01 | 2004-01-29 | Freid James M. | Spinal plate system for stabilizing a portion of a spine |
US20040092939A1 (en) | 2002-02-01 | 2004-05-13 | Freid James M. | Spinal plate system for stabilizing a portion of a spine |
US6689134B2 (en) | 2002-02-13 | 2004-02-10 | Third Millennium Engineering, Llc | Longitudinal plate assembly having an adjustable length |
US7214243B2 (en) * | 2002-10-21 | 2007-05-08 | 3Hbfm, Llc | Intervertebral disk prosthesis |
US20040153065A1 (en) | 2003-02-03 | 2004-08-05 | Lim Roy K. | Expanding interbody implant and articulating inserter and method |
US20040162618A1 (en) | 2003-02-14 | 2004-08-19 | Centerpulse Spine-Tech, Inc. | Expandable intervertebral implant cage |
US20050209698A1 (en) | 2003-08-05 | 2005-09-22 | Gordon Charles R | Expandable intervertebral implant |
US20050043732A1 (en) | 2003-08-18 | 2005-02-24 | Dalton Brian E. | Cervical compression plate assembly |
US20060015103A1 (en) | 2004-07-19 | 2006-01-19 | Shawn Burke | I-beam configuration bone plate |
WO2006068682A1 (en) | 2004-09-24 | 2006-06-29 | Stout Medical Group, L.P. | Expandable support device and method of use |
WO2006042334A2 (en) | 2004-10-12 | 2006-04-20 | Stout Medical Group, L.P. | Expandable support device and method of use |
US20060129244A1 (en) | 2004-10-25 | 2006-06-15 | Alphaspine, Inc. | Expandable intervertebral spacer method and apparatus |
US20060116683A1 (en) | 2004-12-01 | 2006-06-01 | Barrall Benjamin S | Unidirectional translation system for bone fixation |
US20060235398A1 (en) | 2005-04-05 | 2006-10-19 | Sdgi Holdings, Inc. | Ratcheting fixation plate |
US20060276794A1 (en) | 2005-05-12 | 2006-12-07 | Stern Joseph D | Revisable anterior cervical plating system |
US20100145386A1 (en) | 2007-09-19 | 2010-06-10 | Stout Medical, Inc. | Implantable support device and method of use |
Non-Patent Citations (5)
* Cited by examiner, † Cited by third partyTitle |
---|
Franklin, I.J. et al., "Uptake of Tetracycline by Aortic Aneurysm Wall and Its Effect on Inflammation and Proteolysis," Brit. J. Surger, 86(6)771-775, 1999. |
Pyo, R. et al., "Targeted Gene Disruption of Matrix Metalloproteinase-9 (Gelatinase B) Suppresses Development of Experimental Abdominal Aortic Aneurysms," J. Clinical Investigation, 105(11);1641-1649, Jun. 2000. |
Tambiah, J. et al., "Provocation of Experimental Aortic Inflammation Mediators and Chlamydia pneumoniae," Brit., J. Surgery, 88(7):935-940, Feb. 2001. |
Walton, L.J. et al., "Inhibition of Prostoglandin E2 Synthesis in Abdonminal Aortic Aneurysms," Circulation, 48-54, Jul. 6, 1999. |
Xu, Q. et al., "Sp1 Increases Expression of Cyclooxygenase-2 in Hypoxic Vascular Endothelium," J. Biological Chemistry, 275(32):24583-24589, Aug. 2000. |
Cited By (363)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9993349B2 (en) | 2002-06-27 | 2018-06-12 | DePuy Synthes Products, Inc. | Intervertebral disc |
US10238500B2 (en) | 2002-06-27 | 2019-03-26 | DePuy Synthes Products, Inc. | Intervertebral disc |
US9814590B2 (en) | 2003-02-14 | 2017-11-14 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10433971B2 (en) | 2003-02-14 | 2019-10-08 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10786361B2 (en) | 2003-02-14 | 2020-09-29 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US9814589B2 (en) | 2003-02-14 | 2017-11-14 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US11207187B2 (en) | 2003-02-14 | 2021-12-28 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US9333091B2 (en) | 2003-02-14 | 2016-05-10 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US9730803B2 (en) | 2003-02-14 | 2017-08-15 | DePuy Synthes Products, Inc. | Method of in-situ formation of an intervertebral fusion device |
US9724207B2 (en) | 2003-02-14 | 2017-08-08 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US9925060B2 (en) | 2003-02-14 | 2018-03-27 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10583013B2 (en) | 2003-02-14 | 2020-03-10 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US9788963B2 (en) | 2003-02-14 | 2017-10-17 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10575959B2 (en) | 2003-02-14 | 2020-03-03 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US9808351B2 (en) | 2003-02-14 | 2017-11-07 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10085843B2 (en) | 2003-02-14 | 2018-10-02 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US9439776B2 (en) | 2003-02-14 | 2016-09-13 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US9801729B2 (en) | 2003-02-14 | 2017-10-31 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10376372B2 (en) | 2003-02-14 | 2019-08-13 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10405986B2 (en) | 2003-02-14 | 2019-09-10 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10639164B2 (en) | 2003-02-14 | 2020-05-05 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10420651B2 (en) | 2003-02-14 | 2019-09-24 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US11096794B2 (en) | 2003-02-14 | 2021-08-24 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US10555817B2 (en) | 2003-02-14 | 2020-02-11 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US11432938B2 (en) | 2003-02-14 | 2022-09-06 | DePuy Synthes Products, Inc. | In-situ intervertebral fusion device and method |
US10492918B2 (en) | 2003-02-14 | 2019-12-03 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US9439777B2 (en) | 2003-02-14 | 2016-09-13 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
US11612493B2 (en) | 2003-06-30 | 2023-03-28 | DePuy Synthes Products, Inc. | Intervertebral implant with conformable endplate |
US10426633B2 (en) | 2005-04-12 | 2019-10-01 | Moskowitz Family Llc | Zero-profile expandable intervertebral spacer devices for distraction and spinal fusion and a universal tool for their placement and expansion |
US10016284B2 (en) | 2005-04-12 | 2018-07-10 | Moskowitz Family Llc | Zero-profile expandable intervertebral spacer devices for distraction and spinal fusion and a universal tool for their placement and expansion |
US11096797B2 (en) | 2005-04-12 | 2021-08-24 | Moskowitz Family Llc | Zero-profile expandable intervertebral spacer devices for distraction and spinal fusion and a universal tool for their placement and expansion |
US12011367B2 (en) | 2005-04-12 | 2024-06-18 | Moskowitz Family Llc | Expandable intervertebral device |
US9023108B2 (en) | 2005-04-21 | 2015-05-05 | Globus Medical Inc | Expandable vertebral prosthesis |
US9393128B2 (en) | 2005-04-21 | 2016-07-19 | Globus Medical, Inc. | Expandable vertebral prosthesis |
US10010428B2 (en) | 2006-07-31 | 2018-07-03 | DePuy Synthes Products, Inc. | Spinal fusion implant |
US9713538B2 (en) | 2006-07-31 | 2017-07-25 | DePuy Synthes Products, Inc. | Spinal fusion implant |
US9320614B2 (en) | 2006-07-31 | 2016-04-26 | DePuy Synthes Products, Inc. | Spinal fusion implant |
US9737413B2 (en) | 2006-07-31 | 2017-08-22 | DePuy Synthes Products, Inc. | Spinal fusion implant |
US10695191B2 (en) | 2006-07-31 | 2020-06-30 | DePuy Synthes Products, Inc. | Spinal fusion implant |
US9387091B2 (en) | 2006-07-31 | 2016-07-12 | DePuy Synthes Products, Inc. | Spinal fusion implant |
US11497618B2 (en) | 2006-12-07 | 2022-11-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11432942B2 (en) | 2006-12-07 | 2022-09-06 | DePuy Synthes Products, Inc. | Intervertebral implant |
US10398566B2 (en) | 2006-12-07 | 2019-09-03 | DePuy Synthes Products, Inc. | Intervertebral implant |
US10583015B2 (en) | 2006-12-07 | 2020-03-10 | DePuy Synthes Products, Inc. | Intervertebral implant |
US10390963B2 (en) | 2006-12-07 | 2019-08-27 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11273050B2 (en) | 2006-12-07 | 2022-03-15 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11642229B2 (en) | 2006-12-07 | 2023-05-09 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11660206B2 (en) | 2006-12-07 | 2023-05-30 | DePuy Synthes Products, Inc. | Intervertebral implant |
US11712345B2 (en) | 2006-12-07 | 2023-08-01 | DePuy Synthes Products, Inc. | Intervertebral implant |
US9839530B2 (en) | 2007-06-26 | 2017-12-12 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
US9402737B2 (en) | 2007-06-26 | 2016-08-02 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
US11622868B2 (en) | 2007-06-26 | 2023-04-11 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
US10973652B2 (en) | 2007-06-26 | 2021-04-13 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
US9433510B2 (en) | 2008-01-17 | 2016-09-06 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
US9295562B2 (en) | 2008-01-17 | 2016-03-29 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
US10433977B2 (en) | 2008-01-17 | 2019-10-08 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
US10449058B2 (en) | 2008-01-17 | 2019-10-22 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
US11737881B2 (en) | 2008-01-17 | 2023-08-29 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
US11617655B2 (en) | 2008-04-05 | 2023-04-04 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US9545314B2 (en) | 2008-04-05 | 2017-01-17 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US11701234B2 (en) | 2008-04-05 | 2023-07-18 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US9931223B2 (en) | 2008-04-05 | 2018-04-03 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US12023255B2 (en) | 2008-04-05 | 2024-07-02 | DePuy Synthes Products, Inc. | Expandable inter vertebral implant |
US9526625B2 (en) | 2008-04-05 | 2016-12-27 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US11602438B2 (en) | 2008-04-05 | 2023-03-14 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US9993350B2 (en) | 2008-04-05 | 2018-06-12 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US9474623B2 (en) | 2008-04-05 | 2016-10-25 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US12011361B2 (en) | 2008-04-05 | 2024-06-18 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US9597195B2 (en) | 2008-04-05 | 2017-03-21 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US11707359B2 (en) | 2008-04-05 | 2023-07-25 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US10449056B2 (en) | 2008-04-05 | 2019-10-22 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US11712341B2 (en) | 2008-04-05 | 2023-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US11712342B2 (en) | 2008-04-05 | 2023-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US9414934B2 (en) | 2008-04-05 | 2016-08-16 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
US9592129B2 (en) | 2009-03-30 | 2017-03-14 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
US10624758B2 (en) | 2009-03-30 | 2020-04-21 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
US9526620B2 (en) | 2009-03-30 | 2016-12-27 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
US11612491B2 (en) | 2009-03-30 | 2023-03-28 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
US12097124B2 (en) | 2009-03-30 | 2024-09-24 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
US9750552B2 (en) | 2009-07-06 | 2017-09-05 | DePuy Synthes Products, Inc. | Expandable fixation assemblies |
US11660208B2 (en) | 2009-09-18 | 2023-05-30 | Spinal Surgical Strategies, Inc. | Bone graft delivery system and method for using same |
US10195053B2 (en) | 2009-09-18 | 2019-02-05 | Spinal Surgical Strategies, Llc | Bone graft delivery system and method for using same |
US12053393B2 (en) | 2009-09-18 | 2024-08-06 | Spinal Surgical Strategies, Inc. | Bone graft delivery system and method for use |
US10245159B1 (en) | 2009-09-18 | 2019-04-02 | Spinal Surgical Strategies, Llc | Bone graft delivery system and method for using same |
US10973656B2 (en) | 2009-09-18 | 2021-04-13 | Spinal Surgical Strategies, Inc. | Bone graft delivery system and method for using same |
US11712349B2 (en) | 2009-11-05 | 2023-08-01 | DePuy Synthes Products, Inc. | Self-pivoting spinal implant and associated instrumentation |
US10195049B2 (en) | 2009-11-05 | 2019-02-05 | DePuy Synthes Products, Inc. | Self-pivoting spinal implant and associated instrumentation |
US9931224B2 (en) | 2009-11-05 | 2018-04-03 | DePuy Synthes Products, Inc. | Self-pivoting spinal implant and associated instrumentation |
US10792166B2 (en) | 2009-11-05 | 2020-10-06 | DePuy Synthes Products, Inc. | Self-pivoting spinal implant and associated instrumentation |
US10342662B2 (en) | 2009-12-09 | 2019-07-09 | DePuy Synthes Products, Inc. | Aspirating implants and method of bony regeneration |
US9801725B2 (en) | 2009-12-09 | 2017-10-31 | DePuy Synthes Products, Inc. | Aspirating implants and method of bony regeneration |
US10500062B2 (en) | 2009-12-10 | 2019-12-10 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
US11607321B2 (en) | 2009-12-10 | 2023-03-21 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
US9649203B2 (en) | 2010-03-16 | 2017-05-16 | Pinnacle Spine Group, Llc | Methods of post-filling an intervertebral implant |
US9788973B2 (en) | 2010-03-16 | 2017-10-17 | Pinnacle Spine Group, Llc | Spinal implant |
US9216096B2 (en) | 2010-03-16 | 2015-12-22 | Pinnacle Spine Group, Llc | Intervertebral implants and related tools |
US10449057B2 (en) | 2010-06-24 | 2019-10-22 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
US10588754B2 (en) | 2010-06-24 | 2020-03-17 | DePuy Snythes Products, Inc. | Lateral spondylolisthesis reduction cage and instruments and methods for non-parallel disc space preparation |
US10327911B2 (en) | 2010-06-24 | 2019-06-25 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
US9801640B2 (en) | 2010-06-24 | 2017-10-31 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
US10405989B2 (en) | 2010-06-24 | 2019-09-10 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
US9801639B2 (en) | 2010-06-24 | 2017-10-31 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
US11911287B2 (en) | 2010-06-24 | 2024-02-27 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
US9763678B2 (en) | 2010-06-24 | 2017-09-19 | DePuy Synthes Products, Inc. | Multi-segment lateral cage adapted to flex substantially in the coronal plane |
US9592063B2 (en) | 2010-06-24 | 2017-03-14 | DePuy Synthes Products, Inc. | Universal trial for lateral cages |
US9833334B2 (en) | 2010-06-24 | 2017-12-05 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
US10966840B2 (en) | 2010-06-24 | 2021-04-06 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
US10646350B2 (en) | 2010-06-24 | 2020-05-12 | DePuy Synthes Products, Inc. | Multi-segment lateral cages adapted to flex substantially in the coronal plane |
US11872139B2 (en) | 2010-06-24 | 2024-01-16 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
US9895236B2 (en) | 2010-06-24 | 2018-02-20 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
US9907560B2 (en) | 2010-06-24 | 2018-03-06 | DePuy Synthes Products, Inc. | Flexible vertebral body shavers |
US9320615B2 (en) | 2010-06-29 | 2016-04-26 | DePuy Synthes Products, Inc. | Distractible intervertebral implant |
US9579215B2 (en) | 2010-06-29 | 2017-02-28 | DePuy Synthes Products, Inc. | Distractible intervertebral implant |
US10548741B2 (en) | 2010-06-29 | 2020-02-04 | DePuy Synthes Products, Inc. | Distractible intervertebral implant |
US11654033B2 (en) | 2010-06-29 | 2023-05-23 | DePuy Synthes Products, Inc. | Distractible intervertebral implant |
US20130123927A1 (en) * | 2010-07-15 | 2013-05-16 | Spine Wave, Inc. | Plastically deformable inter-osseous device |
US9101488B2 (en) | 2010-07-15 | 2015-08-11 | Spine Wave, Inc. | Apparatus for use in spinal surgery |
US11083592B2 (en) | 2010-07-15 | 2021-08-10 | Spine Wave, Inc. | Plastically deformable inter-osseous device |
US8920507B2 (en) | 2010-07-15 | 2014-12-30 | Spine Wave, Inc. | Plastically deformable inter-osseous device |
US10117756B2 (en) | 2010-07-15 | 2018-11-06 | Spine Wave, Inc. | Plastically deformable inter-osseous device |
US9398961B2 (en) | 2010-07-15 | 2016-07-26 | Spine Wave, Inc. | Plastically deformable inter-osseous device |
US8641769B2 (en) * | 2010-07-15 | 2014-02-04 | Spine Wave, Inc. | Plastically deformable inter-osseous device |
US9351848B2 (en) | 2010-09-03 | 2016-05-31 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US9566168B2 (en) | 2010-09-03 | 2017-02-14 | Globus Medical, Inc. | Expandable fusion device and method of installation thereof |
US12109127B2 (en) | 2010-09-23 | 2024-10-08 | DePuy Synthes Products, Inc. | Implant inserter having a laterally-extending dovetail engagement feature |
US10369015B2 (en) | 2010-09-23 | 2019-08-06 | DePuy Synthes Products, Inc. | Implant inserter having a laterally-extending dovetail engagement feature |
US11452607B2 (en) | 2010-10-11 | 2022-09-27 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
US10485672B2 (en) | 2011-03-20 | 2019-11-26 | Nuvasive, Inc. | Vertebral body replacement and insertion methods |
US12186198B2 (en) | 2011-03-20 | 2025-01-07 | Nuvasive, Inc. | Vertebral body replacement and insertion methods |
US9700425B1 (en) | 2011-03-20 | 2017-07-11 | Nuvasive, Inc. | Vertebral body replacement and insertion methods |
US11389301B2 (en) | 2011-03-20 | 2022-07-19 | Nuvasive, Inc. | Vertebral body replacement and insertion methods |
US11369490B2 (en) | 2011-03-22 | 2022-06-28 | DePuy Synthes Products, Inc. | Universal trial for lateral cages |
US20120245691A1 (en) * | 2011-03-23 | 2012-09-27 | Alphatec Spine, Inc. | Expandable interbody spacer |
US9549824B2 (en) * | 2011-06-17 | 2017-01-24 | Globus Medical, Inc. | Expandable spinal implant and flexible driver |
US20120323327A1 (en) * | 2011-06-17 | 2012-12-20 | Mcafee Paul C | Expandable Spinal Implant and Flexible Driver |
US9017413B2 (en) * | 2011-07-14 | 2015-04-28 | Nlt Spine Ltd. | Expanding implant for insertion between two regions of tissue and corresponding method |
US20130304214A1 (en) * | 2011-07-14 | 2013-11-14 | Nlt Spine Ltd. | Laterally Deflectable Implant |
US12029655B2 (en) | 2011-07-14 | 2024-07-09 | Seaspine, Inc. | Laterally deflectable implant |
US10617530B2 (en) | 2011-07-14 | 2020-04-14 | Seaspine, Inc. | Laterally deflectable implant |
US10159582B2 (en) | 2011-09-16 | 2018-12-25 | DePuy Synthes Products, Inc. | Removable, bone-securing cover plate for intervertebral fusion cage |
US10813773B2 (en) | 2011-09-16 | 2020-10-27 | DePuy Synthes Products, Inc. | Removable, bone-securing cover plate for intervertebral fusion cage |
US9380932B1 (en) | 2011-11-02 | 2016-07-05 | Pinnacle Spine Group, Llc | Retractor devices for minimally invasive access to the spine |
US9414936B2 (en) | 2011-12-19 | 2016-08-16 | Warsaw Orthopedic, Inc. | Expandable interbody implant and methods of use |
US9445919B2 (en) | 2011-12-19 | 2016-09-20 | Warsaw Orthopedic, Inc. | Expandable interbody implant and methods of use |
US10195050B2 (en) | 2011-12-19 | 2019-02-05 | Warsaw Othopedic, Inc. | Expandable interbody implant and methods of use |
US9872779B2 (en) | 2011-12-19 | 2018-01-23 | Warsaw Orthopedic, Inc. | Expandable interbody implant and methods of use |
US9622876B1 (en) | 2012-04-25 | 2017-04-18 | Theken Spine, Llc | Expandable support device and method of use |
US11534312B2 (en) | 2012-04-25 | 2022-12-27 | Theken Spine, Llc | Expandable support device and method of use |
US10702392B2 (en) | 2012-04-25 | 2020-07-07 | Theken Spine, Llc | Expandable support device and method of use |
US9486254B2 (en) | 2012-05-08 | 2016-11-08 | Globus Medical, Inc. | Device and method for implanting a spinous process fixation device |
US8771277B2 (en) | 2012-05-08 | 2014-07-08 | Globus Medical, Inc | Device and a method for implanting a spinous process fixation device |
US9980756B2 (en) | 2012-05-08 | 2018-05-29 | Globus Medical, Inc. | Device and a method for implanting a spinous process fixation device |
US10682165B2 (en) | 2012-05-08 | 2020-06-16 | Globus Medical Inc. | Device and a method for implanting a spinous process fixation device |
US9561117B2 (en) | 2012-07-26 | 2017-02-07 | DePuy Synthes Products, Inc. | Expandable implant |
US10058433B2 (en) | 2012-07-26 | 2018-08-28 | DePuy Synthes Products, Inc. | Expandable implant |
US20140163682A1 (en) * | 2012-12-11 | 2014-06-12 | Expandable Vertebral Implant | Expandable Vertebral Implant |
US10299934B2 (en) | 2012-12-11 | 2019-05-28 | Globus Medical, Inc | Expandable vertebral implant |
US10022245B2 (en) | 2012-12-17 | 2018-07-17 | DePuy Synthes Products, Inc. | Polyaxial articulating instrument |
US11065040B2 (en) | 2012-12-31 | 2021-07-20 | Globus Medical, Inc. | Spinous process fixation system and methods thereof |
US11723695B2 (en) | 2012-12-31 | 2023-08-15 | Globus Medical, Inc. | Spinous process fixation system and methods thereof |
US9011493B2 (en) | 2012-12-31 | 2015-04-21 | Globus Medical, Inc. | Spinous process fixation system and methods thereof |
US10226283B2 (en) | 2012-12-31 | 2019-03-12 | Globus Medical, Inc. | Spinous process fixation system and methods thereof |
US9486251B2 (en) | 2012-12-31 | 2016-11-08 | Globus Medical, Inc. | Spinous process fixation system and methods thereof |
US9402738B2 (en) | 2013-02-14 | 2016-08-02 | Globus Medical, Inc. | Devices and methods for correcting vertebral misalignment |
US11547577B2 (en) | 2013-02-14 | 2023-01-10 | Globus Medical Inc. | Devices and methods for correcting vertebral misalignment |
US9585765B2 (en) | 2013-02-14 | 2017-03-07 | Globus Medical, Inc | Devices and methods for correcting vertebral misalignment |
US10105239B2 (en) | 2013-02-14 | 2018-10-23 | Globus Medical, Inc. | Devices and methods for correcting vertebral misalignment |
US12127953B2 (en) | 2013-02-14 | 2024-10-29 | Globus Medical, Inc. | Devices and methods for correcting vertebral misalignment |
US9782265B2 (en) | 2013-02-15 | 2017-10-10 | Globus Medical, Inc | Articulating and expandable vertebral implant |
US10117754B2 (en) | 2013-02-25 | 2018-11-06 | Globus Medical, Inc. | Expandable intervertebral implant |
US9717601B2 (en) | 2013-02-28 | 2017-08-01 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
USRE49973E1 (en) | 2013-02-28 | 2024-05-21 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
US9204972B2 (en) | 2013-03-01 | 2015-12-08 | Globus Medical, Inc. | Articulating expandable intervertebral implant |
US11850164B2 (en) | 2013-03-07 | 2023-12-26 | DePuy Synthes Products, Inc. | Intervertebral implant |
US10376387B2 (en) | 2013-03-12 | 2019-08-13 | Spine Wave, Inc | Apparatus for use in spinal interbody fusion |
US10022242B2 (en) | 2013-03-12 | 2018-07-17 | Spine Wave, Inc. | Apparatus for use in spinal interbody fusion |
US9517140B2 (en) | 2013-03-12 | 2016-12-13 | Spine Wave, Inc. | Apparatus for use in spinal interbody fusion |
US9517142B2 (en) | 2013-03-12 | 2016-12-13 | Spine Wave, Inc. | Insert for insertion into an expandable spinal interbody fusion device |
US8900312B2 (en) | 2013-03-12 | 2014-12-02 | Spine Wave, Inc. | Expandable interbody fusion device with graft chambers |
US9517141B2 (en) | 2013-03-12 | 2016-12-13 | Spine Wave, Inc. | Apparatus for use in spinal interbody fusion |
US9949844B2 (en) | 2013-03-12 | 2018-04-24 | Spine Wave, Inc. | Apparatus for use in spinal interbody fusion |
US11172963B2 (en) | 2013-03-13 | 2021-11-16 | Globus Medical, Inc. | Spinous process fixation system and methods thereof |
US12193948B2 (en) | 2013-03-13 | 2025-01-14 | Life Spine, Inc. | Expandable implant assembly |
US10251680B2 (en) | 2013-03-13 | 2019-04-09 | Globus Medical, Inc. | Spinous process fixation system and methods thereof |
US9039767B2 (en) | 2013-03-13 | 2015-05-26 | Spine Wave, Inc. | Method and inserter for interbody fusion |
US11653958B2 (en) | 2013-03-13 | 2023-05-23 | Globus Medical, Inc. | Spinous process fixation system and mehtods thereof |
US11660127B2 (en) | 2013-03-13 | 2023-05-30 | Globus Medical Inc. | Spinous process fixation system and methods thereof |
US9545313B2 (en) | 2013-03-13 | 2017-01-17 | Spine Wave, Inc. | Apparatus and method for expanding opposing body tissue |
US8828019B1 (en) | 2013-03-13 | 2014-09-09 | Spine Wave, Inc. | Inserter for expanding an expandable interbody fusion device |
US11986398B2 (en) | 2013-03-13 | 2024-05-21 | Life Spine, Inc. | Expandable implant assembly |
US9198697B2 (en) | 2013-03-13 | 2015-12-01 | Globus Medical, Inc. | Spinous process fixation system and methods thereof |
US10070970B2 (en) | 2013-03-14 | 2018-09-11 | Pinnacle Spine Group, Llc | Interbody implants and graft delivery systems |
US9028498B2 (en) | 2013-03-14 | 2015-05-12 | Innovasis, Inc. | Modular bone fixation plate assembly |
US9149367B2 (en) | 2013-03-15 | 2015-10-06 | Globus Medical Inc | Expandable intervertebral implant |
US9034045B2 (en) | 2013-03-15 | 2015-05-19 | Globus Medical, Inc | Expandable intervertebral implant |
US9186258B2 (en) | 2013-03-15 | 2015-11-17 | Globus Medical, Inc. | Expandable intervertebral implant |
US11051951B2 (en) | 2013-03-15 | 2021-07-06 | Spectrum Spine Ip Holdings, Llc | Expandable inter-body fusion devices and methods |
US11648130B2 (en) | 2013-05-14 | 2023-05-16 | Expanding Innovations, Inc. | Intervertebral devices and related methods |
US10799366B2 (en) | 2013-05-14 | 2020-10-13 | Expanding Innovations, Inc. | Intervertebral devices and related methods |
US20140343677A1 (en) * | 2013-05-14 | 2014-11-20 | Spine View, Inc. | Intervertebral devices and related methods |
US11602441B2 (en) | 2013-05-14 | 2023-03-14 | Expanding Innovations, Inc. | Intervertebral devices and related methods |
US10092416B2 (en) * | 2013-05-14 | 2018-10-09 | Expanding Innovations, Inc. | Intervertebral devices and related methods |
USRE49753E1 (en) | 2013-05-20 | 2023-12-12 | K2M, Inc. | Adjustable implant and insertion tool |
US9808353B2 (en) | 2013-05-20 | 2017-11-07 | K2M, Inc. | Adjustable implant and insertion tool |
US9393130B2 (en) | 2013-05-20 | 2016-07-19 | K2M, Inc. | Adjustable implant and insertion tool |
US9788971B1 (en) | 2013-05-22 | 2017-10-17 | Nuvasive, Inc. | Expandable fusion implant and related methods |
US10219915B1 (en) | 2013-05-22 | 2019-03-05 | Nuvasive, Inc. | Expandable fusion implant and related methods |
US12213893B2 (en) | 2013-08-09 | 2025-02-04 | Nuvasive, Inc. | Lordotic expandable interbody implant and method of using same |
US11696836B2 (en) | 2013-08-09 | 2023-07-11 | Nuvasive, Inc. | Lordotic expandable interbody implant |
US9801734B1 (en) | 2013-08-09 | 2017-10-31 | Nuvasive, Inc. | Lordotic expandable interbody implant |
US10492924B2 (en) | 2013-08-09 | 2019-12-03 | Nuvasive, Inc. | Lordotic expandable interbody implant |
US9566167B2 (en) | 2013-08-22 | 2017-02-14 | K2M, Inc. | Expandable spinal implant |
US9387089B2 (en) | 2013-10-07 | 2016-07-12 | Spine Wave, Inc. | Expandable anterior lumbar interbody fusion device |
US9949842B2 (en) | 2013-10-07 | 2018-04-24 | Spine Wave, Inc. | Expandable anterior lumbar interbody fusion device |
US9101489B2 (en) | 2013-10-07 | 2015-08-11 | Spine Wave, Inc. | Expandable anterior lumbar interbody fusion device |
US9707094B2 (en) | 2013-10-07 | 2017-07-18 | Spine Wave, Inc. | Expandable anterior lumbar interbody fusion device |
USD766346S1 (en) | 2013-11-21 | 2016-09-13 | Ergotron, Inc. | Recirculating bearing |
US9839528B2 (en) | 2014-02-07 | 2017-12-12 | Globus Medical, Inc. | Variable lordosis spacer and related methods of use |
US9662224B2 (en) | 2014-02-07 | 2017-05-30 | Globus Medical, Inc. | Variable lordosis spacer and related methods of use |
US9402739B2 (en) | 2014-02-07 | 2016-08-02 | Globus Medical, Inc. | Variable lordosis spacer and related methods of use |
US11191648B2 (en) | 2014-02-07 | 2021-12-07 | Globus Medical Inc. | Variable lordosis spacer and related methods of use |
US11406510B2 (en) | 2014-02-07 | 2022-08-09 | Globus Medical, Inc. | Variable lordosis spacer and related methods of use |
US11925565B2 (en) | 2014-02-07 | 2024-03-12 | Globus Medical Inc. | Variable lordosis spacer and related methods of use |
WO2015120235A1 (en) * | 2014-02-07 | 2015-08-13 | Globus Medical, Inc. | Variable lordosis spacer and related methods of use |
US10639166B2 (en) | 2014-02-07 | 2020-05-05 | Globus Medical In. | Variable lordosis spacer and related methods of use |
US10143569B2 (en) | 2014-02-07 | 2018-12-04 | Globus Medical, Inc. | Variable lordosis spacer and related methods of use |
US10092417B2 (en) | 2014-02-07 | 2018-10-09 | Globus Medical, Inc. | Variable lordosis spacer and related methods of use |
US9439783B2 (en) | 2014-03-06 | 2016-09-13 | Spine Wave, Inc. | Inserter for expanding body tissue |
US9078767B1 (en) | 2014-03-06 | 2015-07-14 | Spine Wave, Inc. | Expandable spinal interbody fusion device |
US9216094B2 (en) | 2014-03-06 | 2015-12-22 | Spine Wave, Inc. | Expandable spinal interbody fusion device and inserter |
US9107766B1 (en) | 2014-03-06 | 2015-08-18 | Spine Wave, Inc. | Expandable spinal interbody fusion device and inserter |
US9114026B1 (en) | 2014-03-06 | 2015-08-25 | Spine Wave, Inc. | Inserter for an expandable spinal interbody fusion device |
US9265623B2 (en) | 2014-03-06 | 2016-02-23 | Spine Wave, Inc. | Method of expanding a spinal interbody fusion device |
US9084686B1 (en) | 2014-03-06 | 2015-07-21 | Spine Wave, Inc. | Inserter for an expandable spinal interbody fusion device |
US11065132B2 (en) | 2014-03-06 | 2021-07-20 | Spine Wave, Inc. | Method of expanding a space between opposing tissue surfaces |
US9925067B2 (en) | 2014-03-06 | 2018-03-27 | Spine Wave, Inc. | Device for expanding and supporting body tissue |
US10682244B2 (en) | 2014-03-06 | 2020-06-16 | Spine Wave, Inc. | Inserter for expanding body tissue |
US10314722B2 (en) | 2014-03-06 | 2019-06-11 | Spine Wave, Inc. | Inserter for expanding an expandable device |
US10045861B2 (en) | 2014-03-06 | 2018-08-14 | Spine Wave, Inc. | Inserter for expanding body tissue |
US9445921B2 (en) | 2014-03-06 | 2016-09-20 | Spine Wave, Inc. | Device for expanding and supporting body tissue |
US9445920B2 (en) | 2014-06-03 | 2016-09-20 | Atlas Spine, Inc. | Spinal implant device |
WO2016019230A1 (en) * | 2014-08-01 | 2016-02-04 | Globus Medical, Inc. | Variable lordosis spacer and related methods of use |
USRE48719E1 (en) | 2014-10-09 | 2021-09-07 | K2M, Inc. | Expandable spinal interbody spacer and method of use |
US9730806B2 (en) | 2014-10-27 | 2017-08-15 | Warsaw Orthopedic, Inc. | Spinal implant system and method |
US11617657B2 (en) | 2014-10-28 | 2023-04-04 | Spectrum Spine Ip Holdings, Llc | Expandable, adjustable inter-body fusion devices and methods |
US11083595B2 (en) | 2014-10-28 | 2021-08-10 | Spectrum Spine Ip Holdings, Llc | Expandable, adjustable inter-body fusion devices and methods |
US11590000B2 (en) | 2014-10-28 | 2023-02-28 | Spectrum Spine Ip Holdings, Llc | Expandable, adjustable inter-body fusion devices and methods |
US11523915B2 (en) | 2014-10-28 | 2022-12-13 | Spectrum Spine Ip Holdings, Llc | Expandable, adjustable inter-body fusion devices and methods |
US11918482B2 (en) | 2014-11-04 | 2024-03-05 | Warsaw Orthopedic, Inc. | Expandable interbody implant |
US11033402B2 (en) | 2014-11-04 | 2021-06-15 | Warsaw Orthopedic, Inc. | Expandable interbody implant |
US9937053B2 (en) | 2014-11-04 | 2018-04-10 | Warsaw Orthopedic, Inc. | Expandable interbody implant |
US9599153B2 (en) | 2014-12-03 | 2017-03-21 | Ergotron, Inc. | Bearing assembly and method |
US12257159B2 (en) | 2014-12-11 | 2025-03-25 | K2M, Inc. | Expandable spinal implants |
US10363142B2 (en) | 2014-12-11 | 2019-07-30 | K2M, Inc. | Expandable spinal implants |
US11331200B2 (en) | 2014-12-11 | 2022-05-17 | K2M, Inc. | Expandable spinal implants |
US10850193B2 (en) | 2015-01-21 | 2020-12-01 | Warsaw Orthopedic, Inc. | Unitarily formed expandable spinal implant and method of manufacturing and implanting same |
US10195524B2 (en) | 2015-01-21 | 2019-02-05 | Warsaw Orthopedic, Inc. | Unitarily formed expandable spinal implant and method of manufacturing and implanting same |
US11426288B2 (en) | 2015-01-21 | 2022-08-30 | Warsaw Orthopedic, Inc. | Unitarily formed expandable spinal implant and method of manufacturing and implanting same |
US9907670B2 (en) | 2015-01-21 | 2018-03-06 | Warsaw Orthopedic, Inc. | Unitarily formed expandable spinal implant and method of manufacturing and implanting same |
US11426290B2 (en) | 2015-03-06 | 2022-08-30 | DePuy Synthes Products, Inc. | Expandable intervertebral implant, system, kit and method |
WO2016200631A1 (en) * | 2015-06-11 | 2016-12-15 | Spine Wave, Inc. | Device for expanding and supporting body tissue |
US9913727B2 (en) | 2015-07-02 | 2018-03-13 | Medos International Sarl | Expandable implant |
US12213890B2 (en) | 2015-07-17 | 2025-02-04 | Globus Medical, Inc. | Intervertebral spacer and plate |
US10959856B2 (en) | 2015-07-17 | 2021-03-30 | Globus Medical, Inc. | Intervertebral spacer and plate |
US10016282B2 (en) | 2015-07-17 | 2018-07-10 | Globus Medical, Inc. | Intervertebral spacer and plate |
US11123199B2 (en) | 2015-07-17 | 2021-09-21 | Globus Medical, Inc. | Intervertebral spacer and plate |
US9987144B2 (en) | 2015-07-17 | 2018-06-05 | Globus Medical, Inc. | Intervertebral spacer and plate |
US9956087B2 (en) | 2015-07-17 | 2018-05-01 | Globus Medical, Inc | Intervertebral spacer and plate |
US11045326B2 (en) | 2015-07-17 | 2021-06-29 | Global Medical Inc | Intervertebral spacer and plate |
US11337826B2 (en) | 2015-07-17 | 2022-05-24 | Globus Medical, Inc. | Intervertebral spacer and plate |
US11723780B2 (en) | 2015-07-17 | 2023-08-15 | Globus Medical, Inc. | Intervertebral spacer and plate |
US11109980B2 (en) | 2015-07-17 | 2021-09-07 | Globus Medical Inc. | Intervertebral spacer and plate |
US11369483B2 (en) | 2015-07-17 | 2022-06-28 | Expanding Innovations, Inc. | Intervertebral devices and related methods |
US12232977B2 (en) | 2015-07-17 | 2025-02-25 | Globus Medical, Inc. | Intervertebral spacer and plate |
US10376377B2 (en) | 2015-07-17 | 2019-08-13 | Globus Medical, Inc. | Intervertebral spacer and plate |
US9713536B2 (en) | 2015-08-12 | 2017-07-25 | Warsaw Orthopedic, Inc. | Expandable spinal implant and method of implanting same |
US12004963B2 (en) | 2015-10-16 | 2024-06-11 | Warsaw Orthopedic, Inc. | Expandable spinal implant system and method |
US10610376B2 (en) | 2015-10-16 | 2020-04-07 | Warsaw Orthopedic, Inc. | Expandable spinal implant system and method |
US11285019B2 (en) | 2015-10-16 | 2022-03-29 | Warsaw Orthopedic, Inc. | Expandable spinal implant system and method |
US10188526B2 (en) | 2015-10-26 | 2019-01-29 | Warsaw Orthopedic, Inc. | Spinal implant system and method |
US12048636B2 (en) | 2015-10-26 | 2024-07-30 | Warsaw Orthopedic, Inc. | Spinal implant system and method |
US11612497B2 (en) | 2015-10-26 | 2023-03-28 | Warsaw Orthopedic, Inc. | Spinal implant system and method |
US10779955B2 (en) | 2015-10-26 | 2020-09-22 | Warsaw Orthopedic, Inc. | Spinal implant system and method |
US10111691B2 (en) | 2015-11-20 | 2018-10-30 | Globus Medical, Inc. | Expandable intramedullary systems and methods of using the same |
US10092333B2 (en) | 2015-11-20 | 2018-10-09 | Globus Medical, Inc. | Expandable intramedullary systems and methods of using the same |
US11759241B2 (en) | 2015-11-20 | 2023-09-19 | Audubon | Expandable intramedullary systems and methods of using the same |
US9974581B2 (en) | 2015-11-20 | 2018-05-22 | Globus Medical, Inc. | Expandable intramedullary systems and methods of using the same |
US9827025B2 (en) | 2015-11-20 | 2017-11-28 | Globus Medical, Inc. | Expandable intramedullary systems and methods of using the same |
US10828074B2 (en) | 2015-11-20 | 2020-11-10 | Globus Medical, Inc. | Expandalbe intramedullary systems and methods of using the same |
US10076423B2 (en) | 2016-01-04 | 2018-09-18 | Warsaw Orthopedic, Inc. | Pivoting wedge expanding spinal implant and method of implanting same |
US11129731B2 (en) | 2016-01-04 | 2021-09-28 | Warsaw Orthopedic, Inc. | Pivoting wedge expanding spinal implant and method of implanting same |
US10531964B2 (en) | 2016-01-04 | 2020-01-14 | Wardaw Orthopedic, Inc. | Pivoting wedge expanding spinal implant and method of implanting same |
US10076421B2 (en) | 2016-01-28 | 2018-09-18 | Warsaw Orthopedic, Inc. | Expandable implant and insertion tool |
US11737889B2 (en) | 2016-01-28 | 2023-08-29 | Warsaw Orthopedic, Inc. | Geared cam expandable interbody implant and method of implanting same |
US10137006B2 (en) | 2016-01-28 | 2018-11-27 | Warsaw Orthopedic, Inc. | Geared cam expandable interbody implant and method of implanting same |
US9937054B2 (en) | 2016-01-28 | 2018-04-10 | Warsaw Orthopedic, Inc. | Expandable implant and insertion tool |
US10932920B2 (en) | 2016-01-28 | 2021-03-02 | Warsaw Orthopedic, Inc. | Geared cam expandable interbody implant and method of implanting same |
US11491028B2 (en) | 2016-02-26 | 2022-11-08 | K2M, Inc. | Insertion instrument for expandable spinal implants |
US11596522B2 (en) | 2016-06-28 | 2023-03-07 | Eit Emerging Implant Technologies Gmbh | Expandable and angularly adjustable intervertebral cages with articulating joint |
US11596523B2 (en) | 2016-06-28 | 2023-03-07 | Eit Emerging Implant Technologies Gmbh | Expandable and angularly adjustable articulating intervertebral cages |
US11510788B2 (en) | 2016-06-28 | 2022-11-29 | Eit Emerging Implant Technologies Gmbh | Expandable, angularly adjustable intervertebral cages |
US11744715B2 (en) | 2016-11-01 | 2023-09-05 | Warsaw Orthopedic, Inc. | Expandable spinal implant system with a biased tip and method of using same |
US10537436B2 (en) | 2016-11-01 | 2020-01-21 | DePuy Synthes Products, Inc. | Curved expandable cage |
US10888433B2 (en) | 2016-12-14 | 2021-01-12 | DePuy Synthes Products, Inc. | Intervertebral implant inserter and related methods |
US11446155B2 (en) | 2017-05-08 | 2022-09-20 | Medos International Sarl | Expandable cage |
WO2018208583A1 (en) * | 2017-05-08 | 2018-11-15 | Medos International Sàrl | Expandable cage |
US10398563B2 (en) | 2017-05-08 | 2019-09-03 | Medos International Sarl | Expandable cage |
US11583412B2 (en) | 2017-05-25 | 2023-02-21 | Stryker European Operations Holdings Llc | Fusion cage with integrated fixation and insertion features |
US11344424B2 (en) | 2017-06-14 | 2022-05-31 | Medos International Sarl | Expandable intervertebral implant and related methods |
USD816844S1 (en) | 2017-06-29 | 2018-05-01 | American Medical Ortho Systems LLC | Lumbar interbody implant |
US10940016B2 (en) | 2017-07-05 | 2021-03-09 | Medos International Sarl | Expandable intervertebral fusion cage |
US11896494B2 (en) | 2017-07-10 | 2024-02-13 | Life Spine, Inc. | Expandable implant assembly |
US10966843B2 (en) | 2017-07-18 | 2021-04-06 | DePuy Synthes Products, Inc. | Implant inserters and related methods |
US12029662B2 (en) | 2017-07-24 | 2024-07-09 | K2M, Inc. | Expandable spinal implants |
US10441430B2 (en) | 2017-07-24 | 2019-10-15 | K2M, Inc. | Expandable spinal implants |
US11291552B2 (en) | 2017-07-24 | 2022-04-05 | K2M, Inc. | Expandable spinal implants |
US11690734B2 (en) | 2017-08-14 | 2023-07-04 | DePuy Synthes Products, Inc. | Intervertebral implant inserters and related methods |
US11045331B2 (en) | 2017-08-14 | 2021-06-29 | DePuy Synthes Products, Inc. | Intervertebral implant inserters and related methods |
USD841167S1 (en) | 2017-08-16 | 2019-02-19 | American Medical Ortho Systems LLC | Lumbar interbody implant |
US12036132B2 (en) | 2018-02-22 | 2024-07-16 | Warsaw Orthopedic, Inc. | Expandable spinal implant system and method of using same |
US11806250B2 (en) | 2018-02-22 | 2023-11-07 | Warsaw Orthopedic, Inc. | Expandable spinal implant system and method of using same |
US11446156B2 (en) | 2018-10-25 | 2022-09-20 | Medos International Sarl | Expandable intervertebral implant, inserter instrument, and related methods |
US12138179B2 (en) | 2019-06-10 | 2024-11-12 | Life Spine, Inc. | Expandable implant assembly with compression features |
US12042395B2 (en) | 2019-06-11 | 2024-07-23 | Life Spine, Inc. | Expandable implant assembly |
US12226319B2 (en) | 2019-09-09 | 2025-02-18 | Amplify Surgical, Inc. | Multi-portal surgical systems |
US12245791B2 (en) | 2019-09-09 | 2025-03-11 | Amplify Surgical, Inc. | Multi-portal surgical systems, cannulas, and related technologies |
US11678906B2 (en) | 2019-09-09 | 2023-06-20 | Amplify Surgical, Inc. | Multi-portal surgical systems, cannulas, and related technologies |
US11464648B2 (en) | 2019-09-09 | 2022-10-11 | Amplify Surgical, Inc. | Multi-portal surgical systems |
US11690732B2 (en) | 2020-03-05 | 2023-07-04 | Alphatec Spine, Inc. | Expandable lordotic interbodies and related methods |
US11564809B2 (en) | 2020-03-05 | 2023-01-31 | Alphatec Spine, Inc. | Expandable interbodies and related methods |
US12004964B2 (en) | 2020-03-05 | 2024-06-11 | Alphatec Spine, Inc. | Expandable interbodies and related methods |
US11426286B2 (en) | 2020-03-06 | 2022-08-30 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
US11806245B2 (en) | 2020-03-06 | 2023-11-07 | Eit Emerging Implant Technologies Gmbh | Expandable intervertebral implant |
US11857432B2 (en) | 2020-04-13 | 2024-01-02 | Life Spine, Inc. | Expandable implant assembly |
US11602439B2 (en) | 2020-04-16 | 2023-03-14 | Life Spine, Inc. | Expandable implant assembly |
US12138178B2 (en) | 2020-04-16 | 2024-11-12 | Life Spine, Inc. | Expandable implant assembly |
US11602440B2 (en) | 2020-06-25 | 2023-03-14 | Life Spine, Inc. | Expandable implant assembly |
US11554020B2 (en) | 2020-09-08 | 2023-01-17 | Life Spine, Inc. | Expandable implant with pivoting control assembly |
US12178712B2 (en) | 2020-09-10 | 2024-12-31 | Warsaw Orthopedic, Inc. | Spinal implant with features facilitating independent expansion of portions thereof and method for use thereof |
US11285014B1 (en) | 2020-11-05 | 2022-03-29 | Warsaw Orthopedic, Inc. | Expandable inter-body device, system, and method |
US11617658B2 (en) | 2020-11-05 | 2023-04-04 | Warsaw Orthopedic, Inc. | Expandable inter-body device, system and method |
US11969196B2 (en) | 2020-11-05 | 2024-04-30 | Warsaw Orthopedic, Inc. | Expandable inter-body device, system, and method |
US11963881B2 (en) | 2020-11-05 | 2024-04-23 | Warsaw Orthopedic, Inc. | Expandable inter-body device, system, and method |
US12239544B2 (en) | 2020-11-05 | 2025-03-04 | Warsaw Orthopedic, Inc. | Rhomboid shaped implants |
US12053392B2 (en) | 2020-11-05 | 2024-08-06 | Warsaw Orthopedic, Inc. | Expandable inter-body device, expandable plate system, and associated methods |
US11376134B1 (en) | 2020-11-05 | 2022-07-05 | Warsaw Orthopedic, Inc. | Dual expanding spinal implant, system, and method of use |
US11638653B2 (en) | 2020-11-05 | 2023-05-02 | Warsaw Orthopedic, Inc. | Surgery instruments with a movable handle |
US12171439B2 (en) | 2020-11-05 | 2024-12-24 | Warsaw Orthopedic, Inc. | Protected drill |
US12121453B2 (en) | 2020-11-05 | 2024-10-22 | Warsaw Orthopedic, Inc. | Dual wedge expandable implant with eyelets, system, and method of use |
US11517443B2 (en) | 2020-11-05 | 2022-12-06 | Warsaw Orthopedic, Inc. | Dual wedge expandable implant, system and method of use |
US11833059B2 (en) | 2020-11-05 | 2023-12-05 | Warsaw Orthopedic, Inc. | Expandable inter-body device, expandable plate system, and associated methods |
US11564724B2 (en) | 2020-11-05 | 2023-01-31 | Warsaw Orthopedic, Inc. | Expandable inter-body device, system and method |
US11911284B2 (en) | 2020-11-19 | 2024-02-27 | Spinal Elements, Inc. | Curved expandable interbody devices and deployment tools |
US11850160B2 (en) | 2021-03-26 | 2023-12-26 | Medos International Sarl | Expandable lordotic intervertebral fusion cage |
US11752009B2 (en) | 2021-04-06 | 2023-09-12 | Medos International Sarl | Expandable intervertebral fusion cage |
US12023258B2 (en) | 2021-04-06 | 2024-07-02 | Medos International Sarl | Expandable intervertebral fusion cage |
US11291554B1 (en) | 2021-05-03 | 2022-04-05 | Medtronic, Inc. | Unibody dual expanding interbody implant |
US11395743B1 (en) | 2021-05-04 | 2022-07-26 | Warsaw Orthopedic, Inc. | Externally driven expandable interbody and related methods |
US11612499B2 (en) | 2021-06-24 | 2023-03-28 | Warsaw Orthopedic, Inc. | Expandable interbody implant |
US11730608B2 (en) | 2021-07-13 | 2023-08-22 | Warsaw Orthopedic, Inc. | Monoblock expandable interbody implant |
US11850163B2 (en) | 2022-02-01 | 2023-12-26 | Warsaw Orthopedic, Inc. | Interbody implant with adjusting shims |
US12090064B2 (en) | 2022-03-01 | 2024-09-17 | Medos International Sarl | Stabilization members for expandable intervertebral implants, and related systems and methods |
US11950770B1 (en) | 2022-12-01 | 2024-04-09 | Amplify Surgical, Inc. | Multi-portal split cannulas, endoscopic hemostatic dispensers and surgical tools |
Also Published As
Publication number | Publication date |
---|---|
US20100292796A1 (en) | 2010-11-18 |
WO2010132841A1 (en) | 2010-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8382842B2 (en) | 2013-02-26 | Expandable support device and method of use |
US11051954B2 (en) | 2021-07-06 | Expandable support device and method of use |
US10285820B2 (en) | 2019-05-14 | Fixation device and method |
US11083592B2 (en) | 2021-08-10 | Plastically deformable inter-osseous device |
US8535380B2 (en) | 2013-09-17 | Fixation device and method |
EP2023864B1 (en) | 2019-07-10 | Expandable support device |
US8252054B2 (en) | 2012-08-28 | Expandable support device and method of use |
US20100191336A1 (en) | 2010-07-29 | Fixation device and method |
US20070032791A1 (en) | 2007-02-08 | Expandable support device and method of use |
WO2011142761A1 (en) | 2011-11-17 | Fixation device and method |
US20080281346A1 (en) | 2008-11-13 | Expandable support device |
US20090018524A1 (en) | 2009-01-15 | Expandable delivery device |
WO2006042334A2 (en) | 2006-04-20 | Expandable support device and method of use |
WO2007076374A2 (en) | 2007-07-05 | Expandable support device and method of using the same |
AU2011279588B2 (en) | 2013-08-08 | A plastically deformable inter-osseous device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
2010-07-15 | AS | Assignment |
Owner name: STOUT MEDICAL GROUP, L.P., PENNSYLVANIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GREENHALGH, E. SKOTT;ROMANO, JOHN-PAUL;REEL/FRAME:024693/0508 Effective date: 20100520 |
2013-02-06 | STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
2015-07-13 | AS | Assignment |
Owner name: NUVASIVE, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STOUT MEDICAL GROUP, L.P.;REEL/FRAME:036099/0919 Effective date: 20150709 |
2016-07-25 | FPAY | Fee payment |
Year of fee payment: 4 |
2016-11-16 | AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, CALIFORNIA Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNORS:NUVASIVE, INC.;IMPULSE MONITORING, INC.;REEL/FRAME:040634/0404 Effective date: 20160208 Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, CA Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNORS:NUVASIVE, INC.;IMPULSE MONITORING, INC.;REEL/FRAME:040634/0404 Effective date: 20160208 |
2017-05-17 | AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, TE Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNORS:NUVASIVE, INC.;BIOTRONIC NATIONAL, LLC;NUVASIVE CLINICAL SERVICES MONITORING, INC.;AND OTHERS;REEL/FRAME:042490/0236 Effective date: 20170425 Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, TEXAS Free format text: NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS;ASSIGNORS:NUVASIVE, INC.;BIOTRONIC NATIONAL, LLC;NUVASIVE CLINICAL SERVICES MONITORING, INC.;AND OTHERS;REEL/FRAME:042490/0236 Effective date: 20170425 |
2020-02-28 | AS | Assignment |
Owner name: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT, NORTH CAROLINA Free format text: SECURITY INTEREST;ASSIGNORS:NUVASIVE, INC.;NUVASIVE CLINICAL SERVICES MONITORING, INC.;NUVASIVE CLINICAL SERVICES, INC.;AND OTHERS;REEL/FRAME:052918/0595 Effective date: 20200224 |
2020-07-23 | MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
2024-05-08 | MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |