USRE34021E - Percutaneous fixation of hollow organs - Google Patents
- ️Tue Aug 04 1992
USRE34021E - Percutaneous fixation of hollow organs - Google Patents
Percutaneous fixation of hollow organs Download PDFInfo
-
Publication number
- USRE34021E USRE34021E US07/435,343 US43534389A USRE34021E US RE34021 E USRE34021 E US RE34021E US 43534389 A US43534389 A US 43534389A US RE34021 E USRE34021 E US RE34021E Authority
- US
- United States Prior art keywords
- filament
- head
- tension
- hollow organ
- organ Prior art date
- 1985-11-18 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 210000000056 organ Anatomy 0.000 title claims abstract description 68
- 238000003780 insertion Methods 0.000 claims description 21
- 230000037431 insertion Effects 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 19
- 230000014759 maintenance of location Effects 0.000 claims description 6
- 230000006835 compression Effects 0.000 claims description 5
- 238000007906 compression Methods 0.000 claims description 5
- 230000002745 absorbent Effects 0.000 claims description 3
- 239000002250 absorbent Substances 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 239000012530 fluid Substances 0.000 claims description 2
- 239000012260 resinous material Substances 0.000 claims 1
- 210000002784 stomach Anatomy 0.000 description 28
- 239000000463 material Substances 0.000 description 8
- 210000003815 abdominal wall Anatomy 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 0 CCC(C)(CC(C*C(C=*)=C)=N)I Chemical compound CCC(C)(CC(C*C(C=*)=C)=N)I 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- 230000002496 gastric effect Effects 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 210000003200 peritoneal cavity Anatomy 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 210000001198 duodenum Anatomy 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 229920005570 flexible polymer Polymers 0.000 description 1
- 210000000232 gallbladder Anatomy 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002695 general anesthesia Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000002874 hemostatic agent Substances 0.000 description 1
- 230000002439 hemostatic effect Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- 230000037368 penetrate the skin Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 210000004304 subcutaneous tissue Anatomy 0.000 description 1
- 239000003356 suture material Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0469—Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/56—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
- A61B17/58—Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws or setting implements
- A61B17/68—Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
- A61B17/84—Fasteners therefor or fasteners being internal fixation devices
- A61B17/86—Pins or screws or threaded wires; nuts therefor
- A61B17/8695—Washers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
- A61B2017/0406—Pledgets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
- A61B2017/0409—Instruments for applying suture anchors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0401—Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
- A61B2017/0417—T-fasteners
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/04—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials
- A61B2017/0496—Surgical instruments, devices or methods for suturing wounds; Holders or packages for needles or suture materials for tensioning sutures
Definitions
- a technique which obtains some degree of fixation, particularly of the gastric wall to the body wall.
- a tube with a blunt end which is installed, in a retrograde manner from the inside of the stomach towards the outside, the blunt end of the tube engaging the stomach wall and holding it in place.
- a gastroscope is placed in the patient's stomach, a site is chosen on the skin using the light from the gastroscope, a puncture is made through the skin and a guidewire is introduced into the stomach.
- This guidewire is grasped by the gastroscope and pulled out of the stomach through the esophagus and out of the mouth.
- the end of the wire protruding from the mouth is then attached to a tube, having a leading pointed end and a trailing blunt end.
- the guidewire is pulled back into the stomach and the pointed end of the tube is pulled through the gastric wall and the skin until the blunt end of the tube is secured against the stomach and holds the stomach wall against the body wall.
- Objects of the present invention are to provide a device and method to obtain better fixation of hollow organs by techniques that do not require surgery.
- the task of fixation or anchoring of the hollow organ is separated from that of catheterization for drainage or infusion, and fixation is achieved by percutaneous placement of tack devices.
- a series of spaced apart tacks or retention devices are introduced percutaneously to the inside of the hollow organ, each associated with a filament-like tension piece which is used to apply fixation force, outside of the body by a device that bears against the exterior of the body.
- the introduction is achieved by placing a stiff T-shaped end of a tension filament within the lumen of a needle and allowing the flexible filament to protrude from a small slot at the tip of the needle, with the filament trailing alongside during introduction.
- a stylette or obturator is used to dislodge the head of the T piece from the lumen and the needle can be withdrawn.
- the "T" head is urged snugly against the inside surface of the hollow organ and holds it there.
- four needles may be employed to place four separate T-shaped devices.
- the head of the T element is of the order of a centimeter long and the filament is approximately 10 to 15 centimeters long.
- four of these tack devices are placed at the corners of a one or two-inch square and then the feeding tube is placed in the center of this square.
- the head of the T is preferably an elongated cylinder, at the mid portion of which is attached a filament of synthetic resin, the head being small enough to be introduced percutaneously and sufficiently stiff to prevent bending of the head so that it does not bend and pull out, and the filament being strong in tension and flexible enough to bend approximately 90° at its junction with the head of the T piece.
- the head of the T element is aligned with the axis of the needle and housed within it during insertion.
- the needle comprises conventional hypodermic tubing, 16 gauge, regular or thin wall
- the needle has a single bevel and the slot is cut from the more proximal surface of the bevel, and extends back, approximately 3/4 of a centimeter in length, sufficient to expose the point of attachment of the filament when the head of the T element is entirely housed within the needle.
- a small puncture with a hemostat is made in the skin to free the subcutaneous tissues, without penetrating the organ.
- the needle is then used to make the initial puncture into the organ.
- the organ is not fixed at all, so it is important that the needle be quite pointed, e.g. beveled about 30°.
- a stylette or obturator can pass down the lumen to dislodge the T after it is in place, and during introduction, the hollow lumen is utilized to aspirate air from the stomach to prove the location of the needle tip.
- a sterile kit is provided to the physician comprising the percutaneous insertion needle, the "T" element, with head preloaded in the needle, and with the filament lying alongside.
- An appropriate assembly of devices is pre-arranged along the filament for applying traction and securing the "T" element in place, preferably comprising a compressible pledgette to bear against the body, a compression-applying retention disc to bear against the pledgette and a crimpable clamping element for permanently clamping the filament and applying compression to the compression disc.
- the method of the invention for the percutaneous fixation of organs is characterized by the steps of inserting a hollow needle carrying a retaining device attached to a filament, through the skin into the organ, releasing the retaining device from the needle, and fixing the organ by adjusting the tension on the filament and clamping the filament by means bearing on the exterior of the body.
- the retaining device comprises a head that extends cross-wise to the filament in a "T" arrangement and a second filament is secured to one end of the head such that the head can be removed from the organ by pulling on the second filament while releasing the first filament.
- the device comprises a hollow tubular head and a tension filament
- the method comprising: drilling a hole in the side of the tubular head, introducing thermoplastic resin, e.g. a second filament, into the tubular head, melting the resin within the head, fusing the melted second filament to the first filament by passing the first filament through the side hole so that it contacts the melted resin, and allowing the device to cool.
- thermoplastic resin e.g. a second filament
- a preferred embodiment of the percutaneous fixation device comprises: a slotted hollow needle, a "T" head element attached to a filament, the filament being attached to the mid-portion of the head.
- the head is preloaded within the slotted needle such that the filament passes through the slot of the slotted needle, and a set of exterior tension applying devices are prearranged along the length of the filament.
- a second filament is attached to one end of the head, adapted to withdraw it by releasing the first filament.
- FIG. 1 is a side view of a "T" element for use in the percutaneous fixation device according to the invention.
- FIG. 1(a) is a sectional view of highly enlarged scale through the "T" element of FIG. 1;
- FIG. 2 is a side view of a preloaded needle assembly for percutaneous insertion of the "T" element into the body to fix the position of an organ;
- FIG. 2(a) is a plan view of enlarged scale of the needle tip region of the assembly of FIG. 2;
- FIG. 2(b) is a longitudinal sectional view of enlarged scale through the hub region of the needle of FIG. 2;
- FIG. 3--3(c) are diagrammatic representations to illustrate steps taken during the insertion of a "T” element and subsequent manipulations for securing the "T” element in place to fix the stomach to the abdominal wall;
- FIG. 3(d) is a view similar to FIG. 3(c) of an alternative embodiment
- FIG. 4 is a diagrammatic representation of the positioning of four tacks according to the invention, securing the stomach to the abdominal wall in preparation for insertion of a feeding catheter through the abdominal wall.
- the "T" element 8 consists of head 10 and filamentary tension leg 12.
- head 10 preferably has length A, 1/4 inch, outer diameter B, 0.035 inch and rounded ends
- filament 12 has length C, 5 inch, and outer diameter D, 0.008 inch and is highly flexible.
- the head is constructed to resist bending when pulled by attached filament 12 and is radiopaque so that it can be seen with a fluoroscope during and after insertion into the body.
- the head is of stiff stainless steel tubing with internal diameter E, 0.025 inch and with a central hole 14 formed in its side of diameter F, 0.020 inch.
- Filament 12 is attached to head 10 by inserting a separate segment of filament 16 within and axially aligned with head 10, heating the head to melt segment 16 with the result that the resinous filament melts and draws into the form of a large central ball 18, and pushing filament 12 through hole 14 into the molten ball 18.
- ball 18 is substantially larger than central hole 14 and forms a firm root for filament 12, attaching it to head 10. Attachment of filament 12 to ball 18 also prevents the edges of the filament from touching the portions of the tube that bound hole 14, to avoid abrasion and subsequent breakage of filament 12.
- filament 12 is preferably of nylon material such as suture material or fishing line, or of similar polymers, such as polyester.
- Inner ball 18 may be of any compatible, strong material but preferably is of the same thermoplastic material as that of filament 12 to ensure good bonding, to form a strong, integrated structure.
- head 10 of the "T” element is inserted into the tip of hollow insertion needle 30 which has a longitudinal slot of approximate length I, 0.3 inch in its tubular wall.
- Filament 12 passes through slot 32 and bends back in the proximal direction.
- a second filament 34 is attached to one end of head 10. This second filament is provided as a means for removing the head of an inserted "T” element from the body after use (see below).
- filament 34 is of material similar to filament 12 and is attached to head 10, through a hollow end of the head, at the same time as filament 12 is attached, when ball 18 is molten.
- Needle 30 has a sharp tip, a length suitable to permit percutaneous insertion (e.g. 5 inches for stomach tack purposes) and an internal diameter G great enough to accept head 10 so that head 10 is entirely within the needle when the needle is thrust through the flesh and the organ wall.
- needle 30 is 16 gauge, small enough in external diameter H that it can be percutaneously introduced and penetrate the skin and flesh of the patient and the wall of the desired hollow organ (e.g. the stomach) without bending.
- the two filaments 12 and 34 and needle 30 are inserted through compressible pledgette 36 such that the filaments run alongside the exterior of the needle.
- Pledgette 36 is preferably of a soft, absorbent, spongy material such as cotton or methylcellulose, and acts as a cushion against the skin and as an absorbent for fluids.
- the filaments also ass through retention washer 38, and crimpable clamp devices 44 and 46.
- Filament 12 also passes through plastic tube 48 which acts as a temporary clamping site (see below).
- filament 12 passes through a second crimpable clamp device 70, between device 44 and retention washer 38, which can be used to reset the device should it loosen over time after device 44 has been initially clamped).
- Washer 38 is of material such as acrylic or a similar plastic or of metal, of approximate thickness 0.060", sufficiently stiff to transmit retention stresses between filament and pledgette.
- Plastic tube 48 must be of a material which satisfies two different requirements, (i) sufficiently supple in the direction of its diameter so that it can be squeezed by a clamp to grip the filament within it, and (ii) strong in compression to temporarily axially bear upon device 44 and via device 44, upon the pledgette, to apply tension and fix "T" element 8 in place.
- tube 48 may be of polyethylene, vinyl, or other flexible polymer tubing of suitable wall thickness.
- Tube 48 is of length K, approximately 1 inch.
- Crimp rings 44, 46, and 70 are preferably of aluminum so that they are readily fixed in place using common medical instruments that apply clamping pressure (e.g., a hemostatic clamp).
- needle 30 ends at a leur lock fitting at hub 50, into which syringe 52 with plunger 56 may be inserted.
- obturator or stylette 54 is placed within needle 30 with one end near to or touching head 10 of the "T" element 8, and the other end extending through hub 50.
- the proximal end 55 of obturator 54 is of sufficient width, N, greater than the internal diameter, M, of needle 30, that it is unable to pass through needle 30, so that it serves as a stop.
- Obturator 54 is of sufficient length to extend from the distal end of needle 30 approximately 1 inch into syringe 52.
- plunger 56 of syringe 52 When plunger 56 of syringe 52 is pushed fully down it can engage the proximal end of obturator 54 and eject head 10 from the distal end of needle 30, by moving obturator 54 distance J, approximately the length of head 10 plus any distance provided between the tip of the needle and head 10. (If desired obturator 54 may instead by moved distance J by pushing it with a finger).
- a nasogastric tube Prior to insertion of the "T" element 8 of the percutaneous fixation device into the stomach according to this embodiment, a nasogastric tube is passed and the patient given intravenous glucogon to temporarily stop the motion of the gastro-intestinal tract and thus make it easier to distend the stomach.
- An air pumping bulb is then attached to the nasogastric tube and air is carefully pumped into the stomach.
- site 72 (FIG. 4) is chosen, at which a catheter is to be inserted through the skin and an area of approximately 2 inch square around the site is infiltrated with local anaethesia.
- the points 74 (FIG. 4) for introduction of the heads of the percutaneous fixation devices (usually four in number) are chosen and marked.
- needle 30 containing the head 10 of the "T" element 8 is filled with liquid by the syringe and the percutaneous fixation device is inserted through skin and flesh 62, across intraperitoneal space 66 and through stomach wall 60 into the stomach cavity 64. Insertion is followed using a fluoroscope to ensure that needle 30 is correctly positioned. If desired, needle 30 may be filled with an appropriate liquid, such as radiopaque material. If this is done, then the movement of needle 30 into the body is more easily followed with the fluoroscope. When the tip of needle 30 is within the air-containing stomach, by moving the plunger of the syringe proximally, air bubbles will enter needle 30 and the attached syringe. Observance of these air bubbles will aid the inserter in confirming insertion into the stomach cavity (FIG. 3).
- head 10 of the percutaneous fixation device is removed from needle 30 by insertion of obturator 54 into needle hub 50 and gently pushing obturator 54 down distance J (FIG. 2b) until its distal end is next to the distal end of needle 30 (FIG. 3(a).
- the head 10 may be displaced using the syringe as shown in FIG. 2(b). Once head 10 has been displaced into the stomach space, needle 30 may be removed.
- head 10 engaged cross-wise upon the stomach wall, can be used to pull stomach wall 60 towards abdominal wall 62 until they touch. Head 10 is then secured by pushing pledgette 36 along filament 12 with washer 38 until the indentation of the skin by the pledgette indicates a safisfactory tension on filament 12. Washer 38 and pledgette 36 are then secured in place temporarily by clamp 68 applied to tube 48.
- the remaining percutaneous fixation devices 74 are inserted and fixed in a similar manner to the first one and the tension on each of filaments 12 adjusted. Then each is more permanently clamped by crimping the crimpable clamp devices 44 (FIG. 3(c)).
- the devices are usually placed distance L, e.g. 1", apart around site 72, the proposed site for insertion of the catheter (FIG. 4).
- the parts of the percutaneous fixation device apparatus proximal of the crimped device 46 may then be removed and filament 12 cut to an appropriate length (FIG. 3(c)).
- Device 44 may be clamped at this point to ensure the availability of filament 34 for utilization at a later time. (see below).
- a second crimpable device 70 may be provided for later adjustment of the tension on filament 12. For example, if the tension slackens, filament 12 may be pulled through crimpable device 70 and then device 70 is fixed to reposition pledgette 36 more inwardly along filament 12, see FIG. 3(d) dotted lines.
- the percutaneous fixation devices normally remain in place until the stomach wall and skin have adhered to each other (2-3 weeks). At this point the percutaneous fixation devices may be removed either by cutting filament 12 and allowing head 10 to pass through the intestinal tract of the body or, if filament 34 is present, filament 12 may be cut to release it from clamp 44 or 70 and head 10 may be pulled through the skin using filament 34. Because filament 34 is attached to the end of the head, tension on filament 34 causes the head to turn to align itself with the filament and the exiting opening, thus to facilitate end-wise movement of the head.
- hole 14 of diameter F is drilled into one side of tubular head 10 near to its mid point.
- Filament 16 of strong thermoplastic is introduced into head 10 and the head is held horizontally with hole 14 pointing upward.
- the head is then heated in an inert atmosphere (for example nitrogen gas) to a temperature above the melting temperature of filament 16 but below the annealing temperature of the stainless steel of head 10.
- an inert atmosphere for example nitrogen gas
- a nylon filament a temperature between 500°-600° F. is suitable.
- head 10 is heated using a soldering iron applied to its mid region, on the side opposite of hole 14.
- filament 16 has melted, filament 12 of the same material is introduced through hole 16 and pushed into molten ball 18.
- filament 34 is also inserted at this time throughone end of head 10 and pushed into molten ball 18. The assembly is then permitted to cool.
- pledgette 36, washer 38, tube 48, and clamping devices 44, 46, and 70 are threaded in appropriate order along filaments 12 and 34.
- Each of these pieces has a hole just greater in diameter than the respective filament, i.e. approximately 0.010".
- Head 10 is inserted into hollow slotted needle 30 such that filament 12 passes through the slot and the attached end of filament 34 is at the distal end of needle 30.
- the whole apparatus may be gas sterilized.
- the percutaneous fixation device is useful for the fixation or anchoring of hollow organs without the need for a complex operation, or the need to engage a surgeon.
- Organs such as the stomach, kidney, gall bladder, large and small bowel, urinary bladder, and duodenum may be readily moved within the body to any desired position simply by inserting "T" element 8 of the percutaneous fixation device into the organ and adjusting the tension on attached filament 12. Once fixed in place, catheters are readily inserted into the desired organ. Since the percutaneous fixation device may be readily removed, using filament 34, there is no problem with leaving the head of the percutaneous fixation device within the body, though in certain cases the elimination system of the body may be employed to remove the head, and in still other cases the head may be left permanently in the body.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Rheumatology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
For percutaneous fixation of a hollow organ of a body, a hollow needle carrying a retaining device attached to a tension filament through the skin into the hollow organ, the retaining device is released from the needle, and the organ is fixed by adjusting the tension on the filament and clamping the filament outside the body by means bearing upon the exterior of the body.
Description
.Iadd.This application is a reissue of Ser. No. 06/798,781 filed Nov. 18, 1985, U.S. Pat. No. 4,705,040. .Iaddend.
In preparation for inserting a tube such as drainage or feeding tube into a hollow organ of the body, it is desired to fix the hollow organ to a body wall. This aids in accurate placement of the tube and in preventing leakage that can contaminate the peritoneal cavity and lead to peritonitus.
In the past, fixation of hollow organs has mainly been accomplished by suturing during open surgery as part of the procedure of placing the tube. However, to avoid the drawbacks of incision, general anesthesia and need for an operating room, it is desirable to accomplish the entire procedure without surgery.
For this purpose, a technique has been used which obtains some degree of fixation, particularly of the gastric wall to the body wall. A tube with a blunt end which is installed, in a retrograde manner from the inside of the stomach towards the outside, the blunt end of the tube engaging the stomach wall and holding it in place. For this purpose, a gastroscope is placed in the patient's stomach, a site is chosen on the skin using the light from the gastroscope, a puncture is made through the skin and a guidewire is introduced into the stomach. This guidewire is grasped by the gastroscope and pulled out of the stomach through the esophagus and out of the mouth. The end of the wire protruding from the mouth is then attached to a tube, having a leading pointed end and a trailing blunt end. The guidewire is pulled back into the stomach and the pointed end of the tube is pulled through the gastric wall and the skin until the blunt end of the tube is secured against the stomach and holds the stomach wall against the body wall.
The disadvantages of this technique are that it requires a big gastroscope which has inherent risks, it is not possible to employ a gastroscope with all patients, and the tube is critically dependent upon its own fixation. If such tube were removed inadvertently, the fixation would be lost, leaving an open hole in the stomach and no method of fixation, with resultant leak into the peritoneal cavity.
Also in the prior art, but not to be confused with techniques which achieve secure fixation of the wall of the hollow organ to the body wall, are the uses of tubes which have ends of various designs to prevent inadvertent withdrawal of the tube itself. There are several of these, some of which are introduced percutaneously while others are utilized during surgical procedures. One is known by the name Mallincott, another is a balloon employed on the end of a Foley catheter, and there are various looped catheters such as the Cope loop. Basically, the ends of these catheters prevent the catheter from being withdrawn and to some degree may serve to retain the hollow organ in position against the body wall. However, in order to fix a hollow organ wall in place one has to apply traction, but traction on the catheter tends, after a period of time, to pull the catheter out, and therefore the needed degree of traction, for secure fixation, is incompatible with the primary objective of such devices.
Objects of the present invention are to provide a device and method to obtain better fixation of hollow organs by techniques that do not require surgery.
SUMMARY OF THE INVENTIONAccording to the present invention, the task of fixation or anchoring of the hollow organ is separated from that of catheterization for drainage or infusion, and fixation is achieved by percutaneous placement of tack devices.
According to the invention, a series of spaced apart tacks or retention devices are introduced percutaneously to the inside of the hollow organ, each associated with a filament-like tension piece which is used to apply fixation force, outside of the body by a device that bears against the exterior of the body. Preferably, the introduction is achieved by placing a stiff T-shaped end of a tension filament within the lumen of a needle and allowing the flexible filament to protrude from a small slot at the tip of the needle, with the filament trailing alongside during introduction. After the needle is passed through the skin and enters the hollow organ, a stylette or obturator is used to dislodge the head of the T piece from the lumen and the needle can be withdrawn. At this point tension is applied along the filament and the "T" head is urged snugly against the inside surface of the hollow organ and holds it there. In practice, four needles may be employed to place four separate T-shaped devices. Preferably, the head of the T element is of the order of a centimeter long and the filament is approximately 10 to 15 centimeters long. In the case of the stomach, four of these tack devices are placed at the corners of a one or two-inch square and then the feeding tube is placed in the center of this square.
The head of the T is preferably an elongated cylinder, at the mid portion of which is attached a filament of synthetic resin, the head being small enough to be introduced percutaneously and sufficiently stiff to prevent bending of the head so that it does not bend and pull out, and the filament being strong in tension and flexible enough to bend approximately 90° at its junction with the head of the T piece. In the presently preferred form, the head of the T element is aligned with the axis of the needle and housed within it during insertion.
Preferably, the needle comprises conventional hypodermic tubing, 16 gauge, regular or thin wall, the needle has a single bevel and the slot is cut from the more proximal surface of the bevel, and extends back, approximately 3/4 of a centimeter in length, sufficient to expose the point of attachment of the filament when the head of the T element is entirely housed within the needle. Before use of the needle, usually a small puncture with a hemostat is made in the skin to free the subcutaneous tissues, without penetrating the organ. The needle is then used to make the initial puncture into the organ. At the time of the initial puncture, the organ is not fixed at all, so it is important that the needle be quite pointed, e.g. beveled about 30°.
By having the needle hollow throughout its length, a stylette or obturator can pass down the lumen to dislodge the T after it is in place, and during introduction, the hollow lumen is utilized to aspirate air from the stomach to prove the location of the needle tip.
In preferred embodiments, a sterile kit is provided to the physician comprising the percutaneous insertion needle, the "T" element, with head preloaded in the needle, and with the filament lying alongside. An appropriate assembly of devices is pre-arranged along the filament for applying traction and securing the "T" element in place, preferably comprising a compressible pledgette to bear against the body, a compression-applying retention disc to bear against the pledgette and a crimpable clamping element for permanently clamping the filament and applying compression to the compression disc.
The method of the invention for the percutaneous fixation of organs is characterized by the steps of inserting a hollow needle carrying a retaining device attached to a filament, through the skin into the organ, releasing the retaining device from the needle, and fixing the organ by adjusting the tension on the filament and clamping the filament by means bearing on the exterior of the body.
In preferred embodiments of this method, the retaining device comprises a head that extends cross-wise to the filament in a "T" arrangement and a second filament is secured to one end of the head such that the head can be removed from the organ by pulling on the second filament while releasing the first filament.
In preferred embodiments of manufacture of the percutaneous fixation device, the device comprises a hollow tubular head and a tension filament, the method comprising: drilling a hole in the side of the tubular head, introducing thermoplastic resin, e.g. a second filament, into the tubular head, melting the resin within the head, fusing the melted second filament to the first filament by passing the first filament through the side hole so that it contacts the melted resin, and allowing the device to cool.
A preferred embodiment of the percutaneous fixation device comprises: a slotted hollow needle, a "T" head element attached to a filament, the filament being attached to the mid-portion of the head. The head is preloaded within the slotted needle such that the filament passes through the slot of the slotted needle, and a set of exterior tension applying devices are prearranged along the length of the filament. In another embodiment, a second filament is attached to one end of the head, adapted to withdraw it by releasing the first filament.
DESCRIPTION OF PREFERRED EMBODIMENTSThe drawings will first briefly be described.
FIG. 1 is a side view of a "T" element for use in the percutaneous fixation device according to the invention.
FIG. 1(a) is a sectional view of highly enlarged scale through the "T" element of FIG. 1;
FIG. 2 is a side view of a preloaded needle assembly for percutaneous insertion of the "T" element into the body to fix the position of an organ;
FIG. 2(a) is a plan view of enlarged scale of the needle tip region of the assembly of FIG. 2;
FIG. 2(b) is a longitudinal sectional view of enlarged scale through the hub region of the needle of FIG. 2;
FIG. 3--3(c) are diagrammatic representations to illustrate steps taken during the insertion of a "T" element and subsequent manipulations for securing the "T" element in place to fix the stomach to the abdominal wall;
FIG. 3(d) is a view similar to FIG. 3(c) of an alternative embodiment;
FIG. 4 is a diagrammatic representation of the positioning of four tacks according to the invention, securing the stomach to the abdominal wall in preparation for insertion of a feeding catheter through the abdominal wall.
STRUCTURE Percutaneous fixation device (a) "T" elementReferring to FIGS. 1 and 1(a) the "T" element 8 consists of
head10 and
filamentary tension leg12. In this embodiment,
head10 preferably has length A, 1/4 inch, outer diameter B, 0.035 inch and rounded ends, and
filament12 has length C, 5 inch, and outer diameter D, 0.008 inch and is highly flexible. The head is constructed to resist bending when pulled by attached
filament12 and is radiopaque so that it can be seen with a fluoroscope during and after insertion into the body.
In this embodiment the head is of stiff stainless steel tubing with internal diameter E, 0.025 inch and with a central hole 14 formed in its side of diameter F, 0.020 inch.
Filament12 is attached to
head10 by inserting a separate segment of
filament16 within and axially aligned with
head10, heating the head to
melt segment16 with the result that the resinous filament melts and draws into the form of a large central ball 18, and pushing
filament12 through hole 14 into the molten ball 18. When cooled and set, ball 18 is substantially larger than central hole 14 and forms a firm root for
filament12, attaching it to
head10. Attachment of
filament12 to ball 18 also prevents the edges of the filament from touching the portions of the tube that bound hole 14, to avoid abrasion and subsequent breakage of
filament12. Also, the gradually enlarging transition region from filament to ball serves as a strain relief.
Filament12 is preferably of nylon material such as suture material or fishing line, or of similar polymers, such as polyester. Inner ball 18 may be of any compatible, strong material but preferably is of the same thermoplastic material as that of
filament12 to ensure good bonding, to form a strong, integrated structure.
Referring to FIG. 2(a),
head10 of the "T" element is inserted into the tip of
hollow insertion needle30 which has a longitudinal slot of approximate length I, 0.3 inch in its tubular wall.
Filament12 passes through
slot32 and bends back in the proximal direction. In one embodiment a
second filament34 is attached to one end of
head10. This second filament is provided as a means for removing the head of an inserted "T" element from the body after use (see below). Preferably
filament34 is of material similar to
filament12 and is attached to head 10, through a hollow end of the head, at the same time as
filament12 is attached, when ball 18 is molten.
30 has a sharp tip, a length suitable to permit percutaneous insertion (e.g. 5 inches for stomach tack purposes) and an internal diameter G great enough to accept
head10 so that
head10 is entirely within the needle when the needle is thrust through the flesh and the organ wall. Preferably
needle30 is 16 gauge, small enough in external diameter H that it can be percutaneously introduced and penetrate the skin and flesh of the patient and the wall of the desired hollow organ (e.g. the stomach) without bending.
Referring to FIG. 2 the two
filaments12 and 34 and
needle30 are inserted through
compressible pledgette36 such that the filaments run alongside the exterior of the needle.
Pledgette36 is preferably of a soft, absorbent, spongy material such as cotton or methylcellulose, and acts as a cushion against the skin and as an absorbent for fluids. The filaments also ass through
retention washer38, and
crimpable clamp devices44 and 46.
Filament12 also passes through
plastic tube48 which acts as a temporary clamping site (see below). (In another embodiment, FIG. 3d,
filament12 passes through a second crimpable clamp device 70, between
device44 and
retention washer38, which can be used to reset the device should it loosen over time after
device44 has been initially clamped).
Washer38 is of material such as acrylic or a similar plastic or of metal, of approximate thickness 0.060", sufficiently stiff to transmit retention stresses between filament and pledgette.
Plastic tube48 must be of a material which satisfies two different requirements, (i) sufficiently supple in the direction of its diameter so that it can be squeezed by a clamp to grip the filament within it, and (ii) strong in compression to temporarily axially bear upon
device44 and via
device44, upon the pledgette, to apply tension and fix "T" element 8 in place. For example,
tube48 may be of polyethylene, vinyl, or other flexible polymer tubing of suitable wall thickness.
Tube48 is of length K, approximately 1 inch. Crimp rings 44, 46, and 70, are preferably of aluminum so that they are readily fixed in place using common medical instruments that apply clamping pressure (e.g., a hemostatic clamp).
Referring to FIG. 2,
needle30 ends at a leur lock fitting at
hub50, into which
syringe52 with
plunger56 may be inserted. Referring to FIG. 2b, obturator or
stylette54 is placed within
needle30 with one end near to or touching
head10 of the "T" element 8, and the other end extending through
hub50. The
proximal end55 of
obturator54 is of sufficient width, N, greater than the internal diameter, M, of
needle30, that it is unable to pass through
needle30, so that it serves as a stop.
Obturator54 is of sufficient length to extend from the distal end of
needle30 approximately 1 inch into
syringe52. When
plunger56 of
syringe52 is pushed fully down it can engage the proximal end of
obturator54 and eject
head10 from the distal end of
needle30, by moving
obturator54 distance J, approximately the length of
head10 plus any distance provided between the tip of the needle and
head10. (If desired
obturator54 may instead by moved distance J by pushing it with a finger).
Prior to insertion of the "T" element 8 of the percutaneous fixation device into the stomach according to this embodiment, a nasogastric tube is passed and the patient given intravenous glucogon to temporarily stop the motion of the gastro-intestinal tract and thus make it easier to distend the stomach. An air pumping bulb is then attached to the nasogastric tube and air is carefully pumped into the stomach. When the stomach is moderately distended, site 72 (FIG. 4) is chosen, at which a catheter is to be inserted through the skin and an area of approximately 2 inch square around the site is infiltrated with local anaethesia. The points 74 (FIG. 4) for introduction of the heads of the percutaneous fixation devices (usually four in number) are chosen and marked.
Referring to FIG. 3,
needle30 containing the
head10 of the "T" element 8 is filled with liquid by the syringe and the percutaneous fixation device is inserted through skin and flesh 62, across intraperitoneal space 66 and through
stomach wall60 into the
stomach cavity64. Insertion is followed using a fluoroscope to ensure that
needle30 is correctly positioned. If desired,
needle30 may be filled with an appropriate liquid, such as radiopaque material. If this is done, then the movement of
needle30 into the body is more easily followed with the fluoroscope. When the tip of
needle30 is within the air-containing stomach, by moving the plunger of the syringe proximally, air bubbles will enter
needle30 and the attached syringe. Observance of these air bubbles will aid the inserter in confirming insertion into the stomach cavity (FIG. 3).
Referring to FIG. 3(a),
head10 of the percutaneous fixation device is removed from
needle30 by insertion of
obturator54 into
needle hub50 and gently pushing
obturator54 down distance J (FIG. 2b) until its distal end is next to the distal end of needle 30 (FIG. 3(a). The
head10 may be displaced using the syringe as shown in FIG. 2(b). Once
head10 has been displaced into the stomach space,
needle30 may be removed.
Referring to FIG. 3(b), by pulling on
filament12,
head10, engaged cross-wise upon the stomach wall, can be used to pull
stomach wall60 towards abdominal wall 62 until they touch.
Head10 is then secured by pushing
pledgette36 along
filament12 with
washer38 until the indentation of the skin by the pledgette indicates a safisfactory tension on
filament12.
Washer38 and
pledgette36 are then secured in place temporarily by clamp 68 applied to
tube48.
Referring to FIG. 4, the remaining
percutaneous fixation devices74, are inserted and fixed in a similar manner to the first one and the tension on each of
filaments12 adjusted. Then each is more permanently clamped by crimping the crimpable clamp devices 44 (FIG. 3(c)). (The devices are usually placed distance L, e.g. 1", apart around site 72, the proposed site for insertion of the catheter (FIG. 4).) The parts of the percutaneous fixation device apparatus proximal of the crimped device 46 may then be removed and
filament12 cut to an appropriate length (FIG. 3(c)).
Device44 may be clamped at this point to ensure the availability of
filament34 for utilization at a later time. (see below).
Referring to FIG. 3(d), in an alternative embodiment a second crimpable device 70 may be provided for later adjustment of the tension on
filament12. For example, if the tension slackens,
filament12 may be pulled through crimpable device 70 and then device 70 is fixed to reposition
pledgette36 more inwardly along
filament12, see FIG. 3(d) dotted lines.
Referring to FIGS. 3(c) and (d), the percutaneous fixation devices normally remain in place until the stomach wall and skin have adhered to each other (2-3 weeks). At this point the percutaneous fixation devices may be removed either by cutting
filament12 and allowing
head10 to pass through the intestinal tract of the body or, if
filament34 is present,
filament12 may be cut to release it from
clamp44 or 70 and
head10 may be pulled through the
skin using filament34. Because
filament34 is attached to the end of the head, tension on
filament34 causes the head to turn to align itself with the filament and the exiting opening, thus to facilitate end-wise movement of the head.
Referring to FIG. 1(a) hole 14 of diameter F is drilled into one side of
tubular head10 near to its mid point.
Filament16 of strong thermoplastic is introduced into
head10 and the head is held horizontally with hole 14 pointing upward. The head is then heated in an inert atmosphere (for example nitrogen gas) to a temperature above the melting temperature of
filament16 but below the annealing temperature of the stainless steel of
head10. Using a nylon filament a temperature between 500°-600° F. is suitable. Preferably
head10 is heated using a soldering iron applied to its mid region, on the side opposite of hole 14. When
filament16 has melted,
filament12 of the same material is introduced through
hole16 and pushed into molten ball 18. If to be employed,
filament34 is also inserted at this time throughone end of
head10 and pushed into molten ball 18. The assembly is then permitted to cool.
Once molten ball 18 and the filament are bonded together, pledgette 36,
washer38,
tube48, and clamping
devices44, 46, and 70 are threaded in appropriate order along
filaments12 and 34. Each of these pieces has a hole just greater in diameter than the respective filament, i.e. approximately 0.010".
Head10 is inserted into hollow slotted
needle30 such that
filament12 passes through the slot and the attached end of
filament34 is at the distal end of
needle30. The whole apparatus may be gas sterilized.
The percutaneous fixation device is useful for the fixation or anchoring of hollow organs without the need for a complex operation, or the need to engage a surgeon. Organs such as the stomach, kidney, gall bladder, large and small bowel, urinary bladder, and duodenum may be readily moved within the body to any desired position simply by inserting "T" element 8 of the percutaneous fixation device into the organ and adjusting the tension on attached
filament12. Once fixed in place, catheters are readily inserted into the desired organ. Since the percutaneous fixation device may be readily removed, using
filament34, there is no problem with leaving the head of the percutaneous fixation device within the body, though in certain cases the elimination system of the body may be employed to remove the head, and in still other cases the head may be left permanently in the body.
Claims (10)
1. A method for the fixation of a hollow organ of a living body to a body wall comprising:
percutaneously inserting a rigid hollow needle carrying a retaining device attached to a trailing tension filament, through the skin, from outside the body, into said hollow organ in the manner that a portion of said trailing tension filament remains outside of the body,
said retaining device having a portion adapted to engage and apply pressure to an interior wall of said hollow organ,
releasing said retaining device within said hollow organ from said needle,
pulling a portion of said trailing tension filament from outside the body to draw said retaining device against the interior wall of said hollow organ to pull said organ against the body wall, and
fixing said organ by adjusting the tension on said filament and clamping said filament outside the body by means bearing upon the exterior of the body.
2. The method of claim 1 wherein said retaining device comprises a head that extends cross-wise to said filament in a "T" arrangement upon release from said needle.
3. A percutaneous fixation device suitable to fix the position of a hollow organ within a body which comprises:
a hollow needle; and
a "T" head, wherein said head comprises a stiff hollow tube having a hole in its side, a root mass of resinous material larger than said hole disposed within said tube, a tension filament attached to the mid-portion of said head, said head dislodgedly held within said needle, said filament extending through said hole and bonded to said mass, with said filament extending back with said needle, and means threaded on said filament for bearing with compression against the body to apply tension to said filament to draw said head against the inner surface of said hollow organ.
4. A retaining element adapted for insertion by a needle and eventual removal through the passage formed by said needle, comprising an elongated stiff head, a primary flexible tension filament secured to said head, and a secondary tension filament secured to an end of said head, adapted to be pulled upon to withdraw said head end-wise upon release of tension on said first tension element. .Iadd.
5. A percutaneous fixation device suitable to fix the position of a hollow organ within a body, comprising:
a "T" head comprising a stiff member,
an elongated, relatively more flexible primary tension filament secured at the mid-region of said head, said elongated primary tension filament having a free end trailing back from said head, and
compressible means threaded on said elongated primary tension filament for bearing in a cushioning manner with compression against the skin of the body, and means for pressing upon said compressible means while clamping said primary tension member to apply tension to said primary tension filament to draw said head against the inner surface of the hollow organ. .Iaddend. .Iadd.6. The primary fixation device of claim 5 wherein said device is adapted for insertion through a passage, and further comprises a secondary tension filament secured at an end of said head, adapted to be pulled upon to withdraw said head endwise upon release of tension on said primary tension filament. .Iaddend. .Iadd.7. The percutaneous fixation device of claim 5 or 6 wherein said head comprises a hollow tube having a hole defined in its side wall, and said primary tension filament extends through said hole. .Iaddend. .Iadd.8. The percutaneous fixation device of claim 5 or 6 wherein said head comprises a stainless steel tube having a hole defined in its side wall, and said primary tension filament extends
through said hole. .Iaddend. .Iadd.9. The percutaneous fixation device of claim 5 or 6 wherein said compressible means comprises a compressible cushioning element and a retention member. .Iaddend. .Iadd.10. The percutaneous fixation device of claim 9 wherein said compressible cushioning element comprises an absorbent for fluids. .Iaddend. .Iadd.11. The percutaneous fixation device of claim 5 or 6 wherein said means for pressing upon said compressible means comprises:
a crimpable element in a first state adapted for sliding movement along said primary tension filament, toward said head, in a manner for application of compressive force upon said compressible cushioning element, and in a second state adapted for engagement upon said primary tension filament for maintaining said compressible cushioning element in a compressive state, and
a clamping element in a first state adapted for sliding movement along said primary tension filament, toward said head, in a manner for application of compressive force upon said compressible cushioning element, and in a second state adapted upon application of radially directed force upon said clamping element for engagement upon said primary tension filament for maintaining said compressible cushioning element in a compressive state. .Iaddend. .Iadd.12. A method for the fixation of a hollow organ of a living body to a body wall comprising:
inserting a retaining device attached to a trailing tension filament, through the skin, from outside the body, into the hollow organ in the manner that a portion of said trailing tension filament remains outside of the body,
said retaining device having a portion adapted to engage and apply pressure to an interior wall of the hollow organ,
releasing said retaining device within said hollow organ,
pulling a portion of said trailing filament from outside the body to draw said retaining device against the interior wall of the hollow organ to pull the hollow organ against the body wall, and
fixing the hollow organ by adjusting the tension on said filament outside
the body. .Iaddend. .Iadd.13. The method of claim 12 wherein said retaining device comprises a head that extends cross-wise to said filament in a "T" arrangement upon release within the hollow organ. .Iaddend.
.Iadd.4. A percutaneous fixation device suitable to fix the position of a hollow organ within a body which comprises
a tension filament having a distal end destined for the interior of the organ and a trailing portion extending in usage through an adjacent wall of the body and terminating outside the exterior of the body,
a cross bar attached to the distal end of said filament so as to form a "T" head for forcible engagement of the inner surface of the organ, and
a fastener connected to said filament for securing the trailing portion of said filament on the exterior of the body under tension so as to draw the
organ toward the adjacent wall. .Iaddend. .Iadd.15. The device of claim 14, wherein said fastener comprises means for bearing against the exterior of the body. .Iaddend. .Iadd.16. The device of claim 15, wherein said fastener further comprises means for fixing the position of said bearing means along the trailing end of said filament. .Iaddend. .Iadd.17. A method of securing a hollow organ within a body to a wall of the body in preparation for insertion of a catheter through the wall into the interior of the organ, comprising the steps of
selecting a site for catheter insertion on the exterior of the body,
inserting a first retaining device from outside the body through the body wall into the hollow organ at a position on the exterior of the body nearby but displaced from said catheter insertion site, said retaining device having a head portion adapted to forcibly engage an interior wall of the hollow organ and a trailing tension filament attached to said head portion extending through the organ and body walls outside of the body,
pulling the trailing filament from outside the body to draw said retaining device against the interior wall of the hollow organ to pull the hollow organ against the body wall,
fixing the hollow organ by adjusting the tension on said filament outside the body, and
repeating the steps of inserting, pulling and fixing with a plurality of similar retaining devices at other positions, said other positions together with the position of said first retaining device surrounding said
catheter insertion site. .Iaddend. .Iadd.18. The method of claim 17, wherein four of said retaining devices are used in a square configuration centered on said catheter insertion site. .Iaddend. .Iadd.19. A method for the fixation of a hollow organ of a living body to a body wall comprising:
percutaneously providing a tract from outside the body through the skin and into the hollow organ,
inserting a retaining device attached to a trailing tension filament, through the tract from outside the body, into said hollow organ in the manner that a portion of said trailing tension filament remains outside of the body,
said retaining device having a portion adapted to engage and apply pressure to an interior wall of said hollow organ,
releasing said retaining device within said hollow organ from said tract,
pulling a portion of said trailing tension filament from outside the body to draw said retaining device against the interior wall of said hollow organ to pull said organ against the body wall, and
fixing said organ by adjusting the tension on said filament. .Iaddend.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/435,343 USRE34021E (en) | 1985-11-18 | 1989-11-13 | Percutaneous fixation of hollow organs |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US06/798,781 US4705040A (en) | 1985-11-18 | 1985-11-18 | Percutaneous fixation of hollow organs |
US07/435,343 USRE34021E (en) | 1985-11-18 | 1989-11-13 | Percutaneous fixation of hollow organs |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/798,781 Reissue US4705040A (en) | 1985-11-18 | 1985-11-18 | Percutaneous fixation of hollow organs |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE34021E true USRE34021E (en) | 1992-08-04 |
Family
ID=27030524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/435,343 Expired - Lifetime USRE34021E (en) | 1985-11-18 | 1989-11-13 | Percutaneous fixation of hollow organs |
Country Status (1)
Country | Link |
---|---|
US (1) | USRE34021E (en) |
Cited By (191)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5307924A (en) * | 1993-03-26 | 1994-05-03 | Abbott Laboratories | Packaging for T-shaped tension devices |
US5318543A (en) * | 1992-10-08 | 1994-06-07 | Abbott Laboratories | Laparoscopic jejunostomy instrumentation kit |
EP0632999A1 (en) * | 1993-07-01 | 1995-01-11 | United States Surgical Corporation | Soft tissue repair system and method |
US5429598A (en) * | 1994-04-19 | 1995-07-04 | Applied Medical Resources Corporation | Surgical access device and procedure |
WO1996009005A1 (en) * | 1994-09-19 | 1996-03-28 | Abbott Laboratories | Spring-loaded reciprocable stylet holder |
US5626614A (en) * | 1995-12-22 | 1997-05-06 | Applied Medical Resources Corporation | T-anchor suturing device and method for using same |
US5702352A (en) * | 1994-09-26 | 1997-12-30 | Olympus Optical Co., Ltd. | Tools and method for manipulating organs in human body |
US5935107A (en) * | 1996-10-07 | 1999-08-10 | Applied Medical Resources Corporation | Apparatus and method for surgically accessing a body cavity |
EP0983024A1 (en) * | 1997-12-29 | 2000-03-08 | Lee L. Swanstrom | Method and apparatus for attaching or locking an implant to an anatomic vessel or hollow organ wall |
WO2000048658A1 (en) | 1999-02-18 | 2000-08-24 | Abbott Laboratories | External retaining device for a catheter and catheter assembly and method using same |
US6183411B1 (en) | 1998-09-21 | 2001-02-06 | Myocor, Inc. | External stress reduction device and method |
US6261222B1 (en) | 1997-01-02 | 2001-07-17 | Myocor, Inc. | Heart wall tension reduction apparatus and method |
US6260552B1 (en) | 1998-07-29 | 2001-07-17 | Myocor, Inc. | Transventricular implant tools and devices |
US6264602B1 (en) | 1998-07-29 | 2001-07-24 | Myocor, Inc. | Stress reduction apparatus and method |
US6293961B2 (en) | 1998-12-30 | 2001-09-25 | Ethicon, Inc. | Suture locking device |
US6306159B1 (en) | 1998-12-23 | 2001-10-23 | Depuy Orthopaedics, Inc. | Meniscal repair device |
US6332863B1 (en) | 1997-01-02 | 2001-12-25 | Myocor, Inc. | Heart wall tension reduction kit |
US6332893B1 (en) | 1997-12-17 | 2001-12-25 | Myocor, Inc. | Valve to myocardium tension members device and method |
US6343605B1 (en) | 2000-08-08 | 2002-02-05 | Scimed Life Systems, Inc. | Percutaneous transluminal myocardial implantation device and method |
US6406420B1 (en) | 1997-01-02 | 2002-06-18 | Myocor, Inc. | Methods and devices for improving cardiac function in hearts |
US20030033021A1 (en) * | 2001-07-16 | 2003-02-13 | Plouhar Pamela Lynn | Cartilage repair and regeneration scaffold and method |
US20030045771A1 (en) * | 1997-01-02 | 2003-03-06 | Schweich Cyril J. | Heart wall tension reduction devices and methods |
US6537198B1 (en) | 2000-03-21 | 2003-03-25 | Myocor, Inc. | Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly |
US6622730B2 (en) | 2001-03-30 | 2003-09-23 | Myocor, Inc. | Device for marking and aligning positions on the heart |
US6699263B2 (en) | 2002-04-05 | 2004-03-02 | Cook Incorporated | Sliding suture anchor |
US6723038B1 (en) | 2000-10-06 | 2004-04-20 | Myocor, Inc. | Methods and devices for improving mitral valve function |
US20040092969A1 (en) * | 2002-09-26 | 2004-05-13 | Kumar Sarbjeet S. | Device and method for surgical repair of abdominal wall hernias |
US6764510B2 (en) | 2002-01-09 | 2004-07-20 | Myocor, Inc. | Devices and methods for heart valve treatment |
US20040186514A1 (en) * | 2001-05-18 | 2004-09-23 | Swain Christopher Paul | Flexible device for transfixing and joining tissue |
US6802319B2 (en) * | 1993-02-22 | 2004-10-12 | John H. Stevens | Minimally-invasive devices and methods for treatment of congestive heart failure |
US20040204741A1 (en) * | 2003-01-14 | 2004-10-14 | Radi Medical Systems Ab | Closure device and method for sealing a puncture in a blood vessel |
US20040220574A1 (en) * | 2001-07-16 | 2004-11-04 | Pelo Mark Joseph | Device from naturally occuring biologically derived materials |
US20050113851A1 (en) * | 2002-05-17 | 2005-05-26 | Swain Christopher P. | Device for transfixing and joining tissue |
US20050177181A1 (en) * | 2002-11-01 | 2005-08-11 | Jonathan Kagan | Devices and methods for treating morbid obesity |
US20050216042A1 (en) * | 2004-03-23 | 2005-09-29 | Michael Gertner | Percutaneous gastroplasty |
US20050228415A1 (en) * | 2004-03-23 | 2005-10-13 | Michael Gertner | Methods and devices for percutaneous, non-laparoscopic treatment of obesity |
US20050240279A1 (en) * | 2002-11-01 | 2005-10-27 | Jonathan Kagan | Gastrointestinal sleeve device and methods for treatment of morbid obesity |
US20050261710A1 (en) * | 2004-05-20 | 2005-11-24 | Olympus Corporation | Treatment system for living tissues |
US20050261708A1 (en) * | 2004-05-20 | 2005-11-24 | Pankaj Jay Pasricha | Medical treatment device |
US20050267533A1 (en) * | 2004-03-23 | 2005-12-01 | Michael Gertner | Methods and devices for the surgical creation of satiety and biofeedback pathways |
US20060142790A1 (en) * | 2004-03-23 | 2006-06-29 | Michael Gertner | Methods and devices to facilitate connections between body lumens |
US20060195139A1 (en) * | 2004-03-23 | 2006-08-31 | Michael Gertner | Extragastric devices and methods for gastroplasty |
US20060206063A1 (en) * | 2002-11-01 | 2006-09-14 | Jonathan Kagan | Attachment system for transmural attachment at the gastroesophageal junction |
US7112219B2 (en) | 2002-11-12 | 2006-09-26 | Myocor, Inc. | Devices and methods for heart valve treatment |
US7163563B2 (en) | 2001-07-16 | 2007-01-16 | Depuy Products, Inc. | Unitary surgical device and method |
US7213601B2 (en) | 1993-02-22 | 2007-05-08 | Heartport, Inc | Minimally-invasive devices and methods for treatment of congestive heart failure |
US7247134B2 (en) | 2002-11-12 | 2007-07-24 | Myocor, Inc. | Devices and methods for heart valve treatment |
US20070233170A1 (en) * | 2004-03-23 | 2007-10-04 | Michael Gertner | Extragastric Balloon |
US7347863B2 (en) | 2004-05-07 | 2008-03-25 | Usgi Medical, Inc. | Apparatus and methods for manipulating and securing tissue |
US7354627B2 (en) | 2004-12-22 | 2008-04-08 | Depuy Products, Inc. | Method for organizing the assembly of collagen fibers and compositions formed therefrom |
US7361180B2 (en) | 2004-05-07 | 2008-04-22 | Usgi Medical, Inc. | Apparatus for manipulating and securing tissue |
US7390329B2 (en) | 2004-05-07 | 2008-06-24 | Usgi Medical, Inc. | Methods for grasping and cinching tissue anchors |
US20080161717A1 (en) * | 2005-05-10 | 2008-07-03 | Michael Eric Gertner | Obesity Treatment Systems |
US7416554B2 (en) | 2002-12-11 | 2008-08-26 | Usgi Medical Inc | Apparatus and methods for forming and securing gastrointestinal tissue folds |
US20080262515A1 (en) * | 2006-12-28 | 2008-10-23 | Joshua Makower | Devices and methods for treatment of obesity |
US7455683B2 (en) | 2004-02-26 | 2008-11-25 | Depuy Mitek, Inc. | Methods and devices for repairing triangular fibrocartilage complex tears |
US20090012541A1 (en) * | 2007-06-11 | 2009-01-08 | Valentx, Inc. | Expandable fastener system with flower petal-shaped retention elements |
US20090024213A1 (en) * | 2001-09-07 | 2009-01-22 | Mardil, Inc. | Method and Apparatus for External Stabilization of the Heart Valves and Myocardium |
US20090062742A1 (en) * | 2007-08-31 | 2009-03-05 | John Anthony Rotella | Blunted Safety Needle |
US20090062853A1 (en) * | 2007-08-31 | 2009-03-05 | Mcmichael Donald Jay | Suture Retention Hub |
US20090062743A1 (en) * | 2007-08-31 | 2009-03-05 | John Anthony Rotella | Gastropexy Kit |
US20090143643A1 (en) * | 2007-10-05 | 2009-06-04 | Weitzner Barry D | Transluminal endoscopic surgery kit |
US7569233B2 (en) | 2004-05-04 | 2009-08-04 | Depuy Products, Inc. | Hybrid biologic-synthetic bioabsorbable scaffolds |
US7571729B2 (en) | 2004-03-09 | 2009-08-11 | Usgi Medical, Inc. | Apparatus and methods for performing mucosectomy |
US7595062B2 (en) | 2005-07-28 | 2009-09-29 | Depuy Products, Inc. | Joint resurfacing orthopaedic implant and associated method |
US7601159B2 (en) | 2004-05-07 | 2009-10-13 | Usgi Medical, Inc. | Interlocking tissue anchor apparatus and methods |
US20090281498A1 (en) * | 2006-04-19 | 2009-11-12 | Acosta Pablo G | Devices, system and methods for minimally invasive abdominal surgical procedures |
US7618426B2 (en) | 2002-12-11 | 2009-11-17 | Usgi Medical, Inc. | Apparatus and methods for forming gastrointestinal tissue approximations |
US20090287227A1 (en) * | 2006-04-19 | 2009-11-19 | Newell Matthew B | Minimally invasive ,methods for implanting obesity treatment devices |
US7678135B2 (en) | 2004-06-09 | 2010-03-16 | Usgi Medical, Inc. | Compressible tissue anchor assemblies |
US7695493B2 (en) | 2004-06-09 | 2010-04-13 | Usgi Medical, Inc. | System for optimizing anchoring force |
US7704264B2 (en) | 1999-06-25 | 2010-04-27 | Usgi Medical, Inc. | Apparatus and methods for forming and securing gastrointestinal tissue folds |
US7736379B2 (en) | 2004-06-09 | 2010-06-15 | Usgi Medical, Inc. | Compressible tissue anchor assemblies |
US7736374B2 (en) | 2004-05-07 | 2010-06-15 | Usgi Medical, Inc. | Tissue manipulation and securement system |
US7736378B2 (en) | 2004-05-07 | 2010-06-15 | Usgi Medical, Inc. | Apparatus and methods for positioning and securing anchors |
US7794447B2 (en) | 2002-11-01 | 2010-09-14 | Valentx, Inc. | Gastrointestinal sleeve device and methods for treatment of morbid obesity |
US20100234682A1 (en) * | 2004-03-23 | 2010-09-16 | Michael Gertner | Closed loop gastric restriction devices and methods |
US7819918B2 (en) | 2001-07-16 | 2010-10-26 | Depuy Products, Inc. | Implantable tissue repair device |
US7837669B2 (en) | 2002-11-01 | 2010-11-23 | Valentx, Inc. | Devices and methods for endolumenal gastrointestinal bypass |
US7871440B2 (en) | 2006-12-11 | 2011-01-18 | Depuy Products, Inc. | Unitary surgical device and method |
US7881797B2 (en) | 2006-04-25 | 2011-02-01 | Valentx, Inc. | Methods and devices for gastrointestinal stimulation |
US7883538B2 (en) | 2002-06-13 | 2011-02-08 | Guided Delivery Systems Inc. | Methods and devices for termination |
US7883539B2 (en) | 1997-01-02 | 2011-02-08 | Edwards Lifesciences Llc | Heart wall tension reduction apparatus and method |
US7914808B2 (en) | 2001-07-16 | 2011-03-29 | Depuy Products, Inc. | Hybrid biologic/synthetic porous extracellular matrix scaffolds |
US7918869B2 (en) | 2004-05-07 | 2011-04-05 | Usgi Medical, Inc. | Methods and apparatus for performing endoluminal gastroplasty |
US7918845B2 (en) | 2003-01-15 | 2011-04-05 | Usgi Medical, Inc. | Endoluminal tool deployment system |
US7942884B2 (en) | 2002-12-11 | 2011-05-17 | Usgi Medical, Inc. | Methods for reduction of a gastric lumen |
US7942898B2 (en) | 2002-12-11 | 2011-05-17 | Usgi Medical, Inc. | Delivery systems and methods for gastric reduction |
US7976554B2 (en) | 2006-04-19 | 2011-07-12 | Vibrynt, Inc. | Devices, tools and methods for performing minimally invasive abdominal surgical procedures |
US20110190879A1 (en) * | 2010-02-03 | 2011-08-04 | Edwards Lifesciences Corporation | Devices and Methods for Treating a Heart |
US8025896B2 (en) | 2001-07-16 | 2011-09-27 | Depuy Products, Inc. | Porous extracellular matrix scaffold and method |
US8066766B2 (en) | 2002-06-13 | 2011-11-29 | Guided Delivery Systems Inc. | Methods and devices for termination |
US8070768B2 (en) | 2006-04-19 | 2011-12-06 | Vibrynt, Inc. | Devices and methods for treatment of obesity |
US8092529B2 (en) | 2001-07-16 | 2012-01-10 | Depuy Products, Inc. | Meniscus regeneration device |
US8182441B2 (en) | 2007-06-08 | 2012-05-22 | Valentx, Inc. | Methods and devices for intragastric support of functional or prosthetic gastrointestinal devices |
US8187297B2 (en) | 2006-04-19 | 2012-05-29 | Vibsynt, Inc. | Devices and methods for treatment of obesity |
US8192455B2 (en) | 2003-08-13 | 2012-06-05 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Compressive device for percutaneous treatment of obesity |
US8206417B2 (en) | 2004-06-09 | 2012-06-26 | Usgi Medical Inc. | Apparatus and methods for optimizing anchoring force |
US8216252B2 (en) | 2004-05-07 | 2012-07-10 | Usgi Medical, Inc. | Tissue manipulation and securement system |
US8257394B2 (en) | 2004-05-07 | 2012-09-04 | Usgi Medical, Inc. | Apparatus and methods for positioning and securing anchors |
US8298291B2 (en) | 2005-05-26 | 2012-10-30 | Usgi Medical, Inc. | Methods and apparatus for securing and deploying tissue anchors |
US8342183B2 (en) | 2006-04-19 | 2013-01-01 | Vibrynt, Inc. | Devices and methods for treatment of obesity |
US8382775B1 (en) | 2012-01-08 | 2013-02-26 | Vibrynt, Inc. | Methods, instruments and devices for extragastric reduction of stomach volume |
US8398668B2 (en) | 2006-04-19 | 2013-03-19 | Vibrynt, Inc. | Devices and methods for treatment of obesity |
US8444657B2 (en) | 2004-05-07 | 2013-05-21 | Usgi Medical, Inc. | Apparatus and methods for rapid deployment of tissue anchors |
US8496657B2 (en) | 2006-02-07 | 2013-07-30 | P Tech, Llc. | Methods for utilizing vibratory energy to weld, stake and/or remove implants |
US8556925B2 (en) | 2007-10-11 | 2013-10-15 | Vibrynt, Inc. | Devices and methods for treatment of obesity |
US8585733B2 (en) | 2006-04-19 | 2013-11-19 | Vibrynt, Inc | Devices, tools and methods for performing minimally invasive abdominal surgical procedures |
US8617185B2 (en) | 2007-02-13 | 2013-12-31 | P Tech, Llc. | Fixation device |
US8668718B2 (en) | 2009-06-04 | 2014-03-11 | Rotation Medical, Inc. | Methods and apparatus for fixing sheet-like materials to a target tissue |
US8726909B2 (en) | 2006-01-27 | 2014-05-20 | Usgi Medical, Inc. | Methods and apparatus for revision of obesity procedures |
US8747439B2 (en) | 2000-03-13 | 2014-06-10 | P Tech, Llc | Method of using ultrasonic vibration to secure body tissue with fastening element |
US8790356B2 (en) | 2010-06-09 | 2014-07-29 | C.R. Bard, Inc. | Instruments for delivering transfascial sutures, transfascial suture assemblies, and methods of transfascial suturing |
US8795298B2 (en) | 2008-10-10 | 2014-08-05 | Guided Delivery Systems Inc. | Tether tensioning devices and related methods |
US8808329B2 (en) | 1998-02-06 | 2014-08-19 | Bonutti Skeletal Innovations Llc | Apparatus and method for securing a portion of a body |
US8814902B2 (en) | 2000-05-03 | 2014-08-26 | Bonutti Skeletal Innovations Llc | Method of securing body tissue |
US8845699B2 (en) | 1999-08-09 | 2014-09-30 | Bonutti Skeletal Innovations Llc | Method of securing tissue |
US8845687B2 (en) | 1996-08-19 | 2014-09-30 | Bonutti Skeletal Innovations Llc | Anchor for securing a suture |
US8864780B2 (en) | 2011-02-15 | 2014-10-21 | Rotation Medical, Inc. | Methods and apparatus for delivering and positioning sheet-like materials |
US8870916B2 (en) | 2006-07-07 | 2014-10-28 | USGI Medical, Inc | Low profile tissue anchors, tissue anchor systems, and methods for their delivery and use |
US8956318B2 (en) | 2012-05-31 | 2015-02-17 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US8968336B2 (en) | 2011-12-07 | 2015-03-03 | Edwards Lifesciences Corporation | Self-cinching surgical clips and delivery system |
US8992547B2 (en) | 2012-03-21 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Methods and devices for creating tissue plications |
US9017347B2 (en) | 2011-12-22 | 2015-04-28 | Edwards Lifesciences Corporation | Suture clip deployment devices |
US9033201B2 (en) | 2011-02-15 | 2015-05-19 | Rotation Medical, Inc. | Methods and apparatus for fixing sheet-like materials to a target tissue |
US9060767B2 (en) | 2003-04-30 | 2015-06-23 | P Tech, Llc | Tissue fastener and methods for using same |
US9060844B2 (en) | 2002-11-01 | 2015-06-23 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US9089323B2 (en) | 2005-02-22 | 2015-07-28 | P Tech, Llc | Device and method for securing body tissue |
US9101460B2 (en) | 2009-01-08 | 2015-08-11 | Rotation Medical, Inc. | Implantable tendon protection systems and related kits and methods |
US9107661B2 (en) | 2011-12-19 | 2015-08-18 | Rotation Medical, Inc. | Fasteners and fastener delivery devices for affixing sheet-like materials to bone or tissue |
US9113879B2 (en) | 2011-12-15 | 2015-08-25 | Ethicon Endo-Surgery, Inc. | Devices and methods for endoluminal plication |
US9113866B2 (en) | 2011-12-15 | 2015-08-25 | Ethicon Endo-Surgery, Inc. | Devices and methods for endoluminal plication |
US9113977B2 (en) | 2011-02-15 | 2015-08-25 | Rotation Medical, Inc. | Guidewire having a distal fixation member for delivering and positioning sheet-like materials in surgery |
US9125650B2 (en) | 2011-12-19 | 2015-09-08 | Rotation Medical, Inc. | Apparatus and method for forming pilot holes in bone and delivering fasteners therein for retaining an implant |
US9138222B2 (en) | 2000-03-13 | 2015-09-22 | P Tech, Llc | Method and device for securing body tissue |
US9149281B2 (en) | 2002-03-20 | 2015-10-06 | P Tech, Llc | Robotic system for engaging a fastener with body tissue |
US9173650B2 (en) | 2006-02-07 | 2015-11-03 | P Tech, Llc | Methods and devices for trauma welding |
US9173647B2 (en) | 2004-10-26 | 2015-11-03 | P Tech, Llc | Tissue fixation system |
US9179910B2 (en) | 2009-03-20 | 2015-11-10 | Rotation Medical, Inc. | Medical device delivery system and method |
US9179961B2 (en) | 2009-06-04 | 2015-11-10 | Rotation Medical, Inc. | Methods and apparatus for deploying sheet-like materials |
US9198751B2 (en) | 2011-02-15 | 2015-12-01 | Rotation Medical, Inc. | Methods and apparatus for delivering and positioning sheet-like materials in surgery |
US9198750B2 (en) | 2010-03-11 | 2015-12-01 | Rotation Medical, Inc. | Tendon repair implant and method of arthroscopic implantation |
US9204940B2 (en) | 2011-02-15 | 2015-12-08 | Rotation Medical, Inc. | Anatomical location markers and methods of use in positioning sheet-like materials during surgery |
US9226828B2 (en) | 2004-10-26 | 2016-01-05 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US9265514B2 (en) | 2012-04-17 | 2016-02-23 | Miteas Ltd. | Manipulator for grasping tissue |
US9271766B2 (en) | 2004-10-26 | 2016-03-01 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US9271726B2 (en) | 2011-12-19 | 2016-03-01 | Rotation Medical, Inc. | Fasteners and fastener delivery devices for affixing sheet-like materials to bone or tissue |
US20160081687A1 (en) * | 2002-06-20 | 2016-03-24 | Boston Scientific Scimed, Inc. | Methods for fastening tissue |
US9314362B2 (en) | 2012-01-08 | 2016-04-19 | Vibrynt, Inc. | Methods, instruments and devices for extragastric reduction of stomach volume |
US9370356B2 (en) | 2011-12-19 | 2016-06-21 | Rotation Medical, Inc. | Fasteners and fastener delivery devices for affixing sheet-like materials to bone or tissue |
US9439642B2 (en) | 2006-02-07 | 2016-09-13 | P Tech, Llc | Methods and devices for utilizing bondable materials |
US9451960B2 (en) | 2012-05-31 | 2016-09-27 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9463012B2 (en) | 2004-10-26 | 2016-10-11 | P Tech, Llc | Apparatus for guiding and positioning an implant |
US9498202B2 (en) | 2012-07-10 | 2016-11-22 | Edwards Lifesciences Corporation | Suture securement devices |
US9585651B2 (en) | 2005-05-26 | 2017-03-07 | Usgi Medical, Inc. | Methods and apparatus for securing and deploying tissue anchors |
US9592048B2 (en) | 2013-07-11 | 2017-03-14 | Edwards Lifesciences Corporation | Knotless suture fastener installation system |
US9592044B2 (en) | 2011-02-09 | 2017-03-14 | C. R. Bard, Inc. | T-fastener suture delivery system |
US9592047B2 (en) | 2012-12-21 | 2017-03-14 | Edwards Lifesciences Corporation | System for securing sutures |
US9636106B2 (en) | 2008-10-10 | 2017-05-02 | Ancora Heart, Inc. | Termination devices and related methods |
US9675489B2 (en) | 2012-05-31 | 2017-06-13 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9750496B2 (en) | 2002-08-27 | 2017-09-05 | P Tech, Llc | System for securing a portion of a body |
US9757264B2 (en) | 2013-03-13 | 2017-09-12 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9770238B2 (en) | 2001-12-03 | 2017-09-26 | P Tech, Llc | Magnetic positioning apparatus |
US9826972B2 (en) | 2011-10-24 | 2017-11-28 | C.R. Bard, Inc. | Instruments for delivering transfascial sutures, transfascial suture assemblies and methods of transfascial suturing |
US9888916B2 (en) | 2004-03-09 | 2018-02-13 | P Tech, Llc | Method and device for securing body tissue |
US10016193B2 (en) | 2013-11-18 | 2018-07-10 | Edwards Lifesciences Ag | Multiple-firing crimp device and methods for using and manufacturing same |
US10058393B2 (en) | 2015-10-21 | 2018-08-28 | P Tech, Llc | Systems and methods for navigation and visualization |
US10076377B2 (en) | 2013-01-05 | 2018-09-18 | P Tech, Llc | Fixation systems and methods |
US10092402B2 (en) | 2002-06-13 | 2018-10-09 | Ancora Heart, Inc. | Devices and methods for heart valve repair |
US10098628B2 (en) | 2014-07-22 | 2018-10-16 | Cook Medical Technologies Llc | Anchor deployment system, device, and method of treatment |
US10123796B2 (en) | 2014-11-04 | 2018-11-13 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US10188383B2 (en) | 2013-07-09 | 2019-01-29 | Edwards Lifesciences Corporation | Suture clip deployment devices |
US10265156B2 (en) | 2015-06-15 | 2019-04-23 | Rotation Medical, Inc | Tendon repair implant and method of implantation |
US10314689B2 (en) | 2015-12-31 | 2019-06-11 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US10470759B2 (en) | 2015-03-16 | 2019-11-12 | Edwards Lifesciences Corporation | Suture securement devices |
US10542996B2 (en) | 2017-06-27 | 2020-01-28 | Covidien Lp | Vessel closure device |
US10624630B2 (en) | 2012-07-10 | 2020-04-21 | Edwards Lifesciences Ag | Multiple-firing securing device and methods for using and manufacturing same |
US10624745B2 (en) | 2005-06-09 | 2020-04-21 | Bioventrix, Inc. | Method and apparatus for closing off a portion of a heart ventricle |
US10758228B2 (en) | 2015-11-03 | 2020-09-01 | Rotation Medical, Inc. | Fastener delivery system and related methods |
US10786244B2 (en) | 2014-05-30 | 2020-09-29 | Edwards Lifesciences Corporation | Systems for securing sutures |
US10835368B2 (en) | 2017-12-07 | 2020-11-17 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US10863980B2 (en) | 2016-12-28 | 2020-12-15 | Edwards Lifesciences Corporation | Suture fastener having spaced-apart layers |
US10898228B2 (en) | 2015-05-06 | 2021-01-26 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US10939905B2 (en) | 2016-08-26 | 2021-03-09 | Edwards Lifesciences Corporation | Suture clips, deployment devices therefor, and methods of use |
US11076851B2 (en) | 2014-11-04 | 2021-08-03 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US11083451B2 (en) | 2013-03-11 | 2021-08-10 | Boston Scientific Scimed, Inc. | Tissue anchor with insertion device |
US11246638B2 (en) | 2006-05-03 | 2022-02-15 | P Tech, Llc | Methods and devices for utilizing bondable materials |
US11253296B2 (en) | 2006-02-07 | 2022-02-22 | P Tech, Llc | Methods and devices for intracorporeal bonding of implants with thermal energy |
US11278331B2 (en) | 2006-02-07 | 2022-03-22 | P Tech Llc | Method and devices for intracorporeal bonding of implants with thermal energy |
US11457916B2 (en) | 2014-11-04 | 2022-10-04 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US11672524B2 (en) | 2019-07-15 | 2023-06-13 | Ancora Heart, Inc. | Devices and methods for tether cutting |
Citations (36)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US487304A (en) * | 1892-12-06 | Branding-tool | ||
US1059631A (en) * | 1909-12-04 | 1913-04-22 | Aurel Popovics | Method of embedding artificial hair. |
GB401677A (en) * | 1932-05-11 | 1933-11-13 | Hans Albert Roeder | Improvements in and relating to surgical filaments |
US3039468A (en) * | 1959-01-07 | 1962-06-19 | Joseph L Price | Trocar and method of treating bloat |
US3103606A (en) * | 1963-09-10 | Cathode ray electrostatic printing or recording device | ||
US3209422A (en) * | 1963-12-23 | 1965-10-05 | Dritz Arthur | Fastening device |
US3332118A (en) * | 1965-06-11 | 1967-07-25 | Mine Safety Appliances Co | Safety line with safety anchor |
US3470875A (en) * | 1966-10-06 | 1969-10-07 | Alfred A Johnson | Surgical clamping and suturing instrument |
US3521640A (en) * | 1967-12-07 | 1970-07-28 | Jane T Carey | Surgical apparatus for use with a diseased lung or the like and related method |
US3527223A (en) * | 1967-09-01 | 1970-09-08 | Melvin Shein | Ear stud and hollow piercer for insertion thereof |
US3540451A (en) * | 1967-02-28 | 1970-11-17 | William V Zeman | Drainage cannula with tissue connecting assemblies on both ends |
US3589355A (en) * | 1969-09-12 | 1971-06-29 | Hee Young Lee | Method for achieving reversible male sterilization |
US3598124A (en) * | 1968-02-01 | 1971-08-10 | Andersen Prod H W | Drainage control |
US3643649A (en) * | 1969-11-20 | 1972-02-22 | United States Surgical Corp | Mechanized tracheotome |
US3656479A (en) * | 1970-02-19 | 1972-04-18 | James A Huggins | Detachable guide needle |
US3675639A (en) * | 1970-05-11 | 1972-07-11 | Hugo S Cimber | Device for and method of temporary sterilizing a female |
DE2157529A1 (en) * | 1971-11-19 | 1973-05-24 | Dabbs | BUTTON FOR SURGICAL PURPOSES |
US3820535A (en) * | 1972-10-25 | 1974-06-28 | J Marco | Intrauterine device |
US3835863A (en) * | 1973-05-15 | 1974-09-17 | Mpc Kurgi Sil | T tube |
US3910281A (en) * | 1973-10-09 | 1975-10-07 | Bio Medicus Inc | Suture anchor |
US3920023A (en) * | 1974-03-21 | 1975-11-18 | Kendall & Co | Method and apparatus for placement of a suprapubic catheter |
US4006747A (en) * | 1975-04-23 | 1977-02-08 | Ethicon, Inc. | Surgical method |
US4037600A (en) * | 1975-07-11 | 1977-07-26 | Poncy Mark P | Catheter placement system |
US4054136A (en) * | 1975-03-03 | 1977-10-18 | Zeppelin Dieter Von | Cannula for the introduction of a catheter |
US4077412A (en) * | 1974-12-13 | 1978-03-07 | Moossun Mohamed H | Stomach intubation and catheter placement system |
US4103690A (en) * | 1977-03-21 | 1978-08-01 | Cordis Corporation | Self-suturing cardiac pacer lead |
US4160453A (en) * | 1975-12-05 | 1979-07-10 | Hairegenics, Inc. | Apparatus for implanting hair |
FR2438464A1 (en) * | 1978-10-12 | 1980-05-09 | Samama Guy | Closure for abdominal surgery incision - has thread passing under wound and retained on either side by washer and cylindrical element |
US4235238A (en) * | 1978-05-11 | 1980-11-25 | Olympus Optical Co., Ltd. | Apparatus for suturing coeliac tissues |
US4393873A (en) * | 1980-03-10 | 1983-07-19 | Nawash Michael S | Gastrostomy and other percutaneous transport tubes |
US4405314A (en) * | 1982-04-19 | 1983-09-20 | Cook Incorporated | Apparatus and method for catheterization permitting use of a smaller gage needle |
US4440171A (en) * | 1981-04-13 | 1984-04-03 | Janome Sewing Machine Co., Ltd. | Suturing instrument and a method of holding a shuttle |
US4471782A (en) * | 1982-09-30 | 1984-09-18 | Luther Shuffield | Medical implement for use in rectum and method for inserting same |
US4483562A (en) * | 1981-10-16 | 1984-11-20 | Arnold Schoolman | Locking flexible shaft device with live distal end attachment |
US4534363A (en) * | 1982-04-29 | 1985-08-13 | Cordis Corporation | Coating for angiographic guidewire |
US4669473A (en) * | 1985-09-06 | 1987-06-02 | Acufex Microsurgical, Inc. | Surgical fastener |
-
1989
- 1989-11-13 US US07/435,343 patent/USRE34021E/en not_active Expired - Lifetime
Patent Citations (36)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3103606A (en) * | 1963-09-10 | Cathode ray electrostatic printing or recording device | ||
US487304A (en) * | 1892-12-06 | Branding-tool | ||
US1059631A (en) * | 1909-12-04 | 1913-04-22 | Aurel Popovics | Method of embedding artificial hair. |
GB401677A (en) * | 1932-05-11 | 1933-11-13 | Hans Albert Roeder | Improvements in and relating to surgical filaments |
US3039468A (en) * | 1959-01-07 | 1962-06-19 | Joseph L Price | Trocar and method of treating bloat |
US3209422A (en) * | 1963-12-23 | 1965-10-05 | Dritz Arthur | Fastening device |
US3332118A (en) * | 1965-06-11 | 1967-07-25 | Mine Safety Appliances Co | Safety line with safety anchor |
US3470875A (en) * | 1966-10-06 | 1969-10-07 | Alfred A Johnson | Surgical clamping and suturing instrument |
US3540451A (en) * | 1967-02-28 | 1970-11-17 | William V Zeman | Drainage cannula with tissue connecting assemblies on both ends |
US3527223A (en) * | 1967-09-01 | 1970-09-08 | Melvin Shein | Ear stud and hollow piercer for insertion thereof |
US3521640A (en) * | 1967-12-07 | 1970-07-28 | Jane T Carey | Surgical apparatus for use with a diseased lung or the like and related method |
US3598124A (en) * | 1968-02-01 | 1971-08-10 | Andersen Prod H W | Drainage control |
US3589355A (en) * | 1969-09-12 | 1971-06-29 | Hee Young Lee | Method for achieving reversible male sterilization |
US3643649A (en) * | 1969-11-20 | 1972-02-22 | United States Surgical Corp | Mechanized tracheotome |
US3656479A (en) * | 1970-02-19 | 1972-04-18 | James A Huggins | Detachable guide needle |
US3675639A (en) * | 1970-05-11 | 1972-07-11 | Hugo S Cimber | Device for and method of temporary sterilizing a female |
DE2157529A1 (en) * | 1971-11-19 | 1973-05-24 | Dabbs | BUTTON FOR SURGICAL PURPOSES |
US3820535A (en) * | 1972-10-25 | 1974-06-28 | J Marco | Intrauterine device |
US3835863A (en) * | 1973-05-15 | 1974-09-17 | Mpc Kurgi Sil | T tube |
US3910281A (en) * | 1973-10-09 | 1975-10-07 | Bio Medicus Inc | Suture anchor |
US3920023A (en) * | 1974-03-21 | 1975-11-18 | Kendall & Co | Method and apparatus for placement of a suprapubic catheter |
US4077412A (en) * | 1974-12-13 | 1978-03-07 | Moossun Mohamed H | Stomach intubation and catheter placement system |
US4054136A (en) * | 1975-03-03 | 1977-10-18 | Zeppelin Dieter Von | Cannula for the introduction of a catheter |
US4006747A (en) * | 1975-04-23 | 1977-02-08 | Ethicon, Inc. | Surgical method |
US4037600A (en) * | 1975-07-11 | 1977-07-26 | Poncy Mark P | Catheter placement system |
US4160453A (en) * | 1975-12-05 | 1979-07-10 | Hairegenics, Inc. | Apparatus for implanting hair |
US4103690A (en) * | 1977-03-21 | 1978-08-01 | Cordis Corporation | Self-suturing cardiac pacer lead |
US4235238A (en) * | 1978-05-11 | 1980-11-25 | Olympus Optical Co., Ltd. | Apparatus for suturing coeliac tissues |
FR2438464A1 (en) * | 1978-10-12 | 1980-05-09 | Samama Guy | Closure for abdominal surgery incision - has thread passing under wound and retained on either side by washer and cylindrical element |
US4393873A (en) * | 1980-03-10 | 1983-07-19 | Nawash Michael S | Gastrostomy and other percutaneous transport tubes |
US4440171A (en) * | 1981-04-13 | 1984-04-03 | Janome Sewing Machine Co., Ltd. | Suturing instrument and a method of holding a shuttle |
US4483562A (en) * | 1981-10-16 | 1984-11-20 | Arnold Schoolman | Locking flexible shaft device with live distal end attachment |
US4405314A (en) * | 1982-04-19 | 1983-09-20 | Cook Incorporated | Apparatus and method for catheterization permitting use of a smaller gage needle |
US4534363A (en) * | 1982-04-29 | 1985-08-13 | Cordis Corporation | Coating for angiographic guidewire |
US4471782A (en) * | 1982-09-30 | 1984-09-18 | Luther Shuffield | Medical implement for use in rectum and method for inserting same |
US4669473A (en) * | 1985-09-06 | 1987-06-02 | Acufex Microsurgical, Inc. | Surgical fastener |
Non-Patent Citations (6)
* Cited by examiner, † Cited by third partyTitle |
---|
Cope, "Suture Anchor for Visceral Drainage", AJR, vol. 146, Jan. 1986, pp. 160-161. |
Cope, Suture Anchor for Visceral Drainage , AJR, vol. 146, Jan. 1986, pp. 160 161. * |
Gauderer and Ponsky, "A Simplified Technique for Constructing a Tube Feeding Gastrostomy", Surgery, Gynecology & Obsterics, Jan. 1981, vol. 152, pp. 83-85. |
Gauderer and Ponsky, A Simplified Technique for Constructing a Tube Feeding Gastrostomy , Surgery, Gynecology & Obsterics, Jan. 1981, vol. 152, pp. 83 85. * |
Russell, Brotman and Norris, "Percutaneous Gastrostomy", The American Journal of Surgery, Jul. 1984, vol. 148, pp. 132-137. |
Russell, Brotman and Norris, Percutaneous Gastrostomy , The American Journal of Surgery, Jul. 1984, vol. 148, pp. 132 137. * |
Cited By (471)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5318543A (en) * | 1992-10-08 | 1994-06-07 | Abbott Laboratories | Laparoscopic jejunostomy instrumentation kit |
US7213601B2 (en) | 1993-02-22 | 2007-05-08 | Heartport, Inc | Minimally-invasive devices and methods for treatment of congestive heart failure |
US20080029105A1 (en) * | 1993-02-22 | 2008-02-07 | Ethicon, Inc. | Minimally-invasive devices and methods for treatment of congestive heart failure |
US6802319B2 (en) * | 1993-02-22 | 2004-10-12 | John H. Stevens | Minimally-invasive devices and methods for treatment of congestive heart failure |
EP0746239A1 (en) * | 1993-03-26 | 1996-12-11 | Abbott Laboratories | Packaging for t-shaped tension devices |
EP0746239A4 (en) * | 1993-03-26 | 1996-06-04 | Abbott Lab | Packaging for t-shaped tension devices |
US5307924A (en) * | 1993-03-26 | 1994-05-03 | Abbott Laboratories | Packaging for T-shaped tension devices |
US5341823A (en) * | 1993-03-26 | 1994-08-30 | Abbott Laboratories | Method for loading a T-shaped tension device into a slotted needle |
EP0632999A1 (en) * | 1993-07-01 | 1995-01-11 | United States Surgical Corporation | Soft tissue repair system and method |
US5500000A (en) * | 1993-07-01 | 1996-03-19 | United States Surgical Corporation | Soft tissue repair system and method |
US5429598A (en) * | 1994-04-19 | 1995-07-04 | Applied Medical Resources Corporation | Surgical access device and procedure |
WO1996009005A1 (en) * | 1994-09-19 | 1996-03-28 | Abbott Laboratories | Spring-loaded reciprocable stylet holder |
US5531678A (en) * | 1994-09-19 | 1996-07-02 | Abbott Laboratories | Method of using a spring-loaded reciprocable stylet holder to eject a T-fastener |
US5531699A (en) * | 1994-09-19 | 1996-07-02 | Abbott Laboratories | Spring-loaded reciprocable stylet holder |
US5702352A (en) * | 1994-09-26 | 1997-12-30 | Olympus Optical Co., Ltd. | Tools and method for manipulating organs in human body |
US5626614A (en) * | 1995-12-22 | 1997-05-06 | Applied Medical Resources Corporation | T-anchor suturing device and method for using same |
US8845687B2 (en) | 1996-08-19 | 2014-09-30 | Bonutti Skeletal Innovations Llc | Anchor for securing a suture |
US5935107A (en) * | 1996-10-07 | 1999-08-10 | Applied Medical Resources Corporation | Apparatus and method for surgically accessing a body cavity |
US6755777B2 (en) | 1997-01-02 | 2004-06-29 | Myocor, Inc. | Heart wall tension reduction apparatus and method |
US6514194B2 (en) | 1997-01-02 | 2003-02-04 | Myocor, Inc. | Heart wall tension reduction apparatus and method |
US20070112244A1 (en) * | 1997-01-02 | 2007-05-17 | Myocor, Inc. | Methods and devices for improving cardiac function in hearts |
US8460173B2 (en) | 1997-01-02 | 2013-06-11 | Edwards Lifesciences, Llc | Heart wall tension reduction apparatus and method |
US6589160B2 (en) | 1997-01-02 | 2003-07-08 | Myocor Inc | Heart wall tension reduction apparatus |
US7883539B2 (en) | 1997-01-02 | 2011-02-08 | Edwards Lifesciences Llc | Heart wall tension reduction apparatus and method |
US6332863B1 (en) | 1997-01-02 | 2001-12-25 | Myocor, Inc. | Heart wall tension reduction kit |
US6332864B1 (en) | 1997-01-02 | 2001-12-25 | Myocor, Inc. | Heart wall tension reduction apparatus |
US6629921B1 (en) | 1997-01-02 | 2003-10-07 | Myocor, Inc. | Heart wall tension reduction apparatus and method |
US6406420B1 (en) | 1997-01-02 | 2002-06-18 | Myocor, Inc. | Methods and devices for improving cardiac function in hearts |
US7189199B2 (en) | 1997-01-02 | 2007-03-13 | Myocor, Inc. | Methods and devices for improving cardiac function in hearts |
US20030045771A1 (en) * | 1997-01-02 | 2003-03-06 | Schweich Cyril J. | Heart wall tension reduction devices and methods |
US7695425B2 (en) | 1997-01-02 | 2010-04-13 | Edwards Lifesciences Llc | Heart wall tension reduction apparatus and method |
US8267852B2 (en) | 1997-01-02 | 2012-09-18 | Edwards Lifesciences, Llc | Heart wall tension reduction apparatus and method |
US6793618B2 (en) | 1997-01-02 | 2004-09-21 | Myocor, Inc. | Heart wall tension reduction apparatus |
US6261222B1 (en) | 1997-01-02 | 2001-07-17 | Myocor, Inc. | Heart wall tension reduction apparatus and method |
US8187323B2 (en) | 1997-12-17 | 2012-05-29 | Edwards Lifesciences, Llc | Valve to myocardium tension members device and method |
US20040127983A1 (en) * | 1997-12-17 | 2004-07-01 | Myocor, Inc. | Valve to myocardium tension members device and method |
US6332893B1 (en) | 1997-12-17 | 2001-12-25 | Myocor, Inc. | Valve to myocardium tension members device and method |
US8226711B2 (en) | 1997-12-17 | 2012-07-24 | Edwards Lifesciences, Llc | Valve to myocardium tension members device and method |
EP0983024A1 (en) * | 1997-12-29 | 2000-03-08 | Lee L. Swanstrom | Method and apparatus for attaching or locking an implant to an anatomic vessel or hollow organ wall |
EP0983024A4 (en) * | 1997-12-29 | 2001-01-24 | Lee L Swanstrom | Method and apparatus for attaching or locking an implant to an anatomic vessel or hollow organ wall |
US8808329B2 (en) | 1998-02-06 | 2014-08-19 | Bonutti Skeletal Innovations Llc | Apparatus and method for securing a portion of a body |
US6402680B2 (en) | 1998-07-29 | 2002-06-11 | Myocor, Inc. | Stress reduction apparatus and method |
US6264602B1 (en) | 1998-07-29 | 2001-07-24 | Myocor, Inc. | Stress reduction apparatus and method |
US8439817B2 (en) | 1998-07-29 | 2013-05-14 | Edwards Lifesciences, Llc | Chordae capturing methods for stress reduction |
US6746471B2 (en) | 1998-07-29 | 2004-06-08 | Myocor, Inc. | Transventricular implant tools and devices |
US20020173694A1 (en) * | 1998-07-29 | 2002-11-21 | Myocor, Inc. | Stress reduction apparatus and method |
US20050143620A1 (en) * | 1998-07-29 | 2005-06-30 | Myocor, Inc. | Stress reduction apparatus and method |
US6908424B2 (en) | 1998-07-29 | 2005-06-21 | Myocor, Inc. | Stress reduction apparatus and method |
US6260552B1 (en) | 1998-07-29 | 2001-07-17 | Myocor, Inc. | Transventricular implant tools and devices |
US7722523B2 (en) | 1998-07-29 | 2010-05-25 | Edwards Lifesciences Llc | Transventricular implant tools and devices |
US7981020B2 (en) | 1998-07-29 | 2011-07-19 | Edwards Lifesciences Llc | Transventricular implant tools and devices |
US8579798B2 (en) | 1998-09-21 | 2013-11-12 | Edwards Lifesciences, Llc | External cardiac stress reduction method |
US6808488B2 (en) | 1998-09-21 | 2004-10-26 | Myocor, Inc. | External stress reduction device and method |
US6183411B1 (en) | 1998-09-21 | 2001-02-06 | Myocor, Inc. | External stress reduction device and method |
US6402679B1 (en) | 1998-09-21 | 2002-06-11 | Myocor, Inc. | External stress reduction device and method |
US6306159B1 (en) | 1998-12-23 | 2001-10-23 | Depuy Orthopaedics, Inc. | Meniscal repair device |
US20060135996A1 (en) * | 1998-12-30 | 2006-06-22 | Schwartz Herbert E | Suture locking device |
US6319271B1 (en) | 1998-12-30 | 2001-11-20 | Depuy Orthopaedics, Inc. | Suture locking device |
US6432123B2 (en) | 1998-12-30 | 2002-08-13 | Ethicon, Inc. | Suture locking device |
US20080091237A1 (en) * | 1998-12-30 | 2008-04-17 | Schwartz Herbert E | Suture locking device |
US20040153103A1 (en) * | 1998-12-30 | 2004-08-05 | Schwartz Herbert E. | Soft tissue locking device |
US8512374B2 (en) | 1998-12-30 | 2013-08-20 | Depuy Mitek, Llc | Soft tissue locking device |
US8323315B2 (en) | 1998-12-30 | 2012-12-04 | Depuy Mitek, Inc. | Suture locking device |
US6293961B2 (en) | 1998-12-30 | 2001-09-25 | Ethicon, Inc. | Suture locking device |
US7846181B2 (en) | 1998-12-30 | 2010-12-07 | Depuy Mitek, Inc. | Suture locking device |
US20020169478A1 (en) * | 1998-12-30 | 2002-11-14 | Schwartz Herbert E. | Suture locking device |
US7033380B2 (en) | 1998-12-30 | 2006-04-25 | Ethicon, Inc. | Suture locking device |
WO2000048658A1 (en) | 1999-02-18 | 2000-08-24 | Abbott Laboratories | External retaining device for a catheter and catheter assembly and method using same |
US8343175B2 (en) | 1999-06-25 | 2013-01-01 | Usgi Medical, Inc. | Apparatus and methods for forming and securing gastrointestinal tissue folds |
US7704264B2 (en) | 1999-06-25 | 2010-04-27 | Usgi Medical, Inc. | Apparatus and methods for forming and securing gastrointestinal tissue folds |
US7744613B2 (en) | 1999-06-25 | 2010-06-29 | Usgi Medical, Inc. | Apparatus and methods for forming and securing gastrointestinal tissue folds |
US8574243B2 (en) | 1999-06-25 | 2013-11-05 | Usgi Medical, Inc. | Apparatus and methods for forming and securing gastrointestinal tissue folds |
US7955340B2 (en) | 1999-06-25 | 2011-06-07 | Usgi Medical, Inc. | Apparatus and methods for forming and securing gastrointestinal tissue folds |
US8845699B2 (en) | 1999-08-09 | 2014-09-30 | Bonutti Skeletal Innovations Llc | Method of securing tissue |
US9884451B2 (en) | 2000-03-13 | 2018-02-06 | P Tech, Llc | Method of using ultrasonic vibration to secure body tissue |
US9138222B2 (en) | 2000-03-13 | 2015-09-22 | P Tech, Llc | Method and device for securing body tissue |
US8747439B2 (en) | 2000-03-13 | 2014-06-10 | P Tech, Llc | Method of using ultrasonic vibration to secure body tissue with fastening element |
US9067362B2 (en) | 2000-03-13 | 2015-06-30 | P Tech, Llc | Method of using ultrasonic vibration to secure body tissue with fastening element |
US9986994B2 (en) | 2000-03-13 | 2018-06-05 | P Tech, Llc | Method and device for securing body tissue |
US6537198B1 (en) | 2000-03-21 | 2003-03-25 | Myocor, Inc. | Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly |
US7044905B2 (en) | 2000-03-21 | 2006-05-16 | Myocor, Inc. | Splint assembly for improving cardiac function in hearts, and method for implanting the splint assembly |
US8814902B2 (en) | 2000-05-03 | 2014-08-26 | Bonutti Skeletal Innovations Llc | Method of securing body tissue |
US6343605B1 (en) | 2000-08-08 | 2002-02-05 | Scimed Life Systems, Inc. | Percutaneous transluminal myocardial implantation device and method |
US6723038B1 (en) | 2000-10-06 | 2004-04-20 | Myocor, Inc. | Methods and devices for improving mitral valve function |
US7766812B2 (en) | 2000-10-06 | 2010-08-03 | Edwards Lifesciences Llc | Methods and devices for improving mitral valve function |
US9198757B2 (en) | 2000-10-06 | 2015-12-01 | Edwards Lifesciences, Llc | Methods and devices for improving mitral valve function |
US6622730B2 (en) | 2001-03-30 | 2003-09-23 | Myocor, Inc. | Device for marking and aligning positions on the heart |
US20040186514A1 (en) * | 2001-05-18 | 2004-09-23 | Swain Christopher Paul | Flexible device for transfixing and joining tissue |
US7879051B2 (en) * | 2001-05-18 | 2011-02-01 | Christopher Paul Swain | Flexible device for transfixing and joining tissue |
US8025896B2 (en) | 2001-07-16 | 2011-09-27 | Depuy Products, Inc. | Porous extracellular matrix scaffold and method |
US8012205B2 (en) * | 2001-07-16 | 2011-09-06 | Depuy Products, Inc. | Cartilage repair and regeneration device |
US7914808B2 (en) | 2001-07-16 | 2011-03-29 | Depuy Products, Inc. | Hybrid biologic/synthetic porous extracellular matrix scaffolds |
US8092529B2 (en) | 2001-07-16 | 2012-01-10 | Depuy Products, Inc. | Meniscus regeneration device |
US7819918B2 (en) | 2001-07-16 | 2010-10-26 | Depuy Products, Inc. | Implantable tissue repair device |
US7163563B2 (en) | 2001-07-16 | 2007-01-16 | Depuy Products, Inc. | Unitary surgical device and method |
US8337537B2 (en) | 2001-07-16 | 2012-12-25 | Depuy Products, Inc. | Device from naturally occurring biologically derived materials |
US20030033021A1 (en) * | 2001-07-16 | 2003-02-13 | Plouhar Pamela Lynn | Cartilage repair and regeneration scaffold and method |
US20040220574A1 (en) * | 2001-07-16 | 2004-11-04 | Pelo Mark Joseph | Device from naturally occuring biologically derived materials |
US20090024213A1 (en) * | 2001-09-07 | 2009-01-22 | Mardil, Inc. | Method and Apparatus for External Stabilization of the Heart Valves and Myocardium |
US8715160B2 (en) | 2001-09-07 | 2014-05-06 | Mardil, Inc. | Method and apparatus for external stabilization of the heart |
US8128553B2 (en) | 2001-09-07 | 2012-03-06 | Mardil, Inc. | Method and apparatus for external stabilization of the heart |
US9289298B2 (en) | 2001-09-07 | 2016-03-22 | Mardil, Inc. | Method and apparatus for external stabilization of the heart |
US8092367B2 (en) | 2001-09-07 | 2012-01-10 | Mardil, Inc. | Method for external stabilization of the base of the heart |
US9770238B2 (en) | 2001-12-03 | 2017-09-26 | P Tech, Llc | Magnetic positioning apparatus |
US8070805B2 (en) | 2002-01-09 | 2011-12-06 | Edwards Lifesciences Llc | Devices and methods for heart valve treatment |
US7678145B2 (en) | 2002-01-09 | 2010-03-16 | Edwards Lifesciences Llc | Devices and methods for heart valve treatment |
US6764510B2 (en) | 2002-01-09 | 2004-07-20 | Myocor, Inc. | Devices and methods for heart valve treatment |
US7077862B2 (en) | 2002-01-09 | 2006-07-18 | Myocor, Inc. | Devices and methods for heart valve treatment |
US20080195200A1 (en) * | 2002-01-09 | 2008-08-14 | Myocor, Inc. | Devices and methods for heart valve treatment |
US8506624B2 (en) | 2002-01-09 | 2013-08-13 | Edwards Lifesciences, Llc | Devices and methods for heart valve treatment |
US9486227B2 (en) | 2002-03-20 | 2016-11-08 | P Tech, Llc | Robotic retractor system |
US9155544B2 (en) | 2002-03-20 | 2015-10-13 | P Tech, Llc | Robotic systems and methods |
US9585725B2 (en) | 2002-03-20 | 2017-03-07 | P Tech, Llc | Robotic arthroplasty system |
US9629687B2 (en) | 2002-03-20 | 2017-04-25 | P Tech, Llc | Robotic arthroplasty system |
US9808318B2 (en) | 2002-03-20 | 2017-11-07 | P Tech, Llc | Robotic arthroplasty system |
US10959791B2 (en) | 2002-03-20 | 2021-03-30 | P Tech, Llc | Robotic surgery |
US10932869B2 (en) | 2002-03-20 | 2021-03-02 | P Tech, Llc | Robotic surgery |
US10869728B2 (en) | 2002-03-20 | 2020-12-22 | P Tech, Llc | Robotic surgery |
US9271779B2 (en) | 2002-03-20 | 2016-03-01 | P Tech, Llc | Methods of using a robotic spine system |
US10368953B2 (en) | 2002-03-20 | 2019-08-06 | P Tech, Llc | Robotic system for fastening layers of body tissue together and method thereof |
US10265128B2 (en) | 2002-03-20 | 2019-04-23 | P Tech, Llc | Methods of using a robotic spine system |
US9271741B2 (en) | 2002-03-20 | 2016-03-01 | P Tech, Llc | Robotic ultrasonic energy system |
US9149281B2 (en) | 2002-03-20 | 2015-10-06 | P Tech, Llc | Robotic system for engaging a fastener with body tissue |
US9877793B2 (en) | 2002-03-20 | 2018-01-30 | P Tech, Llc | Robotic arthroplasty system |
US9192395B2 (en) | 2002-03-20 | 2015-11-24 | P Tech, Llc | Robotic fastening system |
US6699263B2 (en) | 2002-04-05 | 2004-03-02 | Cook Incorporated | Sliding suture anchor |
US20050113851A1 (en) * | 2002-05-17 | 2005-05-26 | Swain Christopher P. | Device for transfixing and joining tissue |
US7494496B2 (en) * | 2002-05-17 | 2009-02-24 | Ucl Biomedica Plc | Device for transfixing and joining tissue |
US9072513B2 (en) | 2002-06-13 | 2015-07-07 | Guided Delivery Systems Inc. | Methods and devices for termination |
US10092402B2 (en) | 2002-06-13 | 2018-10-09 | Ancora Heart, Inc. | Devices and methods for heart valve repair |
US7883538B2 (en) | 2002-06-13 | 2011-02-08 | Guided Delivery Systems Inc. | Methods and devices for termination |
US8066766B2 (en) | 2002-06-13 | 2011-11-29 | Guided Delivery Systems Inc. | Methods and devices for termination |
US8287557B2 (en) | 2002-06-13 | 2012-10-16 | Guided Delivery Systems, Inc. | Methods and devices for termination |
US20160081687A1 (en) * | 2002-06-20 | 2016-03-24 | Boston Scientific Scimed, Inc. | Methods for fastening tissue |
US9931112B2 (en) * | 2002-06-20 | 2018-04-03 | Boston Scientific Scimed, Inc. | Methods for fastening tissue |
US9750496B2 (en) | 2002-08-27 | 2017-09-05 | P Tech, Llc | System for securing a portion of a body |
US6966916B2 (en) | 2002-09-26 | 2005-11-22 | Kumar Sarbjeet S | Device and method for surgical repair of abdominal wall hernias |
US20040092969A1 (en) * | 2002-09-26 | 2004-05-13 | Kumar Sarbjeet S. | Device and method for surgical repair of abdominal wall hernias |
US20060206063A1 (en) * | 2002-11-01 | 2006-09-14 | Jonathan Kagan | Attachment system for transmural attachment at the gastroesophageal junction |
US8012140B1 (en) | 2002-11-01 | 2011-09-06 | Valentx, Inc. | Methods of transmural attachment in the gastrointestinal system |
US7892214B2 (en) | 2002-11-01 | 2011-02-22 | Valentx, Inc. | Attachment system for transmural attachment at the gastroesophageal junction |
US20050240279A1 (en) * | 2002-11-01 | 2005-10-27 | Jonathan Kagan | Gastrointestinal sleeve device and methods for treatment of morbid obesity |
US9561127B2 (en) | 2002-11-01 | 2017-02-07 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US7220284B2 (en) | 2002-11-01 | 2007-05-22 | Valentx, Inc. | Gastrointestinal sleeve device and methods for treatment of morbid obesity |
US8070743B2 (en) | 2002-11-01 | 2011-12-06 | Valentx, Inc. | Devices and methods for attaching an endolumenal gastrointestinal implant |
US8012135B2 (en) | 2002-11-01 | 2011-09-06 | Valentx, Inc. | Attachment cuff for gastrointestinal implant |
US8182459B2 (en) | 2002-11-01 | 2012-05-22 | Valentx, Inc. | Devices and methods for endolumenal gastrointestinal bypass |
US20090149871A9 (en) * | 2002-11-01 | 2009-06-11 | Jonathan Kagan | Devices and methods for treating morbid obesity |
US9839546B2 (en) | 2002-11-01 | 2017-12-12 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US8968270B2 (en) | 2002-11-01 | 2015-03-03 | Valentx, Inc. | Methods of replacing a gastrointestinal bypass sleeve for therapy adjustment |
US20050177181A1 (en) * | 2002-11-01 | 2005-08-11 | Jonathan Kagan | Devices and methods for treating morbid obesity |
US7846138B2 (en) | 2002-11-01 | 2010-12-07 | Valentx, Inc. | Cuff and sleeve system for gastrointestinal bypass |
US10350101B2 (en) | 2002-11-01 | 2019-07-16 | Valentx, Inc. | Devices and methods for endolumenal gastrointestinal bypass |
US9060844B2 (en) | 2002-11-01 | 2015-06-23 | Valentx, Inc. | Apparatus and methods for treatment of morbid obesity |
US7794447B2 (en) | 2002-11-01 | 2010-09-14 | Valentx, Inc. | Gastrointestinal sleeve device and methods for treatment of morbid obesity |
US7837669B2 (en) | 2002-11-01 | 2010-11-23 | Valentx, Inc. | Devices and methods for endolumenal gastrointestinal bypass |
US7112219B2 (en) | 2002-11-12 | 2006-09-26 | Myocor, Inc. | Devices and methods for heart valve treatment |
US7666224B2 (en) | 2002-11-12 | 2010-02-23 | Edwards Lifesciences Llc | Devices and methods for heart valve treatment |
US7247134B2 (en) | 2002-11-12 | 2007-07-24 | Myocor, Inc. | Devices and methods for heart valve treatment |
US8066719B2 (en) | 2002-12-11 | 2011-11-29 | Ewers Richard C | Apparatus and methods for forming gastrointestinal tissue approximations |
US7942898B2 (en) | 2002-12-11 | 2011-05-17 | Usgi Medical, Inc. | Delivery systems and methods for gastric reduction |
US7416554B2 (en) | 2002-12-11 | 2008-08-26 | Usgi Medical Inc | Apparatus and methods for forming and securing gastrointestinal tissue folds |
US8216260B2 (en) | 2002-12-11 | 2012-07-10 | Usgi Medical, Inc. | Apparatus and methods for forming and securing gastrointestinal tissue folds |
US7618426B2 (en) | 2002-12-11 | 2009-11-17 | Usgi Medical, Inc. | Apparatus and methods for forming gastrointestinal tissue approximations |
US8262676B2 (en) | 2002-12-11 | 2012-09-11 | Usgi Medical, Inc. | Apparatus and methods for forming gastrointestinal tissue approximations |
US7942884B2 (en) | 2002-12-11 | 2011-05-17 | Usgi Medical, Inc. | Methods for reduction of a gastric lumen |
US20040204741A1 (en) * | 2003-01-14 | 2004-10-14 | Radi Medical Systems Ab | Closure device and method for sealing a puncture in a blood vessel |
US8118831B2 (en) * | 2003-01-14 | 2012-02-21 | Radi Medical Systems Ab | Closure device and method for sealing a puncture in a blood vessel |
US8512372B2 (en) | 2003-01-14 | 2013-08-20 | Radi Medical Systems Ab | Closure device and method for sealing a puncture in a blood vessel |
US7918845B2 (en) | 2003-01-15 | 2011-04-05 | Usgi Medical, Inc. | Endoluminal tool deployment system |
US9962162B2 (en) | 2003-04-30 | 2018-05-08 | P Tech, Llc | Tissue fastener and methods for using same |
US9060767B2 (en) | 2003-04-30 | 2015-06-23 | P Tech, Llc | Tissue fastener and methods for using same |
US8192455B2 (en) | 2003-08-13 | 2012-06-05 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Compressive device for percutaneous treatment of obesity |
US9510817B2 (en) | 2003-12-12 | 2016-12-06 | Usgi Medical, Inc. | Apparatus for manipulating and securing tissue |
US10045871B2 (en) | 2003-12-12 | 2018-08-14 | Usgi Medical, Inc. | Apparatus for manipulating and securing tissue |
US7455683B2 (en) | 2004-02-26 | 2008-11-25 | Depuy Mitek, Inc. | Methods and devices for repairing triangular fibrocartilage complex tears |
US7571729B2 (en) | 2004-03-09 | 2009-08-11 | Usgi Medical, Inc. | Apparatus and methods for performing mucosectomy |
US9888916B2 (en) | 2004-03-09 | 2018-02-13 | P Tech, Llc | Method and device for securing body tissue |
US7703459B2 (en) | 2004-03-09 | 2010-04-27 | Usgi Medical, Inc. | Apparatus and methods for mapping out endoluminal gastrointestinal surgery |
US20050216042A1 (en) * | 2004-03-23 | 2005-09-29 | Michael Gertner | Percutaneous gastroplasty |
US20060074473A1 (en) * | 2004-03-23 | 2006-04-06 | Michael Gertner | Methods and devices for combined gastric restriction and electrical stimulation |
US7255675B2 (en) | 2004-03-23 | 2007-08-14 | Michael Gertner | Devices and methods to treat a patient |
US20070173888A1 (en) * | 2004-03-23 | 2007-07-26 | Michael Gertner | Methods and devices for percutaneously modifying organs to treat patients |
US7670279B2 (en) | 2004-03-23 | 2010-03-02 | Michael Gertner | Percutaneous gastroplasty |
US20070027358A1 (en) * | 2004-03-23 | 2007-02-01 | Michael Gertner | Devices and methods to treat a patient |
US20060195139A1 (en) * | 2004-03-23 | 2006-08-31 | Michael Gertner | Extragastric devices and methods for gastroplasty |
US20070233170A1 (en) * | 2004-03-23 | 2007-10-04 | Michael Gertner | Extragastric Balloon |
US20060142790A1 (en) * | 2004-03-23 | 2006-06-29 | Michael Gertner | Methods and devices to facilitate connections between body lumens |
US20070179335A1 (en) * | 2004-03-23 | 2007-08-02 | Michael Gertner | Methods and devices for percutaneously modifying organs to treat patients |
US20050267533A1 (en) * | 2004-03-23 | 2005-12-01 | Michael Gertner | Methods and devices for the surgical creation of satiety and biofeedback pathways |
US8070673B2 (en) | 2004-03-23 | 2011-12-06 | Michael Gertner | Devices and methods to treat a patient |
US20100234682A1 (en) * | 2004-03-23 | 2010-09-16 | Michael Gertner | Closed loop gastric restriction devices and methods |
US20050228415A1 (en) * | 2004-03-23 | 2005-10-13 | Michael Gertner | Methods and devices for percutaneous, non-laparoscopic treatment of obesity |
US7963907B2 (en) | 2004-03-23 | 2011-06-21 | Michael Gertner | Closed loop gastric restriction devices and methods |
US7946976B2 (en) | 2004-03-23 | 2011-05-24 | Michael Gertner | Methods and devices for the surgical creation of satiety and biofeedback pathways |
US7931580B2 (en) * | 2004-03-23 | 2011-04-26 | Michael Gertner | Methods and devices for percutaneously modifying organs to treat patients |
US7569233B2 (en) | 2004-05-04 | 2009-08-04 | Depuy Products, Inc. | Hybrid biologic-synthetic bioabsorbable scaffolds |
US8216253B2 (en) | 2004-05-07 | 2012-07-10 | Usgi Medical, Inc. | Apparatus for manipulating and securing tissue |
US7736374B2 (en) | 2004-05-07 | 2010-06-15 | Usgi Medical, Inc. | Tissue manipulation and securement system |
US7601159B2 (en) | 2004-05-07 | 2009-10-13 | Usgi Medical, Inc. | Interlocking tissue anchor apparatus and methods |
US7918869B2 (en) | 2004-05-07 | 2011-04-05 | Usgi Medical, Inc. | Methods and apparatus for performing endoluminal gastroplasty |
US8444657B2 (en) | 2004-05-07 | 2013-05-21 | Usgi Medical, Inc. | Apparatus and methods for rapid deployment of tissue anchors |
US7347863B2 (en) | 2004-05-07 | 2008-03-25 | Usgi Medical, Inc. | Apparatus and methods for manipulating and securing tissue |
US7361180B2 (en) | 2004-05-07 | 2008-04-22 | Usgi Medical, Inc. | Apparatus for manipulating and securing tissue |
US7390329B2 (en) | 2004-05-07 | 2008-06-24 | Usgi Medical, Inc. | Methods for grasping and cinching tissue anchors |
US8308765B2 (en) | 2004-05-07 | 2012-11-13 | Usgi Medical, Inc. | Apparatus and methods for positioning and securing anchors |
US8057511B2 (en) | 2004-05-07 | 2011-11-15 | Usgi Medical, Inc. | Apparatus and methods for positioning and securing anchors |
US8216252B2 (en) | 2004-05-07 | 2012-07-10 | Usgi Medical, Inc. | Tissue manipulation and securement system |
US8926634B2 (en) | 2004-05-07 | 2015-01-06 | Usgi Medical, Inc. | Apparatus and methods for manipulating and securing tissue |
US7736378B2 (en) | 2004-05-07 | 2010-06-15 | Usgi Medical, Inc. | Apparatus and methods for positioning and securing anchors |
US7621925B2 (en) | 2004-05-07 | 2009-11-24 | Usgi Medical, Inc. | Needle assembly for tissue manipulation |
US11045341B2 (en) | 2004-05-07 | 2021-06-29 | Usgi Medical, Inc. | Apparatus for manipulating and securing tissue |
US8257394B2 (en) | 2004-05-07 | 2012-09-04 | Usgi Medical, Inc. | Apparatus and methods for positioning and securing anchors |
US8236009B2 (en) | 2004-05-07 | 2012-08-07 | Usgi Medical, Inc. | Needle assembly for tissue manipulation |
US9023066B2 (en) * | 2004-05-20 | 2015-05-05 | Olympus Corporation | Medical treatment device for suturing or ligating tissue |
US20050261708A1 (en) * | 2004-05-20 | 2005-11-24 | Pankaj Jay Pasricha | Medical treatment device |
US20050261710A1 (en) * | 2004-05-20 | 2005-11-24 | Olympus Corporation | Treatment system for living tissues |
US8206417B2 (en) | 2004-06-09 | 2012-06-26 | Usgi Medical Inc. | Apparatus and methods for optimizing anchoring force |
US7678135B2 (en) | 2004-06-09 | 2010-03-16 | Usgi Medical, Inc. | Compressible tissue anchor assemblies |
US7736379B2 (en) | 2004-06-09 | 2010-06-15 | Usgi Medical, Inc. | Compressible tissue anchor assemblies |
US7695493B2 (en) | 2004-06-09 | 2010-04-13 | Usgi Medical, Inc. | System for optimizing anchoring force |
US9814453B2 (en) | 2004-10-26 | 2017-11-14 | P Tech, Llc | Deformable fastener system |
US10238378B2 (en) | 2004-10-26 | 2019-03-26 | P Tech, Llc | Tissue fixation system and method |
US9545268B2 (en) | 2004-10-26 | 2017-01-17 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US9173647B2 (en) | 2004-10-26 | 2015-11-03 | P Tech, Llc | Tissue fixation system |
US9980761B2 (en) | 2004-10-26 | 2018-05-29 | P Tech, Llc | Tissue fixation system and method |
US9463012B2 (en) | 2004-10-26 | 2016-10-11 | P Tech, Llc | Apparatus for guiding and positioning an implant |
US9226828B2 (en) | 2004-10-26 | 2016-01-05 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US9867706B2 (en) | 2004-10-26 | 2018-01-16 | P Tech, Llc | Tissue fastening system |
US11457958B2 (en) | 2004-10-26 | 2022-10-04 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US11013542B2 (en) | 2004-10-26 | 2021-05-25 | P Tech, Llc | Tissue fixation system and method |
US9579129B2 (en) | 2004-10-26 | 2017-02-28 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US11992205B2 (en) | 2004-10-26 | 2024-05-28 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US9999449B2 (en) | 2004-10-26 | 2018-06-19 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US10813764B2 (en) | 2004-10-26 | 2020-10-27 | P Tech, Llc | Expandable introducer system and methods |
US9271766B2 (en) | 2004-10-26 | 2016-03-01 | P Tech, Llc | Devices and methods for stabilizing tissue and implants |
US7354627B2 (en) | 2004-12-22 | 2008-04-08 | Depuy Products, Inc. | Method for organizing the assembly of collagen fibers and compositions formed therefrom |
US9980717B2 (en) | 2005-02-22 | 2018-05-29 | P Tech, Llc | Device and method for securing body tissue |
US9089323B2 (en) | 2005-02-22 | 2015-07-28 | P Tech, Llc | Device and method for securing body tissue |
US20080161717A1 (en) * | 2005-05-10 | 2008-07-03 | Michael Eric Gertner | Obesity Treatment Systems |
US8298291B2 (en) | 2005-05-26 | 2012-10-30 | Usgi Medical, Inc. | Methods and apparatus for securing and deploying tissue anchors |
US9585651B2 (en) | 2005-05-26 | 2017-03-07 | Usgi Medical, Inc. | Methods and apparatus for securing and deploying tissue anchors |
US10624745B2 (en) | 2005-06-09 | 2020-04-21 | Bioventrix, Inc. | Method and apparatus for closing off a portion of a heart ventricle |
US11793643B2 (en) | 2005-06-09 | 2023-10-24 | Bioventrix, Inc. | Method and apparatus for closing off a portion of a heart ventricle |
US7595062B2 (en) | 2005-07-28 | 2009-09-29 | Depuy Products, Inc. | Joint resurfacing orthopaedic implant and associated method |
US10441269B1 (en) | 2005-10-05 | 2019-10-15 | P Tech, Llc | Deformable fastener system |
US10376259B2 (en) | 2005-10-05 | 2019-08-13 | P Tech, Llc | Deformable fastener system |
US11219446B2 (en) | 2005-10-05 | 2022-01-11 | P Tech, Llc | Deformable fastener system |
US8726909B2 (en) | 2006-01-27 | 2014-05-20 | Usgi Medical, Inc. | Methods and apparatus for revision of obesity procedures |
US10368924B2 (en) | 2006-02-07 | 2019-08-06 | P Tech, Llc | Methods and devices for trauma welding |
US9743963B2 (en) | 2006-02-07 | 2017-08-29 | P Tech, Llc | Methods and devices for trauma welding |
US8496657B2 (en) | 2006-02-07 | 2013-07-30 | P Tech, Llc. | Methods for utilizing vibratory energy to weld, stake and/or remove implants |
US9439642B2 (en) | 2006-02-07 | 2016-09-13 | P Tech, Llc | Methods and devices for utilizing bondable materials |
US9421005B2 (en) | 2006-02-07 | 2016-08-23 | P Tech, Llc | Methods and devices for intracorporeal bonding of implants with thermal energy |
US9610073B2 (en) | 2006-02-07 | 2017-04-04 | P Tech, Llc | Methods and devices for intracorporeal bonding of implants with thermal energy |
US11998251B2 (en) | 2006-02-07 | 2024-06-04 | P Tech, Llc | Methods and devices for intracorporeal bonding of implants with thermal energy |
US11278331B2 (en) | 2006-02-07 | 2022-03-22 | P Tech Llc | Method and devices for intracorporeal bonding of implants with thermal energy |
US11253296B2 (en) | 2006-02-07 | 2022-02-22 | P Tech, Llc | Methods and devices for intracorporeal bonding of implants with thermal energy |
US11134995B2 (en) | 2006-02-07 | 2021-10-05 | P Tech, Llc | Method and devices for intracorporeal bonding of implants with thermal energy |
US11129645B2 (en) | 2006-02-07 | 2021-09-28 | P Tech, Llc | Methods of securing a fastener |
US9173650B2 (en) | 2006-02-07 | 2015-11-03 | P Tech, Llc | Methods and devices for trauma welding |
US8187297B2 (en) | 2006-04-19 | 2012-05-29 | Vibsynt, Inc. | Devices and methods for treatment of obesity |
US7976554B2 (en) | 2006-04-19 | 2011-07-12 | Vibrynt, Inc. | Devices, tools and methods for performing minimally invasive abdominal surgical procedures |
US8001974B2 (en) | 2006-04-19 | 2011-08-23 | Vibrynt, Inc. | Devices and methods for treatment of obesity |
US20090012554A1 (en) * | 2006-04-19 | 2009-01-08 | Joshua Makower | Devices and methods for treatment of obesity |
US8460321B2 (en) | 2006-04-19 | 2013-06-11 | Vibrynt, Inc. | Devices, tools and methods for performing minimally invasive abdominal surgical procedures |
US8585733B2 (en) | 2006-04-19 | 2013-11-19 | Vibrynt, Inc | Devices, tools and methods for performing minimally invasive abdominal surgical procedures |
US8070768B2 (en) | 2006-04-19 | 2011-12-06 | Vibrynt, Inc. | Devices and methods for treatment of obesity |
US8360069B2 (en) | 2006-04-19 | 2013-01-29 | Vibrynt, Inc. | Devices and methods for treatment of obesity |
US8353925B2 (en) | 2006-04-19 | 2013-01-15 | Vibrynt, Inc. | Devices and methods for treatment of obesity |
US20090281498A1 (en) * | 2006-04-19 | 2009-11-12 | Acosta Pablo G | Devices, system and methods for minimally invasive abdominal surgical procedures |
US20090287227A1 (en) * | 2006-04-19 | 2009-11-19 | Newell Matthew B | Minimally invasive ,methods for implanting obesity treatment devices |
US8342183B2 (en) | 2006-04-19 | 2013-01-01 | Vibrynt, Inc. | Devices and methods for treatment of obesity |
US8356605B2 (en) | 2006-04-19 | 2013-01-22 | Vibrynt, Inc. | Devices and methods for treatment of obesity |
US8398668B2 (en) | 2006-04-19 | 2013-03-19 | Vibrynt, Inc. | Devices and methods for treatment of obesity |
US7881797B2 (en) | 2006-04-25 | 2011-02-01 | Valentx, Inc. | Methods and devices for gastrointestinal stimulation |
US11246638B2 (en) | 2006-05-03 | 2022-02-15 | P Tech, Llc | Methods and devices for utilizing bondable materials |
US12232789B2 (en) | 2006-05-03 | 2025-02-25 | P Tech, Llc | Methods and devices for utilizing bondable materials |
US8870916B2 (en) | 2006-07-07 | 2014-10-28 | USGI Medical, Inc | Low profile tissue anchors, tissue anchor systems, and methods for their delivery and use |
US7871440B2 (en) | 2006-12-11 | 2011-01-18 | Depuy Products, Inc. | Unitary surgical device and method |
US20080262515A1 (en) * | 2006-12-28 | 2008-10-23 | Joshua Makower | Devices and methods for treatment of obesity |
US11801044B2 (en) | 2007-02-13 | 2023-10-31 | P Tech, Llc | Tissue fixation system and method |
US10517584B1 (en) | 2007-02-13 | 2019-12-31 | P Tech, Llc | Tissue fixation system and method |
US10390817B2 (en) | 2007-02-13 | 2019-08-27 | P Tech, Llc | Tissue fixation system and method |
US12137898B2 (en) | 2007-02-13 | 2024-11-12 | P Tech, Llc | Tissue fixation system and method |
US9402668B2 (en) | 2007-02-13 | 2016-08-02 | P Tech, Llc | Tissue fixation system and method |
US8617185B2 (en) | 2007-02-13 | 2013-12-31 | P Tech, Llc. | Fixation device |
US8182441B2 (en) | 2007-06-08 | 2012-05-22 | Valentx, Inc. | Methods and devices for intragastric support of functional or prosthetic gastrointestinal devices |
US20090012541A1 (en) * | 2007-06-11 | 2009-01-08 | Valentx, Inc. | Expandable fastener system with flower petal-shaped retention elements |
US20090062743A1 (en) * | 2007-08-31 | 2009-03-05 | John Anthony Rotella | Gastropexy Kit |
US8382772B2 (en) | 2007-08-31 | 2013-02-26 | Kimberly-Clark Worldwide, Inc. | Gastropexy kit |
US20090062853A1 (en) * | 2007-08-31 | 2009-03-05 | Mcmichael Donald Jay | Suture Retention Hub |
US8157816B2 (en) | 2007-08-31 | 2012-04-17 | Kimberly-Clark Worldwide, Inc. | Gastropexy kit |
US20090062742A1 (en) * | 2007-08-31 | 2009-03-05 | John Anthony Rotella | Blunted Safety Needle |
US7867253B2 (en) | 2007-08-31 | 2011-01-11 | Kimberly-Clark Worldwide, Inc. | Suture retention hub |
US9968350B2 (en) | 2007-08-31 | 2018-05-15 | Avent, Inc. | Blunted safety needle |
US9011320B2 (en) | 2007-10-05 | 2015-04-21 | Boston Scientific Scimed, Inc. | Transluminal endoscopic surgery kit |
US20090143643A1 (en) * | 2007-10-05 | 2009-06-04 | Weitzner Barry D | Transluminal endoscopic surgery kit |
US8556925B2 (en) | 2007-10-11 | 2013-10-15 | Vibrynt, Inc. | Devices and methods for treatment of obesity |
US9636106B2 (en) | 2008-10-10 | 2017-05-02 | Ancora Heart, Inc. | Termination devices and related methods |
US8795298B2 (en) | 2008-10-10 | 2014-08-05 | Guided Delivery Systems Inc. | Tether tensioning devices and related methods |
US11116623B2 (en) | 2009-01-08 | 2021-09-14 | Rotation Medical, Inc. | Implantable tendon protection systems and related kits and methods |
US12016769B2 (en) | 2009-01-08 | 2024-06-25 | Rotation Medical, Inc. | Implantable tendon protection systems and related kits and methods |
US9101460B2 (en) | 2009-01-08 | 2015-08-11 | Rotation Medical, Inc. | Implantable tendon protection systems and related kits and methods |
US10413397B2 (en) | 2009-01-08 | 2019-09-17 | Rotation Medical, Inc. | Implantable tendon protection systems and related kits and methods |
US11413133B2 (en) | 2009-01-08 | 2022-08-16 | Rotation Medical, Inc. | Implantable tendon protection systems and related kits and methods |
US9179910B2 (en) | 2009-03-20 | 2015-11-10 | Rotation Medical, Inc. | Medical device delivery system and method |
US10806565B2 (en) | 2009-03-20 | 2020-10-20 | Rotation Medical, Inc. | Medical device delivery system and method |
US10226325B2 (en) | 2009-03-20 | 2019-03-12 | Rotation Medical, Inc. | Medical device delivery system and method |
US8821537B2 (en) | 2009-06-04 | 2014-09-02 | Rotation Medical, Inc. | Methods and apparatus for fixing sheet-like materials to a target tissue |
US11793510B2 (en) | 2009-06-04 | 2023-10-24 | Rotation Medical, Inc. | Methods and apparatus for delivering staples to a target tissue |
US9675346B2 (en) | 2009-06-04 | 2017-06-13 | Rotation Medical, Inc. | Methods and apparatus for fixing sheet-like materials to a target tissue |
US10653415B2 (en) | 2009-06-04 | 2020-05-19 | Rotation Medical, Inc. | Methods and apparatus having bowstring-like staple delivery to a target tissue |
US9095337B2 (en) | 2009-06-04 | 2015-08-04 | Rotation Medical, Inc. | Methods and apparatus for delivering staples to a target issue |
US11413082B2 (en) | 2009-06-04 | 2022-08-16 | Rotation Medical, Inc. | Methods and apparatus for deploying sheet-like materials |
US10426464B2 (en) | 2009-06-04 | 2019-10-01 | Rotation Medical, Inc. | Methods and apparatus for fixing sheet-like materials to a target tissue |
US8821536B2 (en) | 2009-06-04 | 2014-09-02 | Rotation Medical, Inc. | Methods and apparatus for delivering staples to a target tissue |
US12059188B2 (en) | 2009-06-04 | 2024-08-13 | Rotation Medical, Inc. | Methods and apparatus for deploying sheet-like materials |
US9179961B2 (en) | 2009-06-04 | 2015-11-10 | Rotation Medical, Inc. | Methods and apparatus for deploying sheet-like materials |
US11723706B2 (en) | 2009-06-04 | 2023-08-15 | Rotation Medical, Inc. | Methods and apparatus for deploying sheet-like materials |
US10568622B2 (en) | 2009-06-04 | 2020-02-25 | Rotation Medical, Inc. | Methods and apparatus for delivering staples to a target tissue |
US8840642B2 (en) | 2009-06-04 | 2014-09-23 | Rotation Medical, Inc. | Methods and apparatus for fixing sheet-like materials to a target tissue |
US8763878B2 (en) | 2009-06-04 | 2014-07-01 | Rotation Medical, Inc. | Methods and apparatus having bowstring-like staple delivery to a target tissue |
US8668718B2 (en) | 2009-06-04 | 2014-03-11 | Rotation Medical, Inc. | Methods and apparatus for fixing sheet-like materials to a target tissue |
US9259220B2 (en) | 2009-06-04 | 2016-02-16 | Rotation Medical, Inc. | Methods and apparatus for fixing sheet-like materials to a target tissue |
US8920464B2 (en) | 2009-06-04 | 2014-12-30 | Rotation Medical, Inc. | Methods and apparatus for fixing sheet-like materials to a target tissue |
US10085785B2 (en) | 2009-06-04 | 2018-10-02 | Rotation Medical, Inc. | Methods and apparatus for deploying sheet-like materials |
US10881441B2 (en) | 2009-06-04 | 2021-01-05 | Rotation Medical, Inc. | Methods and apparatus for deploying sheet-like materials |
US9931119B2 (en) | 2009-06-04 | 2018-04-03 | Rotation Medical, Inc. | Methods and apparatus having bowstring-like staple delivery to a target tissue |
US11051808B2 (en) | 2009-06-04 | 2021-07-06 | Rotation Medical, Inc. | Methods and apparatus for fixing sheet-like materials to a target tissue |
US10548730B2 (en) | 2010-02-03 | 2020-02-04 | Edwards Lifesciences Corporation | Devices for remodeling a valve annulus and ventricle |
US9107749B2 (en) | 2010-02-03 | 2015-08-18 | Edwards Lifesciences Corporation | Methods for treating a heart |
US20110190879A1 (en) * | 2010-02-03 | 2011-08-04 | Edwards Lifesciences Corporation | Devices and Methods for Treating a Heart |
US12016776B2 (en) | 2010-02-03 | 2024-06-25 | Edwards Lifesciences Corporation | Devices for remodeling a valve annulus and ventricle |
US10105210B2 (en) | 2010-03-11 | 2018-10-23 | Rotation Medical, Inc. | Tendon repair implant and method of arthroscopic implantation |
US11717393B2 (en) | 2010-03-11 | 2023-08-08 | Rotation Medical, Inc. | Tendon repair implant and method of arthroscopic implantation |
US9393103B2 (en) | 2010-03-11 | 2016-07-19 | Rotation Medical, Inc. | Tendon repair implant and method of arthroscopic implantation |
US10864072B2 (en) | 2010-03-11 | 2020-12-15 | Rotation Medical, Inc. | Tendon repair implant and method of arthroscopic implantation |
US10123866B2 (en) | 2010-03-11 | 2018-11-13 | Rotation Medical, Inc. | Tendon repair implant and method of arthroscopic implantation |
US9198750B2 (en) | 2010-03-11 | 2015-12-01 | Rotation Medical, Inc. | Tendon repair implant and method of arthroscopic implantation |
US8790356B2 (en) | 2010-06-09 | 2014-07-29 | C.R. Bard, Inc. | Instruments for delivering transfascial sutures, transfascial suture assemblies, and methods of transfascial suturing |
US10492777B2 (en) | 2010-06-09 | 2019-12-03 | C.R. Bard, Inc. | Instruments for delivering transfascial sutures, transfascial suture assemblies, and methods of transfascial suturing |
US9439643B2 (en) | 2010-06-09 | 2016-09-13 | C.R. Bard, Inc. | Instruments for delivering transfascial sutures, transfascial suture assemblies, and methods of transfascial suturing |
US9592044B2 (en) | 2011-02-09 | 2017-03-14 | C. R. Bard, Inc. | T-fastener suture delivery system |
US10478170B2 (en) | 2011-02-09 | 2019-11-19 | C. R. Bard, Inc. | T-fastener suture delivery system |
US9743970B2 (en) | 2011-02-15 | 2017-08-29 | Rotation Medical, Inc. | Anatomical location markers and methods of use in positioning sheet-like materials during surgery |
US9005224B2 (en) | 2011-02-15 | 2015-04-14 | Rotation Medical, Inc. | Methods and apparatus for delivering and positioning sheet-like materials |
US9198751B2 (en) | 2011-02-15 | 2015-12-01 | Rotation Medical, Inc. | Methods and apparatus for delivering and positioning sheet-like materials in surgery |
US9033201B2 (en) | 2011-02-15 | 2015-05-19 | Rotation Medical, Inc. | Methods and apparatus for fixing sheet-like materials to a target tissue |
US8864780B2 (en) | 2011-02-15 | 2014-10-21 | Rotation Medical, Inc. | Methods and apparatus for delivering and positioning sheet-like materials |
US9993247B2 (en) | 2011-02-15 | 2018-06-12 | Rotation Medical, Inc. | Apparatus for fixing sheet-like materials to a target tissue |
US9314314B2 (en) | 2011-02-15 | 2016-04-19 | Rotation Medical, Inc. | Anatomical location markers and methods of use in positioning sheet-like materials during surgery |
US10449031B2 (en) | 2011-02-15 | 2019-10-22 | Rotation Medical, Inc. | Methods and apparatus for delivering and positioning sheet-like materials |
US10195016B2 (en) | 2011-02-15 | 2019-02-05 | Rotation Medical, Inc. | Methods and apparatus for delivering and positioning sheet-like materials in surgery |
US9314331B2 (en) | 2011-02-15 | 2016-04-19 | Rotation Medical, Inc. | Methods and apparatus for delivering and positioning sheet-like materials in surgery |
US9113977B2 (en) | 2011-02-15 | 2015-08-25 | Rotation Medical, Inc. | Guidewire having a distal fixation member for delivering and positioning sheet-like materials in surgery |
US9204940B2 (en) | 2011-02-15 | 2015-12-08 | Rotation Medical, Inc. | Anatomical location markers and methods of use in positioning sheet-like materials during surgery |
US10245138B2 (en) | 2011-02-15 | 2019-04-02 | Rotation Medical, Inc. | Methods and apparatus for delivering and positioning sheet-like materials in surgery |
US9826972B2 (en) | 2011-10-24 | 2017-11-28 | C.R. Bard, Inc. | Instruments for delivering transfascial sutures, transfascial suture assemblies and methods of transfascial suturing |
US10245037B2 (en) | 2011-12-07 | 2019-04-02 | Edwards Lifesciences Corporation | Self-cinching surgical clips and delivery system |
US11707280B2 (en) | 2011-12-07 | 2023-07-25 | Edwards Lifesciences Corporation | Methods of deploying self-cinching surgical clips |
US11090053B2 (en) | 2011-12-07 | 2021-08-17 | Edwards Lifesciences Corporation | Methods of deploying self-cinching surgical clips |
US8968336B2 (en) | 2011-12-07 | 2015-03-03 | Edwards Lifesciences Corporation | Self-cinching surgical clips and delivery system |
US9668739B2 (en) | 2011-12-07 | 2017-06-06 | Edwards Lifesciences Corporation | Self-cinching surgical clips and delivery system |
US10687808B2 (en) | 2011-12-15 | 2020-06-23 | Ethicon Endo-Surgery, Inc. | Devices and methods for endoluminal plication |
US9113868B2 (en) | 2011-12-15 | 2015-08-25 | Ethicon Endo-Surgery, Inc. | Devices and methods for endoluminal plication |
US9113879B2 (en) | 2011-12-15 | 2015-08-25 | Ethicon Endo-Surgery, Inc. | Devices and methods for endoluminal plication |
US9119615B2 (en) | 2011-12-15 | 2015-09-01 | Ethicon Endo-Surgery, Inc. | Devices and methods for endoluminal plication |
US9113866B2 (en) | 2011-12-15 | 2015-08-25 | Ethicon Endo-Surgery, Inc. | Devices and methods for endoluminal plication |
US9173657B2 (en) | 2011-12-15 | 2015-11-03 | Ethicon Endo-Surgery, Inc. | Devices and methods for endoluminal plication |
US10292703B2 (en) | 2011-12-15 | 2019-05-21 | Ethicon Endo-Surgery, Inc. | Devices and methods for endoluminal plication |
US9113867B2 (en) | 2011-12-15 | 2015-08-25 | Ethicon Endo-Surgery, Inc. | Devices and methods for endoluminal plication |
US9855037B2 (en) | 2011-12-19 | 2018-01-02 | Rotation Medical, Inc. | Fasteners and fastener delivery devices for affixing sheet-like materials to bone or tissue |
US9370356B2 (en) | 2011-12-19 | 2016-06-21 | Rotation Medical, Inc. | Fasteners and fastener delivery devices for affixing sheet-like materials to bone or tissue |
US9566063B2 (en) | 2011-12-19 | 2017-02-14 | Rotation Medical, Inc. | Fasteners and fastener delivery devices for affixing sheet-like materials to bone or tissue |
US9125650B2 (en) | 2011-12-19 | 2015-09-08 | Rotation Medical, Inc. | Apparatus and method for forming pilot holes in bone and delivering fasteners therein for retaining an implant |
US9414841B2 (en) | 2011-12-19 | 2016-08-16 | Rotation Medical, Inc. | Fasteners and fastener delivery devices for affixing sheet-like materials to bone or tissue |
US9955968B2 (en) | 2011-12-19 | 2018-05-01 | Rotation Medical, Inc. | Fasteners and fastener delivery devices for affixing sheet-like materials to bone or tissue |
US10912640B2 (en) | 2011-12-19 | 2021-02-09 | Rotation Medical, Inc. | Apparatus and method for forming pilot holes in bone and delivering fasteners therein for retaining an implant |
US9107661B2 (en) | 2011-12-19 | 2015-08-18 | Rotation Medical, Inc. | Fasteners and fastener delivery devices for affixing sheet-like materials to bone or tissue |
US9247978B2 (en) | 2011-12-19 | 2016-02-02 | Rotation Medical, Inc. | Apparatus and method for forming pilot holes in bone and delivering fasteners therein for retaining an implant |
US11020111B2 (en) | 2011-12-19 | 2021-06-01 | Rotation Medical, Inc. | Fasteners and fastener delivery devices for affixing sheet-like materials to bone or tissue |
US10105211B2 (en) | 2011-12-19 | 2018-10-23 | Rotation Medical, Inc. | Apparatus and method for forming pilot holes in bone and delivering fasteners therein for retaining an implant |
US10058414B2 (en) | 2011-12-19 | 2018-08-28 | Rotation Medical, Inc. | Apparatus and method for forming pilot holes in bone and delivering fasteners therein for retaining an implant |
US9271726B2 (en) | 2011-12-19 | 2016-03-01 | Rotation Medical, Inc. | Fasteners and fastener delivery devices for affixing sheet-like materials to bone or tissue |
US10314573B2 (en) | 2011-12-22 | 2019-06-11 | Edwards Lifesciences Corporation | Suture clip deployment devices |
US9549730B2 (en) | 2011-12-22 | 2017-01-24 | Edwards Lifesciences Corporation | Suture clip deployment devices |
US9414837B2 (en) | 2011-12-22 | 2016-08-16 | Edwards Lifesciences Corporation | Suture clip deployment devices |
US11185321B2 (en) | 2011-12-22 | 2021-11-30 | Edwards Lifesciences Corporation | Suture clip deployment devices |
US9017347B2 (en) | 2011-12-22 | 2015-04-28 | Edwards Lifesciences Corporation | Suture clip deployment devices |
US11051932B2 (en) | 2011-12-29 | 2021-07-06 | Rotation Medical, Inc. | Methods and apparatus for delivering and positioning sheet-like materials in surgery |
US10952783B2 (en) | 2011-12-29 | 2021-03-23 | Rotation Medical, Inc. | Guidewire having a distal fixation member for delivering and positioning sheet-like materials in surgery |
US8382775B1 (en) | 2012-01-08 | 2013-02-26 | Vibrynt, Inc. | Methods, instruments and devices for extragastric reduction of stomach volume |
US9155528B2 (en) | 2012-01-08 | 2015-10-13 | Vibrynt, Inc. | Methods, instruments and devices for extragastic reduction of stomach volume |
US9314362B2 (en) | 2012-01-08 | 2016-04-19 | Vibrynt, Inc. | Methods, instruments and devices for extragastric reduction of stomach volume |
US10595852B2 (en) | 2012-03-21 | 2020-03-24 | Ethicon Llc | Methods and devices for creating tissue plications |
US8992547B2 (en) | 2012-03-21 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Methods and devices for creating tissue plications |
US9980716B2 (en) | 2012-03-21 | 2018-05-29 | Ethicon Llc | Methods and devices for creating tissue plications |
US9265514B2 (en) | 2012-04-17 | 2016-02-23 | Miteas Ltd. | Manipulator for grasping tissue |
US9675489B2 (en) | 2012-05-31 | 2017-06-13 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9566181B2 (en) | 2012-05-31 | 2017-02-14 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9451960B2 (en) | 2012-05-31 | 2016-09-27 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9039649B2 (en) | 2012-05-31 | 2015-05-26 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9173759B2 (en) | 2012-05-31 | 2015-11-03 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9050168B2 (en) | 2012-05-31 | 2015-06-09 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US8956318B2 (en) | 2012-05-31 | 2015-02-17 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US9681975B2 (en) | 2012-05-31 | 2017-06-20 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US10624630B2 (en) | 2012-07-10 | 2020-04-21 | Edwards Lifesciences Ag | Multiple-firing securing device and methods for using and manufacturing same |
USRE47209E1 (en) | 2012-07-10 | 2019-01-22 | Edwards Lifesciences Corporation | Suture securement devices |
US9498202B2 (en) | 2012-07-10 | 2016-11-22 | Edwards Lifesciences Corporation | Suture securement devices |
US11382616B2 (en) | 2012-12-21 | 2022-07-12 | Edwards Lifesciences Corporation | Systems for securing sutures |
US10441275B2 (en) | 2012-12-21 | 2019-10-15 | Edwards Lifesciences Corporation | Systems for securing sutures |
US9592047B2 (en) | 2012-12-21 | 2017-03-14 | Edwards Lifesciences Corporation | System for securing sutures |
US10076377B2 (en) | 2013-01-05 | 2018-09-18 | P Tech, Llc | Fixation systems and methods |
US11083451B2 (en) | 2013-03-11 | 2021-08-10 | Boston Scientific Scimed, Inc. | Tissue anchor with insertion device |
US9757264B2 (en) | 2013-03-13 | 2017-09-12 | Valentx, Inc. | Devices and methods for gastrointestinal bypass |
US10188383B2 (en) | 2013-07-09 | 2019-01-29 | Edwards Lifesciences Corporation | Suture clip deployment devices |
US12239311B2 (en) | 2013-07-11 | 2025-03-04 | Edwards Lifesciences Corporation | Knotless suture fastener installation system |
US9592048B2 (en) | 2013-07-11 | 2017-03-14 | Edwards Lifesciences Corporation | Knotless suture fastener installation system |
US11553908B2 (en) | 2013-07-11 | 2023-01-17 | Edwards Lifesciences Corporation | Knotless suture fastener installation system |
US10426458B2 (en) | 2013-07-11 | 2019-10-01 | Edwards Lifesciences Corporation | Knotless suture fastener installation system |
US10016193B2 (en) | 2013-11-18 | 2018-07-10 | Edwards Lifesciences Ag | Multiple-firing crimp device and methods for using and manufacturing same |
US10327758B2 (en) | 2013-11-18 | 2019-06-25 | Edwards Lifesciences Ag | Multiple-firing suture fixation device and methods for using and manufacturing same |
US10327759B2 (en) | 2013-11-18 | 2019-06-25 | Edwards Lifesciences Ag | Multiple-firing suture fixation device and methods for using and manufacturing same |
US11471150B2 (en) | 2013-11-18 | 2022-10-18 | Edwards Lifesciences Ag | Multiple-firing suture fixation device and methods for using and manufacturing same |
US11395650B2 (en) | 2014-05-30 | 2022-07-26 | Edwards Life Sciences Corporation | Systems for securing sutures |
US10786244B2 (en) | 2014-05-30 | 2020-09-29 | Edwards Lifesciences Corporation | Systems for securing sutures |
US10098628B2 (en) | 2014-07-22 | 2018-10-16 | Cook Medical Technologies Llc | Anchor deployment system, device, and method of treatment |
US11806010B2 (en) | 2014-11-04 | 2023-11-07 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US12096932B2 (en) | 2014-11-04 | 2024-09-24 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US11076851B2 (en) | 2014-11-04 | 2021-08-03 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US11457916B2 (en) | 2014-11-04 | 2022-10-04 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US10675019B2 (en) | 2014-11-04 | 2020-06-09 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US10123796B2 (en) | 2014-11-04 | 2018-11-13 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US12226098B2 (en) | 2014-11-04 | 2025-02-18 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US11172924B2 (en) | 2014-12-10 | 2021-11-16 | Edwards Lifesciences Ag | Multiple-firing suture fixation device and methods for using and manufacturing same |
US12251097B2 (en) | 2014-12-10 | 2025-03-18 | Edwards Lifesciences Ag | Multiple-firing suture fixation device and methods for using and manufacturing same |
US12016552B2 (en) | 2014-12-24 | 2024-06-25 | Edwards Lifesciences Corporation | Suture clip deployment device |
US11690613B2 (en) | 2014-12-24 | 2023-07-04 | Edwards Lifesciences Corporation | Suture clip deployment device |
US10966711B2 (en) | 2014-12-24 | 2021-04-06 | Edwards Lifesciences Corporation | Suture clip deployment devices |
US11759200B2 (en) | 2015-03-16 | 2023-09-19 | Edwards Lifesciences Corporation | Suture securement devices |
US10470759B2 (en) | 2015-03-16 | 2019-11-12 | Edwards Lifesciences Corporation | Suture securement devices |
US12185979B2 (en) | 2015-05-06 | 2025-01-07 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US10898228B2 (en) | 2015-05-06 | 2021-01-26 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US11510702B2 (en) | 2015-05-06 | 2022-11-29 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US12070385B2 (en) | 2015-06-15 | 2024-08-27 | Rotation Medical, Inc. | Tendon repair implant and method of implantation |
US11607305B2 (en) | 2015-06-15 | 2023-03-21 | Rotation Medical, Inc. | Tendon repair implant and method of implantation |
US10265156B2 (en) | 2015-06-15 | 2019-04-23 | Rotation Medical, Inc | Tendon repair implant and method of implantation |
US10888415B2 (en) | 2015-06-15 | 2021-01-12 | Rotation Medical, Inc. | Tendon repair implant and method of implantation |
US12096995B2 (en) | 2015-10-21 | 2024-09-24 | P Tech, Llc | Systems and methods for navigation and visualization |
US12023111B2 (en) | 2015-10-21 | 2024-07-02 | P Tech, Llc | Systems and methods for navigation and visualization |
US11317974B2 (en) | 2015-10-21 | 2022-05-03 | P Tech, Llc | Systems and methods for navigation and visualization |
US11744651B2 (en) | 2015-10-21 | 2023-09-05 | P Tech, Llc | Systems and methods for navigation and visualization |
US10058393B2 (en) | 2015-10-21 | 2018-08-28 | P Tech, Llc | Systems and methods for navigation and visualization |
US11684430B2 (en) | 2015-10-21 | 2023-06-27 | P Tech, Llc | Systems and methods for navigation and visualization |
US12268455B2 (en) | 2015-10-21 | 2025-04-08 | P Tech, Llc | Systems and methods for navigation and visualization |
US10765484B2 (en) | 2015-10-21 | 2020-09-08 | P Tech, Llc | Systems and methods for navigation and visualization |
US10758228B2 (en) | 2015-11-03 | 2020-09-01 | Rotation Medical, Inc. | Fastener delivery system and related methods |
US11986181B2 (en) | 2015-12-31 | 2024-05-21 | Rotation Medical, Inc. | Fastener delivery system and related methods |
US10874503B2 (en) | 2015-12-31 | 2020-12-29 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US10314689B2 (en) | 2015-12-31 | 2019-06-11 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US12193661B2 (en) | 2016-08-26 | 2025-01-14 | Edwards Lifesciences Corporation | Suture clips, deployment devices therefor, and methods of use |
US10939905B2 (en) | 2016-08-26 | 2021-03-09 | Edwards Lifesciences Corporation | Suture clips, deployment devices therefor, and methods of use |
US10863980B2 (en) | 2016-12-28 | 2020-12-15 | Edwards Lifesciences Corporation | Suture fastener having spaced-apart layers |
US12144499B2 (en) | 2016-12-28 | 2024-11-19 | Edwards Lifesciences Corporation | Suture fastener having spaced-apart layers |
US11957332B2 (en) | 2016-12-28 | 2024-04-16 | Edwards Lifesciences Corporation | Suture fastener having spaced-apart layers |
US10542996B2 (en) | 2017-06-27 | 2020-01-28 | Covidien Lp | Vessel closure device |
US10835368B2 (en) | 2017-12-07 | 2020-11-17 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US12257142B2 (en) | 2017-12-07 | 2025-03-25 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US10987210B2 (en) | 2017-12-07 | 2021-04-27 | Rotation Medical, Inc. | Medical implant delivery system and related methods |
US11672524B2 (en) | 2019-07-15 | 2023-06-13 | Ancora Heart, Inc. | Devices and methods for tether cutting |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE34021E (en) | 1992-08-04 | Percutaneous fixation of hollow organs |
US4705040A (en) | 1987-11-10 | Percutaneous fixation of hollow organs |
AU613702B2 (en) | 1991-08-08 | Visceral anchor and methods for visceral wall mobilization and fixation of a hollow organ of a living body to a body wall |
US8475430B2 (en) | 2013-07-02 | Catheter assembly and method for internally anchoring a catheter in a patient |
EP0812571B1 (en) | 2007-07-11 | Device for suturing blood vessels and the like |
US6315789B1 (en) | 2001-11-13 | Medical device anchoring system and method |
US5776079A (en) | 1998-07-07 | Retrograde-antegrade catheterization guide wire |
EP1379180B1 (en) | 2008-10-29 | Apparatus for the insertion of a medical device |
US8361033B2 (en) | 2013-01-29 | Access needle well-suited for percutaneous implantation in a body lumen |
US5037387A (en) | 1991-08-06 | Method of positioning an enteral feeding tube within a patient's body |
US5935107A (en) | 1999-08-10 | Apparatus and method for surgically accessing a body cavity |
US5997555A (en) | 1999-12-07 | Device and method for suturing blood vessels |
JP4805257B2 (en) | 2011-11-02 | Medical catheter implant assembly |
US6077279A (en) | 2000-06-20 | Device and method employing adhesive for sealing blood vessels and the like |
US9078997B2 (en) | 2015-07-14 | Catheter assembly including coiled internal bolster |
JPH09512732A (en) | 1997-12-22 | METHODS AND DEVICES FOR CATHETERY ACCESS |
JP2009517189A (en) | 2009-04-30 | Short wire PEG and PEG-J tubes |
US8172801B2 (en) | 2012-05-08 | Method for positioning a catheter guide element in a patient and kit for use in said method |
EP1320401B1 (en) | 2006-07-12 | Attachable catheter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
1995-02-06 | FPAY | Fee payment |
Year of fee payment: 8 |
1999-03-17 | FPAY | Fee payment |
Year of fee payment: 12 |