USRE34861E - Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide - Google Patents
- ️Tue Feb 14 1995
Info
-
Publication number
- USRE34861E USRE34861E US07/594,856 US59485690A USRE34861E US RE34861 E USRE34861 E US RE34861E US 59485690 A US59485690 A US 59485690A US RE34861 E USRE34861 E US RE34861E Authority
- US
- United States Prior art keywords
- source powder
- silicon carbide
- seed crystal
- temperature
- growth Prior art date
- 1987-10-26 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 205
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 155
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 152
- 238000000859 sublimation Methods 0.000 title claims description 53
- 230000008022 sublimation Effects 0.000 title claims description 53
- 238000000034 method Methods 0.000 claims abstract description 104
- 238000009826 distribution Methods 0.000 claims abstract description 24
- 239000000203 mixture Substances 0.000 claims abstract description 15
- 238000005092 sublimation method Methods 0.000 claims abstract description 15
- 239000000843 powder Substances 0.000 claims description 140
- 230000008569 process Effects 0.000 claims description 24
- 238000010438 heat treatment Methods 0.000 claims description 22
- 230000001965 increasing effect Effects 0.000 claims description 17
- 230000004907 flux Effects 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 14
- 239000012535 impurity Substances 0.000 claims description 12
- 230000007246 mechanism Effects 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 8
- 230000003028 elevating effect Effects 0.000 claims description 7
- 230000002349 favourable effect Effects 0.000 claims description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 39
- 238000002360 preparation method Methods 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 25
- 229910002804 graphite Inorganic materials 0.000 description 23
- 239000010439 graphite Substances 0.000 description 23
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 239000007789 gas Substances 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 10
- 230000006698 induction Effects 0.000 description 9
- 241000894007 species Species 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 8
- 229910052786 argon Inorganic materials 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 4
- 239000005977 Ethylene Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 229910000077 silane Inorganic materials 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910021431 alpha silicon carbide Inorganic materials 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000011364 vaporized material Substances 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910003556 H2 SO4 Inorganic materials 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 238000001835 Lely method Methods 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- H01L21/205—
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/014—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group IV materials
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B23/00—Single-crystal growth by condensing evaporated or sublimed materials
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/021—Continuous process
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/148—Silicon carbide
Definitions
- the present invention is a method for controlling the sublimation growth of silicon carbide to produce high quality single crystals.
- Silicon carbide is a perennial candidate for use as a semiconductor material. Silicon carbide has a wide bandgap (2.2 electron volts in the beta polytype, 2.8 in the 6H alpha), a high thermal coefficient, a low dielectric constant, and is stable at temperatures far higher than those at which other semiconductor materials such as silicon remain stable. These characteristics give silicon carbide excellent semiconducting properties, and electronic devices made from silicon carbide can be expected to perform at higher temperatures, and at higher radiation densities, than devices made from the presently most commonly used semiconductor materials such as silicon. Silicon carbide also has a high saturated electron drift velocity which raises the potential for devices which will perform at high speeds, at high power levels, and its high thermal conductivity permits high density device integration.
- the basic semiconductor material in order to be useful as a material from which useful electrical devices can be manufactured, the basic semiconductor material must have certain characteristics. In many applications, a single crystal is required, with very low levels of defects in the crystal lattice, along with very low levels of unwanted impurities. Even in a pure material, a defective lattice structure can prevent the material from being useful for electrical devices, and the impurities in any such crystal are preferably carefully controlled to give certain electrical characteristics. If the impurities cannot be controlled, the material is generally unsatisfactory for use in electrical devices.
- silicon carbide is a fundamental requirement for the successful manufacture of devices from silicon carbide which would have the desirable properties described above.
- a sample should be of a single desired crystal polytype (silicon carbide can form in at least 150 types of crystal lattices), must be of a sufficiently regular crystal structure of the desired polytype, and must be either substantially free of impurities, or must contain only those impurities selectively added to give the silicon carbide any desired n or p character.
- CVD chemical vapor deposition
- sublimation technique The other main technique for growing silicon carbide crystals is generally referred to as the sublimation technique.
- sublimation techniques generally use some type of solid silicon carbide material other than a desired single crystal of a particular polytype, as a starting material, and then heat the starting material until solid silicon carbide sublimes. The vaporized material is then encouraged to condense, with the condensation intended to produce the desired crystals.
- Lely's technique lines the interior of a carbon vessel with a silicon carbide source material. By heating the vessel to temperatures at which silicon carbide sublimes, and then allowing it to condense, recrystallized silicon carbide is encouraged to redeposit itself along the lining of the vessel.
- the Lely process can generally improve upon the quality of the source material, it has to date failed to produce on a consistant or repeatable basis, single crystals of silicon carbide suitable for electrical devices.
- Hergenrother U.S. Pat. No. 3,228,756, discusses another sublimation growth technique which utilizes a seed crystal of silicon carbide upon which other silicon carbide can condense to form the crystal growth.
- Hergenrother suggests that in order to promote proper growth, the seed crystal must be heated to an appropriate temperature, generally over 2000° centigrade, in such a manner that the time period during which the seed crystal is at temperatures between 1800° C. and 2000° C. is minimized.
- Knippenberg U.S. Pat. No. 3,615,930 and 3,962,406, discuss alternative attempts at growing silicon carbide in a desired fashion.
- the '930 patent discusses a method of growing p-n junctions in silicon carbide as a crystal grows by sublimation. According to the discussion in this patent, silicon carbide is heated in an enclosed space in the presence of an inert gas containing a donor-type dopant atom, following which the dopant material is evacuated from the vessel and the vessel is reheated in the presence of an acceptor dopant. This technique is intended to result in adjacent crystal portions having opposite conductivity types and forming a p-n junction.
- Knippenberg discusses a three-step process for forming silicon carbide in which a silicon dioxide core is packed entirely within a surrounding mass of either granular silicon carbide or materials which will form silicon carbide when heated.
- the system is heated to a temperature at which a silicon carbide shell forms around the silicon dioxide core, and then further heated to vaporize the silicon dioxide from within the silicon carbide shell. Finally, the system is heated even further to encourage additional silicon carbide to continue to grow within the silicon carbide shell.
- Vodadkof U.S. Pat. No. 4,147,572 discusses a geometry-oriented sublimation technique in which solid silicon carbide source material and seed crystals are arranged in parallel close proximity relationship to one another.
- Addamiano U.S. Pat. No. 4,556,436, discusses a Lely-type furnace system for forming thin films of beta silicon carbide on alpha silicon carbide which is characterized by a rapid cooling from sublimation temperatures of between 2300° centigrade and 2700° centigrade to another temperature of less than 1800° centigrade. Addamiano notes that large single crystals of cubic (beta) silicon carbide are simply not available and that growth of silicon carbide on other materials such as silicon or diamond is rather difficult.
- German (Federal Republic) Patent No. 3,230,727 to Siemens Corporation discusses a silicon carbide sublimation technique in which the emphasis of the dicussion is the minimization of the thermal gradient between silicon carbide seed crystal and silicon carbide source material.
- This patent suggests limiting the thermal gradient to no more than 20° centigrade per centimeter of distance between source and seed in the reaction vessel.
- This patent also suggests that the overall vapor pressure in the sublimation system be kept in the range of between 1 and 5 millibar and preferably around 1.5 to 2.5 millibar.
- Tairov suggests use of a seed as a method of improving the Lely process.
- Tairov suggests controlling the polytype growth of the silicon carbide crystal by selecting seed crystals of the desired polytype or by growing the recondensed crystals on silicon carbide faces worked at an angle to the 0001 face of the hexagonal lattice.
- Tairov suggests axial temperature gradients for growth of between approximately 30° and 40° centigrade per centimeter.
- Tairov investigated the effects of adjusting various parameters on the resulting growth of silicon carbide, while noting that particular conclusions are difficult to draw.
- Tairov studied the process temperatures and concluded that growth process temperature was of relatively smaller importance than had been considered by investigators such as Knippenberg.
- Tairov likewise was unable to draw a conclusion as to the effect of growth rate on the formation of particular polytypic crystals, concluding only that an increase in crystal growth rate statistically corresponds to an increase in the percentage of disordered structured crystals.
- Tairov was similarly unable to draw any conclusions between vapor phase stoichiometry and crystal growth, but pointed out that certain impurities will favor the growth of particular silicon carbide polytype crystals. For example, high nitrogen concentrations favor cubic polytype silicon carbide crystals, aluminum and some other materials favor the growth of hexagonal 4H polytype, and oxygen contributes to the 2H polytype.
- Tairov concluded that no understanding of the mechanisms leading to these effects had yet been demonstrated.
- FIG. 1 is a cross-sectional diagram of a sublimation crucible used in accordance with the method of the present invention
- FIG. 2 is an enlarged view of the seed crystal holder of the crucible of FIG. 1;
- FIG. 3 is a cross-sectional diagram of a sublimation furnace used in accordance with the method of the present invention.
- FIG. 4 is a diagram of a sublimation system illustrating a screw type mechanism for continuously introducing silicon carbide source powder into a system
- FIG. 5 is a diagram of a sublimation system showing a gas feed mechanism for introducing silicon carbide precursor materials into the sublimation system
- FIG. 6 is a diagram of a sublimation system illustrating independent heating elements used in accordance with the method of the present invention.
- FIG. 1 illustrates a cross-sectional view of a sublimation crucible used in accordance with the method of the present invention.
- the crucible is broadly designated at 10 and is typically formed of graphite.
- Crucible 10 is generally cylindrical in shape and includes a porous graphite liner 11, a lid 12, and a seed holder 13, an enlarged view of which is illustrated in FIG. 2.
- the remainder of the crucible is defined by the walls 14 and the floor 15.
- the porous graphite liner 11 is formed in such a manner as to provide an annular chamber 16 between lower portions of the porous graphite liner 11, the crucible walls 14 and the crucible lid 12.
- a central sublimation chamber is illustrated at 20.
- the crucibles described are preferably formed of graphite and most preferably of a graphite which has approximately the same coefficient of thermal expansion as silicon carbide. Such materials are commercially available. The relative similarities of thermal coefficients of expansion are a particular requirement for materials which are being heated to the extremely high temperatures described herein and at which these processes take place. In this manner, the crucible can be prevented from cracking during the sublimation process and the lifetime of the crucible will generally be increased.
- graphite is one of the few economically viable materials which can both withstand the high temperatures of these processes and avoid introducing undesired impurities into the vapor flux.
- FIG. 2 also shows an optical opening 22, which in preferred embodiments of the invention provides optical access to the seed so that the temperature of the seed can be monitored with an optical pyrometer.
- a sublimation crucible such as illustrated in FIG. 1 is typically used in conjunction with a sublimation furnace broadly designated at 23 in FIG. 3, in which the crucible is again designated 10.
- Furnace 23 is generally cylindrical in shape and includes a cylindrical heating element 24, opposite portions of which are shown in the drawing.
- Furnace 23 is also surrounded by carbon fiber insulation 25 and includes optical ports 26, 27, and 28 through which optical pyrometers can measure the temperature of portions of the interior of the furnace.
- a power feed-through is generally designated at 30 and the outer housing of the furnace at 31.
- a single seed crystal of silicon carbide having a desired polytype and silicon carbide source power are introduced into a system such as the sublimation crucible and furnace illustrated in FIGS. 1-3. Where the crucible is of the type illustrated in FIG. 1, the silicon carbide source powder is positioned in the annular chamber 16.
- the silicon carbide source powder substantially all of which has a constant polytype composition, the production of a desired crystal growth upon the seed crystal can be greatly improved.
- flux refers to the amount of matter or energy passing through a designated plane of a given area during a given period of time. Accordingly, when used to describe the flow of vaporized species, flux can be measured and designated in units of matter, area and time such as grams per square centimeter per second (g/cm 2 /sec).
- the term "constant polytype composition” refers to a source powder or powders which are made up of a constant proportion of certain polytypes, including single polytypes.
- a source powder which was formed substantially entirely of 6H alpha silicon carbide would exhibit a constant polytype composition, as would source powder that was 50 percent alpha polytype and 50 percent beta polytype.
- the composition--whether homogeneous or heterogeneous with respect to polytypes--must be controlled so as to remain the same throughout the sublimation process.
- the source powder is selected and controlled so that substantially it has a constant polytype composition, the relative amounts or ratios of Si, Si 2 C, and SiC 2 which are generated will remain constant and the other parameters of the process can be appropriately controlled to result in the desired single crystal growth upon the seed crystal.
- the source powder is a variable mixture of various proportions of polytypes of silicon carbide, the relative amounts (ratios) of Si, Si 2 C, and SiC 2 which are generated will continually vary and correspondingly continually encourage alternative polytypes to simultaneously grow upon the seed crystal. This results in growth upon the seed crystal of a number of crystals of different polytypes, an undesirable result.
- the temperature of the silicon carbide source powcer is raised to a temperature sufficient for silicon carbide to sublime from the source powder, typically a temperature on the order of 2300° C. While the temperature of the source powder is being raised, the temperature of the growth surface of the seed crystal is likewise raised to a temperature approaching the temperature of the source powder, but lower than the temperature of the source powder and lower than that at which silicon carbide will sublime. Typically, the growth surface of the seed crystal is heated to about 2200° C.
- a powder having the following particle size distribution enhanced the process, the distribution being defined by the weight percentage of a sample which will pass through a designated Tyler mesh screen:
- the exposed surface area of the source powder is proportional to the particle size.
- a consistency in exposed surface area in turn enhances the overall consistency of the vapor flux, so that controlling the size distribution in this manner enhances the consistency of the flux profile.
- the silicon carbide source powder and the growth face of the seed crystal are both heated to respective different temperatures, with the growth face of the seed crystal being somewhat cooler than the source powder so as to encourage condensation of the sublimed species from the source powder onto the seed crystal.
- the thermal gradient can be controlled in a number of ways. For example, under certain circumstances the thermal gradient is controlled so as to remain constant between the growth surface of the seed crystal while under other circumstances, controllably changing the thermal gradient between the source powder and the growth surface of the seed crystal is preferred.
- a thermal gradient is often introduced by physically separating the source powder from the seed crystal while they are being maintained at their respective different temperatures.
- the resulting thermal gradient is thus a function of geometric separation between the source powder and the growth surface of the seed crystal; e.g. 20° C. per centimeter and the like.
- the source powder is initially maintained at a temperature of, for example, 2300° C.
- the growth surface of the seed crystal is maintained at a temperature of, for example, 2200° C. and a distance of 10 centimeters is initially maintained between the source powder and the seed crystal
- a thermal gradient of 100° C. divided by 10 centimeters, i.e. 10° C. per centimeter will be established.
- the invention comprises introducing the seed single crystal of silicon carbide of a desired polytype and a silicon carbide source powder into a sublimation system.
- the temperature of the silicon carbide source powder is raised to a temperature sufficient for the silicon carbide to sublime and a thermal gradient is introduced between the growth surface of the seed crystal and the source powder by elevating the temperature of the seed crystal to a temperature approaching the temperature of the source powder, but lower than the temperature of the source powder and lower than that at which silicon carbide will sublime, under the vapor pressure conditions of the system.
- the thermal gradient between the growth surface of the seed crystal and the source powder is increased to thereby continuously encourage further crystal growth beyond that which would be obtained by maintaining a constant thermal gradient.
- gas species which contain silicon carbide evolve near the hotter top of the crucible and are transported via the thermal gradient to the seed at its respective lower temperature in the cooler lower portion of the crucible.
- the source material is also in the thermal gradient and sublimation of the source material tends to occur at a much faster rate in the upper portion of the source material than in the lower portion.
- the temperature gradient remains constant, a rapid decrease in flux with time occurs as the upper source material is depleted.
- the crystal grows, its growth surface increases in temperature as a result of its change in position with respect to the thermal gradient. This causes a decrease in the sticking coefficient as a function of time and likewise reduces the growth rate.
- the absolute temperature difference between the source and seed can be maintained at an amount which continues to be most favorable for crystal growth.
- control of the thermal gradient comprises the step of increasing the thermal gradient between the growth surface of the seed crystal and the source powder, and the same is accomplished by increasing the temperature of the source powder while maintaining the temperature of the growth surface of the seed crystal at the initial lower temperature than the source powder.
- the invention comprises maintaining a constant thermal gradient as measured between the growth surface of the seed crystal and the source powder as the crystal grows and as the source powder is used up. It will be understood that the temperature of the growth surface is the most critical temperature with respect to the crystal as the growth surface is the surface at which thermodynamic conditions will either favor or disfavor continued desired growtth of the crystal.
- the step of maintaining a fixed thermal gradient between the growth surface of the seed crystal and the source powder comprises providing relative movement between the growth surface of the seed crystal and the source powder as the seed crystal grows while maintaining the source powder and the growth face of the seed crystal at their respective different, but constant, temperatures.
- the step of maintaining a fixed thermal gradient between the growth surface of the seed crystal and the source powder comprises maintaining a fixed geometric distance between the growth surface of the seed crystal and the source powder as the crystal grows.
- the method of maintaining a constant thermal gradient between the growth surface of the seed crystal and the source powder can comprise independently controlling the source powder and seed crystal temperatures by separately monitoring the temperature of the source powder and the temperature of the seed crystal and separately adjusting the temperature of the source powder and the temperature of the seed crystal maintain the desired thermal gradient.
- thermo gradient control and indeed the entire process of controlling and maintaining temperatures can be enhanced by using resistance heating, rather than radio frequency (RF) induction heating in the method of the present invention.
- RF radio frequency
- Resistance heating offers a number of advantages in the overall sublimation process.
- Induction heating techniques have several limitations which prevent any silicon carbide sublimation processes developed using induction techniques from being similarly scaled up to useful commercial scales.
- the induction coil must be positioned outside of the vacuum vessel in which the sublimation takes place in order to prevent ionization of the gas (e.g. argon) present in the vessel.
- the gas e.g. argon
- induction heating requires the use of a glass vacuum vessel to transmit the RF power.
- thermal insulation present must be increased in thickness or the glass must be cooled, typically with water.
- Increasing the amount of thermal insulation reduces the practical size of the crystal that can be grown, and cooling the vessel with water dramatically reduces the energy efficiency of the entire system.
- resistance heating is significantly more energy efficient than induction heating
- resistance heating elements can be present within the vacuum vessel, skin heating or radial thermal gradient effects are almost entirely eliminated, and resistance heating permits improved temperature stability and repeatability of processes and control over the entire thermal gradient.
- FIGS. 4, 5 and 6 illustrate some of the apparatus which can be used to accomplish the methods of the present invention.
- FIG. 4 shows a silicon carbide seed crystal 32 upon which a growing crystal 33 has epitaxially attached.
- the respective crystals 32 and 33 are maintained upon a graphite seed holder 34 which in turn is positioned upon a shaft 35.
- the remainder of the crucible is defined by graphite walls 36 and a porous graphite barrier 37.
- the silicon carbide source powder 40 is maintained in a bed 41.
- a rotating shaft 42 which carries a screw lifting mechanism 43 is positioned with a high density graphite cylinder 44. As illustrated in FIG.
- the screw mechanism 43 will lift silicon carbide source powder 40 to the top of the screw mechanism to a position adjacent the porous graphite barrier 37.
- the silicon carbide source powder at the top of the high density graphite cylinder 44 is maintained at a temperature of about 2300° C., while the temperature of the growth surface of the growing crystal 33 is maintained at a somewhat lower temperature, typically 2200° C.
- the continuous supply further ensures that the subliming source powder generates a consistent flux density.
- new source powder is continuously moved into the sublimation area, providing a constant flux as sublimation proceeds.
- An optical sight hole 45 is also illustrated, and can be used to either monitor the temperature of the growing crystal 33 using an optical pyrometer or to determine the exact position of the crystal with respect to the silicon carbide source powder 40 at the top of the high density graphite cylinder 44.
- the shaft 35 can be pulled in a manner which moves the growth face of the growing crystal 33 away from, or if desired towards, the silicon carbide source powder 40.
- the shaft can be rotated to ensure that the temperature profile across the growth face is constant.
- the crystal can be encouraged to grow symmetrically as the effect of flux variations are dampened out and the growing crystal can be prevented from attaching itself to the graphite enclosure.
- FIG. 6 illustrates a number of the same features as FIG. 4, but with the separate and independent heating elements illustrated.
- the separate and independently controlled resistance heating elements are shown at 46 and 47.
- the upper element 46 can be used to control the temperature of the seed crystal 32 and the growing crystal 33, while the lower heating element 47 can be used to control the temperature of the silicon carbide source powder 40 at the top of the high density graphite cylinder 44.
- optical sight holes 50 and 51 are provided to permit optical pyrometers to monitor the temperatures generated.
- FIG. 5 illustrates an apparatus used to carry out yet another embodiment of the invention.
- the silicon carbide which sublimes and then recondenses as the growing crystal is not supplied as a powder, but instead is introduced into the system by providing respective gas feeds of silane (SiH 4 ) and ethylene (C 2 H 4 ) into the system at a temperature at which they will immediately react to form silicon carbide vapors which will then migrate in the manner in which vapors generated from source powders will migrate through the porous graphite barrier and onto the growing crystal.
- silane SiH 4
- ethylene C 2 H 4
- the system includes seed crystal 32, growing crystal 33, graphite seed holder 34, shaft 35, graphite walls 36, porous graphite barrier 37, and the optical sight hole 45.
- the system includes a silane gas feed 52 and an ethylene gas feed 53.
- silane gas feed 52 In order to keep these molecules from dissociating under the high temperatures of the system, they are insulated in a water cooled molybdenum jacket until they reach a point in the sublimation system where the temperature is maintained at approximately 2400° C., and at which the materials are released and immediately react to form silicon carbide.
- silane and ethylene have left the jacket 54 and have reacted to form silicon carbide containing species, they behave in the same manner as would silicon carbide containing species which had sublimed from a source powder. They pass through the porous graphite barrier 37 and lodge upon the growth face of the growing crystal 33.
- a seed was prepared from a 6H alpha polytype silicon carbide.
- the seed crystal was lapped to insure flatness and then polished with progressively smaller sized diamond paste, finishing with a 0.1 micrometer paste.
- the seed was cleaned in hot sulfuric acid (H 2 SO 4 ) for a period of five minutes, in a one-to-one mixture of ammonium hydroxide (NH 4 OH) and hydrogen peroxide (H 2 O 2 ) for five minutes, in hydrofluroic acid (HF) for one minute, and then finally rinsed in deionized water.
- the seed was oxidized in dry oxygen at 1200° C. for 90 minutes to remove residual polishing damage. The oxide was removed by etching with HF.
- the seed and source powder were then loaded into the crucible.
- the source powder consisting of 6H silicon carbide grains having the following size distribution:
- the loaded crucible was then placed in the sublimation furnace while a slight overpressure of argon was maintained in the furnace to inhibit water contamination, and thus reducing the furnace pump down time.
- the furnace was evacuated to a base pressure below 5 ⁇ 10 -6 Torr.
- the furnace was heated in a vacuum (5 ⁇ 10 -4 Torr) to 1200° C. for about ten minutes. It will be understood by those familiar with low pressure systems that an absolute vacuum can never be achieved. Therefore, the term "vacuum” as used herein refers to various systems which are at pressures less than atmospheric pressure, and where appropriate, specific pressures will be employed to best describe the particular conditions.
- the furnace was then backfilled with argon to a pressure of 400 Torr.
- the temperature of the system was then increased until the top of the crucible is approximately 2260° C. and the temperature of the seed is approximately 2160° C., which in the particular system used corresponded to a thermal gradient of 31° C. per centimeter (cm).
- the system was then evacuated slowly over a period of 85 minutes from the pressure of 400 Torr to a pressure of about 10 Torr.
- the system was maintained under these conditions for six hours, after which the system was backfilled with argon to 760 Torr and the temperature reduced to 200° C. over a period of 90 minutes.
- a 6H Alpha-SiC seed was prepared by cutting the (0001) plane 3° towards the [1120] direction. The seed was then lapped to assure flatness, polished with progressively smaller diamond paste, cleaned, oxidized and etched, all as described in Example 1.
- the source material was doped with aluminum in a quantity of 0.2 weight percent.
- the seed and source powder having the same powder size distribution as set forth in Example 1.
- the crucible was loaded, the vessel evacuated, initially heated, and backfilled with argon, all as set forth in Example 1.
- the temperature was then increased until the top of the crucible was 2240° C. and the seed was 2135° C., corresponding to a thermal gradient of 32° C./cm.
- the furnace was evacuated from 400 Torr to 10 Torr as described in Example 1 and the sublimation conditions were maintained for a period of four hours.
- the furnace was then backfilled with argon to atmospheric pressure (760 Torr) and the temperature reduced to 200° C. over a period of 90 minutes.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
The present invention is a method of forming large device quality single crystals of silicon carbide. The sublimation process is enhanced by maintaining a constant polytype composition in the source materials, selected size distribution in the source materials, by specific preparation of the growth surface and seed crystals, and by controlling the thermal gradient between the source materials and the seed crystal.
Description
The present invention is a method for controlling the sublimation growth of silicon carbide to produce high quality single crystals.
BACKGROUND OF THE INVENTIONSilicon carbide is a perennial candidate for use as a semiconductor material. Silicon carbide has a wide bandgap (2.2 electron volts in the beta polytype, 2.8 in the 6H alpha), a high thermal coefficient, a low dielectric constant, and is stable at temperatures far higher than those at which other semiconductor materials such as silicon remain stable. These characteristics give silicon carbide excellent semiconducting properties, and electronic devices made from silicon carbide can be expected to perform at higher temperatures, and at higher radiation densities, than devices made from the presently most commonly used semiconductor materials such as silicon. Silicon carbide also has a high saturated electron drift velocity which raises the potential for devices which will perform at high speeds, at high power levels, and its high thermal conductivity permits high density device integration.
As is known to those familiar with solid state physics and the behavior of semiconductors, in order to be useful as a material from which useful electrical devices can be manufactured, the basic semiconductor material must have certain characteristics. In many applications, a single crystal is required, with very low levels of defects in the crystal lattice, along with very low levels of unwanted impurities. Even in a pure material, a defective lattice structure can prevent the material from being useful for electrical devices, and the impurities in any such crystal are preferably carefully controlled to give certain electrical characteristics. If the impurities cannot be controlled, the material is generally unsatisfactory for use in electrical devices.
Accordingly, the availability of an appropriate crystal sample of silicon carbide is a fundamental requirement for the successful manufacture of devices from silicon carbide which would have the desirable properties described above. Such a sample should be of a single desired crystal polytype (silicon carbide can form in at least 150 types of crystal lattices), must be of a sufficiently regular crystal structure of the desired polytype, and must be either substantially free of impurities, or must contain only those impurities selectively added to give the silicon carbide any desired n or p character.
Accordingly, and because the physical characteristics and potential uses for such silicon carbide have been recognized for some time, a number of researchers have suggested a number of techniques for forming crystalline silicon carbide.
These techniques generally fall into two broad categories, although it will be understood that some techniques are not necessarily so easily classified. The first technique is known as chemical vapor deposition ("CVD") in which reactant gases are introduced into some sort of system within which they form silicon carbide crystals upon an appropriate substrate. Novel and commercially significant improvements in such CVD techniques are discussed in currently co-pending applications which are assigned to the assignee of the present invention, "Growth of Beta-SiC Thin Films and Semiconductor Devices Fabricated Thereon." Ser. No. 113,921, filed Oct. 26, 1988; and "Homoepitaxial Growth of Alpha-SiC Thin Films and Semiconductor Devices Fabricated Thereon." Ser. No. 113,573, filed Oct. 26, 1988.
The other main technique for growing silicon carbide crystals is generally referred to as the sublimation technique. As the designation sublimation implies and described. sublimation techniques generally use some type of solid silicon carbide material other than a desired single crystal of a particular polytype, as a starting material, and then heat the starting material until solid silicon carbide sublimes. The vaporized material is then encouraged to condense, with the condensation intended to produce the desired crystals.
As is known to those familiar with the physical chemistry of solids, liquids and gases, crystal growth is encouraged when the seed or surface upon which a crystal is being formed is at a somewhat lower temperature than the fluid, either gas or liquid, which carries the molecules or atoms to be condensed.
One technique for producing solid silicon carbide when crystal-type impurity is of little consideration is the Acheson furnace process, which is typically used to produce silicon carbide for abrasive purposes. One of the first sublimation techniques of any practical usefulness for producing better crystals, however, was developed in the 1950's by J. A. Lely, one technique of whom is described in U.S. Pat. No. 2,854,364. From a general standpoint, Lely's technique lines the interior of a carbon vessel with a silicon carbide source material. By heating the vessel to temperatures at which silicon carbide sublimes, and then allowing it to condense, recrystallized silicon carbide is encouraged to redeposit itself along the lining of the vessel. Although the Lely process can generally improve upon the quality of the source material, it has to date failed to produce on a consistant or repeatable basis, single crystals of silicon carbide suitable for electrical devices.
Hergenrother, U.S. Pat. No. 3,228,756, discusses another sublimation growth technique which utilizes a seed crystal of silicon carbide upon which other silicon carbide can condense to form the crystal growth. Hergenrother suggests that in order to promote proper growth, the seed crystal must be heated to an appropriate temperature, generally over 2000° centigrade, in such a manner that the time period during which the seed crystal is at temperatures between 1800° C. and 2000° C. is minimized.
Ozarow, U.S. Pat. No. 3,236,780, discusses another unseeded sublimation technique which utilizes a lining of silicon carbide within a carbon vessel, and which attempts to establish a radial temperature gradient between the silicon carbide-lined inner portion of the vessel and the outer portion of the vessel.
Knippenberg, U.S. Pat. No. 3,615,930 and 3,962,406, discuss alternative attempts at growing silicon carbide in a desired fashion. The '930 patent discusses a method of growing p-n junctions in silicon carbide as a crystal grows by sublimation. According to the discussion in this patent, silicon carbide is heated in an enclosed space in the presence of an inert gas containing a donor-type dopant atom, following which the dopant material is evacuated from the vessel and the vessel is reheated in the presence of an acceptor dopant. This technique is intended to result in adjacent crystal portions having opposite conductivity types and forming a p-n junction.
In the '406 patent, Knippenberg discusses a three-step process for forming silicon carbide in which a silicon dioxide core is packed entirely within a surrounding mass of either granular silicon carbide or materials which will form silicon carbide when heated. The system is heated to a temperature at which a silicon carbide shell forms around the silicon dioxide core, and then further heated to vaporize the silicon dioxide from within the silicon carbide shell. Finally, the system is heated even further to encourage additional silicon carbide to continue to grow within the silicon carbide shell.
Vodadkof, U.S. Pat. No. 4,147,572, discusses a geometry-oriented sublimation technique in which solid silicon carbide source material and seed crystals are arranged in parallel close proximity relationship to one another.
Addamiano, U.S. Pat. No. 4,556,436, discusses a Lely-type furnace system for forming thin films of beta silicon carbide on alpha silicon carbide which is characterized by a rapid cooling from sublimation temperatures of between 2300° centigrade and 2700° centigrade to another temperature of less than 1800° centigrade. Addamiano notes that large single crystals of cubic (beta) silicon carbide are simply not available and that growth of silicon carbide on other materials such as silicon or diamond is rather difficult.
Hsu, U.S. Pat. No. 4,664,944, discusses a fluidized bed technique for forming silicon carbide crystals which resembles a chemical vapor deposition technique in its use of non-silicon carbide reactants, but which includes silicon carbide particles in the fluidized bed, thus somewhat resembling a sublimation technique.
Some of the more important work in the silicon carbide sublimation techniques, however, is described in materials other than United States patents. For example, German (Federal Republic) Patent No. 3,230,727 to Siemens Corporation discusses a silicon carbide sublimation technique in which the emphasis of the dicussion is the minimization of the thermal gradient between silicon carbide seed crystal and silicon carbide source material. This patent suggests limiting the thermal gradient to no more than 20° centigrade per centimeter of distance between source and seed in the reaction vessel. This patent also suggests that the overall vapor pressure in the sublimation system be kept in the range of between 1 and 5 millibar and preferably around 1.5 to 2.5 millibar.
This German technique, however, can be considered to be a refinement of techniques thoroughly studied in the Soviet Union, particularly by Y. M. Tairov; see e.g. General Principles of Growing Large-Size Single Crystals of Various Silicon Carbide Polytypes, J. Crystal Growth, 52 (1981)46-150, and Progress in Controlling the Growth of Polytypic Crystals, from Crystal Growth and Characterization of Polytype Structures, edited by P. Krishna, Pergammon Press, London, 1983, p. 111. Tairov points out the disadvantages of the Lely method, particularly the high temperatures required for crystal growth (2600°-2700° C.) and the lack of control over the resulting crystal polytype. As discussed with reference to some of the other investigators in patent literature, Tairov suggests use of a seed as a method of improving the Lely process. In particular, Tairov suggests controlling the polytype growth of the silicon carbide crystal by selecting seed crystals of the desired polytype or by growing the recondensed crystals on silicon carbide faces worked at an angle to the 0001 face of the hexagonal lattice. Tairov suggests axial temperature gradients for growth of between approximately 30° and 40° centigrade per centimeter.
In other studies, Tairov investigated the effects of adjusting various parameters on the resulting growth of silicon carbide, while noting that particular conclusions are difficult to draw. Tairov studied the process temperatures and concluded that growth process temperature was of relatively smaller importance than had been considered by investigators such as Knippenberg. Tairov likewise was unable to draw a conclusion as to the effect of growth rate on the formation of particular polytypic crystals, concluding only that an increase in crystal growth rate statistically corresponds to an increase in the percentage of disordered structured crystals. Tairov was similarly unable to draw any conclusions between vapor phase stoichiometry and crystal growth, but pointed out that certain impurities will favor the growth of particular silicon carbide polytype crystals. For example, high nitrogen concentrations favor cubic polytype silicon carbide crystals, aluminum and some other materials favor the growth of hexagonal 4H polytype, and oxygen contributes to the 2H polytype. Tairov concluded that no understanding of the mechanisms leading to these effects had yet been demonstrated.
In Tairov's experiments, he also attempted using silicon carbide single crystals of particular polytypes as the vapor source material and suggested that using such single crystals of particular polytypes as vapor sources could result in particular polytypes of crystal growth. Of course, it will be understood that although the use of single crystals as source materials is theoretically interesting, a more practical goal, particularly from a commercial standpoint, is the production of single crystals from more common sources of silicon carbide other than single crystals.
Finally, Tairov concluded that the treatment of the substrate surface upon which sublimation growth was directed could affect the growth of the resulting crystals. Nevertheless, the wide variety of resulting data led Tairov to conclude that additional unidentified factors were affecting the growth he observed in silicon carbide crystals, and these unknown factors prevented him from reaching a fundamental understanding of the mechanisms of crystal growth.
Therefore, in spite of the long recognized characteristics of silicon carbide, and the recognition that silicon carbide could provide an outstanding, if not revolutionary, semiconductor material and resulting devices, and in spite of the thorough investigations carried out by a number of researchers including those mentioned herein, prior to the present invention there existed no suitable technique for repeatedly and consistently growing large single crystals of desired selected polytypes of silicon carbide.
Accordingly, it is an object of the present invention to provide a method for the controlled, repeatable growth of large single crystals of silicon carbide of desired polytypes.
It is a further object of the present invention to provide a method of growing large single crystals of silicon carbide by controlling the polytype of the source material.
It is another object of this invention to provide a method of growing such silicon carbide single crystals using source materials other than single crystals of silicon carbide.
It is a further object of this invention to provide a method of growing such silicon carbide crystals by selecting source materials having a particular surface area.
It is another object of this invention to provide a method of growing large silicon carbide single crystals by selecting source materials with predetermined particle size distributions.
It is a further object of this invention to provide a method of growing such silicon carbide single crystals using sublimation techniques and in which the thermal gradient between the source materials and the seed is continuously adjusted to maintain the most favorable conditions possible for continued growth of silicon carbide crystals over longer time periods and into larger crystals than have previously ever been accomplished.
The foregoing and other objects, advantages and features of the invention, and the manner in which the same are accomplished will become more readily apparent upon consideration of the following detailed description of the invention taken in conjunction with the accompanying drawings, which illustrate preferred and exemplary embodiments and wherein:
DESCRIPTION OF THE DRAWINGSFIG. 1 is a cross-sectional diagram of a sublimation crucible used in accordance with the method of the present invention;
FIG. 2 is an enlarged view of the seed crystal holder of the crucible of FIG. 1;
FIG. 3 is a cross-sectional diagram of a sublimation furnace used in accordance with the method of the present invention;
FIG. 4 is a diagram of a sublimation system illustrating a screw type mechanism for continuously introducing silicon carbide source powder into a system;
FIG. 5 is a diagram of a sublimation system showing a gas feed mechanism for introducing silicon carbide precursor materials into the sublimation system; and
FIG. 6 is a diagram of a sublimation system illustrating independent heating elements used in accordance with the method of the present invention.
DETAILED DESCRIPTIONFIG. 1 illustrates a cross-sectional view of a sublimation crucible used in accordance with the method of the present invention. The crucible is broadly designated at 10 and is typically formed of graphite.
Crucible10 is generally cylindrical in shape and includes a porous graphite liner 11, a lid 12, and a
seed holder13, an enlarged view of which is illustrated in FIG. 2. The remainder of the crucible is defined by the
walls14 and the floor 15. As further illustrated in FIG. 1, the porous graphite liner 11 is formed in such a manner as to provide an
annular chamber16 between lower portions of the porous graphite liner 11, the
crucible walls14 and the crucible lid 12. A central sublimation chamber is illustrated at 20.
In all of the apparatus described herein, the crucibles described are preferably formed of graphite and most preferably of a graphite which has approximately the same coefficient of thermal expansion as silicon carbide. Such materials are commercially available. The relative similarities of thermal coefficients of expansion are a particular requirement for materials which are being heated to the extremely high temperatures described herein and at which these processes take place. In this manner, the crucible can be prevented from cracking during the sublimation process and the lifetime of the crucible will generally be increased.
Furthermore, as is recognized by those familiar with attempts at growing silicon carbide crystals, the presence of graphite in the system encourages the growth of silicon carbide by providing an equilibrium source of carbon atoms as the sublimation process takes place and by dampening variations in the flux.
Furthermore, graphite is one of the few economically viable materials which can both withstand the high temperatures of these processes and avoid introducing undesired impurities into the vapor flux.
the
seed holder13 is illustrated in more detail in FIG. 2. A seed crystal 17 rests on upper portions of the
seed holder13 which extend into the
chamber20. A
graphite washer21 is positioned between the lower portions of the
seed holder13 and the floor of the crucible 15. FIG. 2 also shows an
optical opening22, which in preferred embodiments of the invention provides optical access to the seed so that the temperature of the seed can be monitored with an optical pyrometer.
A sublimation crucible such as illustrated in FIG. 1 is typically used in conjunction with a sublimation furnace broadly designated at 23 in FIG. 3, in which the crucible is again designated 10.
Furnace23 is generally cylindrical in shape and includes a cylindrical heating element 24, opposite portions of which are shown in the drawing.
Furnace23 is also surrounded by carbon fiber insulation 25 and includes optical ports 26, 27, and 28 through which optical pyrometers can measure the temperature of portions of the interior of the furnace. A power feed-through is generally designated at 30 and the outer housing of the furnace at 31.
In a first embodiment of the invention, a single seed crystal of silicon carbide having a desired polytype and silicon carbide source power are introduced into a system such as the sublimation crucible and furnace illustrated in FIGS. 1-3. Where the crucible is of the type illustrated in FIG. 1, the silicon carbide source powder is positioned in the
annular chamber16. In this first embodiment of the invention, it has been discovered that by utilizing silicon carbide source powder substantially all of which has a constant polytype composition, the production of a desired crystal growth upon the seed crystal can be greatly improved.
Although applicant does not wish to be bound by any particular theory, it is known that different polytypes of silicon carbide have different evaporation activation energies. Specifically, for cubic (3C) silicon carbide the evaporation activation energy is 108 kilocalories (kcal) per mole; for hexagonal 4H silicon carbide, 144 kcal/mole; and for hexagonal 6H silicon carbide, 199 kcal/mole. These differences are important, because when silicon carbide sublimes, it forms three basic vaporized materials: Si, Si2 C, and SiC2. Depending upon the polytype of the source powder, the amount or "flux" of each of the species which is generated will differ. In a corresponding manner, the amount of each of the species in the overall vapor flux will tend to influence the type of polytypes which will grow when the species recondense.
As used herein, the term "flux" refers to the amount of matter or energy passing through a designated plane of a given area during a given period of time. Accordingly, when used to describe the flow of vaporized species, flux can be measured and designated in units of matter, area and time such as grams per square centimeter per second (g/cm2 /sec).
As used herein, the term "constant polytype composition" refers to a source powder or powders which are made up of a constant proportion of certain polytypes, including single polytypes. For example, a source powder which was formed substantially entirely of 6H alpha silicon carbide would exhibit a constant polytype composition, as would source powder that was 50 percent alpha polytype and 50 percent beta polytype. In other words, the composition--whether homogeneous or heterogeneous with respect to polytypes--must be controlled so as to remain the same throughout the sublimation process.
Stated more directly, if the source powder is selected and controlled so that substantially it has a constant polytype composition, the relative amounts or ratios of Si, Si2 C, and SiC2 which are generated will remain constant and the other parameters of the process can be appropriately controlled to result in the desired single crystal growth upon the seed crystal. Alternatively, if the source powder is a variable mixture of various proportions of polytypes of silicon carbide, the relative amounts (ratios) of Si, Si2 C, and SiC2 which are generated will continually vary and correspondingly continually encourage alternative polytypes to simultaneously grow upon the seed crystal. This results in growth upon the seed crystal of a number of crystals of different polytypes, an undesirable result.
Once the silicon carbide source powder and the seed crystal are introduced, the temperature of the silicon carbide source powcer is raised to a temperature sufficient for silicon carbide to sublime from the source powder, typically a temperature on the order of 2300° C. While the temperature of the source powder is being raised, the temperature of the growth surface of the seed crystal is likewise raised to a temperature approaching the temperature of the source powder, but lower than the temperature of the source powder and lower than that at which silicon carbide will sublime. Typically, the growth surface of the seed crystal is heated to about 2200° C. By maintaining the silicon carbide source powder and the growth surface of the silicon carbide seed crystal at their respective temperatures for a sufficient time, macroscopic growth of monocrystalline silicon carbide of a desired polytype will form upon the seed crystal.
It will be understood by those familiar with phase changes that sublimation and condensation are equilibrium processes, and are affected by the vapor pressure of a system as well as absolute and relative temperatures. Accordingly, it will be further understood that in the processes and systems described herein, the vapor pressures are suitably controlled in a manner which permits these processes to proceed and be controlled and adjusted based upon the temperature and thermal gradient considerations described herein.
Further to the present invention, it has been discovered that in addition to maintaining a constant polytype composition, in order to form appropriate single crystals by the sublimation method, selecting silicon carbide source powder of a consistent particle size distribution similarly enhances the technique.
In a manner similar to that set forth earlier, the control of particle size in a consistent manner results in a consistent flux profile of the species which evolve from the silicon carbide source powder, with a corresponding consistency in the sublimation growth of silicon carbide upon the seed crystal. In one embodiment, a powder having the following particle size distribution enhanced the process, the distribution being defined by the weight percentage of a sample which will pass through a designated Tyler mesh screen:
______________________________________ Tyler Mesh Screen Weight Percent Passed ______________________________________ 20-40 43% 40-60 19% 60-100 17% Over 100 21% ______________________________________
Additionally, for a given powder morphology, the exposed surface area of the source powder is proportional to the particle size. A consistency in exposed surface area in turn enhances the overall consistency of the vapor flux, so that controlling the size distribution in this manner enhances the consistency of the flux profile.
As in the other embodiments discussed, the silicon carbide source powder and the growth face of the seed crystal are both heated to respective different temperatures, with the growth face of the seed crystal being somewhat cooler than the source powder so as to encourage condensation of the sublimed species from the source powder onto the seed crystal.
In another embodiment of the invention, it has been discovered that controlling the thermal gradient between the growth surface of the seed crystal and the source powder results in appropriate control and growth of large single crystals having a desired polytype. In this respect, the thermal gradient can be controlled in a number of ways. For example, under certain circumstances the thermal gradient is controlled so as to remain constant between the growth surface of the seed crystal while under other circumstances, controllably changing the thermal gradient between the source powder and the growth surface of the seed crystal is preferred.
As is known to those familiar with various sublimation techniques, a thermal gradient is often introduced by physically separating the source powder from the seed crystal while they are being maintained at their respective different temperatures. The resulting thermal gradient is thus a function of geometric separation between the source powder and the growth surface of the seed crystal; e.g. 20° C. per centimeter and the like. Thus, if the source powder is initially maintained at a temperature of, for example, 2300° C., and the growth surface of the seed crystal is maintained at a temperature of, for example, 2200° C. and a distance of 10 centimeters is initially maintained between the source powder and the seed crystal, a thermal gradient of 100° C. divided by 10 centimeters, i.e. 10° C. per centimeter, will be established.
In one embodiment of thermal gradient control, the invention comprises introducing the seed single crystal of silicon carbide of a desired polytype and a silicon carbide source powder into a sublimation system. The temperature of the silicon carbide source powder is raised to a temperature sufficient for the silicon carbide to sublime and a thermal gradient is introduced between the growth surface of the seed crystal and the source powder by elevating the temperature of the seed crystal to a temperature approaching the temperature of the source powder, but lower than the temperature of the source powder and lower than that at which silicon carbide will sublime, under the vapor pressure conditions of the system. As the crystal grows and the source powder generally nearest the top of the crucible is used up, the thermal gradient between the growth surface of the seed crystal and the source powder is increased to thereby continuously encourage further crystal growth beyond that which would be obtained by maintaining a constant thermal gradient.
During the sublimation growth process, gas species which contain silicon carbide evolve near the hotter top of the crucible and are transported via the thermal gradient to the seed at its respective lower temperature in the cooler lower portion of the crucible. The source material, however, is also in the thermal gradient and sublimation of the source material tends to occur at a much faster rate in the upper portion of the source material than in the lower portion. As a result if the temperature gradient remains constant, a rapid decrease in flux with time occurs as the upper source material is depleted. In a similar manner, as the crystal grows, its growth surface increases in temperature as a result of its change in position with respect to the thermal gradient. This causes a decrease in the sticking coefficient as a function of time and likewise reduces the growth rate.
According to the present invention, however, it has been discovered that if the thermal gradient is continually increased as the source powder is depleted and as the seed crystal grows, the absolute temperature difference between the source and seed can be maintained at an amount which continues to be most favorable for crystal growth.
In one embodiment of the invention, control of the thermal gradient comprises the step of increasing the thermal gradient between the growth surface of the seed crystal and the source powder, and the same is accomplished by increasing the temperature of the source powder while maintaining the temperature of the growth surface of the seed crystal at the initial lower temperature than the source powder.
In another embodiment, the invention comprises maintaining a constant thermal gradient as measured between the growth surface of the seed crystal and the source powder as the crystal grows and as the source powder is used up. It will be understood that the temperature of the growth surface is the most critical temperature with respect to the crystal as the growth surface is the surface at which thermodynamic conditions will either favor or disfavor continued desired growtth of the crystal.
Accordingly, in another embodiment of the invention, the step of maintaining a fixed thermal gradient between the growth surface of the seed crystal and the source powder comprises providing relative movement between the growth surface of the seed crystal and the source powder as the seed crystal grows while maintaining the source powder and the growth face of the seed crystal at their respective different, but constant, temperatures.
In another embodiment, the step of maintaining a fixed thermal gradient between the growth surface of the seed crystal and the source powder comprises maintaining a fixed geometric distance between the growth surface of the seed crystal and the source powder as the crystal grows.
In yet another embodiment, the method of maintaining a constant thermal gradient between the growth surface of the seed crystal and the source powder can comprise independently controlling the source powder and seed crystal temperatures by separately monitoring the temperature of the source powder and the temperature of the seed crystal and separately adjusting the temperature of the source powder and the temperature of the seed crystal maintain the desired thermal gradient.
In another embodiment of the invention, it has been discovered that growth of the single crystal of silicon carbide can be enhanced using the methods of the present invention by providing a silicon carbide seed crystal which presents a sublimation surface which is slightly off-axis with respect to one of the Miller index faces. In effect, off-axis silicon carbide crystals tend to transfer three dimensional crystalographic information to the condensing atoms during sublimation. Accordingly, such an off axis growth surface can be used to encourage the repeatable growth of a desired specific silicon carbide polytype. This technique is particularly important when a silicon carbide crystal is being doped with an impurity during sublimation growth. As is known to those familiar with the properties of silicon carbide, particular impurities tend to encourage the growth of specific polytypes of silicon carbide. For example, doping with aluminum is known to favor growth of 4H silicon carbide, but 6H crystals of silicon carbide can be grown with aluminum doping according to the present invention if an off-axis seed is used.
It has further been discovered according to the present invention that the thermal gradient control and indeed the entire process of controlling and maintaining temperatures can be enhanced by using resistance heating, rather than radio frequency (RF) induction heating in the method of the present invention.
Resistance heating offers a number of advantages in the overall sublimation process. First, resistance heating allows the process to be scaled up to larger crystal diameters than can be handled using induction heating. Induction heating techniques have several limitations which prevent any silicon carbide sublimation processes developed using induction techniques from being similarly scaled up to useful commercial scales. For example, in induction heating, the induction coil must be positioned outside of the vacuum vessel in which the sublimation takes place in order to prevent ionization of the gas (e.g. argon) present in the vessel. Secondly, if the diameter of the sublimation crucibles are increased, the coils used in the induction heating tend to heat only the outside layer of the crucible resulting in an undesirable and unacceptable radial thermal gradient. Finally, induction heating requires the use of a glass vacuum vessel to transmit the RF power. As a result, in order to prevent the glass vessel from overheating, either the thermal insulation present must be increased in thickness or the glass must be cooled, typically with water. Increasing the amount of thermal insulation reduces the practical size of the crystal that can be grown, and cooling the vessel with water dramatically reduces the energy efficiency of the entire system.
Alternatively, resistance heating is significantly more energy efficient than induction heating, resistance heating elements can be present within the vacuum vessel, skin heating or radial thermal gradient effects are almost entirely eliminated, and resistance heating permits improved temperature stability and repeatability of processes and control over the entire thermal gradient.
FIGS. 4, 5 and 6 illustrate some of the apparatus which can be used to accomplish the methods of the present invention. FIG. 4 shows a silicon carbide seed crystal 32 upon which a growing crystal 33 has epitaxially attached. The respective crystals 32 and 33 are maintained upon a graphite seed holder 34 which in turn is positioned upon a shaft 35. The remainder of the crucible is defined by graphite walls 36 and a
porous graphite barrier37. The silicon carbide source powder 40 is maintained in a
bed41. In order to ensure a constant supply of silicon carbide powder to a desired position, a rotating
shaft42 which carries a screw lifting mechanism 43 is positioned with a high
density graphite cylinder44. As illustrated in FIG. 4, as
shaft42 rotates, the screw mechanism 43 will lift silicon carbide source powder 40 to the top of the screw mechanism to a position adjacent the
porous graphite barrier37. As described earlier, in particular embodiments, the silicon carbide source powder at the top of the high
density graphite cylinder44 is maintained at a temperature of about 2300° C., while the temperature of the growth surface of the growing crystal 33 is maintained at a somewhat lower temperature, typically 2200° C.
Moving a continuous supply of silicon carbide source powder to the sublimation region offers several advantages. In particular, and as set forth with respect to the other techniques disclosed herein, the continuous supply further ensures that the subliming source powder generates a consistent flux density. In effect, new source powder is continuously moved into the sublimation area, providing a constant flux as sublimation proceeds.
An optical sight hole 45 is also illustrated, and can be used to either monitor the temperature of the growing crystal 33 using an optical pyrometer or to determine the exact position of the crystal with respect to the silicon carbide source powder 40 at the top of the high
density graphite cylinder44.
In certain embodiments of the invention, the shaft 35 can be pulled in a manner which moves the growth face of the growing crystal 33 away from, or if desired towards, the silicon carbide source powder 40.
In yet another embodiment of the invention, the shaft can be rotated to ensure that the temperature profile across the growth face is constant. In such a manner, the crystal can be encouraged to grow symmetrically as the effect of flux variations are dampened out and the growing crystal can be prevented from attaching itself to the graphite enclosure.
FIG. 6 illustrates a number of the same features as FIG. 4, but with the separate and independent heating elements illustrated. In FIG. 6, the separate and independently controlled resistance heating elements are shown at 46 and 47. As described earlier herein, the
upper element46 can be used to control the temperature of the seed crystal 32 and the growing crystal 33, while the lower heating element 47 can be used to control the temperature of the silicon carbide source powder 40 at the top of the high
density graphite cylinder44.
In order to monitor the respective temperatures generated by
heating elements46 and 47, optical sight holes 50 and 51 are provided to permit optical pyrometers to monitor the temperatures generated.
FIG. 5 illustrates an apparatus used to carry out yet another embodiment of the invention. In this embodiment, the silicon carbide which sublimes and then recondenses as the growing crystal, is not supplied as a powder, but instead is introduced into the system by providing respective gas feeds of silane (SiH4) and ethylene (C2 H4) into the system at a temperature at which they will immediately react to form silicon carbide vapors which will then migrate in the manner in which vapors generated from source powders will migrate through the porous graphite barrier and onto the growing crystal.
As in the earlier described embodiments, the system includes seed crystal 32, growing crystal 33, graphite seed holder 34, shaft 35, graphite walls 36,
porous graphite barrier37, and the optical sight hole 45. Instead of a bed of silicon carbide source powder, however, the system includes a silane gas feed 52 and an ethylene gas feed 53. In order to keep these molecules from dissociating under the high temperatures of the system, they are insulated in a water cooled molybdenum jacket until they reach a point in the sublimation system where the temperature is maintained at approximately 2400° C., and at which the materials are released and immediately react to form silicon carbide.
Once the silane and ethylene have left the
jacket54 and have reacted to form silicon carbide containing species, they behave in the same manner as would silicon carbide containing species which had sublimed from a source powder. They pass through the
porous graphite barrier37 and lodge upon the growth face of the growing crystal 33.
The use of such a gas feed system for sublimation purposes offers several advantages, the primary one being the delivery of a constant flux of SiC vapor to the growing crystal surface. Another advantage is the high purity in which silane and ethylene can be obtained in commercial quantities so that a resultingly pure crystal results from this technique.
EXAMPLE 1A seed was prepared from a 6H alpha polytype silicon carbide. The seed crystal was lapped to insure flatness and then polished with progressively smaller sized diamond paste, finishing with a 0.1 micrometer paste. The seed was cleaned in hot sulfuric acid (H2 SO4) for a period of five minutes, in a one-to-one mixture of ammonium hydroxide (NH4 OH) and hydrogen peroxide (H2 O2) for five minutes, in hydrofluroic acid (HF) for one minute, and then finally rinsed in deionized water. The seed was oxidized in dry oxygen at 1200° C. for 90 minutes to remove residual polishing damage. The oxide was removed by etching with HF.
The seed and source powder were then loaded into the crucible. The source powder consisting of 6H silicon carbide grains having the following size distribution:
______________________________________ Percentage Passing Through Tyler Mesh Size (By Weight) ______________________________________ 20-40 43 percent 40-60 19 percent 60-100 17 percent Over 100 21 percent ______________________________________
The loaded crucible was then placed in the sublimation furnace while a slight overpressure of argon was maintained in the furnace to inhibit water contamination, and thus reducing the furnace pump down time. The furnace was evacuated to a base pressure below 5×10-6 Torr. The furnace was heated in a vacuum (5×10-4 Torr) to 1200° C. for about ten minutes. It will be understood by those familiar with low pressure systems that an absolute vacuum can never be achieved. Therefore, the term "vacuum" as used herein refers to various systems which are at pressures less than atmospheric pressure, and where appropriate, specific pressures will be employed to best describe the particular conditions. The furnace was then backfilled with argon to a pressure of 400 Torr.
The temperature of the system was then increased until the top of the crucible is approximately 2260° C. and the temperature of the seed is approximately 2160° C., which in the particular system used corresponded to a thermal gradient of 31° C. per centimeter (cm). The system was then evacuated slowly over a period of 85 minutes from the pressure of 400 Torr to a pressure of about 10 Torr. The system was maintained under these conditions for six hours, after which the system was backfilled with argon to 760 Torr and the temperature reduced to 200° C. over a period of 90 minutes.
When the furnace was unloaded, the process had resulted in a transparent 6H alpha silicon carbide crystal 12 millimeters (mm) in diameter and 6 mm thick.
EXAMPLE 2A 6H Alpha-SiC seed was prepared by cutting the (0001) plane 3° towards the [1120] direction. The seed was then lapped to assure flatness, polished with progressively smaller diamond paste, cleaned, oxidized and etched, all as described in Example 1.
The source material was doped with aluminum in a quantity of 0.2 weight percent. The seed and source powder having the same powder size distribution as set forth in Example 1. The crucible was loaded, the vessel evacuated, initially heated, and backfilled with argon, all as set forth in Example 1.
The temperature was then increased until the top of the crucible was 2240° C. and the seed was 2135° C., corresponding to a thermal gradient of 32° C./cm.
The furnace was evacuated from 400 Torr to 10 Torr as described in Example 1 and the sublimation conditions were maintained for a period of four hours. The furnace was then backfilled with argon to atmospheric pressure (760 Torr) and the temperature reduced to 200° C. over a period of 90 minutes.
When the furnace was unloaded, the process had resulted in a dark blue 6H Alpha-SiC crystal 12 mm in diameter and 6 mm thick. The resulting crystal was P type and had a carrier concentration of approximately 1018 carrier atoms per cubic centimeter.
In the description, there have been set forth preferred and exemplary embodiments of the invention which are set forth by way of example and not by way of limitation, the scope of the invention being set forth in the following claims.
Claims (29)
1. A method of reproducibly controlling the growth of large single crystals of the use of impurities as a primary mechanism for controlling polytype growth, and which crystals are suitable for use in producing electrical devices, the method comprising:
introducing a monocrystalline seed crystal of silicon carbide of desired polytype and a silicon carbide source powder into a sublimation system;
raising the temperature of the silicon carbide source powder to a temperature sufficient for the source powder to sublime; while
elevating the temperature of the growth surface of the seed crystal to a temperature approaching the temperature of the source powder, but lower than the temperature of the source powder and lower than that at which silicon carbide will sublime under the gas pressure conditions of the sublimation system; and
generating and maintaining a substantially constant flow of vaporized Si, Si2 C, and SiC2 per unit area per unit time from the source powder to the growth surface of the seed crystal for a time sufficient to produce a desired amount of macroscopic growth of monocrystalline silicon carbide of desired polytype upon the seed crystal.
2. A method according to claim 1 further comprising the step of preparing a polished seed crystal of silicon carbide prior to the step of introducing the seed crystal of silicon carbide into the closed system.
3. A method according to claim 1 wherein the step of introducing a seed single crystal of silicon carbide into a closed system containing silicon carbide source powder further comprises initially segregating the source powder and the seed crystal from one another.
4. A method according to claim 1 wherein the step of raising the temperature of the silicon carbide source powder comprises raising the temperature of the silicon carbide source powder to between about 2250° and 2350° centigrade.
5. A method according to claim 1 wherein the step of raising the temperature of the silicon carbide source powder comprises raising the temperature of the silicon carbide source powder to about 2300° centigrade.
6. A method according to claim 2 wherein the step of elevating the temperature of the seed crystal comprises elevating the temperature of the seed crystal to between about 2150° and 2250° centigrade.
7. A method according to claim 2 wherein the step of elevating the temperature of the seed crystal comprises elevating the temperature of the seed crystal to about 2200° centigrade.
8. A method according to claim 1 wherein the step of introducing a single seed crystal of silicon carbide comprises introducing a seed crystal for which a face corresponding to a low integer Miller index face has been cut to expose a face which is nonperpendicular to an axis normal to the low integer Miller index face which was cut.
9. A method according to claim 1 wherein the step of generating and maintaining a substantially constant flow of vaporized Si, Si2 C, and SiC2 per unit time comprises introducing a source powder having a selected composition of polytypes and maintaining the selected composition of polytypes in the source powder substantially constant throughout the growth process.
10. A method according to claim 9 wherein the step of maintaining the originally selected composition of polytypes in the source powder comprises replenishing the source powder during the sublimation process using source powder replenishment having a composition of polytypes which will maintain the originally selected composition of polytypes in the source powder substantially constant in the sublimation system.
11. A method according to claim 1 wherein the step of generating and maintaining a substantially constant flow of vaporized Si, Si2 C, and SiC2 per unit area per unit time comprises introducing a source powder having a selected predetermined distribution of surface areas and maintaining the selected distribution of surface areas in the source powder substantially constant throughout the growth process.
12. A method according to claim 11 wherein the step of maintaining the originally selected predetermined distribution of surface areas comprises replenishing the source powder during the sublimation process using source powder replenishment having a distribution of surface areas which will maintain the originally selected distribution of surface areas substantially constant in the source powder in the sublimation system.
13. A method according to claim 1 wherein the step of generating and maintaining a substantially constant flow of vaporized Si, Si2 C, and SiC2 per unit area per unit time comprises introducing a source powder having a selected predetermined distribution of particle sizes and maintaining the selected distribution of particle sizes in the source powder substantially constant throughout the growth process.
14. A method according to claim 11 wherein the step of maintaining the originally selected predetermined distribution of particle sizes comprises replenishing the source powder during the sublimation process using source powder replenishment having a distribution of particle sizes which will maintain the originally selected distribution of particle sizes substantially constant in the source powder in the sublimation system.
15. A method according to claim 10, claim 12 or claim 14 wherein the step of replenishing the source powder during the sublimation process comprises feeding silicon carbide to the sublimation system using a screw conveying mechanism.
16. A method according to claim 10, claim 12 or claim 14 wherein the step of replenishing the source powder during the sublimation process comprises feeding silicon carbide to the sublimation system using ultrasonic energy to move silicon carbide powder into the system.
17. A method according to claim 15 wherein the step of increasing the temperature gradient between the seed crystal and the source powder comprises increasing the temperature of the source powder while maintaining the temperature of the growth surface of the seed crystal at the initial lower temperature than the source powder.
18. A method according to claim 15 wherein the step of introducing the thermal gradient commprises introducing a thermal gradient of 20° centrigrade per centimeter.
19. A method according to claim 15 wherein the step of increasing the thermal gradient comprises increasing the thermal gradient from about 20° centigrade per centimeter to about 50° centigrade per centimeter.
20. A method according to claim 15 wherein the steps of raising the temperature of the source powder, introducing a thermal gradient and increasing the thermal gradient comprise using a resistance heating device to raise the temperature, introduce the thermal gradient and increase the thermal gradient.
21. A method according to claim 16 wherein the step of maintaining a fixed thermal gradient between the growth surface of the seed crystal and the source powder comprises providing relative movement between the growth surface of the seed crystal and the source powder as the seed crystal grows while maintaining the source powder at the temperature sufficient for silicon carbide to sublime and the seed crystal at the temperature approaching the temperature of the source powder but lower than the temperature of the source powder and lower than that at which silicon carbide will sublime.
22. A method according to claim 16 wherein the step of maintaining a fixed thermal gradient between the growth surface of the seed crystal and the source powder comprises maintaining a fixed distance between the growth surface of the seed crystal and the source powder as the crystal grows.
23. A method according to claim 16 wherein the step of maintaining a constant thermal gradient between the growth surface of the seed crystal and the source powder comprises independently controlling the source powder and seed crystal temperatures by separately monitoring the temperature of the source powder and the temperature of the seed crystal and separately adjusting the temperature of the source powder and the temperature of the seed crystal.
24. A method according to claim 14 wherein the step of replenishing the source powder during the sublimation process using source powder having a selected distribution of particle sizes comprises introducing silicon carbide powder having the following size distribution as determined by the weight percentage of a sample which will pass through a designated Tyler mesh screen:
______________________________________ Tyler Mesh Screen Weight Percent Passed ______________________________________ 20-40 43% 40-60 19% 60-100 17% Over 100 21% ______________________________________
25. A method according to claim 1 wherein the step of generating and maintaining a substantially constant flow of vaporized Si, Si2 C, and SiC2 per unit area per unit time from the source powder to the growth surface of the seed crystal comprises increasing the thermal gradient between the seed crystal and the source powder as the crystal grows and the source powder is used up to thereby maintain an absolute temperature difference between the source powder and seed crystal which continues to be most favorable for crystal growth and to continuously encourage further crystal growth beyond that which would be obtained by maintaining a constant temperature gradient.
26. A method according to claim 1 wherein the step of generating and maintaining a substantially constant flow of vaporized Si, Si2 C, and SiC2 per unit area per unit time from the source powder to the growth surface of the seed crystal comprises maintaining a constant thermal gradient as measured between the growth surface of the seed crystal and the source powder as the crystal grows and as the source powder is used up while maintaining the growth surface of the seed crystal and the source powder at their respective different temperatures to thereby maintain a constant growth rate of the single seed crystal and a consistent growth of a single polytype upon the single growth surface of the seed crystal.
27. A method according to claim 1 including the step of rotating the seed crystal as the seed crystal grows and as the source powder is used up to thereby maintain a constant temperature profile across the growth surface of the seed crystal, to dampen the effect of flux variations, and to prevent the growing crystal from becoming attached to undesired mechanical portions of the closed system.
28. A method of reproducibly controlling the growth of large single crystals of a single polytype of silicon carbide independent of the use of impurities as a primary mechanism for controlling polytype growth, and which crystals are suitable for use in producing electical devices, the method comprising:
introducing a monocrystalline seed crystal of silicon carbide of desired polytype and a silicon carbide source powder into a sublimation system, with the source powder having a selected composition of polytypes, a selected predetermined distribution of surface areas, and a selected predetermined distribution of particle sizes;
raising the temperature of the silicon carbide source powder to a temperature sufficient for the source powder to sublime; while
elevating the temperature of the growth surface of the seed crystal to a temperature approaching the temperature of the source powder, but lower than the temperature of the source powder and lower than that at which silicon carbide will sublime under the gas pressure conditions of the sublimation system; and
maintaining the selected composition of polytypes in the source powder substantially constant throughout the growth process; while
maintaining the selected distribution of surface areas in the source powder substantially constant throughout the growth process; and while
maintaining the selected distribution of particle sizes in the source powder substantially constant throughout the growth process, to thereby generate and maintain a substantially constant flow of vaporized Si, Si2 C, and SiC2 per unit area per unit time from the source powder to the growth surface of the seed crystal, and all for a time sufficient to produce a desired amount of macroscopic growth of monocrystalline silicon carbide of desired polytype upon the seed crystal. .Iadd.
29. A method according to claim 1 wherein the step of generating and maintaining a substantially constant flow of vaporized Si, Si2 C, and SiC2 per unit area per unit time from the source powder to the growth surface of the seed crystal further comprises introducing a thermal gradient between the source powder and the seed crystal and then increasing the thermal gradient between the seed crystal and the source powder as the crystal grows and the source powder is used up to thereby maintain an absolute temperature difference between the source powder and seed crystal which continues to be most favorable for crystal growth and to continuously encourage further crystal growth beyond that which would be obtained by maintaining a constant temperature gradient. .Iaddend.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/594,856 USRE34861E (en) | 1987-10-26 | 1990-10-09 | Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/113,565 US4866005A (en) | 1987-10-26 | 1987-10-26 | Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide |
US07/594,856 USRE34861E (en) | 1987-10-26 | 1990-10-09 | Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/113,565 Reissue US4866005A (en) | 1987-10-26 | 1987-10-26 | Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE34861E true USRE34861E (en) | 1995-02-14 |
Family
ID=22350170
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/113,565 Ceased US4866005A (en) | 1987-10-26 | 1987-10-26 | Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide |
US07/594,856 Expired - Lifetime USRE34861E (en) | 1987-10-26 | 1990-10-09 | Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/113,565 Ceased US4866005A (en) | 1987-10-26 | 1987-10-26 | Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide |
Country Status (7)
Country | Link |
---|---|
US (2) | US4866005A (en) |
EP (3) | EP0712150B1 (en) |
JP (2) | JP3165685B2 (en) |
KR (1) | KR970008332B1 (en) |
CA (1) | CA1331730C (en) |
DE (3) | DE3856514T2 (en) |
WO (1) | WO1989004055A1 (en) |
Cited By (388)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5620511A (en) * | 1994-11-28 | 1997-04-15 | Hyundai Motor Company | Method for preparing a preform for a composite material |
WO1997028297A1 (en) * | 1996-02-05 | 1997-08-07 | Cree Research, Inc. | Growth of colorless silicon carbide crystals |
US5723391A (en) * | 1995-08-31 | 1998-03-03 | C3, Inc. | Silicon carbide gemstones |
US5746827A (en) * | 1995-12-27 | 1998-05-05 | Northrop Grumman Corporation | Method of producing large diameter silicon carbide crystals |
US5858086A (en) * | 1996-10-17 | 1999-01-12 | Hunter; Charles Eric | Growth of bulk single crystals of aluminum nitride |
US5873937A (en) * | 1997-05-05 | 1999-02-23 | Northrop Grumman Corporation | Method of growing 4H silicon carbide crystal |
US5895526A (en) * | 1995-08-07 | 1999-04-20 | Nippondenso Co., Ltd. | Process for growing single crystal |
US6048813A (en) | 1998-10-09 | 2000-04-11 | Cree, Inc. | Simulated diamond gemstones formed of aluminum nitride and aluminum nitride: silicon carbide alloys |
US6177688B1 (en) | 1998-11-24 | 2001-01-23 | North Carolina State University | Pendeoepitaxial gallium nitride semiconductor layers on silcon carbide substrates |
US6193797B1 (en) * | 1998-01-19 | 2001-02-27 | Sumitomo Electric Industries, Ltd. | Method of making SiC single crystal and apparatus for making SiC single crystal |
US6255198B1 (en) * | 1998-11-24 | 2001-07-03 | North Carolina State University | Methods of fabricating gallium nitride microelectronic layers on silicon layers and gallium nitride microelectronic structures formed thereby |
US6261929B1 (en) | 2000-02-24 | 2001-07-17 | North Carolina State University | Methods of forming a plurality of semiconductor layers using spaced trench arrays |
US6265289B1 (en) | 1998-06-10 | 2001-07-24 | North Carolina State University | Methods of fabricating gallium nitride semiconductor layers by lateral growth from sidewalls into trenches, and gallium nitride semiconductor structures fabricated thereby |
US20020047135A1 (en) * | 1997-11-18 | 2002-04-25 | Nikolaev Audrey E. | P-N junction-based structures utilizing HVPE grown III-V compound layers |
US20020046693A1 (en) * | 1997-04-11 | 2002-04-25 | Nichia Chemical Industries, Ltd. | Nitride semiconductor growth method, nitride semiconductor substrate, and nitride semiconductor device |
US6380108B1 (en) | 1999-12-21 | 2002-04-30 | North Carolina State University | Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on weak posts, and gallium nitride semiconductor structures fabricated thereby |
US6403451B1 (en) | 2000-02-09 | 2002-06-11 | Noerh Carolina State University | Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts |
US6428621B1 (en) | 2000-02-15 | 2002-08-06 | The Fox Group, Inc. | Method for growing low defect density silicon carbide |
US6451112B1 (en) | 1999-10-15 | 2002-09-17 | Denso Corporation | Method and apparatus for fabricating high quality single crystal |
US6472300B2 (en) | 1997-11-18 | 2002-10-29 | Technologies And Devices International, Inc. | Method for growing p-n homojunction-based structures utilizing HVPE techniques |
US6476420B2 (en) | 1997-11-18 | 2002-11-05 | Technologies And Devices International, Inc. | P-N homojunction-based structures utilizing HVPE growth III-V compound layers |
US6479839B2 (en) | 1997-11-18 | 2002-11-12 | Technologies & Devices International, Inc. | III-V compounds semiconductor device with an AlxByInzGa1-x-y-zN non continuous quantum dot layer |
US6489221B2 (en) | 1999-11-17 | 2002-12-03 | North Carolina State University | High temperature pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on sapphire substrates |
US20020189536A1 (en) * | 2001-06-15 | 2002-12-19 | Bridgestone Corporation | Silicon carbide single crystal and production thereof |
US20030029376A1 (en) * | 2000-03-13 | 2003-02-13 | Snyder David W | Large size single crystal seed crystal fabrication by intergrowth of tiled seed crystals |
US20030037724A1 (en) * | 2000-03-13 | 2003-02-27 | Snyder David W. | Axial gradient transport appatatus and process for producing large size, single crystals of silicon carbide |
US20030049898A1 (en) * | 1997-11-18 | 2003-03-13 | Sergey Karpov | Method for fabricating a P-N heterojunction device utilizing HVPE grown III-V compound layers and resultant device |
WO2003032397A2 (en) | 2001-07-24 | 2003-04-17 | Cree, Inc. | INSULTING GATE AlGaN/GaN HEMT |
US6555452B2 (en) | 1997-11-18 | 2003-04-29 | Technologies And Devices International, Inc. | Method for growing p-type III-V compound material utilizing HVPE techniques |
US6559038B2 (en) | 1997-11-18 | 2003-05-06 | Technologies And Devices International, Inc. | Method for growing p-n heterojunction-based structures utilizing HVPE techniques |
US6559467B2 (en) | 1997-11-18 | 2003-05-06 | Technologies And Devices International, Inc. | P-n heterojunction-based structures utilizing HVPE grown III-V compound layers |
US6570192B1 (en) | 1998-02-27 | 2003-05-27 | North Carolina State University | Gallium nitride semiconductor structures including lateral gallium nitride layers |
US20030102482A1 (en) * | 2001-12-03 | 2003-06-05 | Saxler Adam William | Strain balanced nitride heterojunction transistors and methods of fabricating strain balanced nitride heterojunction transistors |
US6599133B2 (en) | 1997-11-18 | 2003-07-29 | Technologies And Devices International, Inc. | Method for growing III-V compound semiconductor structures with an integral non-continuous quantum dot layer utilizing HVPE techniques |
US6608327B1 (en) | 1998-02-27 | 2003-08-19 | North Carolina State University | Gallium nitride semiconductor structure including laterally offset patterned layers |
US6664560B2 (en) | 2001-06-15 | 2003-12-16 | Cree, Inc. | Ultraviolet light emitting diode |
US20040026707A1 (en) * | 1997-08-29 | 2004-02-12 | Slater David B. | Robust group III light emitting diode for high reliability in standard packaging applications |
US6706114B2 (en) | 2001-05-21 | 2004-03-16 | Cree, Inc. | Methods of fabricating silicon carbide crystals |
US6749685B2 (en) * | 2001-08-16 | 2004-06-15 | Cree, Inc. | Silicon carbide sublimation systems and associated methods |
US6780243B1 (en) | 2001-11-01 | 2004-08-24 | Dow Corning Enterprises, Inc. | Method of silicon carbide monocrystalline boule growth |
US6786969B2 (en) * | 2000-12-28 | 2004-09-07 | Denso Corporation | Method and apparatus for producing single crystal, substrate for growing single crystal and method for heating single crystal |
US6824611B1 (en) | 1999-10-08 | 2004-11-30 | Cree, Inc. | Method and apparatus for growing silicon carbide crystals |
US6825501B2 (en) | 1997-08-29 | 2004-11-30 | Cree, Inc. | Robust Group III light emitting diode for high reliability in standard packaging applications |
US6849862B2 (en) | 1997-11-18 | 2005-02-01 | Technologies And Devices International, Inc. | III-V compound semiconductor device with an AlxByInzGa1-x-y-zN1-a-bPaAsb non-continuous quantum dot layer |
US20050022727A1 (en) * | 2003-07-28 | 2005-02-03 | Fechko George J. | Reducing nitrogen content in silicon carbide crystals by sublimation growth in a hydrogen-containing ambient |
US6863728B2 (en) | 2001-02-14 | 2005-03-08 | The Fox Group, Inc. | Apparatus for growing low defect density silicon carbide |
US20050062140A1 (en) * | 2003-09-18 | 2005-03-24 | Cree, Inc. | Molded chip fabrication method and apparatus |
US20050126471A1 (en) * | 2002-06-24 | 2005-06-16 | Jenny Jason R. | One hundred millimeter high purity semi-insulating single crystal silicon carbide wafer |
US20050145874A1 (en) * | 2004-01-07 | 2005-07-07 | Saxler Adam W. | Co-doping for fermi level control in semi-insulating Group III nitrides |
US20050184307A1 (en) * | 2003-09-30 | 2005-08-25 | Cree, Inc. | Light emitting diode with porous sic substrate and method for fabricating |
US20050236633A1 (en) * | 2004-04-22 | 2005-10-27 | Emerson David T | Substrate buffer structure for group III nitride devices |
US6964917B2 (en) | 2003-04-08 | 2005-11-15 | Cree, Inc. | Semi-insulating silicon carbide produced by Neutron transmutation doping |
US20050258450A1 (en) * | 2004-05-20 | 2005-11-24 | Saxler Adam W | Semiconductor devices having a hybrid channel layer, current aperture transistors and methods of fabricating same |
US6974720B2 (en) | 2003-10-16 | 2005-12-13 | Cree, Inc. | Methods of forming power semiconductor devices using boule-grown silicon carbide drift layers and power semiconductor devices formed thereby |
US6982204B2 (en) | 2002-07-16 | 2006-01-03 | Cree, Inc. | Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses |
US20060001046A1 (en) * | 2004-07-02 | 2006-01-05 | Cree, Inc. | LED with substrate modifications for enhanced light extraction and method of making same |
US20060017064A1 (en) * | 2004-07-26 | 2006-01-26 | Saxler Adam W | Nitride-based transistors having laterally grown active region and methods of fabricating same |
US20060019435A1 (en) * | 2004-07-23 | 2006-01-26 | Scott Sheppard | Methods of fabricating nitride-based transistors with a cap layer and a recessed gate |
US20060032434A1 (en) * | 2004-08-10 | 2006-02-16 | Stephan Mueller | Seed and seedholder combinations for high quality growth of large silicon carbide single crystals |
US20060075958A1 (en) * | 2004-09-21 | 2006-04-13 | Adrian Powell | Low basal plane dislocation bulk grown SiC wafers |
US20060108606A1 (en) * | 2004-11-23 | 2006-05-25 | Saxler Adam W | Cap layers and/or passivation layers for nitride-based transistors, transistor structures and methods of fabricating same |
US20060130742A1 (en) * | 2004-12-22 | 2006-06-22 | Carter Calvin H Jr | Process for producing silicon carbide crystals having increased minority carrier lifetimes |
US20060145283A1 (en) * | 2005-01-06 | 2006-07-06 | Zhu Tinggang | Gallium nitride semiconductor device |
US20060174825A1 (en) * | 2005-02-09 | 2006-08-10 | Cem Basceri | Method of forming semi-insulating silicon carbide single crystal |
US20060208280A1 (en) * | 2005-03-15 | 2006-09-21 | Smith Richard P | Group III nitride field effect transistors (FETS) capable of withstanding high temperature reverse bias test conditions |
US7112860B2 (en) | 2003-03-03 | 2006-09-26 | Cree, Inc. | Integrated nitride-based acoustic wave devices and methods of fabricating integrated nitride-based acoustic wave devices |
US20060226412A1 (en) * | 2005-04-11 | 2006-10-12 | Saxler Adam W | Thick semi-insulating or insulating epitaxial gallium nitride layers and devices incorporating same |
US20060226413A1 (en) * | 2005-04-11 | 2006-10-12 | Saxler Adam W | Composite substrates of conductive and insulating or semi-insulating group III-nitrides for group III-nitride devices |
US20060233211A1 (en) * | 2001-01-16 | 2006-10-19 | Edmond John A | Group III Nitride LED with Undoped Cladding Layer |
US20060243984A1 (en) * | 2005-04-19 | 2006-11-02 | Ii-Vi Incorporated | Method of and system for forming SiC crystals having spatially uniform doping impuritites |
US20060244010A1 (en) * | 2005-04-29 | 2006-11-02 | Saxler Adam W | Aluminum free group III-nitride based high electron mobility transistors and methods of fabricating same |
US20060254505A1 (en) * | 2005-05-13 | 2006-11-16 | Tsvetkov Valeri F | Method and apparatus for the production of silicon carbide crystals |
US20060255366A1 (en) * | 2004-01-16 | 2006-11-16 | Sheppard Scott T | Nitride-based transistors with a protective layer and a low-damage recess |
US20060282085A1 (en) * | 2004-11-09 | 2006-12-14 | Arthrotek, Inc. | Soft tissue conduit device |
US20070004184A1 (en) * | 2005-06-29 | 2007-01-04 | Saxler Adam W | Low dislocation density group III nitride layers on silicon carbide substrates and methods of making the same |
US7161194B2 (en) | 2004-12-06 | 2007-01-09 | Cree, Inc. | High power density and/or linearity transistors |
US20070018183A1 (en) * | 2005-07-21 | 2007-01-25 | Cree, Inc. | Roughened high refractive index layer/LED for high light extraction |
US20070018198A1 (en) * | 2005-07-20 | 2007-01-25 | Brandes George R | High electron mobility electronic device structures comprising native substrates and methods for making the same |
US20070018199A1 (en) * | 2005-07-20 | 2007-01-25 | Cree, Inc. | Nitride-based transistors and fabrication methods with an etch stop layer |
US7170111B2 (en) | 2004-02-05 | 2007-01-30 | Cree, Inc. | Nitride heterojunction transistors having charge-transfer induced energy barriers and methods of fabricating the same |
US20070045609A1 (en) * | 2005-06-16 | 2007-03-01 | Cree, Inc. | Quantum wells for light conversion |
US20070110657A1 (en) * | 2005-11-14 | 2007-05-17 | Hunter Charles E | Unseeded silicon carbide single crystals |
US20070114541A1 (en) * | 2003-02-14 | 2007-05-24 | Cree, Inc. | Light emitting diode wth degenerate coupling structure |
US20070139923A1 (en) * | 2005-12-21 | 2007-06-21 | Led Lighting Fixtures, Inc. | Lighting device |
US20070158683A1 (en) * | 2005-12-13 | 2007-07-12 | Sheppard Scott T | Semiconductor devices including implanted regions and protective layers and methods of forming the same |
US20070164315A1 (en) * | 2004-11-23 | 2007-07-19 | Cree, Inc. | Cap Layers Including Aluminum Nitride for Nitride-Based Transistors and Methods of Fabricating Same |
US20070164322A1 (en) * | 2006-01-17 | 2007-07-19 | Cree, Inc. | Methods of fabricating transistors including dielectrically-supported gate electrodes and related devices |
US20070194354A1 (en) * | 2006-02-23 | 2007-08-23 | Cree, Inc. | Nitride based transistors for millimeter wave operation |
US20070209577A1 (en) * | 2004-10-04 | 2007-09-13 | Adrian Powell | Low micropipe 100 mm silicon carbide wafer |
US20070224716A1 (en) * | 2004-09-21 | 2007-09-27 | Cree, Inc. | Methods of coating semiconductor light emitting elements by evaporating solvent from a suspension |
US20070228387A1 (en) * | 2006-04-04 | 2007-10-04 | Gerald Negley | Uniform emission LED package |
US20070235775A1 (en) * | 2006-03-29 | 2007-10-11 | Cree, Inc. | High efficiency and/or high power density wide bandgap transistors |
US20070269968A1 (en) * | 2006-05-16 | 2007-11-22 | Cree, Inc. | Semiconductor devices including self aligned refractory contacts and methods of fabricating the same |
US20070268071A1 (en) * | 2004-12-31 | 2007-11-22 | Cree, Inc. | High efficiency switch-mode power amplifier |
US20070272929A1 (en) * | 2003-11-25 | 2007-11-29 | Akihiko Namba | Diamond N-Type Semiconductor, Method of Manufacturing the Same, Semiconductor Device, and Electron Emitting Device |
US20070283880A1 (en) * | 2005-03-24 | 2007-12-13 | Tsvetkov Valeri F | Apparatus and method for the production of bulk silicon carbide single crystals |
US20070284602A1 (en) * | 2004-06-30 | 2007-12-13 | Ashay Chitnis | Dielectric wafer level bonding with conductive feed-throughs for electrical connection and thermal management |
US7314520B2 (en) | 2004-10-04 | 2008-01-01 | Cree, Inc. | Low 1c screw dislocation 3 inch silicon carbide wafer |
US7316747B2 (en) | 2002-06-24 | 2008-01-08 | Cree, Inc. | Seeded single crystal silicon carbide growth and resulting crystals |
US20080007953A1 (en) * | 2005-06-10 | 2008-01-10 | Cree, Inc. | High power solid-state lamp |
US20080008641A1 (en) * | 2006-07-06 | 2008-01-10 | Leonard Robert T | One Hundred Millimeter SiC Crystal Grown on Off-Axis Seed |
US7335920B2 (en) | 2005-01-24 | 2008-02-26 | Cree, Inc. | LED with current confinement structure and surface roughening |
US20080079017A1 (en) * | 2006-07-31 | 2008-04-03 | Cree, Inc. | Method of uniform phosphor chip coating and led package fabricated using method |
US7355215B2 (en) | 2004-12-06 | 2008-04-08 | Cree, Inc. | Field effect transistors (FETs) having multi-watt output power at millimeter-wave frequencies |
US20080084685A1 (en) * | 2006-08-23 | 2008-04-10 | Led Lighting Fixtures, Inc. | Lighting device and lighting method |
US20080096365A1 (en) * | 2006-10-20 | 2008-04-24 | Cree, Inc. | Permanent wafer bonding using metal alloy preform discs |
US20080105949A1 (en) * | 2006-08-17 | 2008-05-08 | Cree, Inc. | High power insulated gate bipolar transistors |
US20080130281A1 (en) * | 2006-12-04 | 2008-06-05 | Led Lighting Fixtures, Inc. | Lighting device and lighting method |
US20080169474A1 (en) * | 2003-03-03 | 2008-07-17 | Cree, Inc. | Integrated Nitride and Silicon Carbide-Based Devices and Methods of Fabricating Integrated Nitride-Based Devices |
US20080170396A1 (en) * | 2006-11-09 | 2008-07-17 | Cree, Inc. | LED array and method for fabricating same |
EP1947700A2 (en) | 2007-01-19 | 2008-07-23 | Cree, Inc. | Low voltage diode with reduced parasitic resistance and method for fabricating |
US20080179611A1 (en) * | 2007-01-22 | 2008-07-31 | Cree, Inc. | Wafer level phosphor coating method and devices fabricated utilizing method |
US20080185608A1 (en) * | 2007-02-01 | 2008-08-07 | Cree, Inc. | Ohmic contacts to nitrogen polarity GaN |
EP1965433A2 (en) | 2006-11-21 | 2008-09-03 | Cree, Inc. | High voltage GaN transistors |
US7422634B2 (en) | 2005-04-07 | 2008-09-09 | Cree, Inc. | Three inch silicon carbide wafer with low warp, bow, and TTV |
EP1973163A2 (en) | 2007-03-23 | 2008-09-24 | Cree, Inc. | High temperature performance capable gallium nitride transistor |
US7432142B2 (en) | 2004-05-20 | 2008-10-07 | Cree, Inc. | Methods of fabricating nitride-based transistors having regrown ohmic contact regions |
US20080258161A1 (en) * | 2007-04-20 | 2008-10-23 | Edmond John A | Transparent ohmic Contacts on Light Emitting Diodes with Carrier Substrates |
US20080258130A1 (en) * | 2007-04-23 | 2008-10-23 | Bergmann Michael J | Beveled LED Chip with Transparent Substrate |
EP1993205A1 (en) | 2007-05-14 | 2008-11-19 | Cree, Inc. | Bulk acoustic device and method for fabricating |
US20090014731A1 (en) * | 2007-07-11 | 2009-01-15 | Andrews Peter S | LED Chip Design for White Conversion |
US20090014736A1 (en) * | 2007-07-11 | 2009-01-15 | Cree, Inc. | Coating method utilizing phosphor containment structure and devices fabricated using same |
US20090021841A1 (en) * | 2007-07-17 | 2009-01-22 | Cree Led Lighting Solutions, Inc. | Optical elements with internal optical features and methods of fabricating same |
US20090050911A1 (en) * | 2007-08-24 | 2009-02-26 | Cree, Inc. | Light emitting device packages using light scattering particles of different size |
US20090050908A1 (en) * | 2005-01-10 | 2009-02-26 | Cree, Inc. | Solid state lighting component |
US20090057690A1 (en) * | 2007-01-22 | 2009-03-05 | Cree, Inc. | Wafer level phosphor coating technique for warm light emitting diodes |
US20090065790A1 (en) * | 2007-01-22 | 2009-03-12 | Cree, Inc. | LED chips having fluorescent substrates with microholes and methods for fabricating |
EP2048718A1 (en) | 2007-10-10 | 2009-04-15 | Cree, Inc. | Multiple conversion material light emitting diode package and method of fabricating same |
EP2056363A2 (en) | 2007-10-31 | 2009-05-06 | Cree, Inc. | Light emitting diode package and method for fabricating same |
US7544963B2 (en) | 2005-04-29 | 2009-06-09 | Cree, Inc. | Binary group III-nitride based high electron mobility transistors |
US20090152573A1 (en) * | 2007-12-14 | 2009-06-18 | Cree, Inc. | Textured encapsulant surface in LED packages |
US20090153022A1 (en) * | 2007-12-14 | 2009-06-18 | Hussell Christopher P | Phosphor distribution in LED lamps using centrifugal force |
US7553373B2 (en) | 2001-06-15 | 2009-06-30 | Bridgestone Corporation | Silicon carbide single crystal and production thereof |
US20090166659A1 (en) * | 2004-09-22 | 2009-07-02 | Cree, Inc. | High Efficiency Group III Nitride LED with Lenticular Surface |
US20090218179A1 (en) * | 2006-02-08 | 2009-09-03 | Hitachi, Ltd. | Electric Brake |
US20090224289A1 (en) * | 2006-01-17 | 2009-09-10 | Cree, Inc. | Transistors including supported gate electrodes |
US20090256163A1 (en) * | 2008-04-10 | 2009-10-15 | Cree, Inc. | LEDs using single crystalline phosphor and methods of fabricating same |
US20090256162A1 (en) * | 2002-06-24 | 2009-10-15 | Cree, Inc. | Method for Producing Semi-Insulating Resistivity in High Purity Silicon Carbide Crystals |
US20090261358A1 (en) * | 2008-03-31 | 2009-10-22 | Cree, Inc. | Emission tuning methods and devices fabricated utilizing methods |
US7612390B2 (en) | 2004-02-05 | 2009-11-03 | Cree, Inc. | Heterojunction transistors including energy barriers |
EP2113949A2 (en) | 2008-05-02 | 2009-11-04 | Cree, Inc. | Encapsulation for phosphor-converted white light emitting diode |
US20090283779A1 (en) * | 2007-06-14 | 2009-11-19 | Cree, Inc. | Light source with near field mixing |
US20090311381A1 (en) * | 2008-06-11 | 2009-12-17 | Gardner Susanne | Beverages composed of wine components |
US20090315036A1 (en) * | 2006-08-01 | 2009-12-24 | Qingchun Zhang | Semiconductor devices including schottky diodes having doped regions arranged as islands and methods of fabricating same |
US20100006859A1 (en) * | 2006-07-19 | 2010-01-14 | Gilyong Chung | Method of Manufacturing Substrates Having Improved Carrier Lifetimes |
US20100025719A1 (en) * | 2008-08-01 | 2010-02-04 | Cree, Inc. | Bond pad design for enhancing light extraction from led chips |
US20100103660A1 (en) * | 2008-10-24 | 2010-04-29 | Cree Led Lighting Solutions, Inc. | Array layout for color mixing |
EP2192623A1 (en) | 1998-09-16 | 2010-06-02 | Cree, Inc. | Vertical Geometry InGaN LED |
US20100140635A1 (en) * | 2008-12-08 | 2010-06-10 | Cree, Inc. | Composite high reflectivity layer |
US20100140628A1 (en) * | 2007-02-27 | 2010-06-10 | Qingchun Zhang | Insulated gate bipolar transistors including current suppressing layers |
US20100155746A1 (en) * | 2009-04-06 | 2010-06-24 | Cree, Inc. | High voltage low current surface-emitting led |
US20100155750A1 (en) * | 2008-12-23 | 2010-06-24 | Cree, Inc. | Color correction for wafer level white LEDs |
US20100155748A1 (en) * | 2009-01-14 | 2010-06-24 | Cree Hong Kong Limited | Aligned multiple emitter package |
WO2010088003A1 (en) | 2009-02-02 | 2010-08-05 | Teledyne Lighting And Display Products, Inc. | Efficient illumination device for aircraft |
US20100252840A1 (en) * | 2009-04-06 | 2010-10-07 | Cree, Inc. | High voltage low current surface emitting led |
US20100254129A1 (en) * | 2006-04-18 | 2010-10-07 | Cree, Inc. | Saturated yellow phosphor converted led and blue converted red led |
US7821023B2 (en) | 2005-01-10 | 2010-10-26 | Cree, Inc. | Solid state lighting component |
US20100276698A1 (en) * | 2009-04-29 | 2010-11-04 | Cree, Inc. | Gate electrodes for millimeter-wave operation and methods of fabrication |
US20100301335A1 (en) * | 2009-06-02 | 2010-12-02 | Sei-Hyung Ryu | High Voltage Insulated Gate Bipolar Transistors with Minority Carrier Diverter |
US20100308337A1 (en) * | 2009-06-03 | 2010-12-09 | Cree, Inc. | Schottky Diodes Including Polysilicon Having Low Barrier Heights and Methods of Fabricating the Same |
EP2264223A2 (en) | 2006-09-14 | 2010-12-22 | Cree, Inc. | Micropipe-free silicon carbide and related method of manufacture |
EP2270883A2 (en) | 1999-12-03 | 2011-01-05 | Cree Inc. | Enhanced light extraction in LEDs through the use of internal and external optical elements |
US20110001151A1 (en) * | 2009-07-06 | 2011-01-06 | Cree, Inc. | Led packages with scattering particle regions |
US20110008922A1 (en) * | 2004-06-30 | 2011-01-13 | David Todd Emerson | Methods of forming light emitting devices having current reducing structures |
US20110012130A1 (en) * | 2009-07-15 | 2011-01-20 | Qingchun Zhang | High Breakdown Voltage Wide Band-Gap MOS-Gated Bipolar Junction Transistors with Avalanche Capability |
US20110018040A1 (en) * | 2009-07-27 | 2011-01-27 | Smith R Peter | Methods of fabricating transistors including self-aligned gate electrodes and source/drain regions |
EP2282346A2 (en) | 2001-05-11 | 2011-02-09 | Cree, Inc. | Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer |
US20110031865A1 (en) * | 2009-01-12 | 2011-02-10 | Hussell Christopher P | Light emitting device packages with improved heat transfer |
US20110043137A1 (en) * | 2009-08-19 | 2011-02-24 | Cree Led Lighting Solutions, Inc. | White light color changing solid state lighting and methods |
US20110049546A1 (en) * | 2009-09-02 | 2011-03-03 | Cree, Inc. | high reflectivity mirrors and method for making same |
US7901994B2 (en) | 2004-01-16 | 2011-03-08 | Cree, Inc. | Methods of manufacturing group III nitride semiconductor devices with silicon nitride layers |
US20110084294A1 (en) * | 2007-11-14 | 2011-04-14 | Cree, Inc. | High voltage wire bond free leds |
EP2312635A2 (en) | 2005-09-07 | 2011-04-20 | Cree, Inc. | Transistors with fluorine treatment |
EP2315256A2 (en) | 2001-07-23 | 2011-04-27 | Cree, Inc. | Gallium nitride based diodes with low forward voltage and low reverse current operation |
EP2325903A1 (en) | 1999-12-03 | 2011-05-25 | Cree, Inc. | Light emitting diode with micro-LED array for light extraction enhancement |
EP2337096A2 (en) | 1999-12-01 | 2011-06-22 | Cree, Inc. | Scalable LED with improved current spreading structures |
US20110186865A1 (en) * | 2010-01-29 | 2011-08-04 | Cree Hong Kong Limited | Wide angle oval light emitting diode package |
US20110193135A1 (en) * | 2010-02-11 | 2011-08-11 | Helmut Hagleitner | Methods of Forming Contact Structures Including Alternating Metal and Silicon Layers and Related Devices |
US20110198626A1 (en) * | 2005-02-23 | 2011-08-18 | Cree, Inc. | Substrate removal process for high light extraction leds |
US8008676B2 (en) | 2006-05-26 | 2011-08-30 | Cree, Inc. | Solid state light emitting device and method of making same |
US8017963B2 (en) | 2008-12-08 | 2011-09-13 | Cree, Inc. | Light emitting diode with a dielectric mirror having a lateral configuration |
WO2011112302A1 (en) | 2010-02-16 | 2011-09-15 | Cree, Inc. | Color control of light emitting devices |
WO2011136837A1 (en) | 2010-04-30 | 2011-11-03 | Cree, Inc. | White-emitting led chips and method for making same |
WO2012005771A2 (en) | 2010-07-06 | 2012-01-12 | Cree, Inc. | Compact optically efficient solid state light source with integrated thermal management |
US8101961B2 (en) | 2006-01-25 | 2012-01-24 | Cree, Inc. | Transparent ohmic contacts on light emitting diodes with growth substrates |
EP2410581A1 (en) | 2004-05-06 | 2012-01-25 | Cree, Inc. | Lift-off process for GaN films formed on SiC substrates and devices fabricated using the method |
WO2012011936A2 (en) | 2010-07-23 | 2012-01-26 | Cree, Inc. | Light transmission control for masking appearance of solid state light sources |
US8111001B2 (en) | 2007-07-17 | 2012-02-07 | Cree, Inc. | LED with integrated constant current driver |
WO2012026966A1 (en) | 2010-08-25 | 2012-03-01 | Cree, Inc. | Emitter package with angled or vertical led |
WO2012050994A2 (en) | 2010-10-13 | 2012-04-19 | Cree, Inc. | Light emitting devices and methods |
EP2445066A1 (en) | 2002-05-30 | 2012-04-25 | Cree, Inc. | Group III nitride LED with undoped cladding layer and multiple quantum well |
WO2012071136A2 (en) | 2010-11-22 | 2012-05-31 | Cree, Inc. | Light emitting devices and methods |
WO2012071139A2 (en) | 2010-11-22 | 2012-05-31 | Cree, Inc. | Light emitting devices and methods |
US8193848B2 (en) | 2009-06-02 | 2012-06-05 | Cree, Inc. | Power switching devices having controllable surge current capabilities |
WO2012083217A1 (en) | 2010-12-16 | 2012-06-21 | Cree, Inc. | High power leds with non-polymer material lenses and methods of making the same |
WO2012106141A1 (en) | 2011-02-04 | 2012-08-09 | Cree, Inc. | Light-emitting diode component |
WO2012128966A2 (en) | 2011-03-18 | 2012-09-27 | Cree, Inc. | Encapsulant with index matched thixotropic agent |
US8294507B2 (en) | 2009-05-08 | 2012-10-23 | Cree, Inc. | Wide bandgap bipolar turn-off thyristor having non-negative temperature coefficient and related control circuits |
EP2518764A2 (en) | 2003-01-02 | 2012-10-31 | Cree, Inc. | Group III nitride based flip-chip integrated circuit and method for fabricating |
WO2012151066A1 (en) | 2011-05-04 | 2012-11-08 | Cree, Inc. | Light-emitting diode (led) for achieving an asymmetric light output |
US20120285370A1 (en) * | 2009-09-15 | 2012-11-15 | Ii-Vi Incorporated | Sublimation growth of sic single crystals |
WO2012177474A1 (en) | 2011-06-23 | 2012-12-27 | Cree, Inc. | Solid state directional lamp including retroreflective, multi-element directional lamp optic |
WO2012177429A2 (en) | 2011-06-23 | 2012-12-27 | Cree, Inc. | Hybrid solid state emitter printed circuit board for use in a solid state directional lamp |
WO2012177473A1 (en) | 2011-06-23 | 2012-12-27 | Cree, Inc. | Retroreflective, multi-element design for a solid state directional lamp |
WO2012177428A1 (en) | 2011-06-23 | 2012-12-27 | Cree, Inc. | Solid state retroreflective directional lamp |
WO2012177316A1 (en) | 2011-06-24 | 2012-12-27 | Cree, Inc. | Led structure with enhanced mirror reflectivity |
US8354690B2 (en) | 2009-08-31 | 2013-01-15 | Cree, Inc. | Solid-state pinch off thyristor circuits |
WO2013032692A1 (en) | 2011-08-26 | 2013-03-07 | Cree, Inc. | White leds with emission wavelength correction |
US8415671B2 (en) | 2010-04-16 | 2013-04-09 | Cree, Inc. | Wide band-gap MOSFETs having a heterojunction under gate trenches thereof and related methods of forming such devices |
USD679842S1 (en) | 2011-01-03 | 2013-04-09 | Cree, Inc. | High brightness LED package |
US8432012B2 (en) | 2006-08-01 | 2013-04-30 | Cree, Inc. | Semiconductor devices including schottky diodes having overlapping doped regions and methods of fabricating same |
US8455908B2 (en) | 2011-02-16 | 2013-06-04 | Cree, Inc. | Light emitting devices |
US8455882B2 (en) | 2010-10-15 | 2013-06-04 | Cree, Inc. | High efficiency LEDs |
US8511851B2 (en) | 2009-12-21 | 2013-08-20 | Cree, Inc. | High CRI adjustable color temperature lighting devices |
WO2013134073A1 (en) | 2012-03-08 | 2013-09-12 | Cree, Inc. | Encapsulated led including a composite high reflectivity layer |
WO2013151411A1 (en) | 2012-04-06 | 2013-10-10 | Cree, Inc. | Light emitting diode components and methods for emitting a desired light beam pattern |
US8564004B2 (en) | 2011-11-29 | 2013-10-22 | Cree, Inc. | Complex primary optics with intermediate elements |
US8575639B2 (en) | 2011-02-16 | 2013-11-05 | Cree, Inc. | Light emitting devices for light emitting diodes (LEDs) |
WO2013176832A1 (en) | 2012-05-23 | 2013-11-28 | Cree, Inc. | Tilted emission led array |
US8610140B2 (en) | 2010-12-15 | 2013-12-17 | Cree, Inc. | Light emitting diode (LED) packages, systems, devices and related methods |
US8618582B2 (en) | 2011-09-11 | 2013-12-31 | Cree, Inc. | Edge termination structure employing recesses for edge termination elements |
US8637883B2 (en) | 2008-03-19 | 2014-01-28 | Cree, Inc. | Low index spacer layer in LED devices |
US8653534B2 (en) | 2008-05-21 | 2014-02-18 | Cree, Inc. | Junction Barrier Schottky diodes with current surge capability |
US8664665B2 (en) | 2011-09-11 | 2014-03-04 | Cree, Inc. | Schottky diode employing recesses for elements of junction barrier array |
USD700584S1 (en) | 2011-07-06 | 2014-03-04 | Cree, Inc. | LED component |
US8680587B2 (en) | 2011-09-11 | 2014-03-25 | Cree, Inc. | Schottky diode |
US8686445B1 (en) | 2009-06-05 | 2014-04-01 | Cree, Inc. | Solid state lighting devices and methods |
US8698184B2 (en) | 2011-01-21 | 2014-04-15 | Cree, Inc. | Light emitting diodes with low junction temperature and solid state backlight components including light emitting diodes with low junction temperature |
USD702653S1 (en) | 2011-10-26 | 2014-04-15 | Cree, Inc. | Light emitting device component |
US8729589B2 (en) | 2011-02-16 | 2014-05-20 | Cree, Inc. | High voltage array light emitting diode (LED) devices and fixtures |
USD705181S1 (en) | 2011-10-26 | 2014-05-20 | Cree, Inc. | Light emitting device component |
USD706231S1 (en) | 2010-12-03 | 2014-06-03 | Cree, Inc. | Light emitting device |
USD707192S1 (en) | 2010-11-18 | 2014-06-17 | Cree, Inc. | Light emitting device |
US8764224B2 (en) | 2010-08-12 | 2014-07-01 | Cree, Inc. | Luminaire with distributed LED sources |
USD708156S1 (en) | 2010-07-16 | 2014-07-01 | Cree, Inc. | Package for light emitting diode (LED) lighting |
US8809880B2 (en) | 2011-02-16 | 2014-08-19 | Cree, Inc. | Light emitting diode (LED) chips and devices for providing failure mitigation in LED arrays |
US8823057B2 (en) | 2006-11-06 | 2014-09-02 | Cree, Inc. | Semiconductor devices including implanted regions for providing low-resistance contact to buried layers and related devices |
USD712850S1 (en) | 2010-11-18 | 2014-09-09 | Cree, Inc. | Light emitter device |
US8829546B2 (en) | 1999-11-19 | 2014-09-09 | Cree, Inc. | Rare earth doped layer or substrate for light conversion |
US8858032B2 (en) | 2008-10-24 | 2014-10-14 | Cree, Inc. | Lighting device, heat transfer structure and heat transfer element |
US8860043B2 (en) | 2009-06-05 | 2014-10-14 | Cree, Inc. | Light emitting device packages, systems and methods |
US8866166B2 (en) | 2009-06-05 | 2014-10-21 | Cree, Inc. | Solid state lighting device |
US8866169B2 (en) | 2007-10-31 | 2014-10-21 | Cree, Inc. | LED package with increased feature sizes |
US8878204B2 (en) | 2012-05-04 | 2014-11-04 | Cree, Inc. | Submount based light emitter components and methods |
US8878217B2 (en) | 2010-06-28 | 2014-11-04 | Cree, Inc. | LED package with efficient, isolated thermal path |
US8895998B2 (en) | 2012-03-30 | 2014-11-25 | Cree, Inc. | Ceramic-based light emitting diode (LED) devices, components and methods |
US8901583B2 (en) | 2010-04-12 | 2014-12-02 | Cree Huizhou Opto Limited | Surface mount device thin package |
WO2014197512A1 (en) | 2013-06-04 | 2014-12-11 | Cree, Inc. | Light emitting diode dielectric mirror |
WO2014200643A1 (en) | 2013-06-09 | 2014-12-18 | Cree, Inc. | Cascode structures for gan hemts |
WO2014200820A1 (en) | 2013-06-09 | 2014-12-18 | Cree, Inc | Cascode structures with gan cap layers |
WO2014200753A2 (en) | 2013-06-09 | 2014-12-18 | Cree, Inc. | Recessed field plate transistor structures |
US8916896B2 (en) | 2013-02-22 | 2014-12-23 | Cree, Inc. | Light emitter components and methods having improved performance |
US8922108B2 (en) | 2011-03-01 | 2014-12-30 | Cree, Inc. | Remote component devices, systems, and methods for use with light emitting devices |
US8933486B2 (en) | 2006-11-13 | 2015-01-13 | Cree, Inc. | GaN based HEMTs with buried field plates |
USD721339S1 (en) | 2010-12-03 | 2015-01-20 | Cree, Inc. | Light emitter device |
US8957440B2 (en) | 2011-10-04 | 2015-02-17 | Cree, Inc. | Light emitting devices with low packaging factor |
WO2015035181A1 (en) | 2013-09-05 | 2015-03-12 | Cree, Inc. | Light emitting diode devices and methods with reflective material for increased light output |
US9000470B2 (en) | 2010-11-22 | 2015-04-07 | Cree, Inc. | Light emitter devices |
US9012938B2 (en) | 2010-04-09 | 2015-04-21 | Cree, Inc. | High reflective substrate of light emitting devices with improved light output |
US9024349B2 (en) | 2007-01-22 | 2015-05-05 | Cree, Inc. | Wafer level phosphor coating method and devices fabricated utilizing method |
US9029945B2 (en) | 2011-05-06 | 2015-05-12 | Cree, Inc. | Field effect transistor devices with low source resistance |
US9041285B2 (en) | 2007-12-14 | 2015-05-26 | Cree, Inc. | Phosphor distribution in LED lamps using centrifugal force |
USD733952S1 (en) | 2013-03-15 | 2015-07-07 | Cree, Inc. | Indirect linear fixture |
US9082921B2 (en) | 2007-10-31 | 2015-07-14 | Cree, Inc. | Multi-die LED package |
US9093293B2 (en) | 2009-04-06 | 2015-07-28 | Cree, Inc. | High voltage low current surface emitting light emitting diode |
US9099616B2 (en) | 2011-09-06 | 2015-08-04 | Cree, Inc. | Light emitter packages and devices having improved wire bonding and related methods |
US9105824B2 (en) | 2010-04-09 | 2015-08-11 | Cree, Inc. | High reflective board or substrate for LEDs |
US9111778B2 (en) | 2009-06-05 | 2015-08-18 | Cree, Inc. | Light emitting diode (LED) devices, systems, and methods |
US9117739B2 (en) | 2010-03-08 | 2015-08-25 | Cree, Inc. | Semiconductor devices with heterojunction barrier regions and methods of fabricating same |
USD738026S1 (en) | 2013-03-14 | 2015-09-01 | Cree, Inc. | Linear wrap light fixture |
USD738542S1 (en) | 2013-04-19 | 2015-09-08 | Cree, Inc. | Light emitting unit |
USD738832S1 (en) | 2006-04-04 | 2015-09-15 | Cree, Inc. | Light emitting diode (LED) package |
USD739565S1 (en) | 2013-06-27 | 2015-09-22 | Cree, Inc. | Light emitter unit |
US9142662B2 (en) | 2011-05-06 | 2015-09-22 | Cree, Inc. | Field effect transistor devices with low source resistance |
USD740453S1 (en) | 2013-06-27 | 2015-10-06 | Cree, Inc. | Light emitter unit |
US9166126B2 (en) | 2011-01-31 | 2015-10-20 | Cree, Inc. | Conformally coated light emitting devices and methods for providing the same |
US9172012B2 (en) | 2007-10-31 | 2015-10-27 | Cree, Inc. | Multi-chip light emitter packages and related methods |
US9188290B2 (en) | 2012-04-10 | 2015-11-17 | Cree, Inc. | Indirect linear fixture |
US9215792B2 (en) | 2013-03-15 | 2015-12-15 | Cree, Inc. | Connector devices, systems, and related methods for light emitter components |
US9214352B2 (en) | 2010-02-11 | 2015-12-15 | Cree, Inc. | Ohmic contact to semiconductor device |
US9240530B2 (en) | 2012-02-13 | 2016-01-19 | Cree, Inc. | Light emitter devices having improved chemical and physical resistance and related methods |
US9240395B2 (en) | 2010-11-30 | 2016-01-19 | Cree Huizhou Opto Limited | Waterproof surface mount device package and method |
US9249952B2 (en) | 2010-11-05 | 2016-02-02 | Cree, Inc. | Multi-configurable, high luminous output light fixture systems, devices and methods |
USD749051S1 (en) | 2012-05-31 | 2016-02-09 | Cree, Inc. | Light emitting diode (LED) package |
USD750308S1 (en) | 2013-12-16 | 2016-02-23 | Cree, Inc. | Linear shelf light fixture |
US9291316B2 (en) | 2012-11-08 | 2016-03-22 | Cree, Inc. | Integrated linear light engine |
US9300062B2 (en) | 2010-11-22 | 2016-03-29 | Cree, Inc. | Attachment devices and methods for light emitting devices |
US9312343B2 (en) | 2009-10-13 | 2016-04-12 | Cree, Inc. | Transistors with semiconductor interconnection layers and semiconductor channel layers of different semiconductor materials |
US9310026B2 (en) | 2006-12-04 | 2016-04-12 | Cree, Inc. | Lighting assembly and lighting method |
US9316382B2 (en) | 2013-01-31 | 2016-04-19 | Cree, Inc. | Connector devices, systems, and related methods for connecting light emitting diode (LED) modules |
US9318327B2 (en) | 2006-11-28 | 2016-04-19 | Cree, Inc. | Semiconductor devices having low threading dislocations and improved light extraction and methods of making the same |
US9343441B2 (en) | 2012-02-13 | 2016-05-17 | Cree, Inc. | Light emitter devices having improved light output and related methods |
US9345091B2 (en) | 2013-02-08 | 2016-05-17 | Cree, Inc. | Light emitting device (LED) light fixture control systems and related methods |
USD757324S1 (en) | 2014-04-14 | 2016-05-24 | Cree, Inc. | Linear shelf light fixture with reflectors |
US9349929B2 (en) | 2012-05-31 | 2016-05-24 | Cree, Inc. | Light emitter packages, systems, and methods |
USD758976S1 (en) | 2013-08-08 | 2016-06-14 | Cree, Inc. | LED package |
US9373617B2 (en) | 2011-09-11 | 2016-06-21 | Cree, Inc. | High current, low switching loss SiC power module |
WO2016118428A1 (en) | 2015-01-21 | 2016-07-28 | Cree, Inc. | High efficiency leds and methods of manufacturing |
US9431590B2 (en) | 2013-03-15 | 2016-08-30 | Cree, Inc. | Ceramic based light emitting diode (LED) devices and methods |
US9441818B2 (en) | 2012-11-08 | 2016-09-13 | Cree, Inc. | Uplight with suspended fixture |
US9461024B2 (en) | 2013-08-01 | 2016-10-04 | Cree, Inc. | Light emitter devices and methods for light emitting diode (LED) chips |
US9461201B2 (en) | 2007-11-14 | 2016-10-04 | Cree, Inc. | Light emitting diode dielectric mirror |
US9490235B2 (en) | 2010-11-22 | 2016-11-08 | Cree, Inc. | Light emitting devices, systems, and methods |
US9494304B2 (en) | 2012-11-08 | 2016-11-15 | Cree, Inc. | Recessed light fixture retrofit kit |
US9496466B2 (en) | 2011-12-06 | 2016-11-15 | Cree, Inc. | Light emitter devices and methods, utilizing light emitting diodes (LEDs), for improved light extraction |
US9538590B2 (en) | 2012-03-30 | 2017-01-03 | Cree, Inc. | Solid state lighting apparatuses, systems, and related methods |
US9548206B2 (en) | 2010-02-11 | 2017-01-17 | Cree, Inc. | Ohmic contact structure for group III nitride semiconductor device having improved surface morphology and well-defined edge features |
USD777122S1 (en) | 2015-02-27 | 2017-01-24 | Cree, Inc. | LED package |
US9583681B2 (en) | 2011-02-07 | 2017-02-28 | Cree, Inc. | Light emitter device packages, modules and methods |
US9590155B2 (en) | 2012-06-06 | 2017-03-07 | Cree, Inc. | Light emitting devices and substrates with improved plating |
WO2017053883A1 (en) | 2015-09-24 | 2017-03-30 | Melior Innovations, Inc. | Vapor deposition apparatus and techniques using high purity polymer derived silicon carbide |
USD783547S1 (en) | 2015-06-04 | 2017-04-11 | Cree, Inc. | LED package |
US9627361B2 (en) | 2010-10-07 | 2017-04-18 | Cree, Inc. | Multiple configuration light emitting devices and methods |
US9640617B2 (en) | 2011-09-11 | 2017-05-02 | Cree, Inc. | High performance power module |
US9666762B2 (en) | 2007-10-31 | 2017-05-30 | Cree, Inc. | Multi-chip light emitter packages and related methods |
US9666772B2 (en) | 2003-04-30 | 2017-05-30 | Cree, Inc. | High powered light emitter packages with compact optics |
US9673283B2 (en) | 2011-05-06 | 2017-06-06 | Cree, Inc. | Power module for supporting high current densities |
US9685585B2 (en) | 2012-06-25 | 2017-06-20 | Cree, Inc. | Quantum dot narrow-band downconverters for high efficiency LEDs |
USD790486S1 (en) | 2014-09-30 | 2017-06-27 | Cree, Inc. | LED package with truncated encapsulant |
US9711489B2 (en) | 2013-05-29 | 2017-07-18 | Cree Huizhou Solid State Lighting Company Limited | Multiple pixel surface mount device package |
US9728676B2 (en) | 2011-06-24 | 2017-08-08 | Cree, Inc. | High voltage monolithic LED chip |
US9735198B2 (en) | 2012-03-30 | 2017-08-15 | Cree, Inc. | Substrate based light emitter devices, components, and related methods |
US9780268B2 (en) | 2006-04-04 | 2017-10-03 | Cree, Inc. | Submount based surface mount device (SMD) light emitter components and methods |
US9786825B2 (en) | 2012-02-07 | 2017-10-10 | Cree, Inc. | Ceramic-based light emitting diode (LED) devices, components, and methods |
US9806246B2 (en) | 2012-02-07 | 2017-10-31 | Cree, Inc. | Ceramic-based light emitting diode (LED) devices, components, and methods |
US9822951B2 (en) | 2010-12-06 | 2017-11-21 | Cree, Inc. | LED retrofit lens for fluorescent tube |
US9826581B2 (en) | 2014-12-05 | 2017-11-21 | Cree, Inc. | Voltage configurable solid state lighting apparatuses, systems, and related methods |
US9831393B2 (en) | 2010-07-30 | 2017-11-28 | Cree Hong Kong Limited | Water resistant surface mount device package |
US9859471B2 (en) | 2011-01-31 | 2018-01-02 | Cree, Inc. | High brightness light emitting diode (LED) packages, systems and methods with improved resin filling and high adhesion |
US9874333B2 (en) | 2013-03-14 | 2018-01-23 | Cree, Inc. | Surface ambient wrap light fixture |
US9897267B2 (en) | 2013-03-15 | 2018-02-20 | Cree, Inc. | Light emitter components, systems, and related methods |
US10008637B2 (en) | 2011-12-06 | 2018-06-26 | Cree, Inc. | Light emitter devices and methods with reduced dimensions and improved light output |
US10020244B2 (en) | 2012-03-27 | 2018-07-10 | Cree, Inc. | Polymer via plugs with high thermal integrity |
USD823492S1 (en) | 2016-10-04 | 2018-07-17 | Cree, Inc. | Light emitting device |
US10043960B2 (en) | 2011-11-15 | 2018-08-07 | Cree, Inc. | Light emitting diode (LED) packages and related methods |
US10100988B2 (en) | 2013-12-16 | 2018-10-16 | Cree, Inc. | Linear shelf light fixture with reflectors |
US10134961B2 (en) | 2012-03-30 | 2018-11-20 | Cree, Inc. | Submount based surface mount device (SMD) light emitter components and methods |
US10186644B2 (en) | 2011-06-24 | 2019-01-22 | Cree, Inc. | Self-aligned floating mirror for contact vias |
US10211380B2 (en) | 2011-07-21 | 2019-02-19 | Cree, Inc. | Light emitting devices and components having improved chemical resistance and related methods |
US10222032B2 (en) | 2012-03-30 | 2019-03-05 | Cree, Inc. | Light emitter components and methods having improved electrical contacts |
US10234119B2 (en) | 2014-03-24 | 2019-03-19 | Cree, Inc. | Multiple voltage light emitter packages, systems, and related methods |
US10256385B2 (en) | 2007-10-31 | 2019-04-09 | Cree, Inc. | Light emitting die (LED) packages and related methods |
US10267506B2 (en) | 2010-11-22 | 2019-04-23 | Cree, Inc. | Solid state lighting apparatuses with non-uniformly spaced emitters for improved heat distribution, system having the same, and methods having the same |
US10294584B2 (en) | 2009-03-26 | 2019-05-21 | Ii-Vi Incorporated | SiC single crystal sublimation growth method and apparatus |
US10295124B2 (en) | 2013-02-27 | 2019-05-21 | Cree, Inc. | Light emitter packages and methods |
US10309627B2 (en) | 2012-11-08 | 2019-06-04 | Cree, Inc. | Light fixture retrofit kit with integrated light bar |
EP3534393A1 (en) | 2007-03-09 | 2019-09-04 | Cree, Inc. | Forming a nucleation layer on a silicon substrate |
US10431567B2 (en) | 2010-11-03 | 2019-10-01 | Cree, Inc. | White ceramic LED package |
US10439112B2 (en) | 2012-05-31 | 2019-10-08 | Cree, Inc. | Light emitter packages, systems, and methods having improved performance |
US10490712B2 (en) | 2011-07-21 | 2019-11-26 | Cree, Inc. | Light emitter device packages, components, and methods for improved chemical resistance and related methods |
US10584860B2 (en) | 2013-03-14 | 2020-03-10 | Ideal Industries, Llc | Linear light fixture with interchangeable light engine unit |
US10615324B2 (en) | 2013-06-14 | 2020-04-07 | Cree Huizhou Solid State Lighting Company Limited | Tiny 6 pin side view surface mount LED |
US10612747B2 (en) | 2013-12-16 | 2020-04-07 | Ideal Industries Lighting Llc | Linear shelf light fixture with gap filler elements |
US10672957B2 (en) | 2017-07-19 | 2020-06-02 | Cree, Inc. | LED apparatuses and methods for high lumen output density |
US10686107B2 (en) | 2011-07-21 | 2020-06-16 | Cree, Inc. | Light emitter devices and components with improved chemical resistance and related methods |
US10788176B2 (en) | 2013-02-08 | 2020-09-29 | Ideal Industries Lighting Llc | Modular LED lighting system |
US10804251B2 (en) | 2016-11-22 | 2020-10-13 | Cree, Inc. | Light emitting diode (LED) devices, components and methods |
US10842016B2 (en) | 2011-07-06 | 2020-11-17 | Cree, Inc. | Compact optically efficient solid state light source with integrated thermal management |
WO2020252234A1 (en) | 2019-06-13 | 2020-12-17 | Cree, Inc. | High electron mobility transistors and power amplifiers including said transistors having improved performance and reliability |
US10900653B2 (en) | 2013-11-01 | 2021-01-26 | Cree Hong Kong Limited | LED mini-linear light engine |
US10923585B2 (en) | 2019-06-13 | 2021-02-16 | Cree, Inc. | High electron mobility transistors having improved contact spacing and/or improved contact vias |
US11056625B2 (en) | 2018-02-19 | 2021-07-06 | Creeled, Inc. | Clear coating for light emitting device exterior having chemical resistance and related methods |
WO2021146229A1 (en) | 2020-01-14 | 2021-07-22 | Cree, Inc. | Group iii hemt and capacitor that share structural features |
US11094852B2 (en) | 2017-08-25 | 2021-08-17 | Cree Huizhou Solid State Lighting Company Limited | Multiple LED light source lens design in an integrated package |
US11101408B2 (en) | 2011-02-07 | 2021-08-24 | Creeled, Inc. | Components and methods for light emitting diode (LED) lighting |
WO2021202674A2 (en) | 2020-04-03 | 2021-10-07 | Cree, Inc. | Rf amplifier devices and methods of manufacturing |
WO2021247276A2 (en) | 2020-06-01 | 2021-12-09 | Cree, Inc. | Methods for pillar connection on frontside and passive device integration on backside of die |
WO2021257853A1 (en) | 2020-06-17 | 2021-12-23 | Cree, Inc. | Multi-stage decoupling networks integrated with on-package impedance matching networks for rf power amplifiers |
US11210971B2 (en) | 2009-07-06 | 2021-12-28 | Cree Huizhou Solid State Lighting Company Limited | Light emitting diode display with tilted peak emission pattern |
WO2021262538A1 (en) | 2020-06-26 | 2021-12-30 | Cree, Inc. | Radio frequency transistor amplifier package |
WO2022055776A1 (en) | 2020-09-11 | 2022-03-17 | Cree, Inc. | Rf transistor amplifier package |
WO2022093783A1 (en) | 2020-10-30 | 2022-05-05 | Wolfspeed, Inc. | Transistor packages with improved die attach |
US11356070B2 (en) | 2020-06-01 | 2022-06-07 | Wolfspeed, Inc. | RF amplifiers having shielded transmission line structures |
WO2022245886A1 (en) | 2021-05-20 | 2022-11-24 | Wolfspeed, Inc. | Methods of manufacturing high electron mobility transistors having improved performance |
US11533025B2 (en) | 2020-06-18 | 2022-12-20 | Wolfspeed, Inc. | Integrated doherty amplifier with added isolation between the carrier and the peaking transistors |
WO2023009405A1 (en) | 2021-07-30 | 2023-02-02 | Wolfspeed, Inc. | Encapsulation stack on a transistor and fabrication method thereof |
WO2023034773A1 (en) | 2021-09-03 | 2023-03-09 | Wolfspeed, Inc. | Metal pillar connection topologies in a radio frequency transistor amplifier die for heterogeneous packaging |
WO2023043524A1 (en) | 2021-09-16 | 2023-03-23 | Wolfspeed, Inc. | Semiconductor device incorporating a substrate recess |
US11887945B2 (en) | 2020-09-30 | 2024-01-30 | Wolfspeed, Inc. | Semiconductor device with isolation and/or protection structures |
WO2024064324A1 (en) | 2022-09-23 | 2024-03-28 | Wolfspeed, Inc. | Barrier structure for dispersion reduction in transistor devices |
WO2024064326A1 (en) | 2022-09-23 | 2024-03-28 | Wolfspeed, Inc. | Barrier structure for sub-100 nanometer gate length devices |
WO2024076890A1 (en) | 2022-10-06 | 2024-04-11 | Wolfspeed, Inc. | Implanted regions for semiconductor structures with deep buried layers |
US12009417B2 (en) | 2021-05-20 | 2024-06-11 | Macom Technology Solutions Holdings, Inc. | High electron mobility transistors having improved performance |
WO2024163587A1 (en) | 2023-02-03 | 2024-08-08 | Wolfspeed, Inc. | Semiconductor structure for improved radio frequency thermal management |
WO2024163583A1 (en) | 2023-02-03 | 2024-08-08 | Wolfspeed, Inc. | Semiconductor device having semiconductor structure with polarity inverting layer |
WO2024186528A1 (en) | 2023-03-06 | 2024-09-12 | Wolfspeed, Inc. | Field reducing structures for nitrogen-polar group iii-nitride semiconductor devices |
WO2024258898A1 (en) | 2023-06-14 | 2024-12-19 | Wolfspeed, Inc. | Rf amplifier package and manufacturing method thereof |
WO2025014803A1 (en) | 2023-07-07 | 2025-01-16 | Macom Technology Solutions Holdings, Inc. | Semiconductor die with group iii nitride-based amplifier circuits |
Families Citing this family (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE59001292D1 (en) * | 1989-06-20 | 1993-06-03 | Siemens Ag | METHOD FOR PRODUCING SINGLE CRYSTALLINE SILICON CARBIDE. |
US4946547A (en) * | 1989-10-13 | 1990-08-07 | Cree Research, Inc. | Method of preparing silicon carbide surfaces for crystal growth |
US5200022A (en) * | 1990-10-03 | 1993-04-06 | Cree Research, Inc. | Method of improving mechanically prepared substrate surfaces of alpha silicon carbide for deposition of beta silicon carbide thereon and resulting product |
US5093576A (en) * | 1991-03-15 | 1992-03-03 | Cree Research | High sensitivity ultraviolet radiation detector |
US5958132A (en) * | 1991-04-18 | 1999-09-28 | Nippon Steel Corporation | SiC single crystal and method for growth thereof |
US5248385A (en) * | 1991-06-12 | 1993-09-28 | The United States Of America, As Represented By The Administrator, National Aeronautics And Space Administration | Process for the homoepitaxial growth of single-crystal silicon carbide films on silicon carbide wafers |
WO1992022922A2 (en) * | 1991-06-12 | 1992-12-23 | Case Western Reserve University | Process for the controlled growth of single-crystal films of silicon carbide polytypes on silicon carbide wafers |
US5465249A (en) * | 1991-11-26 | 1995-11-07 | Cree Research, Inc. | Nonvolatile random access memory device having transistor and capacitor made in silicon carbide substrate |
US5783335A (en) * | 1992-04-07 | 1998-07-21 | The Regents Of The University Of California, Office Of Technology Transfer | Fluidized bed deposition of diamond |
US5459107A (en) * | 1992-06-05 | 1995-10-17 | Cree Research, Inc. | Method of obtaining high quality silicon dioxide passivation on silicon carbide and resulting passivated structures |
US5629531A (en) * | 1992-06-05 | 1997-05-13 | Cree Research, Inc. | Method of obtaining high quality silicon dioxide passivation on silicon carbide and resulting passivated structures |
US5709745A (en) * | 1993-01-25 | 1998-01-20 | Ohio Aerospace Institute | Compound semi-conductors and controlled doping thereof |
CA2113336C (en) * | 1993-01-25 | 2001-10-23 | David J. Larkin | Compound semi-conductors and controlled doping thereof |
US5441011A (en) * | 1993-03-16 | 1995-08-15 | Nippon Steel Corporation | Sublimation growth of single crystal SiC |
DE4310745C2 (en) * | 1993-04-01 | 1999-07-08 | Siemens Ag | Method for producing SiC single crystals and device for carrying out the method |
DE4310744A1 (en) * | 1993-04-01 | 1994-10-06 | Siemens Ag | Device for producing SiC single crystals |
US5611955A (en) * | 1993-10-18 | 1997-03-18 | Northrop Grumman Corp. | High resistivity silicon carbide substrates for high power microwave devices |
US6309766B1 (en) | 1994-10-31 | 2001-10-30 | Thomas M. Sullivan | Polycrystalline silicon carbide ceramic wafer and substrate |
US6077619A (en) * | 1994-10-31 | 2000-06-20 | Sullivan; Thomas M. | Polycrystalline silicon carbide ceramic wafer and substrate |
US5679153A (en) * | 1994-11-30 | 1997-10-21 | Cree Research, Inc. | Method for reducing micropipe formation in the epitaxial growth of silicon carbide and resulting silicon carbide structures |
US5585648A (en) * | 1995-02-03 | 1996-12-17 | Tischler; Michael A. | High brightness electroluminescent device, emitting in the green to ultraviolet spectrum, and method of making the same |
SE9502288D0 (en) * | 1995-06-26 | 1995-06-26 | Abb Research Ltd | A device and a method for epitaxially growing objects by CVD |
DE19527536A1 (en) * | 1995-07-27 | 1997-01-30 | Siemens Ag | Process for the production of silicon carbide single crystals |
US6030661A (en) * | 1995-08-04 | 2000-02-29 | Abb Research Ltd. | Device and a method for epitaxially growing objects by CVD |
US5683507A (en) * | 1995-09-05 | 1997-11-04 | Northrop Grumman Corporation | Apparatus for growing large silicon carbide single crystals |
SE9503428D0 (en) † | 1995-10-04 | 1995-10-04 | Abb Research Ltd | A method for growing epitaxially and a device for such growth |
EP0781619A1 (en) | 1995-12-15 | 1997-07-02 | Cree Research, Inc. | Method of making silicone carbide wafers from silicon carbide bulk crystals |
RU2094547C1 (en) * | 1996-01-22 | 1997-10-27 | Юрий Александрович Водаков | Sublimation method for growing silicon carbide monocrystals and silicon carbide source involved |
US6547877B2 (en) | 1996-01-22 | 2003-04-15 | The Fox Group, Inc. | Tantalum crucible fabrication and treatment |
JP3384242B2 (en) * | 1996-03-29 | 2003-03-10 | 株式会社豊田中央研究所 | Method for producing silicon carbide single crystal |
US5944890A (en) * | 1996-03-29 | 1999-08-31 | Denso Corporation | Method of producing single crystals and a seed crystal used in the method |
US6110279A (en) * | 1996-03-29 | 2000-08-29 | Denso Corporation | Method of producing single-crystal silicon carbide |
FR2747401B1 (en) * | 1996-04-10 | 1998-05-15 | Commissariat Energie Atomique | DEVICE AND METHOD FOR FORMING SINGLE CRYSTAL SILICON CARBIDE (SIC) ON A GERM |
US6039812A (en) * | 1996-10-21 | 2000-03-21 | Abb Research Ltd. | Device for epitaxially growing objects and method for such a growth |
US6537371B2 (en) | 1997-01-22 | 2003-03-25 | The Fox Group, Inc. | Niobium crucible fabrication and treatment |
DE69712520T2 (en) | 1997-01-22 | 2003-01-09 | Sergei Jurievich Karpov | BREEDING OF SILICON CARBIDE CRYSTALS |
US6562130B2 (en) | 1997-01-22 | 2003-05-13 | The Fox Group, Inc. | Low defect axially grown single crystal silicon carbide |
WO1998033961A1 (en) * | 1997-01-31 | 1998-08-06 | Northrop Grumman Corporation | Apparatus for growing large silicon carbide single crystals |
US5788768A (en) * | 1997-05-08 | 1998-08-04 | Northrop Grumman Corporation | Feedstock arrangement for silicon carbide boule growth |
US5937317A (en) * | 1997-05-08 | 1999-08-10 | Northrop Grumman Corporation | Method of making a low resistivity silicon carbide boule |
EP1026290B1 (en) * | 1997-09-12 | 2009-08-26 | Showa Denko Kabushiki Kaisha | Method and apparatus for producing silicon carbide single crystal |
US6336971B1 (en) | 1997-09-12 | 2002-01-08 | Showa Denko Kabushiki Kaisha | Method and apparatus for producing silicon carbide single crystal |
US5985024A (en) * | 1997-12-11 | 1999-11-16 | Northrop Grumman Corporation | Method and apparatus for growing high purity single crystal silicon carbide |
WO2000049207A1 (en) * | 1999-02-19 | 2000-08-24 | Siemens Aktiengesellschaft | Method for growing an $g(a)-sic volume single crystal |
US6406539B1 (en) | 1999-04-28 | 2002-06-18 | Showa Denko K.K, | Process for producing silicon carbide single crystal and production apparatus therefor |
WO2001004391A1 (en) * | 1999-07-07 | 2001-01-18 | Siemens Aktiengesellschaft | Sublimation growth method for an sic monocrystal with growth-pressure heating |
DE19931332C2 (en) * | 1999-07-07 | 2002-06-06 | Siemens Ag | Device for producing a SiC single crystal with a double-walled crucible |
US6562131B2 (en) | 1999-07-20 | 2003-05-13 | The Fox Group, Inc. | Method for growing single crystal silicon carbide |
US6573128B1 (en) | 2000-11-28 | 2003-06-03 | Cree, Inc. | Epitaxial edge termination for silicon carbide Schottky devices and methods of fabricating silicon carbide devices incorporating same |
US6670278B2 (en) | 2001-03-30 | 2003-12-30 | Lam Research Corporation | Method of plasma etching of silicon carbide |
US6903446B2 (en) * | 2001-10-23 | 2005-06-07 | Cree, Inc. | Pattern for improved visual inspection of semiconductor devices |
DE60332542D1 (en) * | 2002-09-19 | 2010-06-24 | Showa Denko Kk | SILICON CARBIDE EINCRISTAL AND METHOD AND DEVICE FOR ITS MANUFACTURE |
US9515135B2 (en) * | 2003-01-15 | 2016-12-06 | Cree, Inc. | Edge termination structures for silicon carbide devices |
US7026650B2 (en) * | 2003-01-15 | 2006-04-11 | Cree, Inc. | Multiple floating guard ring edge termination for silicon carbide devices |
US6952024B2 (en) * | 2003-02-13 | 2005-10-04 | Cree, Inc. | Group III nitride LED with silicon carbide cladding layer |
US6987281B2 (en) * | 2003-02-13 | 2006-01-17 | Cree, Inc. | Group III nitride contact structures for light emitting devices |
ITMI20031196A1 (en) * | 2003-06-13 | 2004-12-14 | Lpe Spa | SYSTEM FOR GROWING SILICON CARBIDE CRYSTALS |
WO2004111318A1 (en) | 2003-06-16 | 2004-12-23 | Showa Denko K.K. | Method for growth of silicon carbide single crystal, silicon carbide seed crystal, and silicon carbide single crystal |
US7056383B2 (en) * | 2004-02-13 | 2006-06-06 | The Fox Group, Inc. | Tantalum based crucible |
US20060006394A1 (en) * | 2004-05-28 | 2006-01-12 | Caracal, Inc. | Silicon carbide Schottky diodes and fabrication method |
US7300519B2 (en) * | 2004-11-17 | 2007-11-27 | Cree, Inc. | Reduction of subsurface damage in the production of bulk SiC crystals |
US7563321B2 (en) * | 2004-12-08 | 2009-07-21 | Cree, Inc. | Process for producing high quality large size silicon carbide crystals |
US7246735B2 (en) * | 2005-01-07 | 2007-07-24 | Asm Assembly Automation Ltd. | Wire clamping plate |
US20060263279A1 (en) * | 2005-04-28 | 2006-11-23 | Laurencin Cato T | Adjustable path sublimator system and related method of use |
US8901699B2 (en) | 2005-05-11 | 2014-12-02 | Cree, Inc. | Silicon carbide junction barrier Schottky diodes with suppressed minority carrier injection |
CA3086149A1 (en) | 2006-04-04 | 2007-10-11 | Singulex, Inc. | Highly sensitive system and methods for analysis of troponin |
JP5274245B2 (en) * | 2006-04-10 | 2013-08-28 | 富士通株式会社 | Compound semiconductor structure and manufacturing method thereof |
JP2007284306A (en) * | 2006-04-19 | 2007-11-01 | Nippon Steel Corp | Silicon carbide single crystal and method for producing the same |
JP4954596B2 (en) * | 2006-04-21 | 2012-06-20 | 新日本製鐵株式会社 | Method for producing silicon carbide single crystal ingot |
WO2009003100A1 (en) * | 2007-06-27 | 2008-12-31 | Ii-Vi Incorporated | Fabrication of sic substrates with low warp and bow |
US8409351B2 (en) * | 2007-08-08 | 2013-04-02 | Sic Systems, Inc. | Production of bulk silicon carbide with hot-filament chemical vapor deposition |
US8163086B2 (en) * | 2007-08-29 | 2012-04-24 | Cree, Inc. | Halogen assisted physical vapor transport method for silicon carbide growth |
US8460764B2 (en) * | 2008-03-06 | 2013-06-11 | Georgia Tech Research Corporation | Method and apparatus for producing ultra-thin graphitic layers |
DE112009003667B4 (en) * | 2008-12-08 | 2024-04-25 | Ii-Vi Inc. | IMPROVED AXIAL GRADIENT TRANSPORT (AGT) GROWTH METHOD AND APPARATUS USING RESISTIVE HEATING |
KR20120128506A (en) * | 2011-05-17 | 2012-11-27 | 엘지이노텍 주식회사 | Apparatus for attaching seed |
KR20130002616A (en) * | 2011-06-29 | 2013-01-08 | 에스케이이노베이션 주식회사 | Reactor and method for growing silicon carbide single crystal |
JP5799846B2 (en) * | 2012-02-14 | 2015-10-28 | 住友電気工業株式会社 | Method and apparatus for producing silicon carbide single crystal |
US8860040B2 (en) | 2012-09-11 | 2014-10-14 | Dow Corning Corporation | High voltage power semiconductor devices on SiC |
US9018639B2 (en) | 2012-10-26 | 2015-04-28 | Dow Corning Corporation | Flat SiC semiconductor substrate |
US9738991B2 (en) | 2013-02-05 | 2017-08-22 | Dow Corning Corporation | Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a supporting shelf which permits thermal expansion |
US9017804B2 (en) | 2013-02-05 | 2015-04-28 | Dow Corning Corporation | Method to reduce dislocations in SiC crystal growth |
US9797064B2 (en) | 2013-02-05 | 2017-10-24 | Dow Corning Corporation | Method for growing a SiC crystal by vapor deposition onto a seed crystal provided on a support shelf which permits thermal expansion |
US8940614B2 (en) | 2013-03-15 | 2015-01-27 | Dow Corning Corporation | SiC substrate with SiC epitaxial film |
JP2016532629A (en) * | 2013-09-06 | 2016-10-20 | ジーティーエイティー コーポレーションGtat Corporation | Method and apparatus for producing bulk silicon carbide from silicon carbide precursor |
US9279192B2 (en) | 2014-07-29 | 2016-03-08 | Dow Corning Corporation | Method for manufacturing SiC wafer fit for integration with power device manufacturing technology |
US10344396B2 (en) | 2015-02-05 | 2019-07-09 | Dow Silicones Corporation | Furnace for seeded sublimation of wide band gap crystals |
RU2603159C1 (en) * | 2015-07-23 | 2016-11-20 | Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" (СПбГЭТУ "ЛЭТИ") | Method of producing monocrystalline sic |
JP6036946B2 (en) * | 2015-08-26 | 2016-11-30 | 住友電気工業株式会社 | Method and apparatus for producing silicon carbide single crystal |
JP7255089B2 (en) * | 2018-05-25 | 2023-04-11 | 株式会社デンソー | Silicon carbide single crystal manufacturing apparatus and silicon carbide single crystal manufacturing method |
JP7129856B2 (en) * | 2018-09-06 | 2022-09-02 | 昭和電工株式会社 | Crystal growth device |
IT201900000223A1 (en) * | 2019-01-09 | 2020-07-09 | Lpe Spa | Reaction chamber with rotating element and reactor for the deposition of semiconductor material |
JP7393900B2 (en) * | 2019-09-24 | 2023-12-07 | 一般財団法人電力中央研究所 | Method for manufacturing silicon carbide single crystal wafer and silicon carbide single crystal ingot |
CN111304746A (en) * | 2020-03-31 | 2020-06-19 | 福建北电新材料科技有限公司 | SiC crystal growth device and method |
EP4324961A1 (en) * | 2022-08-17 | 2024-02-21 | SiCrystal GmbH | Method for producing a bulk sic single crystal with improved quality using a sic seed crystal with a temporary protective oxide layer, and sic seed crystal with protective oxide layer |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2854364A (en) * | 1954-03-19 | 1958-09-30 | Philips Corp | Sublimation process for manufacturing silicon carbide crystals |
US3228756A (en) * | 1960-05-20 | 1966-01-11 | Transitron Electronic Corp | Method of growing single crystal silicon carbide |
US3236780A (en) * | 1962-12-19 | 1966-02-22 | Gen Electric | Luminescent silicon carbide and preparation thereof |
DE1467085A1 (en) * | 1964-07-25 | 1970-02-19 | Ibm Deutschland | Method for the epitaxial growth of Sic. |
US3511614A (en) * | 1967-06-16 | 1970-05-12 | Little Inc A | Heat sensitive fuel controlled verneuil process |
US3558284A (en) * | 1967-05-05 | 1971-01-26 | American Science & Eng Inc | Crystal growing apparatus |
US3615930A (en) * | 1966-10-25 | 1971-10-26 | Philips Corp | Method of manufacturing silicon carbide crystals |
US3910767A (en) * | 1972-07-05 | 1975-10-07 | Emile Joseph Jemal | Apparatus for preparing metallic compounds by sublimation |
US3917459A (en) * | 1973-05-16 | 1975-11-04 | Siemens Ag | Apparatus for the production of Verneuil crystals |
US3960503A (en) * | 1974-12-27 | 1976-06-01 | Corning Glass Works | Particulate material feeder for high temperature vacuum system |
US3962406A (en) * | 1967-11-25 | 1976-06-08 | U.S. Philips Corporation | Method of manufacturing silicon carbide crystals |
US4108670A (en) * | 1976-12-20 | 1978-08-22 | Ppg Industries, Inc. | Porous refractory metal boride article having dense matrix |
US4147572A (en) * | 1976-10-18 | 1979-04-03 | Vodakov Jury A | Method for epitaxial production of semiconductor silicon carbide utilizing a close-space sublimation deposition technique |
JPS5696883A (en) * | 1979-12-29 | 1981-08-05 | Toshiba Corp | Manufacture of silicon carbide diode |
US4310614A (en) * | 1979-03-19 | 1982-01-12 | Xerox Corporation | Method and apparatus for pretreating and depositing thin films on substrates |
DE3230727A1 (en) * | 1982-08-18 | 1984-02-23 | Siemens AG, 1000 Berlin und 8000 München | Process for the preparation of silicon carbide |
JPS5935099A (en) * | 1982-08-17 | 1984-02-25 | Agency Of Ind Science & Technol | Method for growing silicon carbide crystal |
US4556436A (en) * | 1984-08-22 | 1985-12-03 | The United States Of America As Represented By The Secretary Of The Navy | Method of preparing single crystalline cubic silicon carbide layers |
US4627990A (en) * | 1984-03-07 | 1986-12-09 | Honda Giken Kogyo Kabushiki Kaisha | Method of and apparatus for supplying powdery material |
JPS6266000A (en) * | 1985-09-18 | 1987-03-25 | Sanyo Electric Co Ltd | Method for growing sic single crystal |
US4664944A (en) * | 1986-01-31 | 1987-05-12 | The United States Of America As Represented By The United States Department Of Energy | Deposition method for producing silicon carbide high-temperature semiconductors |
JPS63283014A (en) * | 1987-04-28 | 1988-11-18 | Sharp Corp | Silicon carbide semiconductor element |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3862857A (en) * | 1972-12-26 | 1975-01-28 | Ibm | Method for making amorphous semiconductor thin films |
US3901767A (en) * | 1973-04-23 | 1975-08-26 | Robert L Williams | Distillation mechanism and system |
DD224886A1 (en) * | 1983-06-30 | 1985-07-17 | Univ Dresden Tech | METHOD OF CONSERVING SILICON CARBIDE CRYSTALS |
NL8500645A (en) * | 1985-03-07 | 1986-10-01 | Philips Nv | METHOD FOR depositing a layer consisting essentially of silicon carbide on a substrate |
US4640221A (en) * | 1985-10-30 | 1987-02-03 | International Business Machines Corporation | Vacuum deposition system with improved mass flow control |
US10156877B2 (en) | 2016-10-01 | 2018-12-18 | Intel Corporation | Enhanced power management for support of priority system events |
WO2018194138A1 (en) | 2017-04-19 | 2018-10-25 | Hoya株式会社 | Attachment device for endoscope top part |
-
1987
- 1987-10-26 US US07/113,565 patent/US4866005A/en not_active Ceased
-
1988
- 1988-10-25 CA CA000581145A patent/CA1331730C/en not_active Expired - Lifetime
- 1988-10-26 DE DE3856514T patent/DE3856514T2/en not_active Expired - Lifetime
- 1988-10-26 JP JP50938588A patent/JP3165685B2/en not_active Expired - Lifetime
- 1988-10-26 EP EP95202796A patent/EP0712150B1/en not_active Expired - Lifetime
- 1988-10-26 DE DE1143493T patent/DE1143493T1/en active Pending
- 1988-10-26 DE DE3855539T patent/DE3855539T3/en not_active Expired - Lifetime
- 1988-10-26 KR KR1019890701158A patent/KR970008332B1/en not_active IP Right Cessation
- 1988-10-26 EP EP01201980A patent/EP1143493A3/en not_active Withdrawn
- 1988-10-26 EP EP88910210A patent/EP0389533B2/en not_active Expired - Lifetime
- 1988-10-26 WO PCT/US1988/003794 patent/WO1989004055A1/en active IP Right Grant
-
1990
- 1990-10-09 US US07/594,856 patent/USRE34861E/en not_active Expired - Lifetime
-
2000
- 2000-03-14 JP JP2000070469A patent/JP2000302600A/en active Pending
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2854364A (en) * | 1954-03-19 | 1958-09-30 | Philips Corp | Sublimation process for manufacturing silicon carbide crystals |
US3228756A (en) * | 1960-05-20 | 1966-01-11 | Transitron Electronic Corp | Method of growing single crystal silicon carbide |
US3236780A (en) * | 1962-12-19 | 1966-02-22 | Gen Electric | Luminescent silicon carbide and preparation thereof |
DE1467085A1 (en) * | 1964-07-25 | 1970-02-19 | Ibm Deutschland | Method for the epitaxial growth of Sic. |
US3615930A (en) * | 1966-10-25 | 1971-10-26 | Philips Corp | Method of manufacturing silicon carbide crystals |
US3558284A (en) * | 1967-05-05 | 1971-01-26 | American Science & Eng Inc | Crystal growing apparatus |
US3511614A (en) * | 1967-06-16 | 1970-05-12 | Little Inc A | Heat sensitive fuel controlled verneuil process |
US3962406A (en) * | 1967-11-25 | 1976-06-08 | U.S. Philips Corporation | Method of manufacturing silicon carbide crystals |
US3910767A (en) * | 1972-07-05 | 1975-10-07 | Emile Joseph Jemal | Apparatus for preparing metallic compounds by sublimation |
US3917459A (en) * | 1973-05-16 | 1975-11-04 | Siemens Ag | Apparatus for the production of Verneuil crystals |
US3960503A (en) * | 1974-12-27 | 1976-06-01 | Corning Glass Works | Particulate material feeder for high temperature vacuum system |
US4147572A (en) * | 1976-10-18 | 1979-04-03 | Vodakov Jury A | Method for epitaxial production of semiconductor silicon carbide utilizing a close-space sublimation deposition technique |
US4108670A (en) * | 1976-12-20 | 1978-08-22 | Ppg Industries, Inc. | Porous refractory metal boride article having dense matrix |
US4310614A (en) * | 1979-03-19 | 1982-01-12 | Xerox Corporation | Method and apparatus for pretreating and depositing thin films on substrates |
JPS5696883A (en) * | 1979-12-29 | 1981-08-05 | Toshiba Corp | Manufacture of silicon carbide diode |
JPS5935099A (en) * | 1982-08-17 | 1984-02-25 | Agency Of Ind Science & Technol | Method for growing silicon carbide crystal |
DE3230727A1 (en) * | 1982-08-18 | 1984-02-23 | Siemens AG, 1000 Berlin und 8000 München | Process for the preparation of silicon carbide |
US4627990A (en) * | 1984-03-07 | 1986-12-09 | Honda Giken Kogyo Kabushiki Kaisha | Method of and apparatus for supplying powdery material |
US4556436A (en) * | 1984-08-22 | 1985-12-03 | The United States Of America As Represented By The Secretary Of The Navy | Method of preparing single crystalline cubic silicon carbide layers |
JPS6266000A (en) * | 1985-09-18 | 1987-03-25 | Sanyo Electric Co Ltd | Method for growing sic single crystal |
US4664944A (en) * | 1986-01-31 | 1987-05-12 | The United States Of America As Represented By The United States Department Of Energy | Deposition method for producing silicon carbide high-temperature semiconductors |
JPS63283014A (en) * | 1987-04-28 | 1988-11-18 | Sharp Corp | Silicon carbide semiconductor element |
Non-Patent Citations (19)
Title |
---|
Behavior of Inversion Layers in 3C Silicon Carbide; Avila et al.; Appl. Phys. Lett. 49(6); Aug. 11, 1986; pp. 334 336. * |
Behavior of Inversion Layers in 3C Silicon Carbide; Avila et al.; Appl. Phys. Lett. 49(6); Aug. 11, 1986; pp. 334-336. |
C V Characteristics of SiC Metal Oxide Semiconductor Diode with a Thermally Grown SiO 2 Layer; Suzuki et al.; Appl. Phys. Lett. vol. 39, No. 1; Jul. 1, 1981; pp. 89 90. * |
C-V Characteristics of SiC Metal-Oxide-Semiconductor Diode with a Thermally Grown SiO2 Layer; Suzuki et al.; Appl. Phys. Lett. vol. 39, No. 1; Jul. 1, 1981; pp. 89-90. |
Gmelin Handbook of Inorganic Chemistry, Silicon Supplement, Springer-Verlag, Berlin, 1985, p. 243. * |
Metal Oxide Semiconductor Characteristics of Chemical Vapor Deposited Cubic SiC; Shibahara et al.; Japanese Jrnl. of Appl. Physics; vol. 23, No. 11, pp. L862 L864, Nov. 1984. * |
Metal-Oxide-Semiconductor Characteristics of Chemical Vapor Deposited Cubic-SiC; Shibahara et al.; Japanese Jrnl. of Appl. Physics; vol. 23, No. 11, pp. L862-L864, Nov. 1984. |
Scace et al.; Solubility of Carbon in Silicon and Germanium; Jrnl of Chemical Physics, vol. 60, No. 6, Jun., 1959, pp. 1551 1555. * |
Scace et al.; Solubility of Carbon in Silicon and Germanium; Jrnl of Chemical Physics, vol. 60, No. 6, Jun., 1959, pp. 1551-1555. |
Tairov et al.; General Principles of Growing Large-Size Single Crystals of Various Silicon Carbide Polytypes; Jrnl of Crystal Growth 52 (1981), pp. 146-150. |
Tairov et al.; Progress in Controlling the Growth of Polytypic Crystals; Electrical Eng. Institute, Leningrad, p 22, 197022 USSR; Aug. 24, 1982; pp. 111 161. * |
Tairov et al.; Progress in Controlling the Growth of Polytypic Crystals; Electrical Eng. Institute, Leningrad, p-22, 197022 USSR; Aug. 24, 1982; pp. 111-161. |
Tairov, Y. et al.; "General Principles of Growing Large-Size Single Crystals of Various Silicon Carbide Polytypes"; J. Crystal Growth 52 (1981), pp. 146-150. * |
Thermal Oxidation of 3C Silicon Carbide Single Crystal Layers on Silicon; Fung et al.; Appl. Phys. Lett. 45(7), Oct. 1, 1984; pp. 757 759. * |
Thermal Oxidation of 3C Silicon Carbide Single-Crystal Layers on Silicon; Fung et al.; Appl. Phys. Lett. 45(7), Oct. 1, 1984; pp. 757-759. |
Thermal Oxidation of SiC and Electrical Properties of Al SiO 2 SiC MOS Structure; Suzuki et al.; Jap. Jrnl. of Appl. Physics; vol. 21, No. 4, 4 82; pp. 579 585. * |
Thermal Oxidation of SiC and Electrical Properties of Al-SiO2 -SiC MOS Structure; Suzuki et al.; Jap. Jrnl. of Appl. Physics; vol. 21, No. 4, 4-82; pp. 579-585. |
Ziegler et al.; Single Crystal Growth of SiC Substrate Material for Blue Light Emitting Diodes; Trans. on Electron Devices, vol. ED 30, No. 4, Apr. 1983, pp. 277 281. * |
Ziegler et al.; Single Crystal Growth of SiC Substrate Material for Blue Light Emitting Diodes; Trans. on Electron Devices, vol. ED-30, No. 4, Apr. 1983, pp. 277-281. |
Cited By (727)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5620511A (en) * | 1994-11-28 | 1997-04-15 | Hyundai Motor Company | Method for preparing a preform for a composite material |
US5895526A (en) * | 1995-08-07 | 1999-04-20 | Nippondenso Co., Ltd. | Process for growing single crystal |
US5723391A (en) * | 1995-08-31 | 1998-03-03 | C3, Inc. | Silicon carbide gemstones |
US5762896A (en) * | 1995-08-31 | 1998-06-09 | C3, Inc. | Silicon carbide gemstones |
US5746827A (en) * | 1995-12-27 | 1998-05-05 | Northrop Grumman Corporation | Method of producing large diameter silicon carbide crystals |
US6200917B1 (en) | 1996-02-05 | 2001-03-13 | Cree, Inc. | Colorless silicon carbide gemstones |
WO1997028297A1 (en) * | 1996-02-05 | 1997-08-07 | Cree Research, Inc. | Growth of colorless silicon carbide crystals |
US5858086A (en) * | 1996-10-17 | 1999-01-12 | Hunter; Charles Eric | Growth of bulk single crystals of aluminum nitride |
US6296956B1 (en) | 1996-10-17 | 2001-10-02 | Cree, Inc. | Bulk single crystals of aluminum nitride |
USRE42770E1 (en) | 1997-04-11 | 2011-10-04 | Nichia Corporation | Nitride semiconductor device having a nitride semiconductor substrate and an indium containing active layer |
US7154128B2 (en) | 1997-04-11 | 2006-12-26 | Nichia Chemical Industries, Limited | Nitride semiconductor growth method, nitride semiconductor substrate, and nitride semiconductor device |
US6940103B2 (en) | 1997-04-11 | 2005-09-06 | Nichia Chemical Industries, Ltd. | Nitride semiconductor growth method, nitride semiconductor substrate and nitride semiconductor device |
US20070057276A1 (en) * | 1997-04-11 | 2007-03-15 | Nichia Chemical Industries, Ltd. | Nitride semiconductor growth method, nitride semiconductor substrate, and nitride semiconductor device |
US7083679B2 (en) | 1997-04-11 | 2006-08-01 | Nichia Corporation | Nitride semiconductor growth method, nitride semiconductor substrate, and nitride semiconductor device |
US6756611B2 (en) | 1997-04-11 | 2004-06-29 | Nichia Chemical Industries, Ltd. | Nitride semiconductor growth method, nitride semiconductor substrate, and nitride semiconductor device |
US7442254B2 (en) | 1997-04-11 | 2008-10-28 | Nichia Corporation | Nitride semiconductor device having a nitride semiconductor substrate and an indium containing active layer |
US20040094773A1 (en) * | 1997-04-11 | 2004-05-20 | Nichia Chemical Industries, Ltd. | Nitride semiconductor growth method, nitride semiconductor substrate and nitride semiconductor device |
US20050202682A1 (en) * | 1997-04-11 | 2005-09-15 | Nichia Chemical Industries, Ltd. | Nitride semiconductor growth method, nitride semiconductor substrate, and nitride semiconductor device |
US20020046693A1 (en) * | 1997-04-11 | 2002-04-25 | Nichia Chemical Industries, Ltd. | Nitride semiconductor growth method, nitride semiconductor substrate, and nitride semiconductor device |
US5873937A (en) * | 1997-05-05 | 1999-02-23 | Northrop Grumman Corporation | Method of growing 4H silicon carbide crystal |
US20040026707A1 (en) * | 1997-08-29 | 2004-02-12 | Slater David B. | Robust group III light emitting diode for high reliability in standard packaging applications |
US7125737B2 (en) | 1997-08-29 | 2006-10-24 | Cree, Inc. | Robust Group III light emitting diode for high reliability in standard packaging applications |
US6946682B2 (en) | 1997-08-29 | 2005-09-20 | Cree, Inc. | Robust group III light emitting diode for high reliability in standard packaging applications |
US20050095737A1 (en) * | 1997-08-29 | 2005-05-05 | Edmond John A. | Robust group III light emitting diode for high reliability in standard packaging applications |
US20070085104A1 (en) * | 1997-08-29 | 2007-04-19 | Cree, Inc. | Robust Group III Light Emitting Diode for High Reliability in Standard Packaging Applications |
US6825501B2 (en) | 1997-08-29 | 2004-11-30 | Cree, Inc. | Robust Group III light emitting diode for high reliability in standard packaging applications |
US7473938B2 (en) | 1997-08-29 | 2009-01-06 | Cree, Inc. | Robust Group III light emitting diode for high reliability in standard packaging applications |
US20020047135A1 (en) * | 1997-11-18 | 2002-04-25 | Nikolaev Audrey E. | P-N junction-based structures utilizing HVPE grown III-V compound layers |
US6555452B2 (en) | 1997-11-18 | 2003-04-29 | Technologies And Devices International, Inc. | Method for growing p-type III-V compound material utilizing HVPE techniques |
US6849862B2 (en) | 1997-11-18 | 2005-02-01 | Technologies And Devices International, Inc. | III-V compound semiconductor device with an AlxByInzGa1-x-y-zN1-a-bPaAsb non-continuous quantum dot layer |
US6476420B2 (en) | 1997-11-18 | 2002-11-05 | Technologies And Devices International, Inc. | P-N homojunction-based structures utilizing HVPE growth III-V compound layers |
US6472300B2 (en) | 1997-11-18 | 2002-10-29 | Technologies And Devices International, Inc. | Method for growing p-n homojunction-based structures utilizing HVPE techniques |
US6599133B2 (en) | 1997-11-18 | 2003-07-29 | Technologies And Devices International, Inc. | Method for growing III-V compound semiconductor structures with an integral non-continuous quantum dot layer utilizing HVPE techniques |
US6559467B2 (en) | 1997-11-18 | 2003-05-06 | Technologies And Devices International, Inc. | P-n heterojunction-based structures utilizing HVPE grown III-V compound layers |
US6890809B2 (en) | 1997-11-18 | 2005-05-10 | Technologies And Deviles International, Inc. | Method for fabricating a P-N heterojunction device utilizing HVPE grown III-V compound layers and resultant device |
US20030049898A1 (en) * | 1997-11-18 | 2003-03-13 | Sergey Karpov | Method for fabricating a P-N heterojunction device utilizing HVPE grown III-V compound layers and resultant device |
US6559038B2 (en) | 1997-11-18 | 2003-05-06 | Technologies And Devices International, Inc. | Method for growing p-n heterojunction-based structures utilizing HVPE techniques |
US6479839B2 (en) | 1997-11-18 | 2002-11-12 | Technologies & Devices International, Inc. | III-V compounds semiconductor device with an AlxByInzGa1-x-y-zN non continuous quantum dot layer |
US6193797B1 (en) * | 1998-01-19 | 2001-02-27 | Sumitomo Electric Industries, Ltd. | Method of making SiC single crystal and apparatus for making SiC single crystal |
US6391109B2 (en) | 1998-01-19 | 2002-05-21 | Sumitomo Electric Industries, Ltd. | Method of making SiC single crystal and apparatus for making SiC single crystal |
US6570192B1 (en) | 1998-02-27 | 2003-05-27 | North Carolina State University | Gallium nitride semiconductor structures including lateral gallium nitride layers |
US6602763B2 (en) | 1998-02-27 | 2003-08-05 | North Carolina State University | Methods of fabricating gallium nitride semiconductor layers by lateral overgrowth |
US6608327B1 (en) | 1998-02-27 | 2003-08-19 | North Carolina State University | Gallium nitride semiconductor structure including laterally offset patterned layers |
US7195993B2 (en) | 1998-06-10 | 2007-03-27 | North Carolina State University | Methods of fabricating gallium nitride semiconductor layers by lateral growth into trenches |
US6897483B2 (en) | 1998-06-10 | 2005-05-24 | North Carolina State University | Second gallium nitride layers that extend into trenches in first gallium nitride layers |
US6265289B1 (en) | 1998-06-10 | 2001-07-24 | North Carolina State University | Methods of fabricating gallium nitride semiconductor layers by lateral growth from sidewalls into trenches, and gallium nitride semiconductor structures fabricated thereby |
US20050009304A1 (en) * | 1998-06-10 | 2005-01-13 | Tsvetanka Zheleva | Methods of fabricating gallium nitride semiconductor layers by lateral growth into trenches |
US20030194828A1 (en) * | 1998-06-10 | 2003-10-16 | Tsvetanka Zheleva | Methods of fabricating gallium nitride semiconductor layers by lateral growth into trenchers, and gallium nitride semiconductor structures fabricated thereby |
EP2192623A1 (en) | 1998-09-16 | 2010-06-02 | Cree, Inc. | Vertical Geometry InGaN LED |
US6048813A (en) | 1998-10-09 | 2000-04-11 | Cree, Inc. | Simulated diamond gemstones formed of aluminum nitride and aluminum nitride: silicon carbide alloys |
US6462355B1 (en) | 1998-11-24 | 2002-10-08 | North Carolina State University | Pendeoepitaxial gallium nitride semiconductor layers on silicon carbide substrates |
US7378684B2 (en) | 1998-11-24 | 2008-05-27 | North Carolina State University | Pendeoepitaxial gallium nitride semiconductor layers on silicon carbide substrates |
US6376339B2 (en) | 1998-11-24 | 2002-04-23 | North Carolina State University | Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on silicon carbide substrates by lateral growth from sidewalls of masked posts, and gallium nitride semiconductor structures fabricated thereby |
US6602764B2 (en) | 1998-11-24 | 2003-08-05 | North Carolina State University | Methods of fabricating gallium nitride microelectronic layers on silicon layers |
US6177688B1 (en) | 1998-11-24 | 2001-01-23 | North Carolina State University | Pendeoepitaxial gallium nitride semiconductor layers on silcon carbide substrates |
US6255198B1 (en) * | 1998-11-24 | 2001-07-03 | North Carolina State University | Methods of fabricating gallium nitride microelectronic layers on silicon layers and gallium nitride microelectronic structures formed thereby |
US6824611B1 (en) | 1999-10-08 | 2004-11-30 | Cree, Inc. | Method and apparatus for growing silicon carbide crystals |
US20050120943A1 (en) * | 1999-10-08 | 2005-06-09 | Kordina Olle C.E. | Method and apparatus for growing silicon carbide crystals |
US6451112B1 (en) | 1999-10-15 | 2002-09-17 | Denso Corporation | Method and apparatus for fabricating high quality single crystal |
US6489221B2 (en) | 1999-11-17 | 2002-12-03 | North Carolina State University | High temperature pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on sapphire substrates |
US6521514B1 (en) | 1999-11-17 | 2003-02-18 | North Carolina State University | Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on sapphire substrates |
US8829546B2 (en) | 1999-11-19 | 2014-09-09 | Cree, Inc. | Rare earth doped layer or substrate for light conversion |
EP2337096A2 (en) | 1999-12-01 | 2011-06-22 | Cree, Inc. | Scalable LED with improved current spreading structures |
EP2337095A2 (en) | 1999-12-01 | 2011-06-22 | Cree, Inc. | Scalable LED with improved current spreading structures |
EP2325904A2 (en) | 1999-12-03 | 2011-05-25 | Cree, Inc. | Micro-led array with enhanced light extraction |
EP2325903A1 (en) | 1999-12-03 | 2011-05-25 | Cree, Inc. | Light emitting diode with micro-LED array for light extraction enhancement |
EP2270883A2 (en) | 1999-12-03 | 2011-01-05 | Cree Inc. | Enhanced light extraction in LEDs through the use of internal and external optical elements |
US6380108B1 (en) | 1999-12-21 | 2002-04-30 | North Carolina State University | Pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on weak posts, and gallium nitride semiconductor structures fabricated thereby |
US6586778B2 (en) | 1999-12-21 | 2003-07-01 | North Carolina State University | Gallium nitride semiconductor structures fabricated by pendeoepitaxial methods of fabricating gallium nitride semiconductor layers on weak posts |
US7095062B2 (en) | 2000-02-09 | 2006-08-22 | North Carolina State University | Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts, and gallium nitride semiconductor structures fabricated thereby |
US6403451B1 (en) | 2000-02-09 | 2002-06-11 | Noerh Carolina State University | Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts |
US6864160B2 (en) | 2000-02-09 | 2005-03-08 | North Carolina State University | Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts |
US6621148B2 (en) | 2000-02-09 | 2003-09-16 | North Carolina State University | Methods of fabricating gallium nitride semiconductor layers on substrates including non-gallium nitride posts, and gallium nitride semiconductor structures fabricated thereby |
US6508880B2 (en) | 2000-02-15 | 2003-01-21 | The Fox Group, Inc. | Apparatus for growing low defect density silicon carbide |
US6534026B2 (en) | 2000-02-15 | 2003-03-18 | The Fox Group, Inc. | Low defect density silicon carbide |
US6428621B1 (en) | 2000-02-15 | 2002-08-06 | The Fox Group, Inc. | Method for growing low defect density silicon carbide |
US6486042B2 (en) | 2000-02-24 | 2002-11-26 | North Carolina State University | Methods of forming compound semiconductor layers using spaced trench arrays and semiconductor substrates formed thereby |
US6261929B1 (en) | 2000-02-24 | 2001-07-17 | North Carolina State University | Methods of forming a plurality of semiconductor layers using spaced trench arrays |
US20030037724A1 (en) * | 2000-03-13 | 2003-02-27 | Snyder David W. | Axial gradient transport appatatus and process for producing large size, single crystals of silicon carbide |
US20030029376A1 (en) * | 2000-03-13 | 2003-02-13 | Snyder David W | Large size single crystal seed crystal fabrication by intergrowth of tiled seed crystals |
US6800136B2 (en) | 2000-03-13 | 2004-10-05 | Ii-Vi Incorporated | Axial gradient transport apparatus and process |
US6805745B2 (en) | 2000-03-13 | 2004-10-19 | Ii-Vi Incorporated | Large size single crystal seed crystal fabrication by intergrowth of tiled seed crystals |
US6786969B2 (en) * | 2000-12-28 | 2004-09-07 | Denso Corporation | Method and apparatus for producing single crystal, substrate for growing single crystal and method for heating single crystal |
US20060233211A1 (en) * | 2001-01-16 | 2006-10-19 | Edmond John A | Group III Nitride LED with Undoped Cladding Layer |
US7692209B2 (en) | 2001-01-16 | 2010-04-06 | Cree, Inc. | Group III nitride LED with undoped cladding layer |
USRE45059E1 (en) | 2001-01-16 | 2014-08-05 | Cree, Inc. | Group III nitride LED with undoped cladding layer |
USRE46588E1 (en) | 2001-01-16 | 2017-10-24 | Cree, Inc. | Group III nitride LED with undoped cladding layer |
US6863728B2 (en) | 2001-02-14 | 2005-03-08 | The Fox Group, Inc. | Apparatus for growing low defect density silicon carbide |
EP2282346A2 (en) | 2001-05-11 | 2011-02-09 | Cree, Inc. | Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer |
EP2282347A2 (en) | 2001-05-11 | 2011-02-09 | Cree, Inc. | Group-iii nitride based high electron mobility transistor (hemt) with barrier/spacer layer |
US20070022945A1 (en) * | 2001-05-21 | 2007-02-01 | Stephan Mueller | Methods of fabricating silicon carbide crystals |
US6706114B2 (en) | 2001-05-21 | 2004-03-16 | Cree, Inc. | Methods of fabricating silicon carbide crystals |
US7501022B2 (en) | 2001-05-21 | 2009-03-10 | Cree, Inc. | Methods of fabricating silicon carbide crystals |
US20040144299A1 (en) * | 2001-05-21 | 2004-07-29 | Stephan Mueller | Methods of fabricating silicon carbide crystals |
US7135072B2 (en) | 2001-05-21 | 2006-11-14 | Cree, Inc. | Methods of fabricating silicon carbide crystals |
USRE43725E1 (en) | 2001-06-15 | 2012-10-09 | Cree, Inc. | Ultraviolet light emitting diode |
EP2034530A2 (en) | 2001-06-15 | 2009-03-11 | Cree, Inc. | Gan based led formed on a sic substrate |
US6664560B2 (en) | 2001-06-15 | 2003-12-16 | Cree, Inc. | Ultraviolet light emitting diode |
US7553373B2 (en) | 2001-06-15 | 2009-06-30 | Bridgestone Corporation | Silicon carbide single crystal and production thereof |
US6734033B2 (en) | 2001-06-15 | 2004-05-11 | Cree, Inc. | Ultraviolet light emitting diode |
US20020189536A1 (en) * | 2001-06-15 | 2002-12-19 | Bridgestone Corporation | Silicon carbide single crystal and production thereof |
EP2315256A2 (en) | 2001-07-23 | 2011-04-27 | Cree, Inc. | Gallium nitride based diodes with low forward voltage and low reverse current operation |
WO2003032397A2 (en) | 2001-07-24 | 2003-04-17 | Cree, Inc. | INSULTING GATE AlGaN/GaN HEMT |
EP2267783A2 (en) | 2001-07-24 | 2010-12-29 | Cree, Inc. | Insulating gate algan/gan hemt |
EP2267784A2 (en) | 2001-07-24 | 2010-12-29 | Cree, Inc. | Insulating gate AlGaN/GaN HEMT |
US6749685B2 (en) * | 2001-08-16 | 2004-06-15 | Cree, Inc. | Silicon carbide sublimation systems and associated methods |
US6780243B1 (en) | 2001-11-01 | 2004-08-24 | Dow Corning Enterprises, Inc. | Method of silicon carbide monocrystalline boule growth |
US20060121682A1 (en) * | 2001-12-03 | 2006-06-08 | Cree, Inc. | Strain balanced nitride heterojunction transistors and methods of fabricating strain balanced nitride heterojunction transistors |
US20030102482A1 (en) * | 2001-12-03 | 2003-06-05 | Saxler Adam William | Strain balanced nitride heterojunction transistors and methods of fabricating strain balanced nitride heterojunction transistors |
US8153515B2 (en) | 2001-12-03 | 2012-04-10 | Cree, Inc. | Methods of fabricating strain balanced nitride heterojunction transistors |
US7030428B2 (en) | 2001-12-03 | 2006-04-18 | Cree, Inc. | Strain balanced nitride heterojunction transistors |
EP2445066A1 (en) | 2002-05-30 | 2012-04-25 | Cree, Inc. | Group III nitride LED with undoped cladding layer and multiple quantum well |
US8147991B2 (en) | 2002-06-24 | 2012-04-03 | Cree, Inc. | One hundred millimeter single crystal silicon carbide wafer |
US9200381B2 (en) | 2002-06-24 | 2015-12-01 | Cree, Inc. | Producing high quality bulk silicon carbide single crystal by managing thermal stresses at a seed interface |
US7316747B2 (en) | 2002-06-24 | 2008-01-08 | Cree, Inc. | Seeded single crystal silicon carbide growth and resulting crystals |
US9790619B2 (en) | 2002-06-24 | 2017-10-17 | Cree, Inc. | Method of producing high quality silicon carbide crystal in a seeded growth system |
US20110024766A1 (en) * | 2002-06-24 | 2011-02-03 | Cree, Inc. | One hundred millimeter single crystal silicon carbide wafer |
US20070240630A1 (en) * | 2002-06-24 | 2007-10-18 | Leonard Robert T | One hundred millimeter single crystal silicon carbide water |
US7323051B2 (en) | 2002-06-24 | 2008-01-29 | Cree, Inc. | One hundred millimeter single crystal silicon carbide wafer |
US20050126471A1 (en) * | 2002-06-24 | 2005-06-16 | Jenny Jason R. | One hundred millimeter high purity semi-insulating single crystal silicon carbide wafer |
US7601441B2 (en) | 2002-06-24 | 2009-10-13 | Cree, Inc. | One hundred millimeter high purity semi-insulating single crystal silicon carbide wafer |
US7351286B2 (en) | 2002-06-24 | 2008-04-01 | Cree, Inc. | One hundred millimeter single crystal silicon carbide wafer |
US20060107890A1 (en) * | 2002-06-24 | 2006-05-25 | Hobgood Hudson M | One hundred millimeter single crystal silicon carbide wafer |
US9059118B2 (en) | 2002-06-24 | 2015-06-16 | Cree, Inc. | Method for producing semi-insulating resistivity in high purity silicon carbide crystals |
US20090256162A1 (en) * | 2002-06-24 | 2009-10-15 | Cree, Inc. | Method for Producing Semi-Insulating Resistivity in High Purity Silicon Carbide Crystals |
US7550784B2 (en) | 2002-07-16 | 2009-06-23 | Cree, Inc. | Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses |
US6982204B2 (en) | 2002-07-16 | 2006-01-03 | Cree, Inc. | Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses |
US9226383B2 (en) | 2003-01-02 | 2015-12-29 | Cree, Inc. | Group III nitride based flip-chip integrated circuit and method for fabricating |
EP2518764A2 (en) | 2003-01-02 | 2012-10-31 | Cree, Inc. | Group III nitride based flip-chip integrated circuit and method for fabricating |
US8803313B2 (en) | 2003-01-02 | 2014-08-12 | Cree, Inc. | Group III nitride based flip-chip integrated circuit and method for fabricating |
US20070114541A1 (en) * | 2003-02-14 | 2007-05-24 | Cree, Inc. | Light emitting diode wth degenerate coupling structure |
US7482183B2 (en) | 2003-02-14 | 2009-01-27 | Cree, Inc. | Light emitting diode with degenerate coupling structure |
US7531840B2 (en) | 2003-02-14 | 2009-05-12 | Cree, Inc. | Light emitting diode with metal coupling structure |
US20070210318A1 (en) * | 2003-02-14 | 2007-09-13 | Cree, Inc. | Light Emitting Diode with Metal Coupling Structure |
US7898047B2 (en) | 2003-03-03 | 2011-03-01 | Samsung Electronics Co., Ltd. | Integrated nitride and silicon carbide-based devices and methods of fabricating integrated nitride-based devices |
US7112860B2 (en) | 2003-03-03 | 2006-09-26 | Cree, Inc. | Integrated nitride-based acoustic wave devices and methods of fabricating integrated nitride-based acoustic wave devices |
US20080169474A1 (en) * | 2003-03-03 | 2008-07-17 | Cree, Inc. | Integrated Nitride and Silicon Carbide-Based Devices and Methods of Fabricating Integrated Nitride-Based Devices |
US7875910B2 (en) | 2003-03-03 | 2011-01-25 | Cree, Inc. | Integrated nitride and silicon carbide-based devices |
US8035111B2 (en) | 2003-03-03 | 2011-10-11 | Cree, Inc. | Integrated nitride and silicon carbide-based devices |
US8502235B2 (en) | 2003-03-03 | 2013-08-06 | Cree, Inc. | Integrated nitride and silicon carbide-based devices |
US20060289901A1 (en) * | 2003-03-03 | 2006-12-28 | Cree, Inc. | Integrated nitride and silicon carbide-based devices and methods of fabricating integrated nitride-based devices |
US20110147762A1 (en) * | 2003-03-03 | 2011-06-23 | Sheppard Scott T | Integrated Nitride and Silicon Carbide-Based Devices |
US6964917B2 (en) | 2003-04-08 | 2005-11-15 | Cree, Inc. | Semi-insulating silicon carbide produced by Neutron transmutation doping |
US9666772B2 (en) | 2003-04-30 | 2017-05-30 | Cree, Inc. | High powered light emitter packages with compact optics |
US7220313B2 (en) | 2003-07-28 | 2007-05-22 | Cree, Inc. | Reducing nitrogen content in silicon carbide crystals by sublimation growth in a hydrogen-containing ambient |
US20050022727A1 (en) * | 2003-07-28 | 2005-02-03 | Fechko George J. | Reducing nitrogen content in silicon carbide crystals by sublimation growth in a hydrogen-containing ambient |
US9093616B2 (en) | 2003-09-18 | 2015-07-28 | Cree, Inc. | Molded chip fabrication method and apparatus |
US9105817B2 (en) | 2003-09-18 | 2015-08-11 | Cree, Inc. | Molded chip fabrication method and apparatus |
US20100323465A1 (en) * | 2003-09-18 | 2010-12-23 | Cree, Inc. | Molded chip fabrication method and apparatus |
US10546978B2 (en) | 2003-09-18 | 2020-01-28 | Cree, Inc. | Molded chip fabrication method and apparatus |
US20110169038A1 (en) * | 2003-09-18 | 2011-07-14 | Cree, Inc. | Molded chip fabrication method and apparatus |
US7915085B2 (en) | 2003-09-18 | 2011-03-29 | Cree, Inc. | Molded chip fabrication method |
US20050062140A1 (en) * | 2003-09-18 | 2005-03-24 | Cree, Inc. | Molded chip fabrication method and apparatus |
US10164158B2 (en) | 2003-09-18 | 2018-12-25 | Cree, Inc. | Molded chip fabrication method and apparatus |
US20090278156A1 (en) * | 2003-09-18 | 2009-11-12 | Leung Michael S | Molded chip fabrication method and apparatus |
US20050184307A1 (en) * | 2003-09-30 | 2005-08-25 | Cree, Inc. | Light emitting diode with porous sic substrate and method for fabricating |
US6972438B2 (en) | 2003-09-30 | 2005-12-06 | Cree, Inc. | Light emitting diode with porous SiC substrate and method for fabricating |
US6974720B2 (en) | 2003-10-16 | 2005-12-13 | Cree, Inc. | Methods of forming power semiconductor devices using boule-grown silicon carbide drift layers and power semiconductor devices formed thereby |
US20070272929A1 (en) * | 2003-11-25 | 2007-11-29 | Akihiko Namba | Diamond N-Type Semiconductor, Method of Manufacturing the Same, Semiconductor Device, and Electron Emitting Device |
US7135715B2 (en) | 2004-01-07 | 2006-11-14 | Cree, Inc. | Co-doping for fermi level control in semi-insulating Group III nitrides |
US20050145874A1 (en) * | 2004-01-07 | 2005-07-07 | Saxler Adam W. | Co-doping for fermi level control in semi-insulating Group III nitrides |
US20070015299A1 (en) * | 2004-01-07 | 2007-01-18 | Cree, Inc. | Co-doping for fermi level control in semi-insulating group III nitrides |
US7449353B2 (en) | 2004-01-07 | 2008-11-11 | Cree, Inc. | Co-doping for fermi level control in semi-insulating Group III nitrides |
US20060255366A1 (en) * | 2004-01-16 | 2006-11-16 | Sheppard Scott T | Nitride-based transistors with a protective layer and a low-damage recess |
US8481376B2 (en) | 2004-01-16 | 2013-07-09 | Cree, Inc. | Group III nitride semiconductor devices with silicon nitride layers and methods of manufacturing such devices |
US7906799B2 (en) | 2004-01-16 | 2011-03-15 | Cree, Inc. | Nitride-based transistors with a protective layer and a low-damage recess |
US7901994B2 (en) | 2004-01-16 | 2011-03-08 | Cree, Inc. | Methods of manufacturing group III nitride semiconductor devices with silicon nitride layers |
EP2492963A2 (en) | 2004-01-16 | 2012-08-29 | Cree, Inc. | Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof |
US11316028B2 (en) | 2004-01-16 | 2022-04-26 | Wolfspeed, Inc. | Nitride-based transistors with a protective layer and a low-damage recess |
US9035354B2 (en) | 2004-02-05 | 2015-05-19 | Cree, Inc. | Heterojunction transistors having barrier layer bandgaps greater than channel layer bandgaps and related methods |
US7170111B2 (en) | 2004-02-05 | 2007-01-30 | Cree, Inc. | Nitride heterojunction transistors having charge-transfer induced energy barriers and methods of fabricating the same |
US20100187570A1 (en) * | 2004-02-05 | 2010-07-29 | Adam William Saxler | Heterojunction Transistors Having Barrier Layer Bandgaps Greater Than Channel Layer Bandgaps and Related Methods |
US7612390B2 (en) | 2004-02-05 | 2009-11-03 | Cree, Inc. | Heterojunction transistors including energy barriers |
US20050236633A1 (en) * | 2004-04-22 | 2005-10-27 | Emerson David T | Substrate buffer structure for group III nitride devices |
US7872268B2 (en) | 2004-04-22 | 2011-01-18 | Cree, Inc. | Substrate buffer structure for group III nitride devices |
EP2410581A1 (en) | 2004-05-06 | 2012-01-25 | Cree, Inc. | Lift-off process for GaN films formed on SiC substrates and devices fabricated using the method |
US7479669B2 (en) | 2004-05-20 | 2009-01-20 | Cree, Inc. | Current aperture transistors and methods of fabricating same |
US20050258450A1 (en) * | 2004-05-20 | 2005-11-24 | Saxler Adam W | Semiconductor devices having a hybrid channel layer, current aperture transistors and methods of fabricating same |
US7084441B2 (en) | 2004-05-20 | 2006-08-01 | Cree, Inc. | Semiconductor devices having a hybrid channel layer, current aperture transistors and methods of fabricating same |
US7432142B2 (en) | 2004-05-20 | 2008-10-07 | Cree, Inc. | Methods of fabricating nitride-based transistors having regrown ohmic contact regions |
EP2182100A2 (en) | 2004-06-25 | 2010-05-05 | Cree, Inc. | High purity semi-insulating single crystal silicon carbide wafer |
US8163577B2 (en) | 2004-06-30 | 2012-04-24 | Cree, Inc. | Methods of forming light emitting devices having current reducing structures |
US8704240B2 (en) | 2004-06-30 | 2014-04-22 | Cree, Inc. | Light emitting devices having current reducing structures |
US8436368B2 (en) | 2004-06-30 | 2013-05-07 | Cree, Inc. | Methods of forming light emitting devices having current reducing structures |
US20070284602A1 (en) * | 2004-06-30 | 2007-12-13 | Ashay Chitnis | Dielectric wafer level bonding with conductive feed-throughs for electrical connection and thermal management |
US9368428B2 (en) | 2004-06-30 | 2016-06-14 | Cree, Inc. | Dielectric wafer level bonding with conductive feed-throughs for electrical connection and thermal management |
US20110008922A1 (en) * | 2004-06-30 | 2011-01-13 | David Todd Emerson | Methods of forming light emitting devices having current reducing structures |
US20110169030A1 (en) * | 2004-07-02 | 2011-07-14 | Cree, Inc. | Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming |
US20060267029A1 (en) * | 2004-07-02 | 2006-11-30 | Cree, Inc. | Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming |
US8507924B2 (en) | 2004-07-02 | 2013-08-13 | Cree, Inc. | Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming |
US7534633B2 (en) | 2004-07-02 | 2009-05-19 | Cree, Inc. | LED with substrate modifications for enhanced light extraction and method of making same |
US20100273280A1 (en) * | 2004-07-02 | 2010-10-28 | Cree, Inc. | Led with substrate modifications for enhanced light extraction and method of making same |
US20060001046A1 (en) * | 2004-07-02 | 2006-01-05 | Cree, Inc. | LED with substrate modifications for enhanced light extraction and method of making same |
US20060001056A1 (en) * | 2004-07-02 | 2006-01-05 | Cree, Inc. | LED with substrate modifications for enhanced light extraction and method of making same |
US8034647B2 (en) | 2004-07-02 | 2011-10-11 | Cree, Inc. | LED with substrate modifications for enhanced light extraction and method of making same |
US7759682B2 (en) | 2004-07-02 | 2010-07-20 | Cree, Inc. | LED with substrate modifications for enhanced light extraction and method of making same |
US20090233394A1 (en) * | 2004-07-02 | 2009-09-17 | Cree, Inc. | Led with substrate modifications for enhanced light extraction and method of making same |
US7932106B2 (en) | 2004-07-02 | 2011-04-26 | Cree, Inc. | Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming |
US8617909B2 (en) | 2004-07-02 | 2013-12-31 | Cree, Inc. | LED with substrate modifications for enhanced light extraction and method of making same |
US7238560B2 (en) | 2004-07-23 | 2007-07-03 | Cree, Inc. | Methods of fabricating nitride-based transistors with a cap layer and a recessed gate |
EP3425674A2 (en) | 2004-07-23 | 2019-01-09 | Cree, Inc. | Methods of fabricating nitride-based transistors with a cap layer and a recessed gate |
US20060019435A1 (en) * | 2004-07-23 | 2006-01-26 | Scott Sheppard | Methods of fabricating nitride-based transistors with a cap layer and a recessed gate |
US20100140664A1 (en) * | 2004-07-23 | 2010-06-10 | Scott Sheppard | Methods of Fabricating Nitride-Based Transistors with a Cap Layer and a Recessed Gate and Related Devices |
US7678628B2 (en) | 2004-07-23 | 2010-03-16 | Cree, Inc. | Methods of fabricating nitride-based transistors with a cap layer and a recessed gate |
US9666707B2 (en) | 2004-07-23 | 2017-05-30 | Cree, Inc. | Nitride-based transistors with a cap layer and a recessed gate |
US20060017064A1 (en) * | 2004-07-26 | 2006-01-26 | Saxler Adam W | Nitride-based transistors having laterally grown active region and methods of fabricating same |
US20100012952A1 (en) * | 2004-07-26 | 2010-01-21 | Adam William Saxler | Nitride-Based Transistors Having Laterally Grown Active Region and Methods of Fabricating Same |
US8946777B2 (en) | 2004-07-26 | 2015-02-03 | Cree, Inc. | Nitride-based transistors having laterally grown active region and methods of fabricating same |
US7192482B2 (en) | 2004-08-10 | 2007-03-20 | Cree, Inc. | Seed and seedholder combinations for high quality growth of large silicon carbide single crystals |
US20060032434A1 (en) * | 2004-08-10 | 2006-02-16 | Stephan Mueller | Seed and seedholder combinations for high quality growth of large silicon carbide single crystals |
US7364617B2 (en) | 2004-08-10 | 2008-04-29 | Cree, Inc. | Seed and seedholder combinations for high quality growth of large silicon carbide single crystals |
US20070157874A1 (en) * | 2004-08-10 | 2007-07-12 | Stephan Mueller | Seed and Seedholder Combinations for High Quality Growth of Large Silicon Carbide single Crystals |
EP2388359A2 (en) | 2004-08-10 | 2011-11-23 | Cree, Inc. | Method and system with seed holder for growing silicon carbide single crystals |
US20060075958A1 (en) * | 2004-09-21 | 2006-04-13 | Adrian Powell | Low basal plane dislocation bulk grown SiC wafers |
US7294324B2 (en) | 2004-09-21 | 2007-11-13 | Cree, Inc. | Low basal plane dislocation bulk grown SiC wafers |
US7569407B2 (en) | 2004-09-21 | 2009-08-04 | Cree, Inc. | Methods of coating semiconductor light emitting elements by evaporating solvent from a suspension |
US20070224716A1 (en) * | 2004-09-21 | 2007-09-27 | Cree, Inc. | Methods of coating semiconductor light emitting elements by evaporating solvent from a suspension |
US20090166659A1 (en) * | 2004-09-22 | 2009-07-02 | Cree, Inc. | High Efficiency Group III Nitride LED with Lenticular Surface |
US8154039B2 (en) | 2004-09-22 | 2012-04-10 | Cree, Inc. | High efficiency group III nitride LED with lenticular surface |
US20070209577A1 (en) * | 2004-10-04 | 2007-09-13 | Adrian Powell | Low micropipe 100 mm silicon carbide wafer |
US8618552B2 (en) | 2004-10-04 | 2013-12-31 | Cree, Inc. | Low micropipe 100 mm silicon carbide wafer |
US7314521B2 (en) | 2004-10-04 | 2008-01-01 | Cree, Inc. | Low micropipe 100 mm silicon carbide wafer |
US7314520B2 (en) | 2004-10-04 | 2008-01-01 | Cree, Inc. | Low 1c screw dislocation 3 inch silicon carbide wafer |
US20080169476A1 (en) * | 2004-10-04 | 2008-07-17 | Cree, Inc. | Low 1C Screw Dislocation 3 Inch Silicon Carbide Wafer |
US8384090B2 (en) | 2004-10-04 | 2013-02-26 | Cree, Inc. | Low 1C screw dislocation 3 inch silicon carbide wafer |
US8866159B1 (en) | 2004-10-04 | 2014-10-21 | Cree, Inc. | Low micropipe 100 mm silicon carbide wafer |
US8785946B2 (en) | 2004-10-04 | 2014-07-22 | Cree, Inc. | Low 1C screw dislocation 3 inch silicon carbide wafer |
US20060282085A1 (en) * | 2004-11-09 | 2006-12-14 | Arthrotek, Inc. | Soft tissue conduit device |
US20070164315A1 (en) * | 2004-11-23 | 2007-07-19 | Cree, Inc. | Cap Layers Including Aluminum Nitride for Nitride-Based Transistors and Methods of Fabricating Same |
US7709859B2 (en) | 2004-11-23 | 2010-05-04 | Cree, Inc. | Cap layers including aluminum nitride for nitride-based transistors |
WO2006057686A2 (en) | 2004-11-23 | 2006-06-01 | Cree, Inc. | Cap layers and/or passivation layers for nitride-based transistors, transistor structures and methods of fabricating same |
US20090042345A1 (en) * | 2004-11-23 | 2009-02-12 | Cree, Inc. | Methods of Fabricating Transistors Having Buried N-Type and P-Type Regions Beneath the Source Region |
US20060108606A1 (en) * | 2004-11-23 | 2006-05-25 | Saxler Adam W | Cap layers and/or passivation layers for nitride-based transistors, transistor structures and methods of fabricating same |
US9166033B2 (en) | 2004-11-23 | 2015-10-20 | Cree, Inc. | Methods of passivating surfaces of wide bandgap semiconductor devices |
US7456443B2 (en) | 2004-11-23 | 2008-11-25 | Cree, Inc. | Transistors having buried n-type and p-type regions beneath the source region |
US7161194B2 (en) | 2004-12-06 | 2007-01-09 | Cree, Inc. | High power density and/or linearity transistors |
US7355215B2 (en) | 2004-12-06 | 2008-04-08 | Cree, Inc. | Field effect transistors (FETs) having multi-watt output power at millimeter-wave frequencies |
US20060130742A1 (en) * | 2004-12-22 | 2006-06-22 | Carter Calvin H Jr | Process for producing silicon carbide crystals having increased minority carrier lifetimes |
US20100320477A1 (en) * | 2004-12-22 | 2010-12-23 | Cree, Inc. | Process for producing silicon carbide crystals having increased minority carrier lifetimes |
US7811943B2 (en) | 2004-12-22 | 2010-10-12 | Cree, Inc. | Process for producing silicon carbide crystals having increased minority carrier lifetimes |
US8618553B2 (en) | 2004-12-22 | 2013-12-31 | Cree, Inc. | Process for producing silicon carbide crystals having increased minority carrier lifetimes |
US20070268071A1 (en) * | 2004-12-31 | 2007-11-22 | Cree, Inc. | High efficiency switch-mode power amplifier |
EP2466747A2 (en) | 2004-12-31 | 2012-06-20 | Cree, Inc. | High Efficiency Switch-Mode Power Amplifier |
US7518451B2 (en) | 2004-12-31 | 2009-04-14 | Cree, Inc. | High efficiency switch-mode power amplifier |
US20090035925A1 (en) * | 2005-01-06 | 2009-02-05 | Zhu Tinggang | Gallium Nitride Semiconductor Device |
US7863172B2 (en) | 2005-01-06 | 2011-01-04 | Power Integrations, Inc. | Gallium nitride semiconductor device |
US7436039B2 (en) | 2005-01-06 | 2008-10-14 | Velox Semiconductor Corporation | Gallium nitride semiconductor device |
US20060145283A1 (en) * | 2005-01-06 | 2006-07-06 | Zhu Tinggang | Gallium nitride semiconductor device |
EP2302687A2 (en) | 2005-01-06 | 2011-03-30 | Velox Semiconductor Corporation | Gallium nitride semiconductor devices |
US9793247B2 (en) | 2005-01-10 | 2017-10-17 | Cree, Inc. | Solid state lighting component |
US9076940B2 (en) | 2005-01-10 | 2015-07-07 | Cree, Inc. | Solid state lighting component |
US7821023B2 (en) | 2005-01-10 | 2010-10-26 | Cree, Inc. | Solid state lighting component |
US8698171B2 (en) | 2005-01-10 | 2014-04-15 | Cree, Inc. | Solid state lighting component |
US20090050908A1 (en) * | 2005-01-10 | 2009-02-26 | Cree, Inc. | Solid state lighting component |
US20110012143A1 (en) * | 2005-01-10 | 2011-01-20 | Cree, Inc. | Solid state lighting component |
US8217412B2 (en) | 2005-01-10 | 2012-07-10 | Cree, Inc. | Solid state lighting component |
US8410499B2 (en) | 2005-01-24 | 2013-04-02 | Cree, Inc. | LED with a current confinement structure aligned with a contact |
US7335920B2 (en) | 2005-01-24 | 2008-02-26 | Cree, Inc. | LED with current confinement structure and surface roughening |
US20090121246A1 (en) * | 2005-01-24 | 2009-05-14 | Cree, Inc. | LED with current confinement structure and surface roughening |
US20080061311A1 (en) * | 2005-01-24 | 2008-03-13 | Cree, Inc. | Led with current confinement structure and surface roughening |
EP2267803A2 (en) | 2005-01-24 | 2010-12-29 | Cree, Inc. | LED with current confinement structure and surface roughening |
US8541788B2 (en) | 2005-01-24 | 2013-09-24 | Cree, Inc. | LED with current confinement structure and surface roughening |
US8772792B2 (en) | 2005-01-24 | 2014-07-08 | Cree, Inc. | LED with surface roughening |
US8410490B2 (en) | 2005-01-24 | 2013-04-02 | Cree, Inc. | LED with current confinement structure and surface roughening |
US20060174825A1 (en) * | 2005-02-09 | 2006-08-10 | Cem Basceri | Method of forming semi-insulating silicon carbide single crystal |
US7276117B2 (en) | 2005-02-09 | 2007-10-02 | Cree Dulles, Inc. | Method of forming semi-insulating silicon carbide single crystal |
US20110198626A1 (en) * | 2005-02-23 | 2011-08-18 | Cree, Inc. | Substrate removal process for high light extraction leds |
US9559252B2 (en) | 2005-02-23 | 2017-01-31 | Cree, Inc. | Substrate removal process for high light extraction LEDs |
US8212289B2 (en) | 2005-03-15 | 2012-07-03 | Cree, Inc. | Group III nitride field effect transistors (FETS) capable of withstanding high temperature reverse bias test conditions |
US7465967B2 (en) | 2005-03-15 | 2008-12-16 | Cree, Inc. | Group III nitride field effect transistors (FETS) capable of withstanding high temperature reverse bias test conditions |
US20060208280A1 (en) * | 2005-03-15 | 2006-09-21 | Smith Richard P | Group III nitride field effect transistors (FETS) capable of withstanding high temperature reverse bias test conditions |
US8803198B2 (en) | 2005-03-15 | 2014-08-12 | Cree, Inc. | Group III nitride field effect transistors (FETS) capable of withstanding high temperature reverse bias test conditions |
US20070283880A1 (en) * | 2005-03-24 | 2007-12-13 | Tsvetkov Valeri F | Apparatus and method for the production of bulk silicon carbide single crystals |
US7323052B2 (en) | 2005-03-24 | 2008-01-29 | Cree, Inc. | Apparatus and method for the production of bulk silicon carbide single crystals |
US7422634B2 (en) | 2005-04-07 | 2008-09-09 | Cree, Inc. | Three inch silicon carbide wafer with low warp, bow, and TTV |
US9224596B2 (en) | 2005-04-11 | 2015-12-29 | Cree, Inc. | Methods of fabricating thick semi-insulating or insulating epitaxial gallium nitride layers |
US20060226413A1 (en) * | 2005-04-11 | 2006-10-12 | Saxler Adam W | Composite substrates of conductive and insulating or semi-insulating group III-nitrides for group III-nitride devices |
US8575651B2 (en) | 2005-04-11 | 2013-11-05 | Cree, Inc. | Devices having thick semi-insulating epitaxial gallium nitride layer |
US20060226412A1 (en) * | 2005-04-11 | 2006-10-12 | Saxler Adam W | Thick semi-insulating or insulating epitaxial gallium nitride layers and devices incorporating same |
US7626217B2 (en) | 2005-04-11 | 2009-12-01 | Cree, Inc. | Composite substrates of conductive and insulating or semi-insulating group III-nitrides for group III-nitride devices |
US20100018455A1 (en) * | 2005-04-19 | 2010-01-28 | Ii-Vi Incorporated | System for Forming SiC Crystals Having Spatially Uniform Doping Impurities |
US8216369B2 (en) * | 2005-04-19 | 2012-07-10 | Ii-Vi Incorporated | System for forming SiC crystals having spatially uniform doping impurities |
US7608524B2 (en) | 2005-04-19 | 2009-10-27 | Ii-Vi Incorporated | Method of and system for forming SiC crystals having spatially uniform doping impurities |
US20060243984A1 (en) * | 2005-04-19 | 2006-11-02 | Ii-Vi Incorporated | Method of and system for forming SiC crystals having spatially uniform doping impuritites |
US7615774B2 (en) | 2005-04-29 | 2009-11-10 | Cree.Inc. | Aluminum free group III-nitride based high electron mobility transistors |
US20060244010A1 (en) * | 2005-04-29 | 2006-11-02 | Saxler Adam W | Aluminum free group III-nitride based high electron mobility transistors and methods of fabricating same |
US7544963B2 (en) | 2005-04-29 | 2009-06-09 | Cree, Inc. | Binary group III-nitride based high electron mobility transistors |
US20060254505A1 (en) * | 2005-05-13 | 2006-11-16 | Tsvetkov Valeri F | Method and apparatus for the production of silicon carbide crystals |
US7387680B2 (en) | 2005-05-13 | 2008-06-17 | Cree, Inc. | Method and apparatus for the production of silicon carbide crystals |
US20080007953A1 (en) * | 2005-06-10 | 2008-01-10 | Cree, Inc. | High power solid-state lamp |
US9412926B2 (en) | 2005-06-10 | 2016-08-09 | Cree, Inc. | High power solid-state lamp |
US20070045609A1 (en) * | 2005-06-16 | 2007-03-01 | Cree, Inc. | Quantum wells for light conversion |
US20070004184A1 (en) * | 2005-06-29 | 2007-01-04 | Saxler Adam W | Low dislocation density group III nitride layers on silicon carbide substrates and methods of making the same |
US9331192B2 (en) | 2005-06-29 | 2016-05-03 | Cree, Inc. | Low dislocation density group III nitride layers on silicon carbide substrates and methods of making the same |
EP2479790A2 (en) | 2005-07-20 | 2012-07-25 | Cree, Inc. | Nitride-based transistors and fabrication methods with an etch stop layer |
US20070018198A1 (en) * | 2005-07-20 | 2007-01-25 | Brandes George R | High electron mobility electronic device structures comprising native substrates and methods for making the same |
US20070018199A1 (en) * | 2005-07-20 | 2007-01-25 | Cree, Inc. | Nitride-based transistors and fabrication methods with an etch stop layer |
US9142636B2 (en) | 2005-07-20 | 2015-09-22 | Cree, Inc. | Methods of fabricating nitride-based transistors with an ETCH stop layer |
US8674375B2 (en) | 2005-07-21 | 2014-03-18 | Cree, Inc. | Roughened high refractive index layer/LED for high light extraction |
US20070018183A1 (en) * | 2005-07-21 | 2007-01-25 | Cree, Inc. | Roughened high refractive index layer/LED for high light extraction |
EP2312635A2 (en) | 2005-09-07 | 2011-04-20 | Cree, Inc. | Transistors with fluorine treatment |
EP2312634A2 (en) | 2005-09-07 | 2011-04-20 | Cree, Inc. | Transistors with fluorine treatment |
US20070110657A1 (en) * | 2005-11-14 | 2007-05-17 | Hunter Charles E | Unseeded silicon carbide single crystals |
US7419892B2 (en) | 2005-12-13 | 2008-09-02 | Cree, Inc. | Semiconductor devices including implanted regions and protective layers and methods of forming the same |
US20070158683A1 (en) * | 2005-12-13 | 2007-07-12 | Sheppard Scott T | Semiconductor devices including implanted regions and protective layers and methods of forming the same |
US9318594B2 (en) | 2005-12-13 | 2016-04-19 | Cree, Inc. | Semiconductor devices including implanted regions and protective layers |
US20080290371A1 (en) * | 2005-12-13 | 2008-11-27 | Cree, Inc. | Semiconductor devices including implanted regions and protective layers |
US8337071B2 (en) | 2005-12-21 | 2012-12-25 | Cree, Inc. | Lighting device |
US20070139923A1 (en) * | 2005-12-21 | 2007-06-21 | Led Lighting Fixtures, Inc. | Lighting device |
US8049252B2 (en) | 2006-01-17 | 2011-11-01 | Cree, Inc. | Methods of fabricating transistors including dielectrically-supported gate electrodes and related devices |
US20090224289A1 (en) * | 2006-01-17 | 2009-09-10 | Cree, Inc. | Transistors including supported gate electrodes |
US7709269B2 (en) | 2006-01-17 | 2010-05-04 | Cree, Inc. | Methods of fabricating transistors including dielectrically-supported gate electrodes |
US20070164322A1 (en) * | 2006-01-17 | 2007-07-19 | Cree, Inc. | Methods of fabricating transistors including dielectrically-supported gate electrodes and related devices |
US7592211B2 (en) | 2006-01-17 | 2009-09-22 | Cree, Inc. | Methods of fabricating transistors including supported gate electrodes |
US7960756B2 (en) | 2006-01-17 | 2011-06-14 | Cree, Inc. | Transistors including supported gate electrodes |
US8101961B2 (en) | 2006-01-25 | 2012-01-24 | Cree, Inc. | Transparent ohmic contacts on light emitting diodes with growth substrates |
US8430213B2 (en) | 2006-02-08 | 2013-04-30 | Hitachi, Ltd. | Electric brake |
US20090218179A1 (en) * | 2006-02-08 | 2009-09-03 | Hitachi, Ltd. | Electric Brake |
US20070194354A1 (en) * | 2006-02-23 | 2007-08-23 | Cree, Inc. | Nitride based transistors for millimeter wave operation |
EP1826823A2 (en) | 2006-02-23 | 2007-08-29 | Cree, Inc. | Nitride based transistors for millimeter wave operation |
US7566918B2 (en) | 2006-02-23 | 2009-07-28 | Cree, Inc. | Nitride based transistors for millimeter wave operation |
US20070235775A1 (en) * | 2006-03-29 | 2007-10-11 | Cree, Inc. | High efficiency and/or high power density wide bandgap transistors |
US7388236B2 (en) | 2006-03-29 | 2008-06-17 | Cree, Inc. | High efficiency and/or high power density wide bandgap transistors |
USD738832S1 (en) | 2006-04-04 | 2015-09-15 | Cree, Inc. | Light emitting diode (LED) package |
US20070228387A1 (en) * | 2006-04-04 | 2007-10-04 | Gerald Negley | Uniform emission LED package |
US9780268B2 (en) | 2006-04-04 | 2017-10-03 | Cree, Inc. | Submount based surface mount device (SMD) light emitter components and methods |
US8969908B2 (en) | 2006-04-04 | 2015-03-03 | Cree, Inc. | Uniform emission LED package |
US20100254129A1 (en) * | 2006-04-18 | 2010-10-07 | Cree, Inc. | Saturated yellow phosphor converted led and blue converted red led |
US9335006B2 (en) | 2006-04-18 | 2016-05-10 | Cree, Inc. | Saturated yellow phosphor converted LED and blue converted red LED |
US8748915B2 (en) | 2006-04-24 | 2014-06-10 | Cree Hong Kong Limited | Emitter package with angled or vertical LED |
US9040398B2 (en) | 2006-05-16 | 2015-05-26 | Cree, Inc. | Method of fabricating seminconductor devices including self aligned refractory contacts |
US20070269968A1 (en) * | 2006-05-16 | 2007-11-22 | Cree, Inc. | Semiconductor devices including self aligned refractory contacts and methods of fabricating the same |
US8008676B2 (en) | 2006-05-26 | 2011-08-30 | Cree, Inc. | Solid state light emitting device and method of making same |
US8980445B2 (en) | 2006-07-06 | 2015-03-17 | Cree, Inc. | One hundred millimeter SiC crystal grown on off-axis seed |
US20080008641A1 (en) * | 2006-07-06 | 2008-01-10 | Leonard Robert T | One Hundred Millimeter SiC Crystal Grown on Off-Axis Seed |
US20100006859A1 (en) * | 2006-07-19 | 2010-01-14 | Gilyong Chung | Method of Manufacturing Substrates Having Improved Carrier Lifetimes |
US20080079017A1 (en) * | 2006-07-31 | 2008-04-03 | Cree, Inc. | Method of uniform phosphor chip coating and led package fabricated using method |
US7943952B2 (en) | 2006-07-31 | 2011-05-17 | Cree, Inc. | Method of uniform phosphor chip coating and LED package fabricated using method |
US8330244B2 (en) | 2006-08-01 | 2012-12-11 | Cree, Inc. | Semiconductor devices including Schottky diodes having doped regions arranged as islands and methods of fabricating same |
US8432012B2 (en) | 2006-08-01 | 2013-04-30 | Cree, Inc. | Semiconductor devices including schottky diodes having overlapping doped regions and methods of fabricating same |
US20090315036A1 (en) * | 2006-08-01 | 2009-12-24 | Qingchun Zhang | Semiconductor devices including schottky diodes having doped regions arranged as islands and methods of fabricating same |
US20080105949A1 (en) * | 2006-08-17 | 2008-05-08 | Cree, Inc. | High power insulated gate bipolar transistors |
US8710510B2 (en) | 2006-08-17 | 2014-04-29 | Cree, Inc. | High power insulated gate bipolar transistors |
US9548374B2 (en) | 2006-08-17 | 2017-01-17 | Cree, Inc. | High power insulated gate bipolar transistors |
US8310143B2 (en) | 2006-08-23 | 2012-11-13 | Cree, Inc. | Lighting device and lighting method |
US20080084685A1 (en) * | 2006-08-23 | 2008-04-10 | Led Lighting Fixtures, Inc. | Lighting device and lighting method |
EP2264223A2 (en) | 2006-09-14 | 2010-12-22 | Cree, Inc. | Micropipe-free silicon carbide and related method of manufacture |
US9018619B2 (en) | 2006-10-09 | 2015-04-28 | Cree, Inc. | Quantum wells for light conversion |
US20080096365A1 (en) * | 2006-10-20 | 2008-04-24 | Cree, Inc. | Permanent wafer bonding using metal alloy preform discs |
US10873002B2 (en) | 2006-10-20 | 2020-12-22 | Cree, Inc. | Permanent wafer bonding using metal alloy preform discs |
US8823057B2 (en) | 2006-11-06 | 2014-09-02 | Cree, Inc. | Semiconductor devices including implanted regions for providing low-resistance contact to buried layers and related devices |
US9984881B2 (en) | 2006-11-06 | 2018-05-29 | Cree, Inc. | Methods of fabricating semiconductor devices including implanted regions for providing low-resistance contact to buried layers and related devices |
US20080170396A1 (en) * | 2006-11-09 | 2008-07-17 | Cree, Inc. | LED array and method for fabricating same |
US10295147B2 (en) | 2006-11-09 | 2019-05-21 | Cree, Inc. | LED array and method for fabricating same |
US8933486B2 (en) | 2006-11-13 | 2015-01-13 | Cree, Inc. | GaN based HEMTs with buried field plates |
US9041064B2 (en) | 2006-11-21 | 2015-05-26 | Cree, Inc. | High voltage GaN transistor |
US9450081B2 (en) | 2006-11-21 | 2016-09-20 | Cree, Inc. | High voltage GaN transistor |
EP1965433A2 (en) | 2006-11-21 | 2008-09-03 | Cree, Inc. | High voltage GaN transistors |
US9318327B2 (en) | 2006-11-28 | 2016-04-19 | Cree, Inc. | Semiconductor devices having low threading dislocations and improved light extraction and methods of making the same |
US9310026B2 (en) | 2006-12-04 | 2016-04-12 | Cree, Inc. | Lighting assembly and lighting method |
US8337045B2 (en) | 2006-12-04 | 2012-12-25 | Cree, Inc. | Lighting device and lighting method |
US20080130281A1 (en) * | 2006-12-04 | 2008-06-05 | Led Lighting Fixtures, Inc. | Lighting device and lighting method |
US8344398B2 (en) | 2007-01-19 | 2013-01-01 | Cree, Inc. | Low voltage diode with reduced parasitic resistance and method for fabricating |
EP1947700A2 (en) | 2007-01-19 | 2008-07-23 | Cree, Inc. | Low voltage diode with reduced parasitic resistance and method for fabricating |
US20110031579A1 (en) * | 2007-01-19 | 2011-02-10 | Cree, Inc. | Low voltage diode with reduced parasitic resistance and method for fabricating |
US20080173882A1 (en) * | 2007-01-19 | 2008-07-24 | Cree, Inc. | Low voltage diode with reduced parasitic resistance and method for fabricating |
US7834367B2 (en) | 2007-01-19 | 2010-11-16 | Cree, Inc. | Low voltage diode with reduced parasitic resistance and method for fabricating |
US9041139B2 (en) | 2007-01-19 | 2015-05-26 | Cree, Inc. | Low voltage diode with reduced parasitic resistance and method for fabricating |
US9196799B2 (en) | 2007-01-22 | 2015-11-24 | Cree, Inc. | LED chips having fluorescent substrates with microholes and methods for fabricating |
US20090057690A1 (en) * | 2007-01-22 | 2009-03-05 | Cree, Inc. | Wafer level phosphor coating technique for warm light emitting diodes |
US8232564B2 (en) | 2007-01-22 | 2012-07-31 | Cree, Inc. | Wafer level phosphor coating technique for warm light emitting diodes |
US20080179611A1 (en) * | 2007-01-22 | 2008-07-31 | Cree, Inc. | Wafer level phosphor coating method and devices fabricated utilizing method |
US9024349B2 (en) | 2007-01-22 | 2015-05-05 | Cree, Inc. | Wafer level phosphor coating method and devices fabricated utilizing method |
US20090065790A1 (en) * | 2007-01-22 | 2009-03-12 | Cree, Inc. | LED chips having fluorescent substrates with microholes and methods for fabricating |
US9159888B2 (en) | 2007-01-22 | 2015-10-13 | Cree, Inc. | Wafer level phosphor coating method and devices fabricated utilizing method |
US8021904B2 (en) | 2007-02-01 | 2011-09-20 | Cree, Inc. | Ohmic contacts to nitrogen polarity GaN |
US20080185608A1 (en) * | 2007-02-01 | 2008-08-07 | Cree, Inc. | Ohmic contacts to nitrogen polarity GaN |
US20100140628A1 (en) * | 2007-02-27 | 2010-06-10 | Qingchun Zhang | Insulated gate bipolar transistors including current suppressing layers |
US8835987B2 (en) | 2007-02-27 | 2014-09-16 | Cree, Inc. | Insulated gate bipolar transistors including current suppressing layers |
US9064840B2 (en) | 2007-02-27 | 2015-06-23 | Cree, Inc. | Insulated gate bipolar transistors including current suppressing layers |
EP3534393A1 (en) | 2007-03-09 | 2019-09-04 | Cree, Inc. | Forming a nucleation layer on a silicon substrate |
US9240473B2 (en) | 2007-03-23 | 2016-01-19 | Cree, Inc. | High temperature performance capable gallium nitride transistor |
US8212290B2 (en) | 2007-03-23 | 2012-07-03 | Cree, Inc. | High temperature performance capable gallium nitride transistor |
US20080230786A1 (en) * | 2007-03-23 | 2008-09-25 | Cree, Inc. | High temperature performance capable gallium nitride transistor |
EP1973163A2 (en) | 2007-03-23 | 2008-09-24 | Cree, Inc. | High temperature performance capable gallium nitride transistor |
EP2385558A2 (en) | 2007-03-23 | 2011-11-09 | Cree, Inc. | High Temperature Performance Capable Gallium Nitride Transistor |
US20080258161A1 (en) * | 2007-04-20 | 2008-10-23 | Edmond John A | Transparent ohmic Contacts on Light Emitting Diodes with Carrier Substrates |
US9484499B2 (en) | 2007-04-20 | 2016-11-01 | Cree, Inc. | Transparent ohmic contacts on light emitting diodes with carrier substrates |
US20080258130A1 (en) * | 2007-04-23 | 2008-10-23 | Bergmann Michael J | Beveled LED Chip with Transparent Substrate |
US20080284541A1 (en) * | 2007-05-14 | 2008-11-20 | Cree, Inc. | Bulk acoustic device and method for fabricating |
EP1993205A1 (en) | 2007-05-14 | 2008-11-19 | Cree, Inc. | Bulk acoustic device and method for fabricating |
US7982363B2 (en) | 2007-05-14 | 2011-07-19 | Cree, Inc. | Bulk acoustic device and method for fabricating |
US20090283779A1 (en) * | 2007-06-14 | 2009-11-19 | Cree, Inc. | Light source with near field mixing |
US20090014731A1 (en) * | 2007-07-11 | 2009-01-15 | Andrews Peter S | LED Chip Design for White Conversion |
US20090014736A1 (en) * | 2007-07-11 | 2009-01-15 | Cree, Inc. | Coating method utilizing phosphor containment structure and devices fabricated using same |
US9401461B2 (en) | 2007-07-11 | 2016-07-26 | Cree, Inc. | LED chip design for white conversion |
US10505083B2 (en) | 2007-07-11 | 2019-12-10 | Cree, Inc. | Coating method utilizing phosphor containment structure and devices fabricated using same |
US8111001B2 (en) | 2007-07-17 | 2012-02-07 | Cree, Inc. | LED with integrated constant current driver |
US20090021841A1 (en) * | 2007-07-17 | 2009-01-22 | Cree Led Lighting Solutions, Inc. | Optical elements with internal optical features and methods of fabricating same |
US8232739B2 (en) | 2007-07-17 | 2012-07-31 | Cree, Inc. | LED with integrated constant current driver |
US8569970B2 (en) | 2007-07-17 | 2013-10-29 | Cree, Inc. | LED with integrated constant current driver |
US8123384B2 (en) | 2007-07-17 | 2012-02-28 | Cree, Inc. | Optical elements with internal optical features and methods of fabricating same |
US8810151B2 (en) | 2007-07-17 | 2014-08-19 | Cree, Inc. | LED with integrated constant current driver |
US20090050911A1 (en) * | 2007-08-24 | 2009-02-26 | Cree, Inc. | Light emitting device packages using light scattering particles of different size |
US11114594B2 (en) | 2007-08-24 | 2021-09-07 | Creeled, Inc. | Light emitting device packages using light scattering particles of different size |
EP2048718A1 (en) | 2007-10-10 | 2009-04-15 | Cree, Inc. | Multiple conversion material light emitting diode package and method of fabricating same |
US20090095966A1 (en) * | 2007-10-10 | 2009-04-16 | Cree, Inc. | Multiple conversion material light emitting diode package and method of fabricating same |
US9012937B2 (en) | 2007-10-10 | 2015-04-21 | Cree, Inc. | Multiple conversion material light emitting diode package and method of fabricating same |
EP2472614A2 (en) | 2007-10-10 | 2012-07-04 | Cree, Inc. | Multiple conversion material light emitting diode package and method of fabricating same |
US10892383B2 (en) | 2007-10-31 | 2021-01-12 | Cree, Inc. | Light emitting diode package and method for fabricating same |
US8866169B2 (en) | 2007-10-31 | 2014-10-21 | Cree, Inc. | LED package with increased feature sizes |
EP2056363A2 (en) | 2007-10-31 | 2009-05-06 | Cree, Inc. | Light emitting diode package and method for fabricating same |
US9082921B2 (en) | 2007-10-31 | 2015-07-14 | Cree, Inc. | Multi-die LED package |
US10256385B2 (en) | 2007-10-31 | 2019-04-09 | Cree, Inc. | Light emitting die (LED) packages and related methods |
US9070850B2 (en) | 2007-10-31 | 2015-06-30 | Cree, Inc. | Light emitting diode package and method for fabricating same |
US9666762B2 (en) | 2007-10-31 | 2017-05-30 | Cree, Inc. | Multi-chip light emitter packages and related methods |
EP2056014A2 (en) | 2007-10-31 | 2009-05-06 | Cree, Inc. | LED array and method for fabricating same |
US9172012B2 (en) | 2007-10-31 | 2015-10-27 | Cree, Inc. | Multi-chip light emitter packages and related methods |
US11791442B2 (en) | 2007-10-31 | 2023-10-17 | Creeled, Inc. | Light emitting diode package and method for fabricating same |
US8536584B2 (en) | 2007-11-14 | 2013-09-17 | Cree, Inc. | High voltage wire bond free LEDS |
US9461201B2 (en) | 2007-11-14 | 2016-10-04 | Cree, Inc. | Light emitting diode dielectric mirror |
US20110084294A1 (en) * | 2007-11-14 | 2011-04-14 | Cree, Inc. | High voltage wire bond free leds |
US20090153022A1 (en) * | 2007-12-14 | 2009-06-18 | Hussell Christopher P | Phosphor distribution in LED lamps using centrifugal force |
US9041285B2 (en) | 2007-12-14 | 2015-05-26 | Cree, Inc. | Phosphor distribution in LED lamps using centrifugal force |
US8167674B2 (en) | 2007-12-14 | 2012-05-01 | Cree, Inc. | Phosphor distribution in LED lamps using centrifugal force |
US9431589B2 (en) | 2007-12-14 | 2016-08-30 | Cree, Inc. | Textured encapsulant surface in LED packages |
US20090152573A1 (en) * | 2007-12-14 | 2009-06-18 | Cree, Inc. | Textured encapsulant surface in LED packages |
US8637883B2 (en) | 2008-03-19 | 2014-01-28 | Cree, Inc. | Low index spacer layer in LED devices |
EP2495759A1 (en) | 2008-03-19 | 2012-09-05 | Cree, Inc. | Integrated nitride and silicon carbide-based devices and methods of fabricating integrated nitride-based devices |
US8877524B2 (en) | 2008-03-31 | 2014-11-04 | Cree, Inc. | Emission tuning methods and devices fabricated utilizing methods |
US20090261358A1 (en) * | 2008-03-31 | 2009-10-22 | Cree, Inc. | Emission tuning methods and devices fabricated utilizing methods |
US8101443B2 (en) | 2008-04-10 | 2012-01-24 | Cree, Inc. | LEDs using single crystalline phosphor and methods of fabricating same |
US20110073881A1 (en) * | 2008-04-10 | 2011-03-31 | Cree, Inc | LEDs USING SINGLE CRYSTALLLINE PHOSPHOR AND METHODS OF FABRICATING SAME |
US20090256163A1 (en) * | 2008-04-10 | 2009-10-15 | Cree, Inc. | LEDs using single crystalline phosphor and methods of fabricating same |
US7859000B2 (en) | 2008-04-10 | 2010-12-28 | Cree, Inc. | LEDs using single crystalline phosphor and methods of fabricating same |
EP2113949A2 (en) | 2008-05-02 | 2009-11-04 | Cree, Inc. | Encapsulation for phosphor-converted white light emitting diode |
US8653534B2 (en) | 2008-05-21 | 2014-02-18 | Cree, Inc. | Junction Barrier Schottky diodes with current surge capability |
EP3657558A2 (en) | 2008-05-23 | 2020-05-27 | Cree, Inc. | Solid state lighting component |
US20090311381A1 (en) * | 2008-06-11 | 2009-12-17 | Gardner Susanne | Beverages composed of wine components |
US8384115B2 (en) | 2008-08-01 | 2013-02-26 | Cree, Inc. | Bond pad design for enhancing light extraction from LED chips |
US20100025719A1 (en) * | 2008-08-01 | 2010-02-04 | Cree, Inc. | Bond pad design for enhancing light extraction from led chips |
US9484329B2 (en) | 2008-10-24 | 2016-11-01 | Cree, Inc. | Light emitter array layout for color mixing |
US9425172B2 (en) | 2008-10-24 | 2016-08-23 | Cree, Inc. | Light emitter array |
US20100127283A1 (en) * | 2008-10-24 | 2010-05-27 | Van De Ven Antony P | Array layout for color mixing |
US20100103660A1 (en) * | 2008-10-24 | 2010-04-29 | Cree Led Lighting Solutions, Inc. | Array layout for color mixing |
US8858032B2 (en) | 2008-10-24 | 2014-10-14 | Cree, Inc. | Lighting device, heat transfer structure and heat transfer element |
US8598609B2 (en) | 2008-12-08 | 2013-12-03 | Cree, Inc. | Composite high reflectivity layer |
US20110169036A1 (en) * | 2008-12-08 | 2011-07-14 | Cree, Inc. | Composite high reflectivity layer |
US8017963B2 (en) | 2008-12-08 | 2011-09-13 | Cree, Inc. | Light emitting diode with a dielectric mirror having a lateral configuration |
US8710536B2 (en) | 2008-12-08 | 2014-04-29 | Cree, Inc. | Composite high reflectivity layer |
US7915629B2 (en) | 2008-12-08 | 2011-03-29 | Cree, Inc. | Composite high reflectivity layer |
US20100140635A1 (en) * | 2008-12-08 | 2010-06-10 | Cree, Inc. | Composite high reflectivity layer |
US8193544B2 (en) | 2008-12-23 | 2012-06-05 | Cree, Inc. | Color correction for wafer level white LEDs |
US7897419B2 (en) | 2008-12-23 | 2011-03-01 | Cree, Inc. | Color correction for wafer level white LEDs |
US20100155750A1 (en) * | 2008-12-23 | 2010-06-24 | Cree, Inc. | Color correction for wafer level white LEDs |
US8598602B2 (en) | 2009-01-12 | 2013-12-03 | Cree, Inc. | Light emitting device packages with improved heat transfer |
US9123874B2 (en) | 2009-01-12 | 2015-09-01 | Cree, Inc. | Light emitting device packages with improved heat transfer |
US20110031865A1 (en) * | 2009-01-12 | 2011-02-10 | Hussell Christopher P | Light emitting device packages with improved heat transfer |
US9722158B2 (en) | 2009-01-14 | 2017-08-01 | Cree Huizhou Solid State Lighting Company Limited | Aligned multiple emitter package |
US20100155748A1 (en) * | 2009-01-14 | 2010-06-24 | Cree Hong Kong Limited | Aligned multiple emitter package |
US8368112B2 (en) | 2009-01-14 | 2013-02-05 | Cree Huizhou Opto Limited | Aligned multiple emitter package |
WO2010088003A1 (en) | 2009-02-02 | 2010-08-05 | Teledyne Lighting And Display Products, Inc. | Efficient illumination device for aircraft |
US10294584B2 (en) | 2009-03-26 | 2019-05-21 | Ii-Vi Incorporated | SiC single crystal sublimation growth method and apparatus |
US11149359B2 (en) | 2009-03-26 | 2021-10-19 | Ii-Vi Delaware, Inc. | SiC single crystal sublimation growth apparatus |
US11761117B2 (en) | 2009-03-26 | 2023-09-19 | Ii-Vi Delaware, Inc. | SiC single crystal sublimation growth apparatus |
US7985970B2 (en) | 2009-04-06 | 2011-07-26 | Cree, Inc. | High voltage low current surface-emitting LED |
US8476668B2 (en) | 2009-04-06 | 2013-07-02 | Cree, Inc. | High voltage low current surface emitting LED |
US20100155746A1 (en) * | 2009-04-06 | 2010-06-24 | Cree, Inc. | High voltage low current surface-emitting led |
US8530921B2 (en) * | 2009-04-06 | 2013-09-10 | Cree, Inc. | High voltage low current surface emitting LED |
EP3848971A1 (en) | 2009-04-06 | 2021-07-14 | Cree, Inc. | High voltage low current surface emitting led |
US20100252840A1 (en) * | 2009-04-06 | 2010-10-07 | Cree, Inc. | High voltage low current surface emitting led |
EP2239776A2 (en) | 2009-04-06 | 2010-10-13 | Cree, Inc. | High voltage low current surface emitting LED |
US9093293B2 (en) | 2009-04-06 | 2015-07-28 | Cree, Inc. | High voltage low current surface emitting light emitting diode |
US20100276698A1 (en) * | 2009-04-29 | 2010-11-04 | Cree, Inc. | Gate electrodes for millimeter-wave operation and methods of fabrication |
US8741715B2 (en) | 2009-04-29 | 2014-06-03 | Cree, Inc. | Gate electrodes for millimeter-wave operation and methods of fabrication |
US8294507B2 (en) | 2009-05-08 | 2012-10-23 | Cree, Inc. | Wide bandgap bipolar turn-off thyristor having non-negative temperature coefficient and related control circuits |
US8193848B2 (en) | 2009-06-02 | 2012-06-05 | Cree, Inc. | Power switching devices having controllable surge current capabilities |
US8629509B2 (en) | 2009-06-02 | 2014-01-14 | Cree, Inc. | High voltage insulated gate bipolar transistors with minority carrier diverter |
US20100301335A1 (en) * | 2009-06-02 | 2010-12-02 | Sei-Hyung Ryu | High Voltage Insulated Gate Bipolar Transistors with Minority Carrier Diverter |
US8304783B2 (en) | 2009-06-03 | 2012-11-06 | Cree, Inc. | Schottky diodes including polysilicon having low barrier heights and methods of fabricating the same |
US20100308337A1 (en) * | 2009-06-03 | 2010-12-09 | Cree, Inc. | Schottky Diodes Including Polysilicon Having Low Barrier Heights and Methods of Fabricating the Same |
WO2010141146A1 (en) | 2009-06-03 | 2010-12-09 | Cree, Inc. | Schottky diodes including polysilicon having low barrier heights and methods of fabricating the same |
US8860043B2 (en) | 2009-06-05 | 2014-10-14 | Cree, Inc. | Light emitting device packages, systems and methods |
US8686445B1 (en) | 2009-06-05 | 2014-04-01 | Cree, Inc. | Solid state lighting devices and methods |
US9111778B2 (en) | 2009-06-05 | 2015-08-18 | Cree, Inc. | Light emitting diode (LED) devices, systems, and methods |
US8866166B2 (en) | 2009-06-05 | 2014-10-21 | Cree, Inc. | Solid state lighting device |
WO2011005300A1 (en) | 2009-07-06 | 2011-01-13 | Cree, Inc. | Led packages with scattering particle regions |
US20110001151A1 (en) * | 2009-07-06 | 2011-01-06 | Cree, Inc. | Led packages with scattering particle regions |
US11210971B2 (en) | 2009-07-06 | 2021-12-28 | Cree Huizhou Solid State Lighting Company Limited | Light emitting diode display with tilted peak emission pattern |
US8415692B2 (en) | 2009-07-06 | 2013-04-09 | Cree, Inc. | LED packages with scattering particle regions |
US20110012130A1 (en) * | 2009-07-15 | 2011-01-20 | Qingchun Zhang | High Breakdown Voltage Wide Band-Gap MOS-Gated Bipolar Junction Transistors with Avalanche Capability |
US8541787B2 (en) | 2009-07-15 | 2013-09-24 | Cree, Inc. | High breakdown voltage wide band-gap MOS-gated bipolar junction transistors with avalanche capability |
WO2011016940A2 (en) | 2009-07-27 | 2011-02-10 | Cree, Inc. | Methods of fabricating transistors including self-aligned gate electrodes and source/drain regions |
US8105889B2 (en) | 2009-07-27 | 2012-01-31 | Cree, Inc. | Methods of fabricating transistors including self-aligned gate electrodes and source/drain regions |
US20110018040A1 (en) * | 2009-07-27 | 2011-01-27 | Smith R Peter | Methods of fabricating transistors including self-aligned gate electrodes and source/drain regions |
US20110043137A1 (en) * | 2009-08-19 | 2011-02-24 | Cree Led Lighting Solutions, Inc. | White light color changing solid state lighting and methods |
US8598809B2 (en) | 2009-08-19 | 2013-12-03 | Cree, Inc. | White light color changing solid state lighting and methods |
US8354690B2 (en) | 2009-08-31 | 2013-01-15 | Cree, Inc. | Solid-state pinch off thyristor circuits |
US9362459B2 (en) | 2009-09-02 | 2016-06-07 | United States Department Of Energy | High reflectivity mirrors and method for making same |
US20110049546A1 (en) * | 2009-09-02 | 2011-03-03 | Cree, Inc. | high reflectivity mirrors and method for making same |
US20120285370A1 (en) * | 2009-09-15 | 2012-11-15 | Ii-Vi Incorporated | Sublimation growth of sic single crystals |
US9312343B2 (en) | 2009-10-13 | 2016-04-12 | Cree, Inc. | Transistors with semiconductor interconnection layers and semiconductor channel layers of different semiconductor materials |
US8511851B2 (en) | 2009-12-21 | 2013-08-20 | Cree, Inc. | High CRI adjustable color temperature lighting devices |
US8350370B2 (en) | 2010-01-29 | 2013-01-08 | Cree Huizhou Opto Limited | Wide angle oval light emitting diode package |
US20110186865A1 (en) * | 2010-01-29 | 2011-08-04 | Cree Hong Kong Limited | Wide angle oval light emitting diode package |
US9214352B2 (en) | 2010-02-11 | 2015-12-15 | Cree, Inc. | Ohmic contact to semiconductor device |
US8563372B2 (en) | 2010-02-11 | 2013-10-22 | Cree, Inc. | Methods of forming contact structures including alternating metal and silicon layers and related devices |
US9548206B2 (en) | 2010-02-11 | 2017-01-17 | Cree, Inc. | Ohmic contact structure for group III nitride semiconductor device having improved surface morphology and well-defined edge features |
US10090394B2 (en) | 2010-02-11 | 2018-10-02 | Cree, Inc. | Ohmic contact structure for group III nitride semiconductor device having improved surface morphology and well-defined edge features |
US20110193135A1 (en) * | 2010-02-11 | 2011-08-11 | Helmut Hagleitner | Methods of Forming Contact Structures Including Alternating Metal and Silicon Layers and Related Devices |
WO2011112302A1 (en) | 2010-02-16 | 2011-09-15 | Cree, Inc. | Color control of light emitting devices |
US9468070B2 (en) | 2010-02-16 | 2016-10-11 | Cree Inc. | Color control of light emitting devices and applications thereof |
US9117739B2 (en) | 2010-03-08 | 2015-08-25 | Cree, Inc. | Semiconductor devices with heterojunction barrier regions and methods of fabricating same |
US9595618B2 (en) | 2010-03-08 | 2017-03-14 | Cree, Inc. | Semiconductor devices with heterojunction barrier regions and methods of fabricating same |
US9105824B2 (en) | 2010-04-09 | 2015-08-11 | Cree, Inc. | High reflective board or substrate for LEDs |
US9012938B2 (en) | 2010-04-09 | 2015-04-21 | Cree, Inc. | High reflective substrate of light emitting devices with improved light output |
US8901583B2 (en) | 2010-04-12 | 2014-12-02 | Cree Huizhou Opto Limited | Surface mount device thin package |
US8415671B2 (en) | 2010-04-16 | 2013-04-09 | Cree, Inc. | Wide band-gap MOSFETs having a heterojunction under gate trenches thereof and related methods of forming such devices |
WO2011136837A1 (en) | 2010-04-30 | 2011-11-03 | Cree, Inc. | White-emitting led chips and method for making same |
US8329482B2 (en) | 2010-04-30 | 2012-12-11 | Cree, Inc. | White-emitting LED chips and method for making same |
US8878217B2 (en) | 2010-06-28 | 2014-11-04 | Cree, Inc. | LED package with efficient, isolated thermal path |
WO2012005771A2 (en) | 2010-07-06 | 2012-01-12 | Cree, Inc. | Compact optically efficient solid state light source with integrated thermal management |
USD708156S1 (en) | 2010-07-16 | 2014-07-01 | Cree, Inc. | Package for light emitting diode (LED) lighting |
WO2012011936A2 (en) | 2010-07-23 | 2012-01-26 | Cree, Inc. | Light transmission control for masking appearance of solid state light sources |
US10546846B2 (en) | 2010-07-23 | 2020-01-28 | Cree, Inc. | Light transmission control for masking appearance of solid state light sources |
US9831393B2 (en) | 2010-07-30 | 2017-11-28 | Cree Hong Kong Limited | Water resistant surface mount device package |
US8764224B2 (en) | 2010-08-12 | 2014-07-01 | Cree, Inc. | Luminaire with distributed LED sources |
WO2012026966A1 (en) | 2010-08-25 | 2012-03-01 | Cree, Inc. | Emitter package with angled or vertical led |
US9627361B2 (en) | 2010-10-07 | 2017-04-18 | Cree, Inc. | Multiple configuration light emitting devices and methods |
WO2012050994A2 (en) | 2010-10-13 | 2012-04-19 | Cree, Inc. | Light emitting devices and methods |
WO2012050607A1 (en) | 2010-10-15 | 2012-04-19 | Cree, Inc. | High voltage wire bond free leds |
US8455882B2 (en) | 2010-10-15 | 2013-06-04 | Cree, Inc. | High efficiency LEDs |
US10431567B2 (en) | 2010-11-03 | 2019-10-01 | Cree, Inc. | White ceramic LED package |
US9249952B2 (en) | 2010-11-05 | 2016-02-02 | Cree, Inc. | Multi-configurable, high luminous output light fixture systems, devices and methods |
USD712850S1 (en) | 2010-11-18 | 2014-09-09 | Cree, Inc. | Light emitter device |
USD707192S1 (en) | 2010-11-18 | 2014-06-17 | Cree, Inc. | Light emitting device |
US8624271B2 (en) | 2010-11-22 | 2014-01-07 | Cree, Inc. | Light emitting devices |
WO2012071136A2 (en) | 2010-11-22 | 2012-05-31 | Cree, Inc. | Light emitting devices and methods |
US9300062B2 (en) | 2010-11-22 | 2016-03-29 | Cree, Inc. | Attachment devices and methods for light emitting devices |
US9490235B2 (en) | 2010-11-22 | 2016-11-08 | Cree, Inc. | Light emitting devices, systems, and methods |
US9203004B2 (en) | 2010-11-22 | 2015-12-01 | Cree, Inc. | Light emitting devices for light emitting diodes (LEDs) |
US9209354B2 (en) | 2010-11-22 | 2015-12-08 | Cree, Inc. | Light emitting devices for light emitting diodes (LEDs) |
WO2012071139A2 (en) | 2010-11-22 | 2012-05-31 | Cree, Inc. | Light emitting devices and methods |
US9000470B2 (en) | 2010-11-22 | 2015-04-07 | Cree, Inc. | Light emitter devices |
US10267506B2 (en) | 2010-11-22 | 2019-04-23 | Cree, Inc. | Solid state lighting apparatuses with non-uniformly spaced emitters for improved heat distribution, system having the same, and methods having the same |
US8564000B2 (en) | 2010-11-22 | 2013-10-22 | Cree, Inc. | Light emitting devices for light emitting diodes (LEDs) |
US9240395B2 (en) | 2010-11-30 | 2016-01-19 | Cree Huizhou Opto Limited | Waterproof surface mount device package and method |
USD706231S1 (en) | 2010-12-03 | 2014-06-03 | Cree, Inc. | Light emitting device |
USD721339S1 (en) | 2010-12-03 | 2015-01-20 | Cree, Inc. | Light emitter device |
US9822951B2 (en) | 2010-12-06 | 2017-11-21 | Cree, Inc. | LED retrofit lens for fluorescent tube |
US8610140B2 (en) | 2010-12-15 | 2013-12-17 | Cree, Inc. | Light emitting diode (LED) packages, systems, devices and related methods |
WO2012083217A1 (en) | 2010-12-16 | 2012-06-21 | Cree, Inc. | High power leds with non-polymer material lenses and methods of making the same |
USD679842S1 (en) | 2011-01-03 | 2013-04-09 | Cree, Inc. | High brightness LED package |
USD704358S1 (en) | 2011-01-03 | 2014-05-06 | Cree, Inc. | High brightness LED package |
US8698184B2 (en) | 2011-01-21 | 2014-04-15 | Cree, Inc. | Light emitting diodes with low junction temperature and solid state backlight components including light emitting diodes with low junction temperature |
US9166126B2 (en) | 2011-01-31 | 2015-10-20 | Cree, Inc. | Conformally coated light emitting devices and methods for providing the same |
US9859471B2 (en) | 2011-01-31 | 2018-01-02 | Cree, Inc. | High brightness light emitting diode (LED) packages, systems and methods with improved resin filling and high adhesion |
US9786811B2 (en) | 2011-02-04 | 2017-10-10 | Cree, Inc. | Tilted emission LED array |
WO2012106141A1 (en) | 2011-02-04 | 2012-08-09 | Cree, Inc. | Light-emitting diode component |
US11101408B2 (en) | 2011-02-07 | 2021-08-24 | Creeled, Inc. | Components and methods for light emitting diode (LED) lighting |
US9583681B2 (en) | 2011-02-07 | 2017-02-28 | Cree, Inc. | Light emitter device packages, modules and methods |
US8809880B2 (en) | 2011-02-16 | 2014-08-19 | Cree, Inc. | Light emitting diode (LED) chips and devices for providing failure mitigation in LED arrays |
US8455908B2 (en) | 2011-02-16 | 2013-06-04 | Cree, Inc. | Light emitting devices |
US8921869B2 (en) | 2011-02-16 | 2014-12-30 | Cree, Inc. | Method of providing light emitting device |
US8729589B2 (en) | 2011-02-16 | 2014-05-20 | Cree, Inc. | High voltage array light emitting diode (LED) devices and fixtures |
US9194567B2 (en) | 2011-02-16 | 2015-11-24 | Cree, Inc. | High voltage array light emitting diode (LED) devices and fixtures |
US8994057B2 (en) | 2011-02-16 | 2015-03-31 | Cree, Inc. | Light emitting devices for light emitting diodes (LEDS) |
US8575639B2 (en) | 2011-02-16 | 2013-11-05 | Cree, Inc. | Light emitting devices for light emitting diodes (LEDs) |
US8922108B2 (en) | 2011-03-01 | 2014-12-30 | Cree, Inc. | Remote component devices, systems, and methods for use with light emitting devices |
WO2012128966A2 (en) | 2011-03-18 | 2012-09-27 | Cree, Inc. | Encapsulant with index matched thixotropic agent |
US10147853B2 (en) | 2011-03-18 | 2018-12-04 | Cree, Inc. | Encapsulant with index matched thixotropic agent |
US8680556B2 (en) | 2011-03-24 | 2014-03-25 | Cree, Inc. | Composite high reflectivity layer |
WO2012151066A1 (en) | 2011-05-04 | 2012-11-08 | Cree, Inc. | Light-emitting diode (led) for achieving an asymmetric light output |
US9029945B2 (en) | 2011-05-06 | 2015-05-12 | Cree, Inc. | Field effect transistor devices with low source resistance |
US9673283B2 (en) | 2011-05-06 | 2017-06-06 | Cree, Inc. | Power module for supporting high current densities |
US9142662B2 (en) | 2011-05-06 | 2015-09-22 | Cree, Inc. | Field effect transistor devices with low source resistance |
WO2012177429A2 (en) | 2011-06-23 | 2012-12-27 | Cree, Inc. | Hybrid solid state emitter printed circuit board for use in a solid state directional lamp |
WO2012177474A1 (en) | 2011-06-23 | 2012-12-27 | Cree, Inc. | Solid state directional lamp including retroreflective, multi-element directional lamp optic |
WO2012177428A1 (en) | 2011-06-23 | 2012-12-27 | Cree, Inc. | Solid state retroreflective directional lamp |
WO2012177473A1 (en) | 2011-06-23 | 2012-12-27 | Cree, Inc. | Retroreflective, multi-element design for a solid state directional lamp |
US9728676B2 (en) | 2011-06-24 | 2017-08-08 | Cree, Inc. | High voltage monolithic LED chip |
US10243121B2 (en) | 2011-06-24 | 2019-03-26 | Cree, Inc. | High voltage monolithic LED chip with improved reliability |
WO2012177316A1 (en) | 2011-06-24 | 2012-12-27 | Cree, Inc. | Led structure with enhanced mirror reflectivity |
US8686429B2 (en) | 2011-06-24 | 2014-04-01 | Cree, Inc. | LED structure with enhanced mirror reflectivity |
US10797201B2 (en) | 2011-06-24 | 2020-10-06 | Cree, Inc. | High voltage monolithic LED chip |
US11843083B2 (en) | 2011-06-24 | 2023-12-12 | Creeled, Inc. | High voltage monolithic LED chip with improved reliability |
US11588083B2 (en) | 2011-06-24 | 2023-02-21 | Creeled, Inc. | High voltage monolithic LED chip with improved reliability |
US10186644B2 (en) | 2011-06-24 | 2019-01-22 | Cree, Inc. | Self-aligned floating mirror for contact vias |
US10957830B2 (en) | 2011-06-24 | 2021-03-23 | Cree, Inc. | High voltage monolithic LED chip with improved reliability |
US11916165B2 (en) | 2011-06-24 | 2024-02-27 | Creeled, Inc. | High voltage monolithic LED chip |
USD700584S1 (en) | 2011-07-06 | 2014-03-04 | Cree, Inc. | LED component |
US10842016B2 (en) | 2011-07-06 | 2020-11-17 | Cree, Inc. | Compact optically efficient solid state light source with integrated thermal management |
US10490712B2 (en) | 2011-07-21 | 2019-11-26 | Cree, Inc. | Light emitter device packages, components, and methods for improved chemical resistance and related methods |
US10211380B2 (en) | 2011-07-21 | 2019-02-19 | Cree, Inc. | Light emitting devices and components having improved chemical resistance and related methods |
US10686107B2 (en) | 2011-07-21 | 2020-06-16 | Cree, Inc. | Light emitter devices and components with improved chemical resistance and related methods |
US11563156B2 (en) | 2011-07-21 | 2023-01-24 | Creeled, Inc. | Light emitting devices and components having improved chemical resistance and related methods |
WO2013032692A1 (en) | 2011-08-26 | 2013-03-07 | Cree, Inc. | White leds with emission wavelength correction |
US8558252B2 (en) | 2011-08-26 | 2013-10-15 | Cree, Inc. | White LEDs with emission wavelength correction |
US9099616B2 (en) | 2011-09-06 | 2015-08-04 | Cree, Inc. | Light emitter packages and devices having improved wire bonding and related methods |
US11024731B2 (en) | 2011-09-11 | 2021-06-01 | Cree, Inc. | Power module for supporting high current densities |
US9865750B2 (en) | 2011-09-11 | 2018-01-09 | Cree, Inc. | Schottky diode |
US10141302B2 (en) | 2011-09-11 | 2018-11-27 | Cree, Inc. | High current, low switching loss SiC power module |
US9231122B2 (en) | 2011-09-11 | 2016-01-05 | Cree, Inc. | Schottky diode |
US8664665B2 (en) | 2011-09-11 | 2014-03-04 | Cree, Inc. | Schottky diode employing recesses for elements of junction barrier array |
US8680587B2 (en) | 2011-09-11 | 2014-03-25 | Cree, Inc. | Schottky diode |
US11171229B2 (en) | 2011-09-11 | 2021-11-09 | Cree, Inc. | Low switching loss high performance power module |
US10153364B2 (en) | 2011-09-11 | 2018-12-11 | Cree, Inc. | Power module having a switch module for supporting high current densities |
US9640617B2 (en) | 2011-09-11 | 2017-05-02 | Cree, Inc. | High performance power module |
US9373617B2 (en) | 2011-09-11 | 2016-06-21 | Cree, Inc. | High current, low switching loss SiC power module |
US8618582B2 (en) | 2011-09-11 | 2013-12-31 | Cree, Inc. | Edge termination structure employing recesses for edge termination elements |
US8957440B2 (en) | 2011-10-04 | 2015-02-17 | Cree, Inc. | Light emitting devices with low packaging factor |
USD736725S1 (en) | 2011-10-26 | 2015-08-18 | Cree, Inc. | Light emitting device component |
USD705181S1 (en) | 2011-10-26 | 2014-05-20 | Cree, Inc. | Light emitting device component |
USD702653S1 (en) | 2011-10-26 | 2014-04-15 | Cree, Inc. | Light emitting device component |
US10043960B2 (en) | 2011-11-15 | 2018-08-07 | Cree, Inc. | Light emitting diode (LED) packages and related methods |
US8564004B2 (en) | 2011-11-29 | 2013-10-22 | Cree, Inc. | Complex primary optics with intermediate elements |
US9496466B2 (en) | 2011-12-06 | 2016-11-15 | Cree, Inc. | Light emitter devices and methods, utilizing light emitting diodes (LEDs), for improved light extraction |
US10008637B2 (en) | 2011-12-06 | 2018-06-26 | Cree, Inc. | Light emitter devices and methods with reduced dimensions and improved light output |
US9806246B2 (en) | 2012-02-07 | 2017-10-31 | Cree, Inc. | Ceramic-based light emitting diode (LED) devices, components, and methods |
US9786825B2 (en) | 2012-02-07 | 2017-10-10 | Cree, Inc. | Ceramic-based light emitting diode (LED) devices, components, and methods |
US9343441B2 (en) | 2012-02-13 | 2016-05-17 | Cree, Inc. | Light emitter devices having improved light output and related methods |
US9240530B2 (en) | 2012-02-13 | 2016-01-19 | Cree, Inc. | Light emitter devices having improved chemical and physical resistance and related methods |
WO2013134073A1 (en) | 2012-03-08 | 2013-09-12 | Cree, Inc. | Encapsulated led including a composite high reflectivity layer |
US10020244B2 (en) | 2012-03-27 | 2018-07-10 | Cree, Inc. | Polymer via plugs with high thermal integrity |
US11004890B2 (en) | 2012-03-30 | 2021-05-11 | Creeled, Inc. | Substrate based light emitter devices, components, and related methods |
US9735198B2 (en) | 2012-03-30 | 2017-08-15 | Cree, Inc. | Substrate based light emitter devices, components, and related methods |
US10222032B2 (en) | 2012-03-30 | 2019-03-05 | Cree, Inc. | Light emitter components and methods having improved electrical contacts |
US8895998B2 (en) | 2012-03-30 | 2014-11-25 | Cree, Inc. | Ceramic-based light emitting diode (LED) devices, components and methods |
US9538590B2 (en) | 2012-03-30 | 2017-01-03 | Cree, Inc. | Solid state lighting apparatuses, systems, and related methods |
US10134961B2 (en) | 2012-03-30 | 2018-11-20 | Cree, Inc. | Submount based surface mount device (SMD) light emitter components and methods |
WO2013151411A1 (en) | 2012-04-06 | 2013-10-10 | Cree, Inc. | Light emitting diode components and methods for emitting a desired light beam pattern |
US9188290B2 (en) | 2012-04-10 | 2015-11-17 | Cree, Inc. | Indirect linear fixture |
US8878204B2 (en) | 2012-05-04 | 2014-11-04 | Cree, Inc. | Submount based light emitter components and methods |
WO2013176832A1 (en) | 2012-05-23 | 2013-11-28 | Cree, Inc. | Tilted emission led array |
US9349929B2 (en) | 2012-05-31 | 2016-05-24 | Cree, Inc. | Light emitter packages, systems, and methods |
US10439112B2 (en) | 2012-05-31 | 2019-10-08 | Cree, Inc. | Light emitter packages, systems, and methods having improved performance |
USD749051S1 (en) | 2012-05-31 | 2016-02-09 | Cree, Inc. | Light emitting diode (LED) package |
US9590155B2 (en) | 2012-06-06 | 2017-03-07 | Cree, Inc. | Light emitting devices and substrates with improved plating |
US9685585B2 (en) | 2012-06-25 | 2017-06-20 | Cree, Inc. | Quantum dot narrow-band downconverters for high efficiency LEDs |
US11162655B2 (en) | 2012-11-08 | 2021-11-02 | Ideal Industries Lighting Llc | Modular LED lighting system |
US9291316B2 (en) | 2012-11-08 | 2016-03-22 | Cree, Inc. | Integrated linear light engine |
US9494304B2 (en) | 2012-11-08 | 2016-11-15 | Cree, Inc. | Recessed light fixture retrofit kit |
US9395056B2 (en) | 2012-11-08 | 2016-07-19 | Cree, Inc. | Suspended linear fixture |
US10309627B2 (en) | 2012-11-08 | 2019-06-04 | Cree, Inc. | Light fixture retrofit kit with integrated light bar |
US9441818B2 (en) | 2012-11-08 | 2016-09-13 | Cree, Inc. | Uplight with suspended fixture |
US9482396B2 (en) | 2012-11-08 | 2016-11-01 | Cree, Inc. | Integrated linear light engine |
US9316382B2 (en) | 2013-01-31 | 2016-04-19 | Cree, Inc. | Connector devices, systems, and related methods for connecting light emitting diode (LED) modules |
US10788176B2 (en) | 2013-02-08 | 2020-09-29 | Ideal Industries Lighting Llc | Modular LED lighting system |
US9345091B2 (en) | 2013-02-08 | 2016-05-17 | Cree, Inc. | Light emitting device (LED) light fixture control systems and related methods |
US8916896B2 (en) | 2013-02-22 | 2014-12-23 | Cree, Inc. | Light emitter components and methods having improved performance |
US10295124B2 (en) | 2013-02-27 | 2019-05-21 | Cree, Inc. | Light emitter packages and methods |
USD738026S1 (en) | 2013-03-14 | 2015-09-01 | Cree, Inc. | Linear wrap light fixture |
US10584860B2 (en) | 2013-03-14 | 2020-03-10 | Ideal Industries, Llc | Linear light fixture with interchangeable light engine unit |
US9874333B2 (en) | 2013-03-14 | 2018-01-23 | Cree, Inc. | Surface ambient wrap light fixture |
USD733952S1 (en) | 2013-03-15 | 2015-07-07 | Cree, Inc. | Indirect linear fixture |
US9215792B2 (en) | 2013-03-15 | 2015-12-15 | Cree, Inc. | Connector devices, systems, and related methods for light emitter components |
US9431590B2 (en) | 2013-03-15 | 2016-08-30 | Cree, Inc. | Ceramic based light emitting diode (LED) devices and methods |
US9897267B2 (en) | 2013-03-15 | 2018-02-20 | Cree, Inc. | Light emitter components, systems, and related methods |
USD738542S1 (en) | 2013-04-19 | 2015-09-08 | Cree, Inc. | Light emitting unit |
US9711489B2 (en) | 2013-05-29 | 2017-07-18 | Cree Huizhou Solid State Lighting Company Limited | Multiple pixel surface mount device package |
WO2014197512A1 (en) | 2013-06-04 | 2014-12-11 | Cree, Inc. | Light emitting diode dielectric mirror |
US9679981B2 (en) | 2013-06-09 | 2017-06-13 | Cree, Inc. | Cascode structures for GaN HEMTs |
WO2014200820A1 (en) | 2013-06-09 | 2014-12-18 | Cree, Inc | Cascode structures with gan cap layers |
WO2014200643A1 (en) | 2013-06-09 | 2014-12-18 | Cree, Inc. | Cascode structures for gan hemts |
EP3522231A1 (en) | 2013-06-09 | 2019-08-07 | Cree, Inc. | Multi-gate transistor |
WO2014200753A2 (en) | 2013-06-09 | 2014-12-18 | Cree, Inc. | Recessed field plate transistor structures |
US9847411B2 (en) | 2013-06-09 | 2017-12-19 | Cree, Inc. | Recessed field plate transistor structures |
US10615324B2 (en) | 2013-06-14 | 2020-04-07 | Cree Huizhou Solid State Lighting Company Limited | Tiny 6 pin side view surface mount LED |
USD740453S1 (en) | 2013-06-27 | 2015-10-06 | Cree, Inc. | Light emitter unit |
USD739565S1 (en) | 2013-06-27 | 2015-09-22 | Cree, Inc. | Light emitter unit |
US9461024B2 (en) | 2013-08-01 | 2016-10-04 | Cree, Inc. | Light emitter devices and methods for light emitting diode (LED) chips |
USD758976S1 (en) | 2013-08-08 | 2016-06-14 | Cree, Inc. | LED package |
WO2015035181A1 (en) | 2013-09-05 | 2015-03-12 | Cree, Inc. | Light emitting diode devices and methods with reflective material for increased light output |
US10900653B2 (en) | 2013-11-01 | 2021-01-26 | Cree Hong Kong Limited | LED mini-linear light engine |
US10100988B2 (en) | 2013-12-16 | 2018-10-16 | Cree, Inc. | Linear shelf light fixture with reflectors |
USD750308S1 (en) | 2013-12-16 | 2016-02-23 | Cree, Inc. | Linear shelf light fixture |
US10612747B2 (en) | 2013-12-16 | 2020-04-07 | Ideal Industries Lighting Llc | Linear shelf light fixture with gap filler elements |
US10234119B2 (en) | 2014-03-24 | 2019-03-19 | Cree, Inc. | Multiple voltage light emitter packages, systems, and related methods |
USD757324S1 (en) | 2014-04-14 | 2016-05-24 | Cree, Inc. | Linear shelf light fixture with reflectors |
USD790486S1 (en) | 2014-09-30 | 2017-06-27 | Cree, Inc. | LED package with truncated encapsulant |
US9826581B2 (en) | 2014-12-05 | 2017-11-21 | Cree, Inc. | Voltage configurable solid state lighting apparatuses, systems, and related methods |
WO2016118428A1 (en) | 2015-01-21 | 2016-07-28 | Cree, Inc. | High efficiency leds and methods of manufacturing |
US10658546B2 (en) | 2015-01-21 | 2020-05-19 | Cree, Inc. | High efficiency LEDs and methods of manufacturing |
USD777122S1 (en) | 2015-02-27 | 2017-01-24 | Cree, Inc. | LED package |
USD783547S1 (en) | 2015-06-04 | 2017-04-11 | Cree, Inc. | LED package |
EP4407079A2 (en) | 2015-09-24 | 2024-07-31 | Pallidus, Inc. | Vapor deposition apparatus and techniques using high purity polymer derived silicon carbide |
WO2017053883A1 (en) | 2015-09-24 | 2017-03-30 | Melior Innovations, Inc. | Vapor deposition apparatus and techniques using high purity polymer derived silicon carbide |
USD823492S1 (en) | 2016-10-04 | 2018-07-17 | Cree, Inc. | Light emitting device |
US10804251B2 (en) | 2016-11-22 | 2020-10-13 | Cree, Inc. | Light emitting diode (LED) devices, components and methods |
US10672957B2 (en) | 2017-07-19 | 2020-06-02 | Cree, Inc. | LED apparatuses and methods for high lumen output density |
US11094852B2 (en) | 2017-08-25 | 2021-08-17 | Cree Huizhou Solid State Lighting Company Limited | Multiple LED light source lens design in an integrated package |
US11056625B2 (en) | 2018-02-19 | 2021-07-06 | Creeled, Inc. | Clear coating for light emitting device exterior having chemical resistance and related methods |
WO2020252234A1 (en) | 2019-06-13 | 2020-12-17 | Cree, Inc. | High electron mobility transistors and power amplifiers including said transistors having improved performance and reliability |
US10923585B2 (en) | 2019-06-13 | 2021-02-16 | Cree, Inc. | High electron mobility transistors having improved contact spacing and/or improved contact vias |
US10971612B2 (en) | 2019-06-13 | 2021-04-06 | Cree, Inc. | High electron mobility transistors and power amplifiers including said transistors having improved performance and reliability |
US11616136B2 (en) | 2019-06-13 | 2023-03-28 | Wolfspeed, Inc. | High electron mobility transistors and power amplifiers including said transistors having improved performance and reliability |
WO2021146229A1 (en) | 2020-01-14 | 2021-07-22 | Cree, Inc. | Group iii hemt and capacitor that share structural features |
WO2021202674A2 (en) | 2020-04-03 | 2021-10-07 | Cree, Inc. | Rf amplifier devices and methods of manufacturing |
US12166003B2 (en) | 2020-04-03 | 2024-12-10 | Macom Technology Solutions Holdings, Inc. | RF amplifier devices including top side contacts and methods of manufacturing |
EP4250356A2 (en) | 2020-04-03 | 2023-09-27 | Wolfspeed, Inc. | Rf amplifier devices and methods of manufacturing |
US12034419B2 (en) | 2020-06-01 | 2024-07-09 | Macom Technology Solutions Holdings, Inc. | RF amplifiers having shielded transmission line structures |
WO2021247276A2 (en) | 2020-06-01 | 2021-12-09 | Cree, Inc. | Methods for pillar connection on frontside and passive device integration on backside of die |
US11356070B2 (en) | 2020-06-01 | 2022-06-07 | Wolfspeed, Inc. | RF amplifiers having shielded transmission line structures |
WO2021257853A1 (en) | 2020-06-17 | 2021-12-23 | Cree, Inc. | Multi-stage decoupling networks integrated with on-package impedance matching networks for rf power amplifiers |
US11533025B2 (en) | 2020-06-18 | 2022-12-20 | Wolfspeed, Inc. | Integrated doherty amplifier with added isolation between the carrier and the peaking transistors |
WO2021262538A1 (en) | 2020-06-26 | 2021-12-30 | Cree, Inc. | Radio frequency transistor amplifier package |
US11581859B2 (en) | 2020-06-26 | 2023-02-14 | Wolfspeed, Inc. | Radio frequency (RF) transistor amplifier packages with improved isolation and lead configurations |
WO2022055776A1 (en) | 2020-09-11 | 2022-03-17 | Cree, Inc. | Rf transistor amplifier package |
US11837457B2 (en) | 2020-09-11 | 2023-12-05 | Wolfspeed, Inc. | Packaging for RF transistor amplifiers |
US11887945B2 (en) | 2020-09-30 | 2024-01-30 | Wolfspeed, Inc. | Semiconductor device with isolation and/or protection structures |
WO2022093783A1 (en) | 2020-10-30 | 2022-05-05 | Wolfspeed, Inc. | Transistor packages with improved die attach |
WO2022245886A1 (en) | 2021-05-20 | 2022-11-24 | Wolfspeed, Inc. | Methods of manufacturing high electron mobility transistors having improved performance |
US12009417B2 (en) | 2021-05-20 | 2024-06-11 | Macom Technology Solutions Holdings, Inc. | High electron mobility transistors having improved performance |
US12015075B2 (en) | 2021-05-20 | 2024-06-18 | Macom Technology Solutions Holdings, Inc. | Methods of manufacturing high electron mobility transistors having a modified interface region |
US11842937B2 (en) | 2021-07-30 | 2023-12-12 | Wolfspeed, Inc. | Encapsulation stack for improved humidity performance and related fabrication methods |
WO2023009405A1 (en) | 2021-07-30 | 2023-02-02 | Wolfspeed, Inc. | Encapsulation stack on a transistor and fabrication method thereof |
WO2023034773A1 (en) | 2021-09-03 | 2023-03-09 | Wolfspeed, Inc. | Metal pillar connection topologies in a radio frequency transistor amplifier die for heterogeneous packaging |
WO2023043524A1 (en) | 2021-09-16 | 2023-03-23 | Wolfspeed, Inc. | Semiconductor device incorporating a substrate recess |
US12218202B2 (en) | 2021-09-16 | 2025-02-04 | Wolfspeed, Inc. | Semiconductor device incorporating a substrate recess |
WO2024064324A1 (en) | 2022-09-23 | 2024-03-28 | Wolfspeed, Inc. | Barrier structure for dispersion reduction in transistor devices |
WO2024064326A1 (en) | 2022-09-23 | 2024-03-28 | Wolfspeed, Inc. | Barrier structure for sub-100 nanometer gate length devices |
WO2024076890A1 (en) | 2022-10-06 | 2024-04-11 | Wolfspeed, Inc. | Implanted regions for semiconductor structures with deep buried layers |
WO2024163583A1 (en) | 2023-02-03 | 2024-08-08 | Wolfspeed, Inc. | Semiconductor device having semiconductor structure with polarity inverting layer |
WO2024163587A1 (en) | 2023-02-03 | 2024-08-08 | Wolfspeed, Inc. | Semiconductor structure for improved radio frequency thermal management |
WO2024186528A1 (en) | 2023-03-06 | 2024-09-12 | Wolfspeed, Inc. | Field reducing structures for nitrogen-polar group iii-nitride semiconductor devices |
WO2024258898A1 (en) | 2023-06-14 | 2024-12-19 | Wolfspeed, Inc. | Rf amplifier package and manufacturing method thereof |
WO2025014803A1 (en) | 2023-07-07 | 2025-01-16 | Macom Technology Solutions Holdings, Inc. | Semiconductor die with group iii nitride-based amplifier circuits |
Also Published As
Publication number | Publication date |
---|---|
EP0389533A1 (en) | 1990-10-03 |
EP0712150B1 (en) | 2002-02-06 |
DE3856514T2 (en) | 2003-02-13 |
EP1143493A3 (en) | 2004-01-02 |
EP1143493A2 (en) | 2001-10-10 |
EP0389533B2 (en) | 2004-12-22 |
EP0712150A1 (en) | 1996-05-15 |
EP0389533A4 (en) | 1992-12-09 |
WO1989004055A1 (en) | 1989-05-05 |
DE3855539D1 (en) | 1996-10-17 |
DE3855539T3 (en) | 2005-06-30 |
DE3856514D1 (en) | 2002-03-21 |
EP0389533B1 (en) | 1996-09-11 |
US4866005A (en) | 1989-09-12 |
JP2000302600A (en) | 2000-10-31 |
JPH03501118A (en) | 1991-03-14 |
CA1331730C (en) | 1994-08-30 |
KR890702244A (en) | 1989-12-23 |
DE1143493T1 (en) | 2002-11-28 |
JP3165685B2 (en) | 2001-05-14 |
DE3855539T2 (en) | 1997-01-23 |
KR970008332B1 (en) | 1997-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE34861E (en) | 1995-02-14 | Sublimation of silicon carbide to produce large, device quality single crystals of silicon carbide |
US5968261A (en) | 1999-10-19 | Method for growing large silicon carbide single crystals |
US20220002906A1 (en) | 2022-01-06 | SiC Single Crystal Sublimation Growth Apparatus |
US5746827A (en) | 1998-05-05 | Method of producing large diameter silicon carbide crystals |
RU2160327C2 (en) | 2000-12-10 | MONOCRYSTAL SiC AND METHOD OF ITS PRODUCTION |
US6391109B2 (en) | 2002-05-21 | Method of making SiC single crystal and apparatus for making SiC single crystal |
US4623425A (en) | 1986-11-18 | Method of fabricating single-crystal substrates of silicon carbide |
US4556436A (en) | 1985-12-03 | Method of preparing single crystalline cubic silicon carbide layers |
EP1852527A1 (en) | 2007-11-07 | Silicon carbide single crystal, silicon carbide single crystal wafer, and process for producing the same |
JP4052678B2 (en) | 2008-02-27 | Large silicon carbide single crystal growth equipment |
US6554897B2 (en) | 2003-04-29 | Method of producing silicon carbide |
JPH0788274B2 (en) | 1995-09-27 | Method for growing SiC single crystal |
JP3590464B2 (en) | 2004-11-17 | Method for producing 4H type single crystal silicon carbide |
JP2001509768A (en) | 2001-07-24 | High-resistance silicon carbide substrate for high-power microwave equipment |
JPH0639360B2 (en) | 1994-05-25 | Method for growing 6H-type and 4H-type silicon carbide single crystals |
US3235418A (en) | 1966-02-15 | Method for producing crystalline layers of high-boiling substances from the gaseous phase |
JP4053125B2 (en) | 2008-02-27 | Method for synthesizing SiC single crystal |
JP2000219594A (en) | 2000-08-08 | Crucible, crystal growth device and crystal growth method |
US20020071803A1 (en) | 2002-06-13 | Method of producing silicon carbide power |
JP2002012500A (en) | 2002-01-15 | Method of and device for producing silicon carbide single crystal, and silicon carbide single crystal |
JPH09142995A (en) | 1997-06-03 | Method for producing p-type single crystal silicon carbide |
JP2739469B2 (en) | 1998-04-15 | Method for growing SiC film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
1996-12-03 | FEPP | Fee payment procedure |
Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS - SMALL BUSINESS (ORIGINAL EVENT CODE: SM02); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
1997-03-12 | FPAY | Fee payment |
Year of fee payment: 8 |
1997-12-09 | FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
2000-12-04 | FEPP | Fee payment procedure |
Free format text: PAT HLDR NO LONGER CLAIMS SMALL ENT STAT AS SMALL BUSINESS (ORIGINAL EVENT CODE: LSM2); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
2000-12-04 | REFU | Refund |
Free format text: REFUND - PAYMENT OF MAINTENANCE FEE, 12TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: R285); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
2001-02-22 | FPAY | Fee payment |
Year of fee payment: 12 |
2005-03-08 | CC | Certificate of correction |