USRE35816E - Method and apparatus for three-dimensional non-contact shape sensing - Google Patents
- ️Tue Jun 02 1998
USRE35816E - Method and apparatus for three-dimensional non-contact shape sensing - Google Patents
Method and apparatus for three-dimensional non-contact shape sensing Download PDFInfo
-
Publication number
- USRE35816E USRE35816E US08/415,126 US41512695A USRE35816E US RE35816 E USRE35816 E US RE35816E US 41512695 A US41512695 A US 41512695A US RE35816 E USRE35816 E US RE35816E Authority
- US
- United States Prior art keywords
- iaddend
- iadd
- relation
- scanner
- coordinate system Prior art date
- 1990-10-15 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title abstract description 18
- 238000003491 array Methods 0.000 abstract 1
- 238000005094 computer simulation Methods 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 27
- 238000005259 measurement Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 240000007320 Pinus strobus Species 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000001093 holography Methods 0.000 description 1
- 210000004373 mandible Anatomy 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/002—Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/46—Indirect determination of position data
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/89—Lidar systems specially adapted for specific applications for mapping or imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4811—Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
- G01S7/4813—Housing arrangements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2046—Tracking techniques
- A61B2034/2055—Optical tracking systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
- A61B2034/2068—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/86—Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/16—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
- G01S5/163—Determination of attitude
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/481—Constructional features, e.g. arrangements of optical elements
- G01S7/4817—Constructional features, e.g. arrangements of optical elements relating to scanning
Definitions
- This invention relates to optical mensuration devices in general, and in particular to an improved method and apparatus for the optical mensuration of the surface shape of a three-dimensional object.
- mensuration systems exist in the prior art for sensing the locations of surface points on three-dimensional solid objects in relation to a predefined fixed reference frame or coordinate system for input into an application system, such as a computer or other device for measurement or analysis.
- an application system such as a computer or other device for measurement or analysis.
- one type of mensuration system that can be used to determine the location of a single point on the surface of an object includes the use of a narrow projected beam of light to illuminate a tiny area or spot on the surface of the object.
- a lens in the system is positioned on an optical axis oblique to the axis of the projected beam and is used to focus the reflected light from the illuminated spot onto a photoelectric sensor or onto a linear array of sensors.
- the location of the illuminated point with respect to the predetermined reference frame can be determined by computing the distance of the illuminated surface point from the origin of the light beam which, of course, is known. Examples of such point illumination optical mensuration systems are found in the following U.S. Pat. Nos.
- a variant of the above-described systems projects a thin beam of light in a single plane which, of course, is incident as a line, as opposed to a point, on the surface of the object being scanned.
- the intersection of this plane of light with the object's surface thus forms a brightly illuminated contour line.
- a two-dimensional electronic video camera or similar device whose optical axis is not coincident with the axis of the illuminating beam, detects the image of this contour line. Again, since the optical axis of the camera is not coincident with the axis of the illuminating light beam, it views the contour line from an oblique angle, thus allowing location of the contour line to be precisely determined in relation to the known position of the beam projector.
- either the measuring apparatus or the object is panned along (or rotated about) an axis through the object. While these line scanning devices share similar drawbacks with the point scanning devices previously described, they do operate much faster, gathering a larger number of sample points during a given scanning interval. Unfortunately, the accuracy of each surface sample point is limited by the relatively low resolution of the two-dimensional charge coupled device (CCD) sensors found in most video cameras, which is typically in the range of 1 part in 512. Even worse, these systems still suffer the disadvantages of the point scanning systems in that either the scanning head or the object must be relocated or re-oriented to completely and accurately record all of the surface details of an object.
- CCD charge coupled device
- Still other mensuration systems track the positions of specific points in three-dimensional space by using small radiating emitters which move relative to fixed receiving sensors, or vice versa. Such radiation emitters may take the form of sound, light, or nutating magnetic fields.
- Another mensuration system uses a pair of video cameras plus a computer to calculate the position of homologous points in the pair of stereographic video images. See, for example, U.S. Pat. Nos. 4,836,778 and 4,829,373.
- the points tracked by this system may be passive reflectors or active light sources. The latter simplifies finding and distinguishing the points.
- the paper by Fuchs, et al, (1978) describes a basic method of tracking a light source in three-dimensional space.
- the method is based on using three or more one-dimensional sensors, each consisting of a cylindrical lens and a linear array of photodetectors, such as charge coupled devices (CCDs), to determine the location of the currently radiating source.
- CCDs charge coupled devices
- the scanning head of such an improved system should be hand-held to allow the operator to easily move the scanning beam over some of the more complex surface details of the object while dispensing with the need for the expensive, cumbersome, and high precision scanning head positioning apparatus currently required.
- Such a hand-held scanner must also provide the accuracy and precision associated with currently available optical mensuration systems, that is, it must be able to accurately measure and precisely locate the surface details of the object in relation to the predetermined reference frame.
- an object of the present invention to provide an improved, non-contact, three-dimensional optical mensuration system capable of accurately sensing the surface shapes of three-dimensional objects without the numerous drawbacks associated with the prior art systems.
- a still further object of this invention is to provide a portable, hand-held, and hand-maneuverable scanner for the three-dimensional, non-contact shape-scanning and/or mensuration of three-dimensional objects.
- the apparatus for three-dimensional, non-contact shape sensing of this invention may comprise a hand held scanning head with a light source for projecting a scanning light beam over the surface of the object being scanned.
- Two spot detectors mounted on the hand-held scanning head are operative to detect the position of the illuminated spot on the surface of the object in relation to the scanning head.
- a coordinate computer connected to the scanning head and to the pilot light detectors receives data from the spot detectors and calculates the position of the illuminated spot with respect to the scanning head.
- the coordinate computer then calculates the various positions and orientations of the scanning head in relation to the predetermined coordinate system on a real time basis from the data received from the pilot light detectors.
- the coordinate computer calculates the position of the illuminated spot in relation to the predetermined coordinate system by correlating the position of the illuminated spot in relation to the scanning head with the position of the scanning head in relation to the predetermined coordinate system.
- the method of this invention includes the steps of sweeping a scanning beam projected from the hand held scanning head over the surface of the object being scanned to illuminate a spot on the surface of the object, detecting the position of the illuminated spot with respect to the scanning head, detecting the position of the scanning head in relation to a predetermined coordinate system, and computing the position of the illuminated spot in relation to the predetermined coordinate system by correlating the position of the illuminated spot in relation to the scanning head with the position of the scanning head in relation to the predetermined coordinate system.
- FIG. 1 is a block diagram of the optical mensuration apparatus of the present invention showing the major components
- FIG. 2 is a perspective view of the hand held scanning head of the present invention, showing how it can be positioned to direct the scanning beam onto the surface of the object being scanned;
- FIG. 3 is a plan view of the scanning head of the present invention with the top surface broken away to more clearly show the arrangement of the optical projecting apparatus and the spot detectors;
- FIG. 4 is a schematic perspective representation of one of the one-dimensional photodetectors of the present invention.
- FIG. 5 is a schematic block diagram of the optical mensuration apparatus of the present invention showing in detail the functions and operations of the control unit and coordinate computer;
- FIG. 6 is a graph of signal strength vs. location on the detector surface for a typical light detector used by the optical mensuration apparatus of the present invention.
- the optical mensuration apparatus 10 of the present invention is shown schematically in FIG. 1 and comprises a hand-held or moveable scanning head 12 housing light beam projecting apparatus 14 (not shown in FIG. 1, but shown in FIG. 3), two one-dimensional spot sensors or detectors 16, 18, and three pilot light emitters 20, 22, and 24.
- Three remotely located, one-dimensional pilot light sensors 26, 28, and 30 are mounted in fixed, spaced-apart relation to each other and are located at known positions with respect to a predetermined reference coordinate system or frame 80. These three pilot sensors 26, 28, and 30 sense the light projected by the individual pilot light emitters 20, 22, and 24 and generate electrical output signals from which are derived the location of the scanning head 12 with respect to the fixed coordinate system 80.
- a control unit 32 connected to the moveable scanning head 12 via data line 46 and connected to the remotely located sensors 26, 28, and 30 via data lines 48, 50, and 52, respectively, synchronizes the time multiplexing of the three pilot emitters 20, 22, and 24, controls the operation of the beam projecting apparatus 14, and receives data from the two spot sensors 16, 18 on scanning head 12, as will be completely described below.
- a coordinate computer 34 connected to control unit 32 by data line 54 calculates the three-dimensional spatial coordinates of the illuminated spot 36 in relation to the predetermined coordinate reference frame 80, which position information can then be used by an application system 82.
- the light beam projecting apparatus 14 housed in the hand held scanner head 12 directs a narrow beam of light or scanning beam 42 onto the surface 40 of object 38 to illuminate a small portion or spot 36 on the surface 40.
- Reflected light 43 from illuminated spot 36 is detected by the two one-dimensional spot sensors or detectors 16, 18 mounted on scanner head 12. These sensors 16, 18 sense the location of the illuminated spot 36 with respect to the position of the moveable scanner 12 by measuring the relative angular parallax of the reflected light 43 from illuminates spot 36.
- the spatial position and orientation of the moveable scanner head 12 at that same instant are determined by measuring the locations of the three time multiplexed pilot light emitters 20, 22, and 24 relative to the known positions of the pilot light sensors 26, 28, and 30.
- the parallax data from each of the sensors 16, 18, 26, 28, and 30 are ultimately fed to the coordinate computer 34, which determines the position of the illuminated spot 36 with respect to the predetermined reference frame by correlating the position of the illuminated spot 36 in relation to the scanner head 12 with the position of the scanner 12 in relation to the fixed pilot light sensors 26, 28, and 30, which are positioned in relation to the predetermined reference frame 80 at precisely predetermined locations at conveniently spaced distances from each other and from the object 38 and the hand-held scanner 12. If the computer can make these location or position calculations very fast, the operation can be performed over and over again in sequence as the scanner head 12 moves in relation to the object, thus resulting in effectively real time mensuration of the object as the scanner head 12 moves.
- the optical mensuration apparatus 10 of the present invention dispenses with the need for high precision head positioning apparatus and the complex and expensive mechanical structure typically associated therewith. Further, the hand-held scanner, 12 is easily manipulated by the operator to direct the scanning beam 42 over complex, interior, or blind surface details, which would otherwise be difficult to scan, thus speeding the scanning operation.
- the hand-held scanner head 12 houses the light beam projecting apparatus 14 (FIG. 3), the two one-dimensional spot sensors or detectors 16, 18, and the three pilot light emitters 20, 22, and 24.
- a handle 44 allows the scanner head 12 to be easily manipulated by the operator to guide the scanning beam 42 over the various shapes and hidden contours of the surface 40 of object 38.
- the light beam projecting apparatus comprises a helium-neon (He-Ne) laser 56 to generate collimated scanning beam 42.
- He-Ne helium-neon
- other devices could be used to produce the spot-like scanning beam as would be readily apparent to persons having ordinary skill in the art.
- laser 56 could be replaced by a light emitting diode (LED) and associated collimating lens.
- LED light emitting diode
- a planar mirror 58 which could be optionally pivotally mounted as shown in FIG.
- a rotating many-faceted mirror 60 which directs, or scans beam 42 over the surface 40 in a single plane relative to the scanner 12 (i.e., the plane of the paper in FIG. 3).
- the number of sides of the rotating, many-faceted mirror 60 determines the angle through which scanning beam 42 sweeps.
- the pentagonal mirror shown in FIG. 3 will sweep the beam through a 144-degree angle. More sides will sweep the beam through smaller angles.
- other scanning paths are possible by using irregularly shaped mirrors or multiple rotating mirrors, and the present invention should not be regarded as limited by the particular scanning apparatus shown and described herein.
- the rotating mirror 60 in the preferred embodiment 10 is rotated in the direction indicated by arrow 62 by a simple, unsynchronized motor (not shown).
- planar mirror 58 may be optionally pivotally mounted such that it can be swung out of the beam path to position 58' (shown in broken lines in FIG. 3) to inhibit the scanning action of the beam 42. With the mirror at position 58' the beam 42 will exit straight out aperture 64 in scanner 12 which can then be used as a point-type scanner or as a noncontact pointer for identifying some single point of interest on the surface 40 of object 38.
- the details of the one-dimensional spot detectors 16, 18 are best understood by referring to FIG. 4. Actually, all of the one-dimensional sensors 16, 18, 26, 28, and 30 used in the preferred embodiment 10 of the present invention are identical to the one-dimensional spot detector 16 in every respect. Therefore, for the purpose of giving a detailed description of this embodiment, only the sensor 16 is shown and described in detail since the remaining sensors 18, 26, 28, and 30 have identical features.
- the one-dimensional sensor 16 comprises a cylindrical lens 66 that has a longitudinal axis 74 which is orthogonal to the optical axis 76 of the sensor 16.
- a linear photodetector 68 such as a charge coupled device (CCD) with several thousand elements, or a similar device capable of linear light detection with an elongated aperture 78 is positioned in such a manner that optical axis 76 passes through aperture 78 and such that the long axis of aperture 78 is orthogonal to the plane containing the longitudinal axis 74 of lens 66.
- the incident light beam 43 reflected from illuminated spot 36 is then focused by the cylindrical lens 66 into a real image line 72 on the surface 70 of linear photodetector 68, which is a characteristic of this type of lens.
- the CCD detector 68 then generates a signal, such as the one shown in FIG. 6, that is related to the position of real image line 72 on the surface 70 of photodetector 68, thus characterizing the location of the image itself. That is, those elements of the detector 68 illuminated by the real image line 72 will generate a strong signal, while those not illuminated will generate a weak signal. Thus, a graph of signal strength vs. location on the surface of the CCD will resemble the signal peak curve 100 shown in FIG. 6. Note that the "zero" signal level 102 is never quite zero due to the effects of background light and other imperfections in the sensor. In any event, since the image of illuminated spot 36 is focused into line 72, only the horizontal displacement of spot 36 from optical axis 76 is measured by detector 68, hence the designation "one-dimensional detector.”
- a single one-dimensional detector 16 can only locate the plane on which spot 36 particular beam lies, but detector 16 cannot, by itself, determine the unique location or position in space on which point 36 is located. To precisely locate the location in space of point 36 would require three such detectors postitioned in spaced-apart relation to each other, since the intersection of three planes defines a point. However, if the plane containing the aperture 78 of detector 16 is in the same plane as the scanning beam 42, only two detectors are required to uniquely locate the position of spot 36. Therefore, in the preferred embodiment 10 of the present invention, the apertures 78 of the respective photodetectors 16, 18, lie in the same plane as the scanning beam 42, thereby allowing the exact point in space of illuminated spot 36 to be determined with only two detectors 16, 18.
- the three pilot light emitters 20, 22, and 24 can be high intensity light emitting diodes (LEDs), which are preferably time multiplexed or strobed by control unit 32 in a predetermined manner such that only one pilot light LED is "on" or emitting light at any one time.
- the light emitted from any one of these emitters 20, 22, and 24 is detected by each of the three pilot light detectors 26, 28, and 30, which then determine the position of that particular emitter in relation to the known positions of the detectors 26, 28, and 30 at the instant in time that it is strobed or illuminated.
- the pilot light detectors 26, 28, and 30 are mounted so that their optical axes are not collinear.
- two pilot light detectors such as detectors 26, 30 in FIG. 1, are situated such that their respective axes 74 (FIG. 4) are in parallel spaced-apart relation, with the third detector 28 situated between the first two, but with its axis 74 perpendicular to the first two.
- each of the detectors 26, 28, and 30 then determine a unique plane in which the given pilot emitter lies, the intersection of which defines the exact location of that illuminated emitter.
- the optical mensuration system 10 of the present invention determines the orientation of the scanning head 12 in three-dimensional space by using the three (3) pilot emitters 20, 22, and 24, whose relative positions on the scanning head 12 are fixed and known. Consequently, when each of the emitters 20, 22, and 24 are rapidly turned on in sequence, the sensors 26, 28, and 30 can detect the exact position of each emitter in turn, thus determine the exact location and orientation of the scanning head 12.
- the detectors 26, 28, 30 locate the position of that particular illuminated pilot light only. If the strobe rate, that is, the frequency at which the emitters 20, 22, 24 are turned on and off in sequence, is fast enough, the detectors 26, 28, and 30 can, for all practical purposes, determine the position and orientation of the scanning head 12 at any instant in time.
- the detectors 26, 28, 30, need only distinguish which of the pilot light emitters 20, 22, 24 is “on” or illuminated at any one time. In the preferred embodiment 10 of the present invention, this function is accomplished by strobing or illuminating each of the emitters 20, 22, 24 in sequence.
- other methods could be used to allow the detectors 26, 28, 30 to distinguish the respective pilot light emitters 20, 22, 24 from one another. For example, different colors of light could be used in conjunction with detectors capable of distinguishing those particular colors or wavelengths of light.
- the respective pilot light emitters 20, 22, 24 could be modulated with a unique "tone" for each emitter.
- the control unit 32 or coordinate computer 34 could then be programmed to demodulate the tone, thus determine to which particular emitter 20, 22, or 24 the position signal belongs. Numerous other methods of distinguishing the pilot light emitters 20, 22, and 24 are possible and would be readily apparent to persons having ordinary skill in the art. Therefore, the present invention should not be regarded as limited to the particular strobing method shown and described herein.
- control unit 32 supplies power to the light beam projecting apparatus or source 14, the beam spot sensors 16, 18, the pilot light emitters or sources 20, 22, and 24, and the pilot light sensors 26, 28, and 30.
- the control and synchronization unit 84 and light source sequencer 86 time multiplexes or strobes the beam projecting apparatus 14 and the pilot lights 20, 22, and 24 individually, as described above, so that the position and orientation of the scanning head 12 can be determined from the signals received from pilot light sensors 26, 28 and 30.
- the angular data signals received from the pilot light sensors 26, 28, and 30 and from the spot sensors 16, 18, are converted by analog to digital converter 88. Actually, five analog to digital converters are used, as shown in FIG. 5, but only one is labeled and described herein for brevity, since the other four analog to digital converters are identical and are used to convert the signals from sensors 28 and 30 and 16 and 18, respectively.
- the control and synchronization unit 84 also controls five switches, of which switch 90 is typical, which store all digital data received from the sensors 26, 28, and 30 and 16 and 18 when the pilot light emitters and scanning beam 42 are "off,” and stores these data in background memory 92. Then, when the pilot light sources and scanning beam are illuminated in sequence by light source sequencer 86, the control and synchronization unit 84 changes the state of switch 90, which then redirects the data from the five sensors to the subtraction unit 94. Subtraction unit 94 substracts the "background" data from the illuminated data, thus resulting in a signal relatively free from background noise signal 102 (FIG. 6), since it has been subtracted from the signal.
- the first-last over-threshold unit 96 computes the location of the real image line 72 on the CCD sensor 68 (FIG. 4) by measuring the locations of the edges 104, 106 of the signal blip 100 (FIG. 6) generated by the CCD sensor based on a predetermined threshold signal level. The first-last over-threshold unit 96 then averages the distance between the two edges to find the center of the signal peak, which is often dipped, as shown in FIG. 6. This particular method of determining the center of the signal peak is well known in the art and will not be described in further detail.
- control unit 32 (FIG. 5) transmits the position data to the coordinate computer 34. That is, when the coordinate computer 34 is ready to compute the current location of the illuminated spot 36 on the object, the latest angular data from all sensors are provided for analyzation. If the spot sensors 16, 18, or the pilot light sensors 26, 28, and 30, generate data faster than the control unit 32 can process them, the angular data are simply discarded.
- the coordinate computer 34 calculates one-dimensional positions for each light source based on the location of the signal peak from each respective sensor. These one-dimensional positions are then used to calculate the three-dimensional spatial coordinates for the illuminated spot 36 and for the scanning head 12 in relation to the predetermined coordinate system 80, by coordinate transformation methods which are well-known in the art.
- the output from the coordinate computer 34 can be in any form desired by the operator or required by the application system 80, such as XYZ coordinate triples based upon some predetermined stationary rectangular coordinate system.
- the operation of the optical mensuration apparatus of the present invention is as follows. Upon illumination of a spot 36 on the surface 40 of object 38, the two spot sensors 16, 18 inside the scanner head 12 sense the angular position of the illuminated spot 36 at a given instant in time. The signals from these spot sensors 16, 18, are directed to the control unit 32 via data line 46. Next, the pilot light detectors 26, 28, and 30 are used to sense the individual positions of the three pilot light emitters 20, 22, 24 in sequence as described above. That is, each pilot light detector 26, 28, 30, measures the angle of rays from each of three pilot light emitters 20, 22, 24, mounted on the scanner 12. The angular data from each of these sensors 26, 28, and 30 are also directed to control unit 32 via data lines 48, 50, and 52.
- control unit 32 converts the angular data from each of the sensors 16, 18, 26, 28, and 30, which is in analog form, to digital data and tags these data with information identifying their respective sources. These converted digital data are then processed by removing the background noise and by using known signal detection methods to determine the center of the signal peak, thus the location of the image line 72 on the detector 68. These position locations of the centers of the respective signal peaks from each detector 16, 18, 26, 28, and 30 are then directed to coordinate computer 34 via data line 54, which then computes the current location of the illuminated spot 36 with respect to the predetermined coordinate system 80. Sequential calculations and beam spot position determination can be made as fast as the computer can do so, thus many such points on the surface of the object can be determined as they are scanned almost on a real time basis. These position data can be stored in computer memory, recalled, and correlated together to produce an image of the object in precise reproduction detail, or various points or other features on the object can be mensurated or used in any manner desired.
- cylindrical lenses could be used which have been longitudinally curved along an arc with a radius equal to the focal length of the lens.
- the surfaces of the photodetectors could also be curved, thus allowing the images of distant light sources to remain in sharp focus regardless of their positions.
- Various measurements of the detector outputs are also possible. For example, the angle of peak intensity, the intensity-weighted average, or the average of the minimum and maximum angles where the intensity is over some predetermined threshold value could be used.
- numerous enhancements of the digital data are possible by programming the coordinate computer to make the appropriate enhancements, as would be obvious to those persons having ordinary skill in the art.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
This method and apparatus optically samples numerous points on the surface of an object to remotely sense its shape utilizing two stages. The first stage employs a moveable non-contact scanner, which in normal operation sweeps a narrow beam of light across the object, illuminating a single point of the object at any given instant in time. The location of that point relative to the scanner is sensed by multiple linear photodetector arrays behind lenses in the scanner. These sense the location by measuring the relative angular parallax of the point. The second stage employs multiple fixed but widely separated photoelectronic sensors, similar to those in the scanner, to detect the locations of several light sources affixed to the scanner, thereby defining the absolute spatial positions and orientations of the scanner. Individual light sources are distinguished by time-multiplexing their on-off states. A coordinate computer calculates the absolute spatial positions where the scanner light beam is incident on the object at a given instant and continuously on a real time basis to generate a computer model of the object.
Description
1. Field of the Invention
This invention relates to optical mensuration devices in general, and in particular to an improved method and apparatus for the optical mensuration of the surface shape of a three-dimensional object.
2. Brief Description of the Prior Art
Numerous mensuration systems exist in the prior art for sensing the locations of surface points on three-dimensional solid objects in relation to a predefined fixed reference frame or coordinate system for input into an application system, such as a computer or other device for measurement or analysis. For example, one type of mensuration system that can be used to determine the location of a single point on the surface of an object includes the use of a narrow projected beam of light to illuminate a tiny area or spot on the surface of the object. A lens in the system is positioned on an optical axis oblique to the axis of the projected beam and is used to focus the reflected light from the illuminated spot onto a photoelectric sensor or onto a linear array of sensors. Since the optical axis of the lens and sensor assembly in that type of system is not coincident with the axis of the projected beam, the position of the image of the illuminated spot on the sensor will depend on the location of the particular illuminated surface point with respect to the illuminating beam. Therefore, the location of the illuminated point with respect to the predetermined reference frame can be determined by computing the distance of the illuminated surface point from the origin of the light beam which, of course, is known. Examples of such point illumination optical mensuration systems are found in the following U.S. Pat. Nos. 4,660,970; 4,701,049; 4,705,395; 4,709,156; 4,733,969; 4,743,770; 4,753,528; 4,761,072; 4,764,016; 4,782,239; and 4,825,091.
Of course, to determine the overall shape of an object, numerous individual surface points, along with their respective locations, must be measured and recorded. Such optical measurement of multiple surface points of an object is typically accomplished by mounting the beam projector on a moveable scanning head capable of being moved from point-to-point with very high precision, such as the type commonly found on numerically controlled milling machines. By precisely moving the beam projector mounted on the scanning head in a raster-like scanning pattern, it is possible to measure the surface shape of the object being scanned by measuring the individual locations of surface points individually illuminated by the point-like scanning beam as it is scanned over the object's surface. Alternatively, the object itself can be moved while the scanning head remains stationary. One disadvantage of this type of system is that only one side of the object may be scanned at any one time, since other sides of the object are hidden by the side being scanned. Scanning of these hidden sides can only be accomplished by relocating either the scanning head or the object to expos the previously hidden surfaces to the scanning beam. Obviously, such a relocation requires time and precision equipment to keep track of the changed position of the scanning head, or the object in relation to the fixed reference frame so that the new surface data will correspond to the previously obtained surface data. Helical or three-dimensional scanning heads solve this problem by allowing the entire object to be scanned at once. However, such helical systems are relatively expensive, since they require complex mechanical apparatus to move the scanning head around the object in three-dimensions.
Regardless of the scanning method used, however, deep holes, overhangs, undercuts, and surfaces nearly parallel to the axis of the scanning beam reduce the accuracy of the system, since it is difficult to accurately measure these points, if they can even be illuminated by the scanning beam at all. For example, such systems cannot completely scan the inside, outside, and handle details of a coffee cup without requiring the scanning apparatus to be relocated or the object to be reoriented so that the inside surfaces or other surfaces previously hidden from the scanning beam can be illuminated by the beam, thus measured and recorded. As discussed earlier, such re-locations or re-orientations have the disadvantage of having to recalibrate the scanning apparatus, or otherwise recorrelate the new surface points with respect to the original coordinate system. Moreover, even if such relocations or reorientations are not required, such as in the case of a helical scanning apparatus, there is still a severe loss of accuracy when scanning near the top or bottom of a rounded object, unless the scanning head and detector are relocated to better illuminate and detect such points. Furthermore, these types of systems are not very portable or adaptable since they require high precision electro-mechanical or other apparatus to accurately move the scanning heads (or the object) and define their positions in relation to the predetermined reference frames. Therefore, all these prior art scanning systems will usually require some type of relocation of the scanning apparatus or reorientation of the object to completely measure and record all of the surface details.
A variant of the above-described systems projects a thin beam of light in a single plane which, of course, is incident as a line, as opposed to a point, on the surface of the object being scanned. The intersection of this plane of light with the object's surface thus forms a brightly illuminated contour line. A two-dimensional electronic video camera or similar device whose optical axis is not coincident with the axis of the illuminating beam, detects the image of this contour line. Again, since the optical axis of the camera is not coincident with the axis of the illuminating light beam, it views the contour line from an oblique angle, thus allowing location of the contour line to be precisely determined in relation to the known position of the beam projector. Examples of inventions using this type of system are found in the following U.S. Pat. Nos. 4,821,200; 4,701,047; 4,705,401; 4,737,032; 4,745,290; 4,794,262; 4,821,200, 4,743,771; and 4,822,163.
To measure more than one contour line of an object, either the measuring apparatus or the object is panned along (or rotated about) an axis through the object. While these line scanning devices share similar drawbacks with the point scanning devices previously described, they do operate much faster, gathering a larger number of sample points during a given scanning interval. Unfortunately, the accuracy of each surface sample point is limited by the relatively low resolution of the two-dimensional charge coupled device (CCD) sensors found in most video cameras, which is typically in the range of 1 part in 512. Even worse, these systems still suffer the disadvantages of the point scanning systems in that either the scanning head or the object must be relocated or re-oriented to completely and accurately record all of the surface details of an object.
Still other mensuration systems track the positions of specific points in three-dimensional space by using small radiating emitters which move relative to fixed receiving sensors, or vice versa. Such radiation emitters may take the form of sound, light, or nutating magnetic fields. Another mensuration system uses a pair of video cameras plus a computer to calculate the position of homologous points in the pair of stereographic video images. See, for example, U.S. Pat. Nos. 4,836,778 and 4,829,373. The points tracked by this system may be passive reflectors or active light sources. The latter simplifies finding and distinguishing the points.
Additional prior art relevant to this patent application are found in the following references:
Burton, R. P.; Sutherland, I. E.; "Twinkle Box--a three dimemsional computer input device", National Computer Conference, AFIPS Proceedings,
v43, 1974, p 513-520;
Fischer, P.; Mesqui, F.; Kaeser, F.; "stereometric measurement system for quantification of object forms", SPIE Biostereometrics 602, 1985, p 52-57;
Fuchs, H.; Duran, J.; Johnson, B.; "Acquisition and Modeling of Human Body Form Data", Proc. SPIE, v 166, 1978, p 94-102;
Macellari, V.; "A Computer Peripheral Remote Sensing Device for 3-Dimensional; Monitoring of Human Motion", Med. & Biol. Eng. & Comput., 21, 1983, p 311-318;
Mesqui, F.; Kaeser, F.; Fischer, P.; "real-time, noninvasive recording and 3-d display of the functional movements of an arbitrary mandible point", SPIE Biostereometrics 602, 1985, p 77-84;
Yamashita Y.; Suzuki, N.; Oshima, M.; "Three-Dimensional Stereometric Measurement System Using Optical Scanners, Cylindrical Lenses, and Line Sensors", Proc. SPIE, v. 361, 1983, p. 67-73.
In particular, the paper by Fuchs, et al, (1978) describes a basic method of tracking a light source in three-dimensional space. The method is based on using three or more one-dimensional sensors, each consisting of a cylindrical lens and a linear array of photodetectors, such as charge coupled devices (CCDs), to determine the location of the currently radiating source.
Numerous other methods have been devised and patented for determining the position of a point along a line, within a plane, or in three-dimensional space. Devices employing these methods include photographic camera rangefinders, tablet digitizers, coordinate measuring machines, and surveying tools. Some exploit sound, magnetic fields, or mechanical apparatus for mensuration, and there are other devices employing x-rays, nuclear magnetic resonance, radar, sonar, and holography to sense the shapes of objects.
Unfortunately, each of the above mensuration systems has its own set of drawbacks, which include high cost, poor accuracy, poor resolutions, awkward or difficult use, limitations on geometrical complexity, excessive numerical computation, or slow measurement speed. Experience has shown that no single prior art system best suits all three-dimensional measurement applications. For example, there is no existing mensuration device that can perform even straightforward anatomical measurements of a person without significant drawbacks.
Thus, there remains a need for a non-contact, three-dimensional optical mensuration system which is capable of accurate, speedy, convenient, and inexpensive sensing of three-dimensional geometric shapes or objects. Ideally, the scanning head of such an improved system should be hand-held to allow the operator to easily move the scanning beam over some of the more complex surface details of the object while dispensing with the need for the expensive, cumbersome, and high precision scanning head positioning apparatus currently required. Such a hand-held scanner must also provide the accuracy and precision associated with currently available optical mensuration systems, that is, it must be able to accurately measure and precisely locate the surface details of the object in relation to the predetermined reference frame.
SUMMARY OF THE INVENTIONAccordingly, it is an object of the present invention to provide an improved, non-contact, three-dimensional optical mensuration system capable of accurately sensing the surface shapes of three-dimensional objects without the numerous drawbacks associated with the prior art systems.
It is another object of this invention to provide an optical mensuration system that is inexpensive, portable, and easy to use.
It is a further object of this invention to provide a three-dimensional optical mensuration system which can quickly scan the surface of the object without the need for expensive, complicated, and high precision mechanical positioning apparatus to position either the scanning head or the object being scanned.
A still further object of this invention is to provide a portable, hand-held, and hand-maneuverable scanner for the three-dimensional, non-contact shape-scanning and/or mensuration of three-dimensional objects.
Additional objects, advantages, and novel features of this invention shall be set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the following or may be learned by the practice of the invention. The objects and the advantages of the invention may be realized and attained by means of the instrumentalities and in combinations particularly pointed out in the appended claims.
To achieve the foregoing and other objects and in accordance with the purposes of the present invention, as embodied and broadly described herein, the apparatus for three-dimensional, non-contact shape sensing of this invention may comprise a hand held scanning head with a light source for projecting a scanning light beam over the surface of the object being scanned. Two spot detectors mounted on the hand-held scanning head are operative to detect the position of the illuminated spot on the surface of the object in relation to the scanning head. Three pilot light detectors, the positions of which are known with respect to a predetermined coordinate system, detect the positions of the three pilot light emitters positioned in spaced-apart relation on the scanning head as pilot light emitters are strobed in sequence. A coordinate computer connected to the scanning head and to the pilot light detectors receives data from the spot detectors and calculates the position of the illuminated spot with respect to the scanning head. The coordinate computer then calculates the various positions and orientations of the scanning head in relation to the predetermined coordinate system on a real time basis from the data received from the pilot light detectors. Finally, the coordinate computer calculates the position of the illuminated spot in relation to the predetermined coordinate system by correlating the position of the illuminated spot in relation to the scanning head with the position of the scanning head in relation to the predetermined coordinate system.
The method of this invention includes the steps of sweeping a scanning beam projected from the hand held scanning head over the surface of the object being scanned to illuminate a spot on the surface of the object, detecting the position of the illuminated spot with respect to the scanning head, detecting the position of the scanning head in relation to a predetermined coordinate system, and computing the position of the illuminated spot in relation to the predetermined coordinate system by correlating the position of the illuminated spot in relation to the scanning head with the position of the scanning head in relation to the predetermined coordinate system.
BRIEF DESCRIPTION OF THE DRAWINGSThe accompanying drawings, which are incorporated herein and form a part of the specification illustrate preferred embodiments of the present invention, and together with the description, serve to explain the principles of the invention. In the drawings:
FIG. 1 is a block diagram of the optical mensuration apparatus of the present invention showing the major components;
FIG. 2 is a perspective view of the hand held scanning head of the present invention, showing how it can be positioned to direct the scanning beam onto the surface of the object being scanned;
FIG. 3 is a plan view of the scanning head of the present invention with the top surface broken away to more clearly show the arrangement of the optical projecting apparatus and the spot detectors;
FIG. 4 is a schematic perspective representation of one of the one-dimensional photodetectors of the present invention;
FIG. 5 is a schematic block diagram of the optical mensuration apparatus of the present invention showing in detail the functions and operations of the control unit and coordinate computer; and
FIG. 6 is a graph of signal strength vs. location on the detector surface for a typical light detector used by the optical mensuration apparatus of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTThe optical mensuration apparatus 10 of the present invention is shown schematically in FIG. 1 and comprises a hand-held or
moveable scanning head12 housing light beam projecting apparatus 14 (not shown in FIG. 1, but shown in FIG. 3), two one-dimensional spot sensors or
detectors16, 18, and three
pilot light emitters20, 22, and 24. Three remotely located, one-dimensional
pilot light sensors26, 28, and 30 are mounted in fixed, spaced-apart relation to each other and are located at known positions with respect to a predetermined reference coordinate system or
frame80. These three
pilot sensors26, 28, and 30 sense the light projected by the individual
pilot light emitters20, 22, and 24 and generate electrical output signals from which are derived the location of the
scanning head12 with respect to the fixed coordinate
system80. A
control unit32 connected to the
moveable scanning head12 via
data line46 and connected to the remotely located
sensors26, 28, and 30 via
data lines48, 50, and 52, respectively, synchronizes the time multiplexing of the three
pilot emitters20, 22, and 24, controls the operation of the
beam projecting apparatus14, and receives data from the two
spot sensors16, 18 on scanning
head12, as will be completely described below. A coordinate
computer34, connected to control
unit32 by
data line54 calculates the three-dimensional spatial coordinates of the illuminated
spot36 in relation to the predetermined coordinate
reference frame80, which position information can then be used by an
application system82.
In operation, the light
beam projecting apparatus14 housed in the hand held
scanner head12 directs a narrow beam of light or
scanning beam42 onto the
surface40 of
object38 to illuminate a small portion or
spot36 on the
surface40. Reflected light 43 from illuminated
spot36 is detected by the two one-dimensional spot sensors or
detectors16, 18 mounted on
scanner head12. These
sensors16, 18 sense the location of the illuminated
spot36 with respect to the position of the
moveable scanner12 by measuring the relative angular parallax of the reflected light 43 from
illuminates spot36. Next, the spatial position and orientation of the
moveable scanner head12 at that same instant are determined by measuring the locations of the three time multiplexed
pilot light emitters20, 22, and 24 relative to the known positions of the
pilot light sensors26, 28, and 30. Finally, the parallax data from each of the
sensors16, 18, 26, 28, and 30 are ultimately fed to the coordinate
computer34, which determines the position of the illuminated
spot36 with respect to the predetermined reference frame by correlating the position of the illuminated
spot36 in relation to the
scanner head12 with the position of the
scanner12 in relation to the fixed
pilot light sensors26, 28, and 30, which are positioned in relation to the
predetermined reference frame80 at precisely predetermined locations at conveniently spaced distances from each other and from the
object38 and the hand-held
scanner12. If the computer can make these location or position calculations very fast, the operation can be performed over and over again in sequence as the
scanner head12 moves in relation to the object, thus resulting in effectively real time mensuration of the object as the
scanner head12 moves.
By using this two-stage measurement system, i.e., first measuring the location of the illuminated
spot36 in relation to the
scanning head12 at a particular instant in time, and then determining the position of the
scanning head12 in relation to the predetermined reference frame at that same instant in time, the optical mensuration apparatus 10 of the present invention dispenses with the need for high precision head positioning apparatus and the complex and expensive mechanical structure typically associated therewith. Further, the hand-held scanner, 12 is easily manipulated by the operator to direct the
scanning beam42 over complex, interior, or blind surface details, which would otherwise be difficult to scan, thus speeding the scanning operation.
The details of the optical mensuration apparatus 10 of the present invention are best understood by referring to FIGS. 2, 3, and 4 simultaneously. Essentially, the hand-held
scanner head12 houses the light beam projecting apparatus 14 (FIG. 3), the two one-dimensional spot sensors or
detectors16, 18, and the three
pilot light emitters20, 22, and 24. A
handle44 allows the
scanner head12 to be easily manipulated by the operator to guide the
scanning beam42 over the various shapes and hidden contours of the
surface40 of
object38.
In the preferred embodiment, the light beam projecting apparatus comprises a helium-neon (He-Ne)
laser56 to generate collimated
scanning beam42. Of course, other devices could be used to produce the spot-like scanning beam as would be readily apparent to persons having ordinary skill in the art. For example,
laser56 could be replaced by a light emitting diode (LED) and associated collimating lens. Other sources and lens combinations are possible so long as the apparatus is capable of projecting a small, well defined beam of light on the surface of the object. A
planar mirror58, which could be optionally pivotally mounted as shown in FIG. 3, directs
beam42 to a rotating many-
faceted mirror60, which directs, or
scans beam42 over the
surface40 in a single plane relative to the scanner 12 (i.e., the plane of the paper in FIG. 3). Of course, the number of sides of the rotating, many-
faceted mirror60 determines the angle through which
scanning beam42 sweeps. For example, the pentagonal mirror shown in FIG. 3 will sweep the beam through a 144-degree angle. More sides will sweep the beam through smaller angles. Moreover, other scanning paths are possible by using irregularly shaped mirrors or multiple rotating mirrors, and the present invention should not be regarded as limited by the particular scanning apparatus shown and described herein.
While the
rotating mirror60 can be rotated in either direction with equal effectiveness, the rotating
mirror60 in the preferred embodiment 10 is rotated in the direction indicated by
arrow62 by a simple, unsynchronized motor (not shown). As mentioned above,
planar mirror58 may be optionally pivotally mounted such that it can be swung out of the beam path to position 58' (shown in broken lines in FIG. 3) to inhibit the scanning action of the
beam42. With the mirror at position 58' the
beam42 will exit straight out
aperture64 in
scanner12 which can then be used as a point-type scanner or as a noncontact pointer for identifying some single point of interest on the
surface40 of
object38.
The details of the one-
dimensional spot detectors16, 18 are best understood by referring to FIG. 4. Actually, all of the one-
dimensional sensors16, 18, 26, 28, and 30 used in the preferred embodiment 10 of the present invention are identical to the one-
dimensional spot detector16 in every respect. Therefore, for the purpose of giving a detailed description of this embodiment, only the
sensor16 is shown and described in detail since the remaining
sensors18, 26, 28, and 30 have identical features.
Referring now to FIG. 4, the one-
dimensional sensor16 comprises a
cylindrical lens66 that has a
longitudinal axis74 which is orthogonal to the
optical axis76 of the
sensor16. A
linear photodetector68, such as a charge coupled device (CCD) with several thousand elements, or a similar device capable of linear light detection with an
elongated aperture78 is positioned in such a manner that
optical axis76 passes through
aperture78 and such that the long axis of
aperture78 is orthogonal to the plane containing the
longitudinal axis74 of
lens66. The
incident light beam43 reflected from illuminated
spot36 is then focused by the
cylindrical lens66 into a
real image line72 on the
surface70 of
linear photodetector68, which is a characteristic of this type of lens.
The
CCD detector68 then generates a signal, such as the one shown in FIG. 6, that is related to the position of
real image line72 on the
surface70 of
photodetector68, thus characterizing the location of the image itself. That is, those elements of the
detector68 illuminated by the
real image line72 will generate a strong signal, while those not illuminated will generate a weak signal. Thus, a graph of signal strength vs. location on the surface of the CCD will resemble the
signal peak curve100 shown in FIG. 6. Note that the "zero"
signal level102 is never quite zero due to the effects of background light and other imperfections in the sensor. In any event, since the image of illuminated
spot36 is focused into
line72, only the horizontal displacement of
spot36 from
optical axis76 is measured by
detector68, hence the designation "one-dimensional detector."
Thus, a single one-
dimensional detector16 can only locate the plane on which
spot36 particular beam lies, but
detector16 cannot, by itself, determine the unique location or position in space on which
point36 is located. To precisely locate the location in space of
point36 would require three such detectors postitioned in spaced-apart relation to each other, since the intersection of three planes defines a point. However, if the plane containing the
aperture78 of
detector16 is in the same plane as the
scanning beam42, only two detectors are required to uniquely locate the position of
spot36. Therefore, in the preferred embodiment 10 of the present invention, the
apertures78 of the
respective photodetectors16, 18, lie in the same plane as the
scanning beam42, thereby allowing the exact point in space of illuminated
spot36 to be determined with only two
detectors16, 18.
The three
pilot light emitters20, 22, and 24 (FIGS. 1-3) can be high intensity light emitting diodes (LEDs), which are preferably time multiplexed or strobed by
control unit32 in a predetermined manner such that only one pilot light LED is "on" or emitting light at any one time. The light emitted from any one of these
emitters20, 22, and 24 is detected by each of the three
pilot light detectors26, 28, and 30, which then determine the position of that particular emitter in relation to the known positions of the
detectors26, 28, and 30 at the instant in time that it is strobed or illuminated. To locate the position of a particular illuminated one of
emitters20, 22, 24, the
pilot light detectors26, 28, and 30 are mounted so that their optical axes are not collinear. In the preferred embodiment, two pilot light detectors, such as
detectors26, 30 in FIG. 1, are situated such that their respective axes 74 (FIG. 4) are in parallel spaced-apart relation, with the
third detector28 situated between the first two, but with its
axis74 perpendicular to the first two. As described above, each of the
detectors26, 28, and 30 then determine a unique plane in which the given pilot emitter lies, the intersection of which defines the exact location of that illuminated emitter.
While this process of detecting the position of a given
illuminated pilot emitter20, 22, 24 can locate the exact position of the illuminated emitter, it cannot determine the particular orientation of the
entire scanner head12 in three-dimensions. To do so requires the detection of the locations of at least three spaced-apart emitters whose orientations with respect to one another are known. Therefore, the optical mensuration system 10 of the present invention determines the orientation of the
scanning head12 in three-dimensional space by using the three (3)
pilot emitters20, 22, and 24, whose relative positions on the
scanning head12 are fixed and known. Consequently, when each of the
emitters20, 22, and 24 are rapidly turned on in sequence, the
sensors26, 28, and 30 can detect the exact position of each emitter in turn, thus determine the exact location and orientation of the
scanning head12. Since only one of the
pilot light emitters20, 22, 24 is on at any one time, the
detectors26, 28, 30 locate the position of that particular illuminated pilot light only. If the strobe rate, that is, the frequency at which the
emitters20, 22, 24 are turned on and off in sequence, is fast enough, the
detectors26, 28, and 30 can, for all practical purposes, determine the position and orientation of the
scanning head12 at any instant in time.
Note that the
detectors26, 28, 30, need only distinguish which of the
pilot light emitters20, 22, 24 is "on" or illuminated at any one time. In the preferred embodiment 10 of the present invention, this function is accomplished by strobing or illuminating each of the
emitters20, 22, 24 in sequence. However, other methods could be used to allow the
detectors26, 28, 30 to distinguish the respective
pilot light emitters20, 22, 24 from one another. For example, different colors of light could be used in conjunction with detectors capable of distinguishing those particular colors or wavelengths of light. Alternatively, the respective
pilot light emitters20, 22, 24 could be modulated with a unique "tone" for each emitter. The
control unit32 or coordinate
computer34 could then be programmed to demodulate the tone, thus determine to which
particular emitter20, 22, or 24 the position signal belongs. Numerous other methods of distinguishing the
pilot light emitters20, 22, and 24 are possible and would be readily apparent to persons having ordinary skill in the art. Therefore, the present invention should not be regarded as limited to the particular strobing method shown and described herein.
The details of the structure and operation of the
control unit32 are best seen in FIG. 5. Specifically,
control unit32 supplies power to the light beam projecting apparatus or
source14, the
beam spot sensors16, 18, the pilot light emitters or
sources20, 22, and 24, and the
pilot light sensors26, 28, and 30. The control and synchronization unit 84 and
light source sequencer86 time multiplexes or strobes the
beam projecting apparatus14 and the
pilot lights20, 22, and 24 individually, as described above, so that the position and orientation of the
scanning head12 can be determined from the signals received from
pilot light sensors26, 28 and 30. The angular data signals received from the
pilot light sensors26, 28, and 30 and from the
spot sensors16, 18, are converted by analog to
digital converter88. Actually, five analog to digital converters are used, as shown in FIG. 5, but only one is labeled and described herein for brevity, since the other four analog to digital converters are identical and are used to convert the signals from
sensors28 and 30 and 16 and 18, respectively.
The control and synchronization unit 84 also controls five switches, of which switch 90 is typical, which store all digital data received from the
sensors26, 28, and 30 and 16 and 18 when the pilot light emitters and
scanning beam42 are "off," and stores these data in
background memory92. Then, when the pilot light sources and scanning beam are illuminated in sequence by
light source sequencer86, the control and synchronization unit 84 changes the state of
switch90, which then redirects the data from the five sensors to the
subtraction unit94.
Subtraction unit94 substracts the "background" data from the illuminated data, thus resulting in a signal relatively free from background noise signal 102 (FIG. 6), since it has been subtracted from the signal.
Referring now to FIGS. 4 and 6 in conjunction with FIG. 5, the first-
last over-threshold unit96 computes the location of the
real image line72 on the CCD sensor 68 (FIG. 4) by measuring the locations of the
edges104, 106 of the signal blip 100 (FIG. 6) generated by the CCD sensor based on a predetermined threshold signal level. The first-
last over-threshold unit96 then averages the distance between the two edges to find the center of the signal peak, which is often dipped, as shown in FIG. 6. This particular method of determining the center of the signal peak is well known in the art and will not be described in further detail. Moreover, numerous other methods of determining the location of the signal peak are known in the art, and would be obvious to those having ordinary skill in the art. The particular method used would depend on the signal characteristics of the particular light sensor used, as well as the characteristics of the lens system used to focus the light onto the surface of the detector, as well as other parameters. Those practicing this invention with the various alternates described herein would have no trouble selecting a signal detection algorithm best suited to the particular characteristics of the sensors.
Finally, control unit 32 (FIG. 5) transmits the position data to the coordinate
computer34. That is, when the coordinate
computer34 is ready to compute the current location of the illuminated
spot36 on the object, the latest angular data from all sensors are provided for analyzation. If the
spot sensors16, 18, or the
pilot light sensors26, 28, and 30, generate data faster than the
control unit32 can process them, the angular data are simply discarded.
The details of the coordinate
computer34 are also best seen in FIG. 5. Essentially, the coordinate
computer34 calculates one-dimensional positions for each light source based on the location of the signal peak from each respective sensor. These one-dimensional positions are then used to calculate the three-dimensional spatial coordinates for the illuminated
spot36 and for the
scanning head12 in relation to the predetermined coordinate
system80, by coordinate transformation methods which are well-known in the art. The output from the coordinate
computer34 can be in any form desired by the operator or required by the
application system80, such as XYZ coordinate triples based upon some predetermined stationary rectangular coordinate system.
The operation of the optical mensuration apparatus of the present invention is as follows. Upon illumination of a
spot36 on the
surface40 of
object38, the two
spot sensors16, 18 inside the
scanner head12 sense the angular position of the illuminated
spot36 at a given instant in time. The signals from these
spot sensors16, 18, are directed to the
control unit32 via
data line46. Next, the
pilot light detectors26, 28, and 30 are used to sense the individual positions of the three
pilot light emitters20, 22, 24 in sequence as described above. That is, each
pilot light detector26, 28, 30, measures the angle of rays from each of three
pilot light emitters20, 22, 24, mounted on the
scanner12. The angular data from each of these
sensors26, 28, and 30 are also directed to control
unit32 via
data lines48, 50, and 52.
As described above, the
control unit32 converts the angular data from each of the
sensors16, 18, 26, 28, and 30, which is in analog form, to digital data and tags these data with information identifying their respective sources. These converted digital data are then processed by removing the background noise and by using known signal detection methods to determine the center of the signal peak, thus the location of the
image line72 on the
detector68. These position locations of the centers of the respective signal peaks from each
detector16, 18, 26, 28, and 30 are then directed to coordinate
computer34 via
data line54, which then computes the current location of the illuminated
spot36 with respect to the predetermined coordinate
system80. Sequential calculations and beam spot position determination can be made as fast as the computer can do so, thus many such points on the surface of the object can be determined as they are scanned almost on a real time basis. These position data can be stored in computer memory, recalled, and correlated together to produce an image of the object in precise reproduction detail, or various points or other features on the object can be mensurated or used in any manner desired.
This completes the detailed description of the method and apparatus of the optical mensuration apparatus 10 of the present invention. While some of the obvious and numerous modifications and equivalents have been described herein, still other modifications and changes will readily occur to those skilled in the art. For instance, the preferred embodiment uses visible light since human operators can readily observe if the light sources are operative or whether they are causing troublesome reflections. Clearly, other wavelengths of electromagnetic radiation could be used without departing from the spirit and scope of this invention. Further, it would be possible to include circuitry in the detectors which would subtract out the ambient light, thus improve the detection efficiency of the invention. Other modifications to the detector optics and lenses are possible which would alter the image characteristics on the detectors. For example, cylindrical lenses could be used which have been longitudinally curved along an arc with a radius equal to the focal length of the lens. Similarly, the surfaces of the photodetectors could also be curved, thus allowing the images of distant light sources to remain in sharp focus regardless of their positions. Various measurements of the detector outputs are also possible. For example, the angle of peak intensity, the intensity-weighted average, or the average of the minimum and maximum angles where the intensity is over some predetermined threshold value could be used. Finally, numerous enhancements of the digital data are possible by programming the coordinate computer to make the appropriate enhancements, as would be obvious to those persons having ordinary skill in the art.
The foregoing is considered illustrative only of the principles of the invention. Further, since numerous modifications and changes will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation shown and described, and accordingly, all suitable modifications and equivalents may be resorted to as falling within the scope of the invention as defined by the claims which follow.
Claims (15)
1. Optical mensuration apparatus for mapping and recording the location.Iadd.s .Iaddend.of points on a surface of a three dimensional object comprising:
. .a mounting structure, and.!. .Iadd.an .Iaddend.object positioned in . .immovable relation to said mounting structure, and.!. a three dimensional coordinate system . .defined in fixed relation to said mounting structure.!.;
. .scanning means.!. .Iadd.a scanner .Iaddend.for projecting a scanning beam onto . .the.!. .Iadd.a .Iaddend.surface of . .the.!. .Iadd.an .Iaddend.object to illuminate a plurality of spots on the surface of the object;
said . .scanning means.!. .Iadd.scanner .Iaddend.being hand holdable and freely moveable by hand in relation to . .both said mounting structure and.!. said object and not connected mechanically or structurally to . .either said mounting structure and.!. said object;
.Iadd.a .Iaddend.spot detector . .means.!. mounted to said . .scanning means.!. .Iadd.scanner .Iaddend.for detecting the . .positions.!. .Iadd.locations .Iaddend.of the illuminated spots on the surface of the object in relation to said . .scanning means.!. .Iadd.scanner.Iaddend.;
.Iadd.a .Iaddend.position . .detecting means mounted on said mounting structure and.!. .Iadd.detector .Iaddend.remotely located from both said object and said . .scanning means for detecting the position of said scanning means.!. .Iadd.scanner .Iaddend.in .Iadd.known .Iaddend.relation to . .the.!. .Iadd.said .Iaddend.coordinate system.Iadd., which position detector is adapted to determine the position of said scanner in relation to said three dimensional coordinate system.Iaddend.; . .and
computing means.!. .Iadd.a computer .Iaddend.connected to said . .scanning means.!. .Iadd.scanner .Iaddend.and to said position . .detecting means.!. .Iadd.detector .Iaddend.for determining . .and recording.!. the . .positions.!. .Iadd.locations .Iaddend.of said illuminated spots on the surface of the object in relation to the coordinate system by correlating the . .positions.!. .Iadd.locations .Iaddend.of said illuminated spots in relation to said . .scanning means.!. .Iadd.scanner .Iaddend.with . .the respective.!. positions of said . .scanning means.!. .Iadd.scanner .Iaddend.in relation to said coordinate system when . .each.!. .Iadd.a .Iaddend.respective spot is illuminated.
2. The optical mensuration apparatus of claim 1, wherein said spot detector . .means.!. comprises a plurality of one dimensional spot . .sensing means.!. .Iadd.sensors .Iaddend.in spaced apart relation for sensing the . .position.!. .Iadd.locations .Iaddend.of the illuminated spot.Iadd.s .Iaddend.on the surface of the object.
3. The optical mensuration apparatus of claim 2, wherein each of said one dimensional spot . .sensing means.!. .Iadd.sensors .Iaddend.comprises:
a linear photodetector; and
a lens positioned between said linear photodetector and said illuminated spot on the object for focusing light from said illuminated spot onto said linear photodetector.
4. The optical mensuration apparatus of claim 3, wherein said position . .detecting means.!. .Iadd.detector .Iaddend.comprises:
a plurality of pilot light . .source means.!. .Iadd.sources .Iaddend.mounted on said . .scanning means.!. .Iadd.scanner .Iaddend.for projecting a plurality of pilot light rays; and
a plurality of one-dimensional pilot light . .sensing means.!. .Iadd.sensors .Iaddend.in spaced apart relation remotely located from said . .scanning means.!. .Iadd.position detector .Iaddend.for sensing the . .positions.!. .Iadd.locations .Iaddend.of each of said plurality of pilot light . .source means.!. .Iadd.sources.Iaddend..
5. The optical mensuration apparatus of claim 4, wherein each said one-dimensional pilot light . .sensing means.!. .Iadd.sensors .Iaddend.comprises:
a linear photodetector; and
a lens positioned between said linear photodetector and said plurality of pilot light . .source means.!. .Iadd.sources .Iaddend.for focusing light from said plurality of pilot light . .source means.!. .Iadd.sources .Iaddend.onto said linear photodetector.
6. The optical mensuration apparatus of claim 5, wherein each of said plurality of light . .source means.!. .Iadd.sources .Iaddend.is strobed off and on in a predetermined manner.
7. The optical mensuration apparatus of claim 5, wherein said . .scanning means.!. .Iadd.scanner .Iaddend.comprises:
.Iadd.at least one .Iaddend.light source . .means.!. for producing said scanning beam; and
.Iadd.a corresponding number of .Iaddend.scanning beam . .direction means.!. .Iadd.directors .Iaddend.for directing said scanning beam over the surface of the object.
8. The optical mensuration apparatus of claim 7, wherein said light source . .means.!. for producing said scanning beam is a laser.
9. The optical mensuration apparatus of claim 7, wherein said scanning beam . .direction means.!. .Iadd.director .Iaddend.is a rotating mirror having at least three sides.
10. The optical mensuration apparatus of claim 9, wherein each said lens of each said one-dimensional spot . .sensing means.!. .Iadd.sensor .Iaddend.is a cylindrical lens.
11. The optical mensuration apparatus of claim 9, wherein each said lens of each said one-dimensional pilot light . .sensing means.!. .Iadd.sensor .Iaddend.is a cylindrical lens.
12. A method of determining and mapping the location.Iadd.s .Iaddend.of surface points on an object in relation to a . .mounting structure.!. .Iadd.three dimensional coordinate system.Iaddend., comprising the steps of:
defining a three dimensional coordinate system . .in fixed relation to said mounting structure.!.;
positioning said object in a fixed spatial relation to said . .mounting structure.!. .Iadd.coordinate system.Iaddend.;
projecting a . .scanning.!. .Iadd.scannable illuminating .Iaddend.beam from a beam projector.Iadd., .Iaddend.. .mounted on a hand holdable and freely moveable scanning device.!. that is not connected mechanically or structurally to . .either said mounting structure or.!. the object, . .and moving the scanning device by hand in relation to said object.!. in such manner as to illuminate a . .plurality of spots on the.!. .Iadd.a sufficient portion of a .Iaddend.surface of the object .Iadd.to map said surface.Iaddend.;
.Iadd.scanning said surface with a hand holdable and freely moveable scanner to detect a sufficient portion of said projected beam illuminations to map said illuminated surface portion.Iaddend.;
detecting the . .positions.!. .Iadd.locations .Iaddend.of the respectively illuminated . .spots on.!. .Iadd.portions of .Iaddend.the surface of the object in relation to the respective positions of the . .scanning device.!. .Iadd.scanner .Iaddend.when each respective . .spot.!. .Iadd.portion of the surface .Iaddend.is illuminated;
projecting a plurality of pilot light rays from a plurality of pilot light sources positioned in fixed spatial relation to each other on said . .scanning device.!. .Iadd.scanner substantially .Iaddend.simultaneously with the steps of projecting said . .scanning.!. .Iadd.illuminating .Iaddend.beam and detecting the . .positions.!. .Iadd.locations .Iaddend.of the illuminated . .spots.!. .Iadd.surface portions.Iaddend.;
detecting the plurality of pilot rays with a plurality of detectors mounted . .on said mounting structure in fixed.!. .Iadd.in known .Iaddend.relation to said coordinate system and in . .fixed.!. .Iadd.known.Iaddend., spaced apart relation to each other .Iadd.substantially .Iaddend.simultaneously with the step of detecting the . .positions.!. .Iadd.locations .Iaddend.of said illuminated . .spots.!. .Iadd.surface portions .Iaddend.on said object in relation to said . .scanning device.!. .Iadd.scanner .Iaddend.to determine the . .positions.!. .Iadd.locations .Iaddend.of the plurality of pilot light sources and said . .scanning device.!. .Iadd.scanner .Iaddend.in relation to the coordinate system; and
computing the . .positions.!. .Iadd.locations .Iaddend.of the illuminated . .spots on.!. .Iadd.portions of .Iaddend.the surface of the object in relation to the coordinate system by correlating the . .positions.!. .Iadd.locations .Iaddend.of said illuminated . .spots.!. .Iadd.surface portions .Iaddend.in relation to the . .scanning device.!. .Iadd.scanner .Iaddend.with the . .position.!. .Iadd.locations .Iaddend.of the . .scanning device.!. .Iadd.scanner .Iaddend.in relation to said coordinate system. .Iadd.13. Optical mensuration apparatus for mapping and recording the locations of points on a surface of a three dimensional object as claimed in claim 1 further comprising a mounting structure, fixedly positioned in said three dimensional coordinate system, to which said object is immovably related, and wherein said position detector is mounted on said mounting structure..Iaddend..Iadd.14. An optical system as claimed in claim 13 further comprising:
multiple energy emitters disposed on said spot detector;
emitted energy detectors disposed in known relationship to said three dimensional coordinate system sufficient to detect energy emitted by said energy emitters; and
a computer operatively associated with said energy detectors adapted to calculate the position and orientation of said light detector in said three dimensional coordinate system..Iaddend..Iadd.15. An optical system for determining locations of a plurality of points on a portion of a surface of a three dimensional object, in relation to a three dimensional coordinate system in which said object resides, wherein the number of points on said surface portion is sufficient to map said surface portion, said system comprising:
at least one three dimensional object having at least one surface positioned in a three dimensional coordinate system;
a beam projector unconnected mechanically or structurally to said object, and freely moveable in relation to said object;
at least one scannable beam adapted to be projected from said projector onto a surface of said object and to thereby illuminate said plurality of points on said surface portion;
a scanner comprising at least one light detector, unconnected mechanically or structurally to said object, and freely moveable in relation to said object, and adapted to detect locations of said illuminated points on said surface of said object in said three dimensional coordinate system in relation to said spot detector;
means to maintain said object in a substantially stationary condition during said illumination and detection of at least three of said plurality of spots sufficient in number to map said surface portion of said object;
at least one light detector locator disposed in known position in said three dimensional coordinate system, for optically detecting the position and orientation of said light detector in relation to said three dimensional coordinate system; and
a computer connected to said light detector and to said detector locator for correlating respectively the locations of said illuminated portions of said surface of said object in relation to said light detector and the location of said light detector in relation to said three dimensional coordinate system;
whereby indirectly determining the locations of each of said illuminated surface portions with respect to said three dimensional coordinate system, and therefore mapping said portion of said surface of said
object..Iaddend..Iadd.16. An optical system as claimed in claim 15 wherein said light detector is located together with said illuminating beam projector..Iaddend..Iadd.17. An optical system as claimed in claim 15 wherein said light detector locator is located together with said
object..Iaddend..Iadd.18. An optical system as claimed in claim 15 wherein said scanner is hand held and is moved by hand..Iaddend..Iadd.19. An optical system as claimed in claim 15 further comprising said locator being adapted to locate said light detector at substantially the same time as the locations of each of said illuminated surface portions are being detected by said light detector..Iaddend..Iadd.20. An optical system as claimed in claim 15 wherein said object is in a fixed position in said three dimensional coordinate system..Iaddend..Iadd.21. An optical system as claimed in claim 20 wherein said object is attached to a mounting structure which is in fixed spatial relationship to said three dimensional coordinate system, wherein said scanner has said light detector affixed thereto, and wherein said light detector locator in fixed relationship to
said mounting structure..Iaddend..Iadd.22. A method of mapping at least a portion of a surface on an object, which object is in a known position and orientation in a three dimensional coordinate system, comprising:
disposing an object, comprising at least one surface, in a known position and orientation in a three dimensional coordinate system;
disposing a hand holdable scanner in said coordinate system, unconnected mechanically or structurally to said object and freely moveable within said three dimensional coordinate system, so positioned that it can scan said surface;
projecting a plurality of spots onto said surface portion;
detecting the locations on said surface portion, in relation to a spot detector, of a sufficient number of spots to map at least said portion of the surface;
at substantially the same time as the locations of the respective spots are being determined, determining the location of said spot detector in said coordinate system;
correlating the locations of said respective spots with the position and orientation of said spot detector; thereby
indirectly determining the locations of said illuminated spots in said three dimensional coordinate system; and
mapping said surface..Iaddend.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/415,126 USRE35816E (en) | 1990-10-15 | 1995-03-30 | Method and apparatus for three-dimensional non-contact shape sensing |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/597,505 US5198877A (en) | 1990-10-15 | 1990-10-15 | Method and apparatus for three-dimensional non-contact shape sensing |
US08/415,126 USRE35816E (en) | 1990-10-15 | 1995-03-30 | Method and apparatus for three-dimensional non-contact shape sensing |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/597,505 Reissue US5198877A (en) | 1990-10-15 | 1990-10-15 | Method and apparatus for three-dimensional non-contact shape sensing |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE35816E true USRE35816E (en) | 1998-06-02 |
Family
ID=24391805
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/597,505 Ceased US5198877A (en) | 1990-10-15 | 1990-10-15 | Method and apparatus for three-dimensional non-contact shape sensing |
US08/415,126 Expired - Lifetime USRE35816E (en) | 1990-10-15 | 1995-03-30 | Method and apparatus for three-dimensional non-contact shape sensing |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/597,505 Ceased US5198877A (en) | 1990-10-15 | 1990-10-15 | Method and apparatus for three-dimensional non-contact shape sensing |
Country Status (7)
Country | Link |
---|---|
US (2) | US5198877A (en) |
EP (1) | EP0553266B1 (en) |
JP (1) | JP2974775B2 (en) |
AT (1) | ATE152823T1 (en) |
CA (1) | CA2094039A1 (en) |
DE (1) | DE69126035T2 (en) |
WO (1) | WO1992007233A1 (en) |
Cited By (160)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6146390A (en) | 1992-04-21 | 2000-11-14 | Sofamor Danek Holdings, Inc. | Apparatus and method for photogrammetric surgical localization |
US6222582B1 (en) * | 1997-07-24 | 2001-04-24 | Sumitomo Metal (Smi) Electronics Devices Inc. | Image capture system |
US6226548B1 (en) | 1997-09-24 | 2001-05-01 | Surgical Navigation Technologies, Inc. | Percutaneous registration apparatus and method for use in computer-assisted surgical navigation |
US6235038B1 (en) | 1999-10-28 | 2001-05-22 | Medtronic Surgical Navigation Technologies | System for translation of electromagnetic and optical localization systems |
US6271918B2 (en) * | 1999-02-04 | 2001-08-07 | National Research Council Of Canada | Virtual multiple aperture 3-D range sensor |
US20010018594A1 (en) * | 1998-05-14 | 2001-08-30 | Calypso Medical, Inc. | System and Method for Bracketing and Removing Tissue |
US6296613B1 (en) | 1997-08-22 | 2001-10-02 | Synthes (U.S.A.) | 3D ultrasound recording device |
WO2001084479A1 (en) * | 2000-04-28 | 2001-11-08 | Orametirix, Inc. | Method and system for scanning a surface and generating a three-dimensional object |
US20010038705A1 (en) * | 1999-03-08 | 2001-11-08 | Orametrix, Inc. | Scanning system and calibration method for capturing precise three-dimensional information of objects |
US6324296B1 (en) * | 1997-12-04 | 2001-11-27 | Phasespace, Inc. | Distributed-processing motion tracking system for tracking individually modulated light points |
US20020006217A1 (en) * | 2000-04-28 | 2002-01-17 | Orametrix, Inc. | Methods for registration of three-dimensional frames to create three-dimensional virtual models of objects |
US6370224B1 (en) | 1998-06-29 | 2002-04-09 | Sofamor Danek Group, Inc. | System and methods for the reduction and elimination of image artifacts in the calibration of x-ray imagers |
US6374198B1 (en) * | 1996-07-11 | 2002-04-16 | Mirai S.R.L. | Method for the creation of tridimensional numerical models |
US6381485B1 (en) | 1999-10-28 | 2002-04-30 | Surgical Navigation Technologies, Inc. | Registration of human anatomy integrated for electromagnetic localization |
US6379302B1 (en) | 1999-10-28 | 2002-04-30 | Surgical Navigation Technologies Inc. | Navigation information overlay onto ultrasound imagery |
US6413084B1 (en) | 2000-04-28 | 2002-07-02 | Ora Metrix, Inc. | Method and system of scanning |
US20020109705A1 (en) * | 1999-05-03 | 2002-08-15 | Robert Hofstetter | System and method for preparing an image corrected for the presence of a gravity induced distortion |
US6474341B1 (en) | 1999-10-28 | 2002-11-05 | Surgical Navigation Technologies, Inc. | Surgical communication and power system |
US6493095B1 (en) | 1999-04-13 | 2002-12-10 | Inspeck Inc. | Optional 3D digitizer, system and method for digitizing an object |
US6497134B1 (en) | 2000-03-15 | 2002-12-24 | Image Guided Technologies, Inc. | Calibration of an instrument |
US6499488B1 (en) | 1999-10-28 | 2002-12-31 | Winchester Development Associates | Surgical sensor |
US6532299B1 (en) | 2000-04-28 | 2003-03-11 | Orametrix, Inc. | System and method for mapping a surface |
US20030052785A1 (en) * | 2001-09-14 | 2003-03-20 | Margo Gisselberg | Miniature resonating marker assembly |
US6564086B2 (en) * | 2000-05-03 | 2003-05-13 | Rocky Mountain Biosystems, Inc. | Prosthesis and method of making |
US6585651B2 (en) | 1999-04-20 | 2003-07-01 | Synthes Ag Chur | Method and device for percutaneous determination of points associated with the surface of an organ |
US6611141B1 (en) | 1998-12-23 | 2003-08-26 | Howmedica Leibinger Inc | Hybrid 3-D probe tracked by multiple sensors |
US6694168B2 (en) | 1998-06-22 | 2004-02-17 | Synthes (U.S.A.) | Fiducial matching using fiducial implants |
US20040039544A1 (en) * | 1998-07-24 | 2004-02-26 | Merrill M. Stanley | Vehicle wheel alignment by rotating vision sensor |
US6725080B2 (en) | 2000-03-01 | 2004-04-20 | Surgical Navigation Technologies, Inc. | Multiple cannula image guided tool for image guided procedures |
US6725082B2 (en) | 1999-03-17 | 2004-04-20 | Synthes U.S.A. | System and method for ligament graft placement |
US6724947B1 (en) | 2000-07-14 | 2004-04-20 | International Business Machines Corporation | Method and system for measuring characteristics of curved features |
US6728423B1 (en) | 2000-04-28 | 2004-04-27 | Orametrix, Inc. | System and method for mapping a surface |
US6732030B2 (en) | 2001-08-18 | 2004-05-04 | Snap-On U.K. Holdings Limited | Three-dimensional mapping systems for automotive vehicles and other articles |
US6744932B1 (en) | 2000-04-28 | 2004-06-01 | Orametrix, Inc. | System and method for mapping a surface |
US6744914B1 (en) | 2000-04-28 | 2004-06-01 | Orametrix, Inc. | Method and system for generating a three-dimensional object |
US20040127787A1 (en) * | 2002-12-30 | 2004-07-01 | Dimmer Steven C. | Implantable marker with a leadless signal transmitter compatible for use in magnetic resonance devices |
US20040133101A1 (en) * | 2001-06-08 | 2004-07-08 | Mate Timothy P. | Guided radiation therapy system |
US20040147839A1 (en) * | 2002-10-25 | 2004-07-29 | Moctezuma De La Barrera Jose Luis | Flexible tracking article and method of using the same |
US6771809B1 (en) | 2000-04-28 | 2004-08-03 | Orametrix, Inc. | Method and system for registering data |
US20040184040A1 (en) * | 2001-07-17 | 2004-09-23 | Hideto Fujita | Shape measuring device |
US6801637B2 (en) | 1999-08-10 | 2004-10-05 | Cybernet Systems Corporation | Optical body tracker |
US6812842B2 (en) | 2001-12-20 | 2004-11-02 | Calypso Medical Technologies, Inc. | System for excitation of a leadless miniature marker |
US6822570B2 (en) | 2001-12-20 | 2004-11-23 | Calypso Medical Technologies, Inc. | System for spatially adjustable excitation of leadless miniature marker |
US6838990B2 (en) | 2001-12-20 | 2005-01-04 | Calypso Medical Technologies, Inc. | System for excitation leadless miniature marker |
US20050020910A1 (en) * | 2003-04-30 | 2005-01-27 | Henley Quadling | Intra-oral imaging system |
US20050024646A1 (en) * | 2003-05-05 | 2005-02-03 | Mark Quadling | Optical coherence tomography imaging |
US6888640B2 (en) | 2000-02-04 | 2005-05-03 | Mario J. Spina | Body spatial dimension mapper |
US6892090B2 (en) | 2002-08-19 | 2005-05-10 | Surgical Navigation Technologies, Inc. | Method and apparatus for virtual endoscopy |
US6889833B2 (en) | 2002-12-30 | 2005-05-10 | Calypso Medical Technologies, Inc. | Packaged systems for implanting markers in a patient and methods for manufacturing and using such systems |
US20050099638A1 (en) * | 2003-09-17 | 2005-05-12 | Mark Quadling | High speed multiple line three-dimensional digitization |
US20050105772A1 (en) * | 1998-08-10 | 2005-05-19 | Nestor Voronka | Optical body tracker |
US20050125119A1 (en) * | 2003-12-04 | 2005-06-09 | Matrix Electronic Measuring, L.P. Limited Partnership, Kansas | System for measuring points on a vehicle during damage repair |
US20050131586A1 (en) * | 2003-12-04 | 2005-06-16 | Srack Robert W. | System for measuring points on a vehicle during damage repair |
US6911972B2 (en) * | 2001-04-04 | 2005-06-28 | Matsushita Electric Industrial Co., Ltd. | User interface device |
US20050143645A1 (en) * | 2000-04-05 | 2005-06-30 | Stefan Vilsmeier | Referencing or registering a patient or a patient body part in a medical navigation system by means of irradiation of light points |
US20050154293A1 (en) * | 2003-12-24 | 2005-07-14 | Margo Gisselberg | Implantable marker with wireless signal transmitter |
US6920347B2 (en) | 2000-04-07 | 2005-07-19 | Surgical Navigation Technologies, Inc. | Trajectory storage apparatus and method for surgical navigation systems |
US6947786B2 (en) | 2002-02-28 | 2005-09-20 | Surgical Navigation Technologies, Inc. | Method and apparatus for perspective inversion |
US20060001543A1 (en) * | 2004-07-01 | 2006-01-05 | Ramesh Raskar | Interactive wireless tag location and identification system |
US6990368B2 (en) | 2002-04-04 | 2006-01-24 | Surgical Navigation Technologies, Inc. | Method and apparatus for virtual digital subtraction angiography |
US20060058644A1 (en) * | 2004-09-10 | 2006-03-16 | Harald Hoppe | System, device, and method for AD HOC tracking of an object |
US20060058648A1 (en) * | 2004-07-23 | 2006-03-16 | Eric Meier | Integrated radiation therapy systems and methods for treating a target in a patient |
US20060062449A1 (en) * | 2004-09-18 | 2006-03-23 | The Ohio Willow Wood Company | Apparatus for determining a three dimensional shape of an object |
US20060095047A1 (en) * | 2004-10-08 | 2006-05-04 | De La Barrera Jose Luis M | System and method for performing arthroplasty of a joint and tracking a plumb line plane |
US7068836B1 (en) | 2000-04-28 | 2006-06-27 | Orametrix, Inc. | System and method for mapping a surface |
US7085400B1 (en) | 2000-06-14 | 2006-08-01 | Surgical Navigation Technologies, Inc. | System and method for image based sensor calibration |
US20060184014A1 (en) * | 2004-12-02 | 2006-08-17 | Manfred Pfeiler | Registration aid for medical images |
US7130676B2 (en) | 1998-08-20 | 2006-10-31 | Sofamor Danek Holdings, Inc. | Fluoroscopic image guided orthopaedic surgery system with intraoperative registration |
US7142312B2 (en) | 2002-12-31 | 2006-11-28 | D4D Technologies, Llc | Laser digitizer system for dental applications |
US7174202B2 (en) | 1992-08-14 | 2007-02-06 | British Telecommunications | Medical navigation apparatus |
US7184150B2 (en) | 2003-03-24 | 2007-02-27 | D4D Technologies, Llc | Laser digitizer system for dental applications |
US7217276B2 (en) | 1999-04-20 | 2007-05-15 | Surgical Navigational Technologies, Inc. | Instrument guidance method and system for image guided surgery |
US7256899B1 (en) | 2006-10-04 | 2007-08-14 | Ivan Faul | Wireless methods and systems for three-dimensional non-contact shape sensing |
US7313430B2 (en) | 2003-08-28 | 2007-12-25 | Medtronic Navigation, Inc. | Method and apparatus for performing stereotactic surgery |
US20080012981A1 (en) * | 2006-07-07 | 2008-01-17 | Goodwin Mark D | Mail processing system with dual camera assembly |
US20080035866A1 (en) * | 2006-07-07 | 2008-02-14 | Lockheed Martin Corporation | Mail imaging system with UV illumination interrupt |
US20080049972A1 (en) * | 2006-07-07 | 2008-02-28 | Lockheed Martin Corporation | Mail imaging system with secondary illumination/imaging window |
US20080077158A1 (en) * | 2006-06-16 | 2008-03-27 | Hani Haider | Method and Apparatus for Computer Aided Surgery |
US7366562B2 (en) | 2003-10-17 | 2008-04-29 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US20090043556A1 (en) * | 2007-08-07 | 2009-02-12 | Axelson Stuart L | Method of and system for planning a surgery |
US7542791B2 (en) | 2003-01-30 | 2009-06-02 | Medtronic Navigation, Inc. | Method and apparatus for preplanning a surgical procedure |
USRE40852E1 (en) | 1995-06-14 | 2009-07-14 | Medtronic Navigation, Inc. | Method and system for navigating a catheter probe |
US7567834B2 (en) | 2004-05-03 | 2009-07-28 | Medtronic Navigation, Inc. | Method and apparatus for implantation between two vertebral bodies |
US7570791B2 (en) | 2003-04-25 | 2009-08-04 | Medtronic Navigation, Inc. | Method and apparatus for performing 2D to 3D registration |
US7599730B2 (en) | 2002-11-19 | 2009-10-06 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
US7606613B2 (en) | 1999-03-23 | 2009-10-20 | Medtronic Navigation, Inc. | Navigational guidance via computer-assisted fluoroscopic imaging |
US20090290759A1 (en) * | 2008-05-22 | 2009-11-26 | Matrix Electronic Measuring, L.P. | Stereoscopic measurement system and method |
US20090290787A1 (en) * | 2008-05-22 | 2009-11-26 | Matrix Electronic Measuring, L.P. | Stereoscopic measurement system and method |
US7636595B2 (en) | 2004-10-28 | 2009-12-22 | Medtronic Navigation, Inc. | Method and apparatus for calibrating non-linear instruments |
US7660623B2 (en) | 2003-01-30 | 2010-02-09 | Medtronic Navigation, Inc. | Six degree of freedom alignment display for medical procedures |
US7697972B2 (en) | 2002-11-19 | 2010-04-13 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
US7725162B2 (en) | 2000-01-27 | 2010-05-25 | Howmedica Leibinger Inc. | Surgery system |
US20100141740A1 (en) * | 2007-05-04 | 2010-06-10 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev | Device and Method for Non-Contact Recording of Spatial Coordinates of a Surface |
US7763035B2 (en) | 1997-12-12 | 2010-07-27 | Medtronic Navigation, Inc. | Image guided spinal surgery guide, system and method for use thereof |
US7797032B2 (en) | 1999-10-28 | 2010-09-14 | Medtronic Navigation, Inc. | Method and system for navigating a catheter probe in the presence of field-influencing objects |
US7835784B2 (en) | 2005-09-21 | 2010-11-16 | Medtronic Navigation, Inc. | Method and apparatus for positioning a reference frame |
US7835778B2 (en) | 2003-10-16 | 2010-11-16 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation of a multiple piece construct for implantation |
US7840253B2 (en) | 2003-10-17 | 2010-11-23 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US7998062B2 (en) | 2004-03-29 | 2011-08-16 | Superdimension, Ltd. | Endoscope structures and techniques for navigating to a target in branched structure |
US8112292B2 (en) | 2006-04-21 | 2012-02-07 | Medtronic Navigation, Inc. | Method and apparatus for optimizing a therapy |
US8165658B2 (en) | 2008-09-26 | 2012-04-24 | Medtronic, Inc. | Method and apparatus for positioning a guide relative to a base |
USRE43328E1 (en) | 1997-11-20 | 2012-04-24 | Medtronic Navigation, Inc | Image guided awl/tap/screwdriver |
US8175681B2 (en) | 2008-12-16 | 2012-05-08 | Medtronic Navigation Inc. | Combination of electromagnetic and electropotential localization |
US8239001B2 (en) | 2003-10-17 | 2012-08-07 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US8345953B2 (en) | 2008-05-22 | 2013-01-01 | Matrix Electronic Measuring Properties, Llc | Stereoscopic measurement system and method |
USRE43952E1 (en) | 1989-10-05 | 2013-01-29 | Medtronic Navigation, Inc. | Interactive system for local intervention inside a non-homogeneous structure |
WO2013033811A1 (en) * | 2011-09-08 | 2013-03-14 | Front Street Investment Management Inc. | Method and apparatus for illuminating a field of view of an optical system for generating three dimensional image information |
US8452068B2 (en) | 2008-06-06 | 2013-05-28 | Covidien Lp | Hybrid registration method |
US8452375B2 (en) | 1998-05-14 | 2013-05-28 | Varian Medical Systems, Inc. | Systems and methods for locating and defining a target location within a human body |
US8473026B2 (en) | 1994-09-15 | 2013-06-25 | Ge Medical Systems Global Technology Company | System for monitoring a position of a medical instrument with respect to a patient's body |
US8473032B2 (en) | 2008-06-03 | 2013-06-25 | Superdimension, Ltd. | Feature-based registration method |
US8494613B2 (en) | 2009-08-31 | 2013-07-23 | Medtronic, Inc. | Combination localization system |
US8494614B2 (en) | 2009-08-31 | 2013-07-23 | Regents Of The University Of Minnesota | Combination localization system |
US8611984B2 (en) | 2009-04-08 | 2013-12-17 | Covidien Lp | Locatable catheter |
US8641210B2 (en) | 2011-11-30 | 2014-02-04 | Izi Medical Products | Retro-reflective marker including colored mounting portion |
US8644907B2 (en) | 1999-10-28 | 2014-02-04 | Medtronic Navigaton, Inc. | Method and apparatus for surgical navigation |
US8660635B2 (en) | 2006-09-29 | 2014-02-25 | Medtronic, Inc. | Method and apparatus for optimizing a computer assisted surgical procedure |
US8663088B2 (en) | 2003-09-15 | 2014-03-04 | Covidien Lp | System of accessories for use with bronchoscopes |
US8661573B2 (en) | 2012-02-29 | 2014-03-04 | Izi Medical Products | Protective cover for medical device having adhesive mechanism |
US8687172B2 (en) | 2011-04-13 | 2014-04-01 | Ivan Faul | Optical digitizer with improved distance measurement capability |
USD705678S1 (en) | 2012-02-21 | 2014-05-27 | Faro Technologies, Inc. | Laser tracker |
US8764725B2 (en) | 2004-02-09 | 2014-07-01 | Covidien Lp | Directional anchoring mechanism, method and applications thereof |
US8905920B2 (en) | 2007-09-27 | 2014-12-09 | Covidien Lp | Bronchoscope adapter and method |
US8932207B2 (en) | 2008-07-10 | 2015-01-13 | Covidien Lp | Integrated multi-functional endoscopic tool |
US9007601B2 (en) | 2010-04-21 | 2015-04-14 | Faro Technologies, Inc. | Automatic measurement of dimensional data with a laser tracker |
US9041914B2 (en) | 2013-03-15 | 2015-05-26 | Faro Technologies, Inc. | Three-dimensional coordinate scanner and method of operation |
US9055881B2 (en) | 2004-04-26 | 2015-06-16 | Super Dimension Ltd. | System and method for image-based alignment of an endoscope |
US9151830B2 (en) | 2011-04-15 | 2015-10-06 | Faro Technologies, Inc. | Six degree-of-freedom laser tracker that cooperates with a remote structured-light scanner |
US9164173B2 (en) | 2011-04-15 | 2015-10-20 | Faro Technologies, Inc. | Laser tracker that uses a fiber-optic coupler and an achromatic launch to align and collimate two wavelengths of light |
US9168102B2 (en) | 2006-01-18 | 2015-10-27 | Medtronic Navigation, Inc. | Method and apparatus for providing a container to a sterile environment |
US9237860B2 (en) | 2008-06-05 | 2016-01-19 | Varian Medical Systems, Inc. | Motion compensation for medical imaging and associated systems and methods |
US9298078B2 (en) | 2009-07-10 | 2016-03-29 | Steropes Technologies, Llc | Method and apparatus for generating three-dimensional image information using a single imaging path |
US9377885B2 (en) | 2010-04-21 | 2016-06-28 | Faro Technologies, Inc. | Method and apparatus for locking onto a retroreflector with a laser tracker |
US9395174B2 (en) | 2014-06-27 | 2016-07-19 | Faro Technologies, Inc. | Determining retroreflector orientation by optimizing spatial fit |
US9400170B2 (en) | 2010-04-21 | 2016-07-26 | Faro Technologies, Inc. | Automatic measurement of dimensional data within an acceptance region by a laser tracker |
US9449378B2 (en) | 2008-05-22 | 2016-09-20 | Matrix Electronic Measuring Properties, Llc | System and method for processing stereoscopic vehicle information |
US9453913B2 (en) | 2008-11-17 | 2016-09-27 | Faro Technologies, Inc. | Target apparatus for three-dimensional measurement system |
US9482755B2 (en) | 2008-11-17 | 2016-11-01 | Faro Technologies, Inc. | Measurement system having air temperature compensation between a target and a laser tracker |
US9498231B2 (en) | 2011-06-27 | 2016-11-22 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US9575140B2 (en) | 2008-04-03 | 2017-02-21 | Covidien Lp | Magnetic interference detection system and method |
US9675424B2 (en) | 2001-06-04 | 2017-06-13 | Surgical Navigation Technologies, Inc. | Method for calibrating a navigation system |
US9772394B2 (en) | 2010-04-21 | 2017-09-26 | Faro Technologies, Inc. | Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker |
US10105149B2 (en) | 2013-03-15 | 2018-10-23 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US10219811B2 (en) | 2011-06-27 | 2019-03-05 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US10418705B2 (en) | 2016-10-28 | 2019-09-17 | Covidien Lp | Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same |
US10426555B2 (en) | 2015-06-03 | 2019-10-01 | Covidien Lp | Medical instrument with sensor for use in a system and method for electromagnetic navigation |
US10446931B2 (en) | 2016-10-28 | 2019-10-15 | Covidien Lp | Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same |
US10478254B2 (en) | 2016-05-16 | 2019-11-19 | Covidien Lp | System and method to access lung tissue |
US10517505B2 (en) | 2016-10-28 | 2019-12-31 | Covidien Lp | Systems, methods, and computer-readable media for optimizing an electromagnetic navigation system |
US10582834B2 (en) | 2010-06-15 | 2020-03-10 | Covidien Lp | Locatable expandable working channel and method |
US10615500B2 (en) | 2016-10-28 | 2020-04-07 | Covidien Lp | System and method for designing electromagnetic navigation antenna assemblies |
US10638952B2 (en) | 2016-10-28 | 2020-05-05 | Covidien Lp | Methods, systems, and computer-readable media for calibrating an electromagnetic navigation system |
US10722311B2 (en) | 2016-10-28 | 2020-07-28 | Covidien Lp | System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map |
US10751126B2 (en) | 2016-10-28 | 2020-08-25 | Covidien Lp | System and method for generating a map for electromagnetic navigation |
US10792106B2 (en) | 2016-10-28 | 2020-10-06 | Covidien Lp | System for calibrating an electromagnetic navigation system |
US10952593B2 (en) | 2014-06-10 | 2021-03-23 | Covidien Lp | Bronchoscope adapter |
US11006914B2 (en) | 2015-10-28 | 2021-05-18 | Medtronic Navigation, Inc. | Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient |
US11219489B2 (en) | 2017-10-31 | 2022-01-11 | Covidien Lp | Devices and systems for providing sensors in parallel with medical tools |
US11331150B2 (en) | 1999-10-28 | 2022-05-17 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US11911117B2 (en) | 2011-06-27 | 2024-02-27 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
Families Citing this family (182)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69133548T2 (en) | 1990-10-19 | 2007-01-11 | St. Louis University | A system for displaying a location in the body of a patient |
US5739912A (en) * | 1991-04-26 | 1998-04-14 | Nippon Telegraph And Telephone Corporation | Object profile measuring method and apparatus |
FR2692773B3 (en) * | 1992-06-26 | 1994-08-26 | Diret Francois | Correlation device for three-dimensional seizures of human organs. |
US6757557B1 (en) | 1992-08-14 | 2004-06-29 | British Telecommunications | Position location system |
US5305091A (en) * | 1992-12-07 | 1994-04-19 | Oreo Products Inc. | Optical coordinate measuring system for large objects |
US5805275A (en) * | 1993-04-08 | 1998-09-08 | Kollmorgen Corporation | Scanning optical rangefinder |
AU6666894A (en) | 1993-04-22 | 1994-11-08 | Pixsys, Inc. | System for locating relative positions of objects |
EP0997109B1 (en) * | 1993-04-26 | 2003-06-18 | ST. Louis University | Indicating the position of a surgical probe |
WO1995002163A1 (en) * | 1993-07-08 | 1995-01-19 | Science Accessories Corp. | Position and angle determination using light |
FR2721395B1 (en) * | 1994-06-17 | 1996-08-14 | Homer Eaton | Method for locating a trihedron in space and device for implementing this method. |
US5512998A (en) * | 1994-06-22 | 1996-04-30 | The Titan Corporation | Contactless method and system for determining static and dynamic characteristics of target objects |
US5515301A (en) * | 1994-06-29 | 1996-05-07 | General Electric Company | Real-time visualization system for multiple time-sampled signals |
GB2292605B (en) * | 1994-08-24 | 1998-04-08 | Guy Richard John Fowler | Scanning arrangement and method |
DE19581099B4 (en) * | 1994-09-28 | 2006-07-27 | William Richard Fright | Optical surface scanner and surveying method |
CA2201877C (en) | 1994-10-07 | 2004-06-08 | Richard D. Bucholz | Surgical navigation systems including reference and localization frames |
US5588430A (en) | 1995-02-14 | 1996-12-31 | University Of Florida Research Foundation, Inc. | Repeat fixation for frameless stereotactic procedure |
JP3614935B2 (en) * | 1995-06-20 | 2005-01-26 | オリンパス株式会社 | 3D image measuring device |
US6445884B1 (en) * | 1995-06-22 | 2002-09-03 | 3Dv Systems, Ltd. | Camera with through-the-lens lighting |
IL114278A (en) * | 1995-06-22 | 2010-06-16 | Microsoft Internat Holdings B | Camera and method |
DE69635891T2 (en) * | 1995-06-22 | 2006-12-14 | 3Dv Systems Ltd. | IMPROVED OPTICAL CAMERA FOR DISTANCE MEASUREMENT |
GB9515311D0 (en) * | 1995-07-26 | 1995-09-20 | 3D Scanners Ltd | Stripe scanners and methods of scanning |
US5920394A (en) * | 1995-09-01 | 1999-07-06 | Research Corporation Technologies, Inc. | Optical coordinate measuring machine |
US5806518A (en) | 1995-09-11 | 1998-09-15 | Integrated Surgical Systems | Method and system for positioning surgical robot |
US5856844A (en) * | 1995-09-21 | 1999-01-05 | Omniplanar, Inc. | Method and apparatus for determining position and orientation |
US5793483A (en) * | 1996-02-07 | 1998-08-11 | Visidyne, Inc. | Optical measurement system |
US6167145A (en) | 1996-03-29 | 2000-12-26 | Surgical Navigation Technologies, Inc. | Bone navigation system |
US6226418B1 (en) | 1997-11-07 | 2001-05-01 | Washington University | Rapid convolution based large deformation image matching via landmark and volume imagery |
US6408107B1 (en) | 1996-07-10 | 2002-06-18 | Michael I. Miller | Rapid convolution based large deformation image matching via landmark and volume imagery |
US5832139A (en) * | 1996-07-31 | 1998-11-03 | Omniplanar, Inc. | Method and apparatus for determining degrees of freedom of a camera |
BR9711332A (en) * | 1996-08-22 | 1999-08-17 | Synthes Ag | Three-dimensional ultrasound device |
US5776136A (en) | 1996-09-30 | 1998-07-07 | Integrated Surgical Systems, Inc. | Method and system for finish cutting bone cavities |
US6217334B1 (en) | 1997-01-28 | 2001-04-17 | Iris Development Corporation | Dental scanning method and apparatus |
EP1016030A1 (en) | 1997-02-13 | 2000-07-05 | Integrated Surgical Systems, Inc. | Method and system for registering the position of a surgical system with a preoperative bone image |
AU6451698A (en) * | 1997-03-06 | 1998-09-22 | Robert B. Howard | Wrist-pendant wireless optical keyboard |
USD422706S (en) * | 1997-04-30 | 2000-04-11 | Surgical Navigation Technologies | Biopsy guide tube |
EP0875771B1 (en) * | 1997-04-30 | 2004-07-14 | Sick Ag | Opto-electronic sensor with multiple photosensitive elements arranged in a row or array |
US5907395A (en) * | 1997-06-06 | 1999-05-25 | Image Guided Technologies, Inc. | Optical fiber probe for position measurement |
US6069700A (en) * | 1997-07-31 | 2000-05-30 | The Boeing Company | Portable laser digitizing system for large parts |
US6434507B1 (en) | 1997-09-05 | 2002-08-13 | Surgical Navigation Technologies, Inc. | Medical instrument and method for use with computer-assisted image guided surgery |
USD420132S (en) * | 1997-11-03 | 2000-02-01 | Surgical Navigation Technologies | Drill guide |
US6094269A (en) * | 1997-12-31 | 2000-07-25 | Metroptic Technologies, Ltd. | Apparatus and method for optically measuring an object surface contour |
JP3897322B2 (en) * | 1998-02-09 | 2007-03-22 | 株式会社トプコン | Laser irradiation device |
US6456749B1 (en) * | 1998-02-27 | 2002-09-24 | Carnegie Mellon University | Handheld apparatus for recognition of writing, for remote communication, and for user defined input templates |
US7268774B2 (en) * | 1998-08-18 | 2007-09-11 | Candledragon, Inc. | Tracking motion of a writing instrument |
US20100008551A9 (en) * | 1998-08-18 | 2010-01-14 | Ilya Schiller | Using handwritten information |
US6482182B1 (en) | 1998-09-03 | 2002-11-19 | Surgical Navigation Technologies, Inc. | Anchoring system for a brain lead |
US6033415A (en) * | 1998-09-14 | 2000-03-07 | Integrated Surgical Systems | System and method for performing image directed robotic orthopaedic procedures without a fiducial reference system |
US6340363B1 (en) | 1998-10-09 | 2002-01-22 | Surgical Navigation Technologies, Inc. | Image guided vertebral distractor and method for tracking the position of vertebrae |
US6633686B1 (en) | 1998-11-05 | 2003-10-14 | Washington University | Method and apparatus for image registration using large deformation diffeomorphisms on a sphere |
US6322567B1 (en) | 1998-12-14 | 2001-11-27 | Integrated Surgical Systems, Inc. | Bone motion tracking system |
US6430434B1 (en) | 1998-12-14 | 2002-08-06 | Integrated Surgical Systems, Inc. | Method for determining the location and orientation of a bone for computer-assisted orthopedic procedures using intraoperatively attached markers |
DE19916623A1 (en) | 1999-04-13 | 2000-11-30 | Lorenz Smekal | Device for recording sectional images through a human or animal body |
US6675122B1 (en) * | 1999-04-19 | 2004-01-06 | Leica Geosystems Ag | Indirect position determination with the aid of a tracker |
US6297488B1 (en) | 1999-04-29 | 2001-10-02 | National Research Council Of Canada | Position sensitive light spot detector |
US6614422B1 (en) | 1999-11-04 | 2003-09-02 | Canesta, Inc. | Method and apparatus for entering data using a virtual input device |
US6909513B1 (en) * | 1999-05-26 | 2005-06-21 | Sanyo Electric Co., Ltd. | Shape measuring device |
NO313113B1 (en) * | 1999-07-13 | 2002-08-12 | Metronor Asa | System for scanning large geometry of objects |
CA2278108C (en) | 1999-07-20 | 2008-01-29 | The University Of Western Ontario | Three-dimensional measurement method and apparatus |
US6747539B1 (en) | 1999-10-28 | 2004-06-08 | Michael A. Martinelli | Patient-shielding and coil system |
WO2001031466A1 (en) | 1999-10-28 | 2001-05-03 | Winchester Development Associates | Coil structures and methods for generating magnetic fields |
DE10005203A1 (en) * | 2000-02-05 | 2001-08-16 | Bayerische Motoren Werke Ag | Measurement arrangement for forming and recording image of 3-dimensional object derives measurement head unit position relative to object from distances between measurement points |
GB0008303D0 (en) * | 2000-04-06 | 2000-05-24 | British Aerospace | Measurement system and method |
US6771840B1 (en) * | 2000-05-18 | 2004-08-03 | Leica Geosystems Hds, Inc. | Apparatus and method for identifying the points that lie on a surface of interest |
DE10025897B4 (en) * | 2000-05-25 | 2004-07-15 | Sick Ag | Method for operating an optoelectronic sensor arrangement and optoelectronic sensor arrangement |
ES2254519T3 (en) * | 2000-08-31 | 2006-06-16 | Plus Orthopedics Ag | DETERMINATION DEVICE OF A LOADING AXLE OF AN EXTREMITY. |
KR100382905B1 (en) * | 2000-10-07 | 2003-05-09 | 주식회사 케이씨아이 | 3 Dimension Scanner System for Tooth modelling |
US6579095B2 (en) | 2000-12-22 | 2003-06-17 | Geodigm Corporation | Mating parts scanning and registration methods |
EP1412697A1 (en) | 2001-08-01 | 2004-04-28 | National Research Council Of Canada | System and method of light spot position and color detection |
US7257255B2 (en) * | 2001-11-21 | 2007-08-14 | Candledragon, Inc. | Capturing hand motion |
DE10203992A1 (en) * | 2002-01-31 | 2003-08-14 | Deutsch Zentr Luft & Raumfahrt | input device |
US7881896B2 (en) | 2002-02-14 | 2011-02-01 | Faro Technologies, Inc. | Portable coordinate measurement machine with integrated line laser scanner |
US20030220778A1 (en) * | 2002-04-29 | 2003-11-27 | Hultgren Bruce Willard | Method and apparatus for electronically simulating jaw function within electronic model images |
US7716024B2 (en) * | 2002-04-29 | 2010-05-11 | Geodigm Corporation | Method and apparatus for electronically generating a color dental occlusion map within electronic model images |
DE10306793A1 (en) * | 2002-05-21 | 2003-12-04 | Plus Endoprothetik Ag Rotkreuz | Arrangement and method for the intraoperative determination of the position of a joint replacement implant |
DE50310543D1 (en) * | 2002-05-21 | 2008-11-06 | Plus Orthopedics Ag | METRIC SIZES OF A JOINT OF AN ANGLE |
JP2004071366A (en) | 2002-08-07 | 2004-03-04 | Omron Corp | Photoelectric sensor |
DE10239468A1 (en) * | 2002-08-28 | 2004-03-11 | Sick Ag | object detection |
DE10241069B4 (en) * | 2002-09-05 | 2004-07-15 | Aesculap Ag & Co. Kg | Device for detecting the contour of a surface |
US7166114B2 (en) | 2002-09-18 | 2007-01-23 | Stryker Leibinger Gmbh & Co Kg | Method and system for calibrating a surgical tool and adapter thereof |
JP3624353B2 (en) * | 2002-11-14 | 2005-03-02 | 有限会社テクノドリーム二十一 | Three-dimensional shape measuring method and apparatus |
ATE494561T1 (en) | 2002-11-15 | 2011-01-15 | Leica Geosystems Ag | METHOD AND DEVICE FOR CALIBRATION OF A MEASURING SYSTEM |
DE10335829A1 (en) * | 2003-08-05 | 2005-03-10 | Siemens Ag | Method for determining the axle geometry and sensor for carrying it out |
US6950775B2 (en) * | 2003-12-01 | 2005-09-27 | Snap-On Incorporated | Coordinate measuring system and field-of-view indicators therefor |
US7771436B2 (en) * | 2003-12-10 | 2010-08-10 | Stryker Leibinger Gmbh & Co. Kg. | Surgical navigation tracker, system and method |
US7873400B2 (en) * | 2003-12-10 | 2011-01-18 | Stryker Leibinger Gmbh & Co. Kg. | Adapter for surgical navigation trackers |
US7824346B2 (en) * | 2004-03-11 | 2010-11-02 | Geodigm Corporation | Determining condyle displacement utilizing electronic models of dental impressions having a common coordinate system |
US7702492B2 (en) * | 2004-03-11 | 2010-04-20 | Geodigm Corporation | System and method for generating an electronic model for a dental impression having a common coordinate system |
US7375826B1 (en) * | 2004-09-23 | 2008-05-20 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) | High speed three-dimensional laser scanner with real time processing |
DE102004056400A1 (en) * | 2004-11-23 | 2006-05-24 | Daimlerchrysler Ag | Alignment method for recognizing maladjustment in a distance sensor fitted in a motor vehicle brings the vehicle along a driving line into a measuring position for a measuring device |
US8244332B2 (en) | 2004-12-22 | 2012-08-14 | Siemens Medical Solutions Usa, Inc. | Three-dimensional breast anatomy imaging system |
US7623250B2 (en) * | 2005-02-04 | 2009-11-24 | Stryker Leibinger Gmbh & Co. Kg. | Enhanced shape characterization device and method |
DE102005043912B4 (en) * | 2005-05-18 | 2011-08-18 | Steinbichler Optotechnik GmbH, 83115 | Method for determining the 3D coordinates of the surface of an object |
US8625854B2 (en) | 2005-09-09 | 2014-01-07 | Industrial Research Limited | 3D scene scanner and a position and orientation system |
US7755026B2 (en) * | 2006-05-04 | 2010-07-13 | CandleDragon Inc. | Generating signals representative of sensed light that is associated with writing being done by a user |
DE102006031833A1 (en) * | 2006-05-24 | 2007-12-06 | Dr. Wirth Grafische Technik Gmbh & Co. Kg | Method for generating image information |
US7710555B2 (en) | 2006-06-27 | 2010-05-04 | Burke E. Porter Machinery Company | Apparatus and method for determining the orientation of an object such as vehicle wheel alignment |
US20080166175A1 (en) * | 2007-01-05 | 2008-07-10 | Candledragon, Inc. | Holding and Using an Electronic Pen and Paper |
US7864309B2 (en) * | 2007-05-04 | 2011-01-04 | Burke E. Porter Machinery Company | Non contact wheel alignment sensor and method |
TW200907764A (en) * | 2007-08-01 | 2009-02-16 | Unique Instr Co Ltd | Three-dimensional virtual input and simulation apparatus |
EP2026034B1 (en) * | 2007-08-16 | 2020-04-29 | Carl Zeiss Optotechnik GmbH | Device for determining the 3D coordinates of an object, in particular a tooth |
EP2238811B1 (en) | 2008-01-24 | 2011-10-05 | Koninklijke Philips Electronics N.V. | Sensor device with tilting or orientation-correcting photo sensor for atmosphere creation |
JP5348128B2 (en) * | 2008-03-19 | 2013-11-20 | 株式会社安川電機 | Shape measuring device and robot device equipped with the same |
DE102008023218A1 (en) * | 2008-05-10 | 2009-11-12 | Aesculap Ag | Method and device for examining a body with an ultrasound head |
US8265376B2 (en) * | 2008-07-21 | 2012-09-11 | Cognitens Ltd. | Method and system for providing a digital model of an object |
DE102008039838B4 (en) * | 2008-08-27 | 2011-09-22 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Method for scanning the three-dimensional surface of an object by means of a light beam scanner |
DE102008045387B4 (en) * | 2008-09-02 | 2017-02-09 | Carl Zeiss Ag | Apparatus and method for measuring a surface |
US7898353B2 (en) | 2009-05-15 | 2011-03-01 | Freescale Semiconductor, Inc. | Clock conditioning circuit |
DE102009032262A1 (en) | 2009-07-08 | 2011-01-13 | Steinbichler Optotechnik Gmbh | Method for determining the 3D coordinates of an object |
DE102009033886A1 (en) | 2009-07-20 | 2011-01-27 | Steinbichler Optotechnik Gmbh | Method for displaying the surface of an object |
US8396685B2 (en) | 2009-09-15 | 2013-03-12 | Qualcomm Incorporated | Small form-factor distance sensor |
US8497981B2 (en) * | 2009-09-15 | 2013-07-30 | Qualcomm Incorporated | Small form-factor size sensor |
DE102010018979A1 (en) | 2010-05-03 | 2011-11-03 | Steinbichler Optotechnik Gmbh | Method and device for determining the 3D coordinates of an object |
DE102010064320B4 (en) * | 2010-12-29 | 2019-05-23 | Siemens Healthcare Gmbh | Optical pointer for a surgical assistance system |
DE102011011360A1 (en) * | 2011-02-16 | 2012-08-16 | Steinbichler Optotechnik Gmbh | Apparatus and method for determining the 3-D coordinates of an object and for calibrating an industrial robot |
US10586341B2 (en) | 2011-03-04 | 2020-03-10 | General Electric Company | Method and device for measuring features on or near an object |
US9875574B2 (en) * | 2013-12-17 | 2018-01-23 | General Electric Company | Method and device for automatically identifying the deepest point on the surface of an anomaly |
US10157495B2 (en) * | 2011-03-04 | 2018-12-18 | General Electric Company | Method and device for displaying a two-dimensional image of a viewed object simultaneously with an image depicting the three-dimensional geometry of the viewed object |
EP2557391A1 (en) | 2011-08-12 | 2013-02-13 | Leica Geosystems AG | Measuring device for determining the spatial location of a measuring aid |
DE102011114674C5 (en) | 2011-09-30 | 2020-05-28 | Steinbichler Optotechnik Gmbh | Method and device for determining the 3D coordinates of an object |
EP2589982A1 (en) | 2011-11-03 | 2013-05-08 | Leica Geosystems AG | Laser diode as interferometer laserbeam source in a laser tracker |
EP2602641B1 (en) | 2011-12-06 | 2014-02-26 | Leica Geosystems AG | Laser tracker with position-sensitive detectors for searching a target |
EP2618175A1 (en) | 2012-01-17 | 2013-07-24 | Leica Geosystems AG | Laser tracker with graphical targeting functionality |
TWI491194B (en) * | 2012-02-21 | 2015-07-01 | Mstar Semiconductor Inc | Method and associated apparatus for determining signal timing of wireless network signal |
CN103297369B (en) * | 2012-03-01 | 2016-05-11 | 晨星软件研发(深圳)有限公司 | In wireless network signal, define method and the relevant apparatus of signal sequence |
EP2634594A1 (en) | 2012-03-01 | 2013-09-04 | Leica Geosystems AG | Method for determining a change in distance by means of interferometry |
EP2639615A1 (en) | 2012-03-13 | 2013-09-18 | Leica Geosystems AG | Camera system with a zoom lens and a linear encoder |
EP2662661A1 (en) | 2012-05-07 | 2013-11-13 | Leica Geosystems AG | Measuring device with an interferometer and an absorption medium defining a thick line spectrum |
EP2662702A1 (en) | 2012-05-07 | 2013-11-13 | Leica Geosystems AG | Laser tracker with interferometer and absolute distance measuring unit and calibration method for a laser tracker |
GB2540075B (en) * | 2012-05-18 | 2017-04-19 | Acergy France SAS | Improvements relating to pipe measurement |
EP2687866A1 (en) | 2012-07-19 | 2014-01-22 | Leica Geosystems AG | Laser tracker with calibration unit for self-calibration |
EP2706376A1 (en) | 2012-09-07 | 2014-03-12 | Leica Geosystems AG | Laser tracker with hybrid imaging method for expanding measurement range |
US9127942B1 (en) * | 2012-09-21 | 2015-09-08 | Amazon Technologies, Inc. | Surface distance determination using time-of-flight of light |
BR112015009608A2 (en) | 2012-10-30 | 2017-07-04 | Truinject Medical Corp | cosmetic or therapeutic training system, test tools, injection apparatus and methods for training injection, for using test tool and for injector classification |
US9792836B2 (en) | 2012-10-30 | 2017-10-17 | Truinject Corp. | Injection training apparatus using 3D position sensor |
EP2728375A1 (en) | 2012-10-31 | 2014-05-07 | Leica Geosystems AG | Method and device for determining the orientation of an object |
US9545288B2 (en) | 2013-03-14 | 2017-01-17 | Think Surgical, Inc. | Systems and devices for a counter balanced surgical robot |
KR20230098715A9 (en) | 2013-03-14 | 2024-11-13 | 씽크 써지컬, 인크. | Systems and methods for monitoring a surgical procedure with critical regions |
EP2801839B1 (en) | 2013-05-10 | 2020-03-04 | Leica Geosystems AG | Handheld measuring aid for use with a 6-DoF laser tracker |
EP2801841B1 (en) | 2013-05-10 | 2018-07-04 | Leica Geosystems AG | Laser tracker with a target detecting unit for a target tracking system and orientation detection |
EP2827099A1 (en) | 2013-07-16 | 2015-01-21 | Leica Geosystems AG | Laser tracker with target searching functionality |
WO2015014797A1 (en) * | 2013-08-02 | 2015-02-05 | Koninklijke Philips N.V. | Laser device with adjustable polarization |
US9381417B2 (en) | 2013-08-16 | 2016-07-05 | Shimano Inc. | Bicycle fitting system |
US9600928B2 (en) * | 2013-12-17 | 2017-03-21 | General Electric Company | Method and device for automatically identifying a point of interest on the surface of an anomaly |
US9818039B2 (en) * | 2013-12-17 | 2017-11-14 | General Electric Company | Method and device for automatically identifying a point of interest in a depth measurement on a viewed object |
JP6227395B2 (en) * | 2013-12-18 | 2017-11-08 | 株式会社ミツトヨ | Three-dimensional measurement system, three-dimensional measurement method, object to be measured, and position detection device |
CA2972754A1 (en) | 2014-01-17 | 2015-07-23 | Clark B. Foster | Injection site training system |
EP2896931A1 (en) * | 2014-01-21 | 2015-07-22 | Aimess Services GmbH | Device and method for determining the change in position of a 3D measuring head |
US10111714B2 (en) | 2014-01-27 | 2018-10-30 | Align Technology, Inc. | Adhesive objects for improving image registration of intraoral images |
US10290231B2 (en) | 2014-03-13 | 2019-05-14 | Truinject Corp. | Automated detection of performance characteristics in an injection training system |
DE102015004873A1 (en) | 2014-04-17 | 2015-10-22 | Steinbichler Optotechnik Gmbh | Method and device for determining the 3D coordinates of an object |
PL3161516T3 (en) * | 2014-06-30 | 2023-10-16 | Bodidata, Inc. | Handheld multi-sensor system for sizing irregular objects |
EP2980526B1 (en) | 2014-07-30 | 2019-01-16 | Leica Geosystems AG | Coordinate measuring device and method |
EP3006895B1 (en) | 2014-10-10 | 2020-02-19 | Leica Geosystems AG | Laser tracker with hot air flow shielding for the measurement beam |
CN107072740B (en) * | 2014-11-21 | 2020-05-22 | 思外科有限公司 | Visual tracking system and visible light communication system for transmitting data between tracking recognizers |
CN107111963B (en) | 2014-12-01 | 2020-11-17 | 特鲁因杰克特公司 | Injection training tool emitting omnidirectional light |
JP6735273B2 (en) * | 2014-12-08 | 2020-08-05 | シンク サージカル, インコーポレイテッド | Planning, digitization, and enrollment for implant-based total joint replacement |
US10932866B1 (en) | 2014-12-08 | 2021-03-02 | Think Surgical, Inc. | Implant based planning, digitizing, and registration for total joint arthroplasty |
EP3032277B1 (en) | 2014-12-12 | 2021-04-07 | Leica Geosystems AG | Laser tracker |
JP6634229B2 (en) * | 2015-06-26 | 2020-01-22 | Mogコンサルタント株式会社 | Method for creating a bar arrangement model using a handheld three-dimensional laser scanner |
KR20180107076A (en) | 2015-10-20 | 2018-10-01 | 트루인젝트 코프 | Injection system |
WO2017151441A2 (en) | 2016-02-29 | 2017-09-08 | Truinject Medical Corp. | Cosmetic and therapeutic injection safety systems, methods, and devices |
EP3423972A1 (en) | 2016-03-02 | 2019-01-09 | Truinject Corp. | Sensory enhanced environments for injection aid and social training |
EP3220163B1 (en) | 2016-03-15 | 2021-07-07 | Leica Geosystems AG | Laser tracker with two measuring function alities |
US10551180B2 (en) | 2016-09-30 | 2020-02-04 | Burke E. Porter Marchinery Company | Wheel alignment measurement method and system for vehicle wheels |
WO2018136901A1 (en) | 2017-01-23 | 2018-07-26 | Truinject Corp. | Syringe dose and position measuring apparatus |
US10247542B2 (en) | 2017-08-09 | 2019-04-02 | Leica Geosystems Ag | Handheld measuring aid with a 3-axis joint connection and a spherical encoder |
US11243074B2 (en) | 2018-04-30 | 2022-02-08 | BPG Sales and Technology Investments, LLC | Vehicle alignment and sensor calibration system |
US11597091B2 (en) | 2018-04-30 | 2023-03-07 | BPG Sales and Technology Investments, LLC | Robotic target alignment for vehicle sensor calibration |
US11835646B2 (en) | 2018-04-30 | 2023-12-05 | BPG Sales and Technology Investments, LLC | Target alignment for vehicle sensor calibration |
US11781860B2 (en) | 2018-04-30 | 2023-10-10 | BPG Sales and Technology Investments, LLC | Mobile vehicular alignment for sensor calibration |
KR102708589B1 (en) | 2018-04-30 | 2024-09-24 | 비피지 세일즈 앤드 테크놀로지 인베스트먼츠, 엘엘씨 | Vehicle Alignment for Sensor Calibration |
US11291507B2 (en) | 2018-07-16 | 2022-04-05 | Mako Surgical Corp. | System and method for image based registration and calibration |
KR20220035045A (en) | 2019-07-16 | 2022-03-21 | 보디데이터, 인크. | Systems and Methods for Improved Radar Scanning Coverage and Efficiency |
US12089902B2 (en) | 2019-07-30 | 2024-09-17 | Coviden Lp | Cone beam and 3D fluoroscope lung navigation |
WO2021220169A1 (en) | 2020-04-27 | 2021-11-04 | BPG Sales and Technology Investments, LLC | Non-contact vehicle orientation and alignment sensor and method |
CN111881719B (en) * | 2020-06-09 | 2024-04-16 | 青岛奥美克生物信息科技有限公司 | Non-contact type biological recognition guiding device, method and biological feature recognition system |
EP4285141A4 (en) | 2021-01-28 | 2024-12-25 | BPG Sales and Technology Investments, LLC | TARGET ALIGNMENT SYSTEM AND SENSOR CALIBRATION METHOD |
US11635291B2 (en) | 2021-04-30 | 2023-04-25 | Mitutoyo Corporation | Workpiece holder for utilization in metrology system for measuring workpiece in different orientations |
EP4198449A1 (en) | 2021-12-14 | 2023-06-21 | Hexagon Technology Center GmbH | Metrology system |
EP4332495A1 (en) | 2022-09-01 | 2024-03-06 | Leica Geosystems AG | Measuring instrument with a scanning absolute distance meter |
EP4343272B1 (en) | 2022-09-20 | 2024-11-06 | Hexagon Technology Center GmbH | Sensor with curved reflector |
AT526145B1 (en) * | 2023-02-23 | 2023-12-15 | Wilfried Lutz Dr | Imaging optics |
Citations (32)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3821469A (en) * | 1972-05-15 | 1974-06-28 | Amperex Electronic Corp | Graphical data device |
US3983474A (en) * | 1975-02-21 | 1976-09-28 | Polhemus Navigation Sciences, Inc. | Tracking and determining orientation of object using coordinate transformation means, system and process |
US4209254A (en) * | 1978-02-03 | 1980-06-24 | Thomson-Csf | System for monitoring the movements of one or more point sources of luminous radiation |
US4585350A (en) * | 1983-01-28 | 1986-04-29 | Pryor Timothy R | Pulsed robotic inspection |
US4649504A (en) * | 1984-05-22 | 1987-03-10 | Cae Electronics, Ltd. | Optical position and orientation measurement techniques |
US4660970A (en) * | 1983-11-25 | 1987-04-28 | Carl-Zeiss-Stiftung | Method and apparatus for the contact-less measuring of objects |
US4701049A (en) * | 1983-06-22 | 1987-10-20 | B.V. Optische Industrie "De Oude Delft" | Measuring system employing a measuring method based on the triangulation principle for the non-contact measurement of a distance from the surface of a contoured object to a reference level. _ |
US4701047A (en) * | 1984-06-22 | 1987-10-20 | Dornier Gmbh | Line selection for preparing range images |
US4705395A (en) * | 1984-10-03 | 1987-11-10 | Diffracto Ltd. | Triangulation data integrity |
US4705401A (en) * | 1985-08-12 | 1987-11-10 | Cyberware Laboratory Inc. | Rapid three-dimensional surface digitizer |
US4709156A (en) * | 1985-11-27 | 1987-11-24 | Ex-Cell-O Corporation | Method and apparatus for inspecting a surface |
US4721384A (en) * | 1985-01-26 | 1988-01-26 | Deutsche Forschungs- Und Versuchsanstalt Fur Luft- Und Raumfahrt E.V. | Optical-electronic rangefinder |
US4721388A (en) * | 1984-10-05 | 1988-01-26 | Hitachi, Ltd. | Method of measuring shape of object in non-contacting manner |
US4733969A (en) * | 1986-09-08 | 1988-03-29 | Cyberoptics Corporation | Laser probe for determining distance |
US4737032A (en) * | 1985-08-26 | 1988-04-12 | Cyberware Laboratory, Inc. | Surface mensuration sensor |
US4743771A (en) * | 1985-06-17 | 1988-05-10 | View Engineering, Inc. | Z-axis height measurement system |
US4745290A (en) * | 1987-03-19 | 1988-05-17 | David Frankel | Method and apparatus for use in making custom shoes |
US4753528A (en) * | 1983-12-13 | 1988-06-28 | Quantime, Inc. | Laser archery distance device |
US4761072A (en) * | 1986-09-30 | 1988-08-02 | Diffracto Ltd. | Electro-optical sensors for manual control |
US4764016A (en) * | 1985-06-14 | 1988-08-16 | Anders Bengtsson | Instrument for measuring the topography of a surface |
US4764015A (en) * | 1986-12-31 | 1988-08-16 | Owens-Illinois Television Products Inc. | Method and apparatus for non-contact spatial measurement |
US4767934A (en) * | 1986-07-02 | 1988-08-30 | Honeywell Inc. | Active ranging system |
US4775235A (en) * | 1984-06-08 | 1988-10-04 | Robotic Vision Systems, Inc. | Optical spot scanning system for use in three-dimensional object inspection |
US4782239A (en) * | 1985-04-05 | 1988-11-01 | Nippon Kogaku K. K. | Optical position measuring apparatus |
US4794262A (en) * | 1985-12-03 | 1988-12-27 | Yukio Sato | Method and apparatus for measuring profile of three-dimensional object |
US4803645A (en) * | 1985-09-19 | 1989-02-07 | Tokyo Kogaku Kikai Kabushiki Kaisha | Method and apparatus for measuring coordinates |
US4821200A (en) * | 1986-04-14 | 1989-04-11 | Jonkopings Lans Landsting | Method and apparatus for manufacturing a modified, three-dimensional reproduction of a soft, deformable object |
US4822163A (en) * | 1986-06-26 | 1989-04-18 | Robotic Vision Systems, Inc. | Tracking vision sensor |
US4825091A (en) * | 1987-02-05 | 1989-04-25 | Carl-Zeiss-Stiftung | Optoelectronic distance sensor with visible pilot beam |
US4829373A (en) * | 1987-08-03 | 1989-05-09 | Vexcel Corporation | Stereo mensuration apparatus |
US4836778A (en) * | 1987-05-26 | 1989-06-06 | Vexcel Corporation | Mandibular motion monitoring system |
US4982188A (en) * | 1988-09-20 | 1991-01-01 | Grumman Aerospace Corporation | System for measuring positional characteristics of an ejected object |
Family Cites Families (3)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0216041B1 (en) * | 1985-08-01 | 1991-06-05 | BROWN & SHARPE MANUFACTURING COMPANY | Process and device for measuring an object in three dimensions |
US4792696A (en) * | 1987-06-05 | 1988-12-20 | Trustees Of Columbia University In The City Of New York | Method and an apparatus for determining surface shape utilizing object self-shadowing |
DE3807578A1 (en) * | 1988-03-08 | 1989-09-28 | Neumeyer Stefan | Method for the three-dimensional detection and/or determination of a body, in particular a human skull (cranium) |
-
1990
- 1990-10-15 US US07/597,505 patent/US5198877A/en not_active Ceased
-
1991
- 1991-10-11 WO PCT/US1991/007511 patent/WO1992007233A1/en active IP Right Grant
- 1991-10-11 JP JP3518467A patent/JP2974775B2/en not_active Expired - Fee Related
- 1991-10-11 CA CA002094039A patent/CA2094039A1/en not_active Withdrawn
- 1991-10-11 EP EP91920138A patent/EP0553266B1/en not_active Expired - Lifetime
- 1991-10-11 DE DE69126035T patent/DE69126035T2/en not_active Expired - Fee Related
- 1991-10-11 AT AT91920138T patent/ATE152823T1/en not_active IP Right Cessation
-
1995
- 1995-03-30 US US08/415,126 patent/USRE35816E/en not_active Expired - Lifetime
Patent Citations (32)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3821469A (en) * | 1972-05-15 | 1974-06-28 | Amperex Electronic Corp | Graphical data device |
US3983474A (en) * | 1975-02-21 | 1976-09-28 | Polhemus Navigation Sciences, Inc. | Tracking and determining orientation of object using coordinate transformation means, system and process |
US4209254A (en) * | 1978-02-03 | 1980-06-24 | Thomson-Csf | System for monitoring the movements of one or more point sources of luminous radiation |
US4585350A (en) * | 1983-01-28 | 1986-04-29 | Pryor Timothy R | Pulsed robotic inspection |
US4701049A (en) * | 1983-06-22 | 1987-10-20 | B.V. Optische Industrie "De Oude Delft" | Measuring system employing a measuring method based on the triangulation principle for the non-contact measurement of a distance from the surface of a contoured object to a reference level. _ |
US4660970A (en) * | 1983-11-25 | 1987-04-28 | Carl-Zeiss-Stiftung | Method and apparatus for the contact-less measuring of objects |
US4753528A (en) * | 1983-12-13 | 1988-06-28 | Quantime, Inc. | Laser archery distance device |
US4649504A (en) * | 1984-05-22 | 1987-03-10 | Cae Electronics, Ltd. | Optical position and orientation measurement techniques |
US4775235A (en) * | 1984-06-08 | 1988-10-04 | Robotic Vision Systems, Inc. | Optical spot scanning system for use in three-dimensional object inspection |
US4701047A (en) * | 1984-06-22 | 1987-10-20 | Dornier Gmbh | Line selection for preparing range images |
US4705395A (en) * | 1984-10-03 | 1987-11-10 | Diffracto Ltd. | Triangulation data integrity |
US4721388A (en) * | 1984-10-05 | 1988-01-26 | Hitachi, Ltd. | Method of measuring shape of object in non-contacting manner |
US4721384A (en) * | 1985-01-26 | 1988-01-26 | Deutsche Forschungs- Und Versuchsanstalt Fur Luft- Und Raumfahrt E.V. | Optical-electronic rangefinder |
US4782239A (en) * | 1985-04-05 | 1988-11-01 | Nippon Kogaku K. K. | Optical position measuring apparatus |
US4764016A (en) * | 1985-06-14 | 1988-08-16 | Anders Bengtsson | Instrument for measuring the topography of a surface |
US4743771A (en) * | 1985-06-17 | 1988-05-10 | View Engineering, Inc. | Z-axis height measurement system |
US4705401A (en) * | 1985-08-12 | 1987-11-10 | Cyberware Laboratory Inc. | Rapid three-dimensional surface digitizer |
US4737032A (en) * | 1985-08-26 | 1988-04-12 | Cyberware Laboratory, Inc. | Surface mensuration sensor |
US4803645A (en) * | 1985-09-19 | 1989-02-07 | Tokyo Kogaku Kikai Kabushiki Kaisha | Method and apparatus for measuring coordinates |
US4709156A (en) * | 1985-11-27 | 1987-11-24 | Ex-Cell-O Corporation | Method and apparatus for inspecting a surface |
US4794262A (en) * | 1985-12-03 | 1988-12-27 | Yukio Sato | Method and apparatus for measuring profile of three-dimensional object |
US4821200A (en) * | 1986-04-14 | 1989-04-11 | Jonkopings Lans Landsting | Method and apparatus for manufacturing a modified, three-dimensional reproduction of a soft, deformable object |
US4822163A (en) * | 1986-06-26 | 1989-04-18 | Robotic Vision Systems, Inc. | Tracking vision sensor |
US4767934A (en) * | 1986-07-02 | 1988-08-30 | Honeywell Inc. | Active ranging system |
US4733969A (en) * | 1986-09-08 | 1988-03-29 | Cyberoptics Corporation | Laser probe for determining distance |
US4761072A (en) * | 1986-09-30 | 1988-08-02 | Diffracto Ltd. | Electro-optical sensors for manual control |
US4764015A (en) * | 1986-12-31 | 1988-08-16 | Owens-Illinois Television Products Inc. | Method and apparatus for non-contact spatial measurement |
US4825091A (en) * | 1987-02-05 | 1989-04-25 | Carl-Zeiss-Stiftung | Optoelectronic distance sensor with visible pilot beam |
US4745290A (en) * | 1987-03-19 | 1988-05-17 | David Frankel | Method and apparatus for use in making custom shoes |
US4836778A (en) * | 1987-05-26 | 1989-06-06 | Vexcel Corporation | Mandibular motion monitoring system |
US4829373A (en) * | 1987-08-03 | 1989-05-09 | Vexcel Corporation | Stereo mensuration apparatus |
US4982188A (en) * | 1988-09-20 | 1991-01-01 | Grumman Aerospace Corporation | System for measuring positional characteristics of an ejected object |
Non-Patent Citations (11)
* Cited by examiner, † Cited by third partyTitle |
---|
A.M. Coblentz, Robin E. Herron, Biostereometrics 85, 3 6 Dec. 1985 Stereometric Measurement System for Quantification of Object Forms, P.Fischer, F.Mesqui, F.Kaeser. * |
A.M. Coblentz, Robin E. Herron, Biostereometrics '85, 3-6 Dec. 1985 Stereometric Measurement System for Quantification of Object Forms, P.Fischer, F.Mesqui, F.Kaeser. |
F. Mesqui, F.Kaeser, P.Fischer, Real Time, Noninvasive Recording & Three Dimensional Display of the Functional Movements of an Arbitrary Mandible Point, SPIE vol. 602 Biostereometrics, Dec. 1985. * |
F. Mesqui, F.Kaeser, P.Fischer, Real-Time, Noninvasive Recording & Three-Dimensional Display of the Functional Movements of an Arbitrary Mandible Point, SPIE vol. 602 Biostereometrics, Dec. 1985. |
Henry Fuchs, Joe W. Duran, Brian W. Johnson, Zvi. M. kedem, Acquisition & Modeling of Human Body Form Data, SPIE vol. 166, Jul. 1978. * |
Robert P. Burton, Ivan E. Sutherland, Twinkle Box A Three Dimensional Computer Input Device, May 6 10, 1974, AFIPS Conference Proceedings vol. 43. * |
Robert P. Burton, Ivan E. Sutherland, Twinkle Box-A Three Dimensional Computer Input Device, May 6-10, 1974, AFIPS Conference Proceedings vol. 43. |
V. Macellari, CoSTEL:a Computer Peripheral Remote Sension Device for 3 Dimensional Monitoring of Human Motion, May, 1983. * |
V. Macellari, CoSTEL:a Computer Peripheral Remote Sension Device for 3-Dimensional Monitoring of Human Motion, May, 1983. |
Yasuo Yamashita, Three dimensional Stereometric Measurement System Using Optical Scanners, Cylindrical Lenses, & Line Sensors, SPIE 361, Aug. 1982. * |
Yasuo Yamashita, Three-dimensional Stereometric Measurement System Using Optical Scanners, Cylindrical Lenses, & Line Sensors, SPIE 361, Aug. 1982. |
Cited By (330)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE43952E1 (en) | 1989-10-05 | 2013-01-29 | Medtronic Navigation, Inc. | Interactive system for local intervention inside a non-homogeneous structure |
US6165181A (en) | 1992-04-21 | 2000-12-26 | Sofamor Danek Holdings, Inc. | Apparatus and method for photogrammetric surgical localization |
US6146390A (en) | 1992-04-21 | 2000-11-14 | Sofamor Danek Holdings, Inc. | Apparatus and method for photogrammetric surgical localization |
US6491702B2 (en) | 1992-04-21 | 2002-12-10 | Sofamor Danek Holdings, Inc. | Apparatus and method for photogrammetric surgical localization |
US7174202B2 (en) | 1992-08-14 | 2007-02-06 | British Telecommunications | Medical navigation apparatus |
US8200314B2 (en) | 1992-08-14 | 2012-06-12 | British Telecommunications Public Limited Company | Surgical navigation |
US8473026B2 (en) | 1994-09-15 | 2013-06-25 | Ge Medical Systems Global Technology Company | System for monitoring a position of a medical instrument with respect to a patient's body |
USRE43750E1 (en) | 1995-06-14 | 2012-10-16 | Medtronic Navigation, Inc. | Method for navigating a catheter probe |
USRE40852E1 (en) | 1995-06-14 | 2009-07-14 | Medtronic Navigation, Inc. | Method and system for navigating a catheter probe |
US6374198B1 (en) * | 1996-07-11 | 2002-04-16 | Mirai S.R.L. | Method for the creation of tridimensional numerical models |
US6222582B1 (en) * | 1997-07-24 | 2001-04-24 | Sumitomo Metal (Smi) Electronics Devices Inc. | Image capture system |
US6296613B1 (en) | 1997-08-22 | 2001-10-02 | Synthes (U.S.A.) | 3D ultrasound recording device |
USRE42194E1 (en) | 1997-09-24 | 2011-03-01 | Medtronic Navigation, Inc. | Percutaneous registration apparatus and method for use in computer-assisted surgical navigation |
USRE39133E1 (en) * | 1997-09-24 | 2006-06-13 | Surgical Navigation Technologies, Inc. | Percutaneous registration apparatus and method for use in computer-assisted surgical navigation |
US6226548B1 (en) | 1997-09-24 | 2001-05-01 | Surgical Navigation Technologies, Inc. | Percutaneous registration apparatus and method for use in computer-assisted surgical navigation |
USRE44305E1 (en) | 1997-09-24 | 2013-06-18 | Medtronic Navigation, Inc. | Percutaneous registration apparatus and method for use in computer-assisted surgical navigation |
USRE45509E1 (en) | 1997-09-24 | 2015-05-05 | Medtronic Navigation, Inc. | Percutaneous registration apparatus and method for use in computer-assisted surgical navigation |
USRE42226E1 (en) | 1997-09-24 | 2011-03-15 | Medtronic Navigation, Inc. | Percutaneous registration apparatus and method for use in computer-assisted surgical navigation |
USRE46409E1 (en) | 1997-11-20 | 2017-05-23 | Medtronic Navigation, Inc. | Image guided awl/tap/screwdriver |
USRE46422E1 (en) | 1997-11-20 | 2017-06-06 | Medtronic Navigation, Inc. | Image guided awl/tap/screwdriver |
USRE43328E1 (en) | 1997-11-20 | 2012-04-24 | Medtronic Navigation, Inc | Image guided awl/tap/screwdriver |
US6324296B1 (en) * | 1997-12-04 | 2001-11-27 | Phasespace, Inc. | Distributed-processing motion tracking system for tracking individually modulated light points |
US8105339B2 (en) | 1997-12-12 | 2012-01-31 | Sofamor Danek Holdings, Inc. | Image guided spinal surgery guide system and method for use thereof |
US7763035B2 (en) | 1997-12-12 | 2010-07-27 | Medtronic Navigation, Inc. | Image guided spinal surgery guide, system and method for use thereof |
US20010018594A1 (en) * | 1998-05-14 | 2001-08-30 | Calypso Medical, Inc. | System and Method for Bracketing and Removing Tissue |
US6918919B2 (en) | 1998-05-14 | 2005-07-19 | Calypso Medical Technologies, Inc. | System and method for bracketing and removing tissue |
US20050059884A1 (en) * | 1998-05-14 | 2005-03-17 | Calypso Medical Technologies, Inc. | System and method for bracketing and removing tissue |
US8452375B2 (en) | 1998-05-14 | 2013-05-28 | Varian Medical Systems, Inc. | Systems and methods for locating and defining a target location within a human body |
US6363940B1 (en) | 1998-05-14 | 2002-04-02 | Calypso Medical Technologies, Inc. | System and method for bracketing and removing tissue |
US6694168B2 (en) | 1998-06-22 | 2004-02-17 | Synthes (U.S.A.) | Fiducial matching using fiducial implants |
US6370224B1 (en) | 1998-06-29 | 2002-04-09 | Sofamor Danek Group, Inc. | System and methods for the reduction and elimination of image artifacts in the calibration of x-ray imagers |
US7065462B2 (en) | 1998-07-24 | 2006-06-20 | Merilab, Inc. | Vehicle wheel alignment by rotating vision sensor |
US20040039544A1 (en) * | 1998-07-24 | 2004-02-26 | Merrill M. Stanley | Vehicle wheel alignment by rotating vision sensor |
US20050105772A1 (en) * | 1998-08-10 | 2005-05-19 | Nestor Voronka | Optical body tracker |
US7130676B2 (en) | 1998-08-20 | 2006-10-31 | Sofamor Danek Holdings, Inc. | Fluoroscopic image guided orthopaedic surgery system with intraoperative registration |
US8768437B2 (en) | 1998-08-20 | 2014-07-01 | Sofamor Danek Holdings, Inc. | Fluoroscopic image guided surgery system with intraoperative registration |
US6611141B1 (en) | 1998-12-23 | 2003-08-26 | Howmedica Leibinger Inc | Hybrid 3-D probe tracked by multiple sensors |
US6271918B2 (en) * | 1999-02-04 | 2001-08-07 | National Research Council Of Canada | Virtual multiple aperture 3-D range sensor |
US7068825B2 (en) | 1999-03-08 | 2006-06-27 | Orametrix, Inc. | Scanning system and calibration method for capturing precise three-dimensional information of objects |
US20010038705A1 (en) * | 1999-03-08 | 2001-11-08 | Orametrix, Inc. | Scanning system and calibration method for capturing precise three-dimensional information of objects |
US6725082B2 (en) | 1999-03-17 | 2004-04-20 | Synthes U.S.A. | System and method for ligament graft placement |
US7606613B2 (en) | 1999-03-23 | 2009-10-20 | Medtronic Navigation, Inc. | Navigational guidance via computer-assisted fluoroscopic imaging |
US7996064B2 (en) | 1999-03-23 | 2011-08-09 | Medtronic Navigation, Inc. | System and method for placing and determining an appropriately sized surgical implant |
US6493095B1 (en) | 1999-04-13 | 2002-12-10 | Inspeck Inc. | Optional 3D digitizer, system and method for digitizing an object |
US6585651B2 (en) | 1999-04-20 | 2003-07-01 | Synthes Ag Chur | Method and device for percutaneous determination of points associated with the surface of an organ |
US7217276B2 (en) | 1999-04-20 | 2007-05-15 | Surgical Navigational Technologies, Inc. | Instrument guidance method and system for image guided surgery |
US8845655B2 (en) | 1999-04-20 | 2014-09-30 | Medtronic Navigation, Inc. | Instrument guide system |
US20020109705A1 (en) * | 1999-05-03 | 2002-08-15 | Robert Hofstetter | System and method for preparing an image corrected for the presence of a gravity induced distortion |
US7277594B2 (en) | 1999-05-03 | 2007-10-02 | Ao Technology Ag | System and method for preparing an image corrected for the presence of a gravity induced distortion |
US6801637B2 (en) | 1999-08-10 | 2004-10-05 | Cybernet Systems Corporation | Optical body tracker |
US8057407B2 (en) | 1999-10-28 | 2011-11-15 | Medtronic Navigation, Inc. | Surgical sensor |
US8548565B2 (en) | 1999-10-28 | 2013-10-01 | Medtronic Navigation, Inc. | Registration of human anatomy integrated for electromagnetic localization |
US11331150B2 (en) | 1999-10-28 | 2022-05-17 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US6402762B2 (en) | 1999-10-28 | 2002-06-11 | Surgical Navigation Technologies, Inc. | System for translation of electromagnetic and optical localization systems |
US6669635B2 (en) | 1999-10-28 | 2003-12-30 | Surgical Navigation Technologies, Inc. | Navigation information overlay onto ultrasound imagery |
US6379302B1 (en) | 1999-10-28 | 2002-04-30 | Surgical Navigation Technologies Inc. | Navigation information overlay onto ultrasound imagery |
US7797032B2 (en) | 1999-10-28 | 2010-09-14 | Medtronic Navigation, Inc. | Method and system for navigating a catheter probe in the presence of field-influencing objects |
US6499488B1 (en) | 1999-10-28 | 2002-12-31 | Winchester Development Associates | Surgical sensor |
US6381485B1 (en) | 1999-10-28 | 2002-04-30 | Surgical Navigation Technologies, Inc. | Registration of human anatomy integrated for electromagnetic localization |
US8644907B2 (en) | 1999-10-28 | 2014-02-04 | Medtronic Navigaton, Inc. | Method and apparatus for surgical navigation |
US7152608B2 (en) | 1999-10-28 | 2006-12-26 | Surgical Navigation Technologies, Inc. | Surgical communication and power system |
US6474341B1 (en) | 1999-10-28 | 2002-11-05 | Surgical Navigation Technologies, Inc. | Surgical communication and power system |
US20030078003A1 (en) * | 1999-10-28 | 2003-04-24 | Hunter Mark W. | Surgical communication and power system |
US9504530B2 (en) | 1999-10-28 | 2016-11-29 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US7007699B2 (en) | 1999-10-28 | 2006-03-07 | Surgical Navigation Technologies, Inc. | Surgical sensor |
US8074662B2 (en) | 1999-10-28 | 2011-12-13 | Medtronic Navigation, Inc. | Surgical communication and power system |
US6235038B1 (en) | 1999-10-28 | 2001-05-22 | Medtronic Surgical Navigation Technologies | System for translation of electromagnetic and optical localization systems |
US8290572B2 (en) | 1999-10-28 | 2012-10-16 | Medtronic Navigation, Inc. | Method and system for navigating a catheter probe in the presence of field-influencing objects |
US7657300B2 (en) | 1999-10-28 | 2010-02-02 | Medtronic Navigation, Inc. | Registration of human anatomy integrated for electromagnetic localization |
US6968224B2 (en) | 1999-10-28 | 2005-11-22 | Surgical Navigation Technologies, Inc. | Method of detecting organ matter shift in a patient |
US7725162B2 (en) | 2000-01-27 | 2010-05-25 | Howmedica Leibinger Inc. | Surgery system |
US6888640B2 (en) | 2000-02-04 | 2005-05-03 | Mario J. Spina | Body spatial dimension mapper |
US7881770B2 (en) | 2000-03-01 | 2011-02-01 | Medtronic Navigation, Inc. | Multiple cannula image guided tool for image guided procedures |
US10898153B2 (en) | 2000-03-01 | 2021-01-26 | Medtronic Navigation, Inc. | Multiple cannula image guided tool for image guided procedures |
US6725080B2 (en) | 2000-03-01 | 2004-04-20 | Surgical Navigation Technologies, Inc. | Multiple cannula image guided tool for image guided procedures |
US6497134B1 (en) | 2000-03-15 | 2002-12-24 | Image Guided Technologies, Inc. | Calibration of an instrument |
US7577474B2 (en) * | 2000-04-05 | 2009-08-18 | Brainlab Ag | Referencing or registering a patient or a patient body part in a medical navigation system by means of irradiation of light points |
US20050143645A1 (en) * | 2000-04-05 | 2005-06-30 | Stefan Vilsmeier | Referencing or registering a patient or a patient body part in a medical navigation system by means of irradiation of light points |
US7853305B2 (en) | 2000-04-07 | 2010-12-14 | Medtronic Navigation, Inc. | Trajectory storage apparatus and method for surgical navigation systems |
US8634897B2 (en) | 2000-04-07 | 2014-01-21 | Medtronic Navigation, Inc. | Trajectory storage apparatus and method for surgical navigation systems |
US6920347B2 (en) | 2000-04-07 | 2005-07-19 | Surgical Navigation Technologies, Inc. | Trajectory storage apparatus and method for surgical navigation systems |
US6744914B1 (en) | 2000-04-28 | 2004-06-01 | Orametrix, Inc. | Method and system for generating a three-dimensional object |
US6771809B1 (en) | 2000-04-28 | 2004-08-03 | Orametrix, Inc. | Method and system for registering data |
US6413084B1 (en) | 2000-04-28 | 2002-07-02 | Ora Metrix, Inc. | Method and system of scanning |
US7068836B1 (en) | 2000-04-28 | 2006-06-27 | Orametrix, Inc. | System and method for mapping a surface |
US7027642B2 (en) | 2000-04-28 | 2006-04-11 | Orametrix, Inc. | Methods for registration of three-dimensional frames to create three-dimensional virtual models of objects |
WO2001084479A1 (en) * | 2000-04-28 | 2001-11-08 | Orametirix, Inc. | Method and system for scanning a surface and generating a three-dimensional object |
US6744932B1 (en) | 2000-04-28 | 2004-06-01 | Orametrix, Inc. | System and method for mapping a surface |
US6728423B1 (en) | 2000-04-28 | 2004-04-27 | Orametrix, Inc. | System and method for mapping a surface |
US6532299B1 (en) | 2000-04-28 | 2003-03-11 | Orametrix, Inc. | System and method for mapping a surface |
US20020006217A1 (en) * | 2000-04-28 | 2002-01-17 | Orametrix, Inc. | Methods for registration of three-dimensional frames to create three-dimensional virtual models of objects |
US6564086B2 (en) * | 2000-05-03 | 2003-05-13 | Rocky Mountain Biosystems, Inc. | Prosthesis and method of making |
US8320653B2 (en) | 2000-06-14 | 2012-11-27 | Medtronic Navigation, Inc. | System and method for image based sensor calibration |
US7085400B1 (en) | 2000-06-14 | 2006-08-01 | Surgical Navigation Technologies, Inc. | System and method for image based sensor calibration |
US7831082B2 (en) | 2000-06-14 | 2010-11-09 | Medtronic Navigation, Inc. | System and method for image based sensor calibration |
US6724947B1 (en) | 2000-07-14 | 2004-04-20 | International Business Machines Corporation | Method and system for measuring characteristics of curved features |
US6911972B2 (en) * | 2001-04-04 | 2005-06-28 | Matsushita Electric Industrial Co., Ltd. | User interface device |
US9675424B2 (en) | 2001-06-04 | 2017-06-13 | Surgical Navigation Technologies, Inc. | Method for calibrating a navigation system |
US9072895B2 (en) | 2001-06-08 | 2015-07-07 | Varian Medical Systems, Inc. | Guided radiation therapy system |
US20050261570A1 (en) * | 2001-06-08 | 2005-11-24 | Mate Timothy P | Guided radiation therapy system |
US20040133101A1 (en) * | 2001-06-08 | 2004-07-08 | Mate Timothy P. | Guided radiation therapy system |
US7657301B2 (en) | 2001-06-08 | 2010-02-02 | Calypso Medical Technologies, Inc. | Guided radiation therapy system |
US7657302B2 (en) | 2001-06-08 | 2010-02-02 | Calypso Medical Technologies, Inc. | Guided radiation therapy system |
US7657303B2 (en) | 2001-06-08 | 2010-02-02 | Calypso Medical Technologies, Inc. | Guided radiation therapy system |
US20040184040A1 (en) * | 2001-07-17 | 2004-09-23 | Hideto Fujita | Shape measuring device |
US6732030B2 (en) | 2001-08-18 | 2004-05-04 | Snap-On U.K. Holdings Limited | Three-dimensional mapping systems for automotive vehicles and other articles |
US7535363B2 (en) | 2001-09-14 | 2009-05-19 | Calypso Medical Technologies, Inc. | Miniature resonating marker assembly |
US20030052785A1 (en) * | 2001-09-14 | 2003-03-20 | Margo Gisselberg | Miniature resonating marker assembly |
US20070057794A1 (en) * | 2001-09-14 | 2007-03-15 | Calypso Medical Technologies, Inc. | Miniature resonating marker assembly |
US7135978B2 (en) | 2001-09-14 | 2006-11-14 | Calypso Medical Technologies, Inc. | Miniature resonating marker assembly |
US7176798B2 (en) | 2001-12-20 | 2007-02-13 | Calypso Medical Technologies, Inc. | System for spatially adjustable excitation of leadless miniature marker |
US6812842B2 (en) | 2001-12-20 | 2004-11-02 | Calypso Medical Technologies, Inc. | System for excitation of a leadless miniature marker |
US6822570B2 (en) | 2001-12-20 | 2004-11-23 | Calypso Medical Technologies, Inc. | System for spatially adjustable excitation of leadless miniature marker |
US6838990B2 (en) | 2001-12-20 | 2005-01-04 | Calypso Medical Technologies, Inc. | System for excitation leadless miniature marker |
US20050195084A1 (en) * | 2001-12-20 | 2005-09-08 | Calypso Medical Technologies, Inc. | System for spatially adjustable excitation of leadless miniature marker |
US7696876B2 (en) | 2001-12-20 | 2010-04-13 | Calypso Medical Technologies, Inc. | System for spatially adjustable excitation of leadless miniature marker |
US6947786B2 (en) | 2002-02-28 | 2005-09-20 | Surgical Navigation Technologies, Inc. | Method and apparatus for perspective inversion |
US9757087B2 (en) | 2002-02-28 | 2017-09-12 | Medtronic Navigation, Inc. | Method and apparatus for perspective inversion |
US7630753B2 (en) | 2002-02-28 | 2009-12-08 | Medtronic Navigation, Inc. | Method and apparatus for perspective inversion |
US6990368B2 (en) | 2002-04-04 | 2006-01-24 | Surgical Navigation Technologies, Inc. | Method and apparatus for virtual digital subtraction angiography |
US8838199B2 (en) | 2002-04-04 | 2014-09-16 | Medtronic Navigation, Inc. | Method and apparatus for virtual digital subtraction angiography |
US8696548B2 (en) | 2002-04-17 | 2014-04-15 | Covidien Lp | Endoscope structures and techniques for navigating to a target in branched structure |
US8696685B2 (en) | 2002-04-17 | 2014-04-15 | Covidien Lp | Endoscope structures and techniques for navigating to a target in branched structure |
US10743748B2 (en) | 2002-04-17 | 2020-08-18 | Covidien Lp | Endoscope structures and techniques for navigating to a target in branched structure |
US9642514B2 (en) | 2002-04-17 | 2017-05-09 | Covidien Lp | Endoscope structures and techniques for navigating to a target in a branched structure |
US20060074301A1 (en) * | 2002-06-05 | 2006-04-06 | Eric Meier | Integrated radiation therapy systems and methods for treating a target in a patient |
US9682253B2 (en) | 2002-06-05 | 2017-06-20 | Varian Medical Systems, Inc. | Integrated radiation therapy systems and methods for treating a target in a patient |
US9616248B2 (en) | 2002-06-05 | 2017-04-11 | Varian Medical Systems, Inc. | Integrated radiation therapy systems and methods for treating a target in a patient |
US6892090B2 (en) | 2002-08-19 | 2005-05-10 | Surgical Navigation Technologies, Inc. | Method and apparatus for virtual endoscopy |
US7869861B2 (en) | 2002-10-25 | 2011-01-11 | Howmedica Leibinger Inc. | Flexible tracking article and method of using the same |
US20040147839A1 (en) * | 2002-10-25 | 2004-07-29 | Moctezuma De La Barrera Jose Luis | Flexible tracking article and method of using the same |
US8457719B2 (en) | 2002-10-25 | 2013-06-04 | Stryker Corporation | Flexible tracking article and method of using the same |
US20110077510A1 (en) * | 2002-10-25 | 2011-03-31 | Jose Luis Moctezuma De La Barrera | Flexible Tracking Article And Method Of Using The Same |
US7697972B2 (en) | 2002-11-19 | 2010-04-13 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
US8046052B2 (en) | 2002-11-19 | 2011-10-25 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
US8401616B2 (en) | 2002-11-19 | 2013-03-19 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
US8060185B2 (en) | 2002-11-19 | 2011-11-15 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
US8467853B2 (en) | 2002-11-19 | 2013-06-18 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
US7599730B2 (en) | 2002-11-19 | 2009-10-06 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies |
US7289839B2 (en) | 2002-12-30 | 2007-10-30 | Calypso Medical Technologies, Inc. | Implantable marker with a leadless signal transmitter compatible for use in magnetic resonance devices |
US6889833B2 (en) | 2002-12-30 | 2005-05-10 | Calypso Medical Technologies, Inc. | Packaged systems for implanting markers in a patient and methods for manufacturing and using such systems |
US7778687B2 (en) | 2002-12-30 | 2010-08-17 | Calypso Medical Technologies, Inc. | Implantable marker with a leadless signal transmitter compatible for use in magnetic resonance devices |
US8297030B2 (en) | 2002-12-30 | 2012-10-30 | Varian Medical Systems, Inc. | Methods for manufacturing packaged systems for implanting markers in a patient |
US7407054B2 (en) | 2002-12-30 | 2008-08-05 | Calypso Medical Technologies, Inc. | Packaged systems for implanting markers in a patient and methods for manufacturing and using such systems |
US8011508B2 (en) | 2002-12-30 | 2011-09-06 | Calypso Medical Technologies, Inc. | Packaged systems for implanting markers in a patient and methods for manufacturing and using such systems |
US20040127787A1 (en) * | 2002-12-30 | 2004-07-01 | Dimmer Steven C. | Implantable marker with a leadless signal transmitter compatible for use in magnetic resonance devices |
US20080021308A1 (en) * | 2002-12-30 | 2008-01-24 | Calypso Medical Technologies, Inc. | Implantable Marker with a Leadless Signal Transmitter Compatible for Use in Magnetic Resonance Devices |
US8857043B2 (en) | 2002-12-30 | 2014-10-14 | Varian Medical Systems, Inc. | Method of manufacturing an implantable marker with a leadless signal transmitter |
US20040138554A1 (en) * | 2002-12-30 | 2004-07-15 | Dimmer Steven C. | Implantable marker with a leadless signal transmitter compatible for use in magnetic resonance devices |
US20050205445A1 (en) * | 2002-12-30 | 2005-09-22 | Calypso Medical Technologies, Inc. | Packaged systems for implanting markers in a patient and methods for manufacturing and using such systems |
US7142312B2 (en) | 2002-12-31 | 2006-11-28 | D4D Technologies, Llc | Laser digitizer system for dental applications |
US11684491B2 (en) | 2003-01-30 | 2023-06-27 | Medtronic Navigation, Inc. | Method and apparatus for post-operative tuning of a spinal implant |
US11707363B2 (en) | 2003-01-30 | 2023-07-25 | Medtronic Navigation, Inc. | Method and apparatus for post-operative tuning of a spinal implant |
US7660623B2 (en) | 2003-01-30 | 2010-02-09 | Medtronic Navigation, Inc. | Six degree of freedom alignment display for medical procedures |
US7974677B2 (en) | 2003-01-30 | 2011-07-05 | Medtronic Navigation, Inc. | Method and apparatus for preplanning a surgical procedure |
US7542791B2 (en) | 2003-01-30 | 2009-06-02 | Medtronic Navigation, Inc. | Method and apparatus for preplanning a surgical procedure |
US9867721B2 (en) | 2003-01-30 | 2018-01-16 | Medtronic Navigation, Inc. | Method and apparatus for post-operative tuning of a spinal implant |
US7184150B2 (en) | 2003-03-24 | 2007-02-27 | D4D Technologies, Llc | Laser digitizer system for dental applications |
US7570791B2 (en) | 2003-04-25 | 2009-08-04 | Medtronic Navigation, Inc. | Method and apparatus for performing 2D to 3D registration |
US20050020910A1 (en) * | 2003-04-30 | 2005-01-27 | Henley Quadling | Intra-oral imaging system |
US20050024646A1 (en) * | 2003-05-05 | 2005-02-03 | Mark Quadling | Optical coherence tomography imaging |
US7355721B2 (en) | 2003-05-05 | 2008-04-08 | D4D Technologies, Llc | Optical coherence tomography imaging |
US7925328B2 (en) | 2003-08-28 | 2011-04-12 | Medtronic Navigation, Inc. | Method and apparatus for performing stereotactic surgery |
US7313430B2 (en) | 2003-08-28 | 2007-12-25 | Medtronic Navigation, Inc. | Method and apparatus for performing stereotactic surgery |
US10383509B2 (en) | 2003-09-15 | 2019-08-20 | Covidien Lp | System of accessories for use with bronchoscopes |
US8663088B2 (en) | 2003-09-15 | 2014-03-04 | Covidien Lp | System of accessories for use with bronchoscopes |
US9089261B2 (en) | 2003-09-15 | 2015-07-28 | Covidien Lp | System of accessories for use with bronchoscopes |
US20050099638A1 (en) * | 2003-09-17 | 2005-05-12 | Mark Quadling | High speed multiple line three-dimensional digitization |
US7342668B2 (en) | 2003-09-17 | 2008-03-11 | D4D Technologies, Llc | High speed multiple line three-dimensional digitalization |
US8706185B2 (en) | 2003-10-16 | 2014-04-22 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation of a multiple piece construct for implantation |
US7835778B2 (en) | 2003-10-16 | 2010-11-16 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation of a multiple piece construct for implantation |
US8359730B2 (en) | 2003-10-17 | 2013-01-29 | Medtronic Navigation, Inc. | Method of forming an electromagnetic sensing coil in a medical instrument |
US7751865B2 (en) | 2003-10-17 | 2010-07-06 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US8271069B2 (en) | 2003-10-17 | 2012-09-18 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US8549732B2 (en) | 2003-10-17 | 2013-10-08 | Medtronic Navigation, Inc. | Method of forming an electromagnetic sensing coil in a medical instrument |
US7971341B2 (en) | 2003-10-17 | 2011-07-05 | Medtronic Navigation, Inc. | Method of forming an electromagnetic sensing coil in a medical instrument for a surgical navigation system |
US7818044B2 (en) | 2003-10-17 | 2010-10-19 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US8239001B2 (en) | 2003-10-17 | 2012-08-07 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US7366562B2 (en) | 2003-10-17 | 2008-04-29 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US7840253B2 (en) | 2003-10-17 | 2010-11-23 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
US7376492B2 (en) | 2003-12-04 | 2008-05-20 | Matrix Electronic Measuring, L.P. | System for measuring points on a vehicle during damage repair |
US7120524B2 (en) | 2003-12-04 | 2006-10-10 | Matrix Electronic Measuring, L.P. | System for measuring points on a vehicle during damage repair |
US20050125119A1 (en) * | 2003-12-04 | 2005-06-09 | Matrix Electronic Measuring, L.P. Limited Partnership, Kansas | System for measuring points on a vehicle during damage repair |
US20050131586A1 (en) * | 2003-12-04 | 2005-06-16 | Srack Robert W. | System for measuring points on a vehicle during damage repair |
US20050154293A1 (en) * | 2003-12-24 | 2005-07-14 | Margo Gisselberg | Implantable marker with wireless signal transmitter |
US8196589B2 (en) | 2003-12-24 | 2012-06-12 | Calypso Medical Technologies, Inc. | Implantable marker with wireless signal transmitter |
US8764725B2 (en) | 2004-02-09 | 2014-07-01 | Covidien Lp | Directional anchoring mechanism, method and applications thereof |
US7998062B2 (en) | 2004-03-29 | 2011-08-16 | Superdimension, Ltd. | Endoscope structures and techniques for navigating to a target in branched structure |
US9055881B2 (en) | 2004-04-26 | 2015-06-16 | Super Dimension Ltd. | System and method for image-based alignment of an endoscope |
US10321803B2 (en) | 2004-04-26 | 2019-06-18 | Covidien Lp | System and method for image-based alignment of an endoscope |
US7567834B2 (en) | 2004-05-03 | 2009-07-28 | Medtronic Navigation, Inc. | Method and apparatus for implantation between two vertebral bodies |
US7953471B2 (en) | 2004-05-03 | 2011-05-31 | Medtronic Navigation, Inc. | Method and apparatus for implantation between two vertebral bodies |
US7154395B2 (en) * | 2004-07-01 | 2006-12-26 | Mitsubishi Electric Research Laboratories, Inc. | Interactive wireless tag location and identification system |
US20060001543A1 (en) * | 2004-07-01 | 2006-01-05 | Ramesh Raskar | Interactive wireless tag location and identification system |
US8340742B2 (en) | 2004-07-23 | 2012-12-25 | Varian Medical Systems, Inc. | Integrated radiation therapy systems and methods for treating a target in a patient |
US8244330B2 (en) | 2004-07-23 | 2012-08-14 | Varian Medical Systems, Inc. | Integrated radiation therapy systems and methods for treating a target in a patient |
US20060074302A1 (en) * | 2004-07-23 | 2006-04-06 | Eric Meier | Integrated radiation therapy systems and methods for treating a target in a patient |
US20060058648A1 (en) * | 2004-07-23 | 2006-03-16 | Eric Meier | Integrated radiation therapy systems and methods for treating a target in a patient |
US8290570B2 (en) | 2004-09-10 | 2012-10-16 | Stryker Leibinger Gmbh & Co., Kg | System for ad hoc tracking of an object |
US20060058644A1 (en) * | 2004-09-10 | 2006-03-16 | Harald Hoppe | System, device, and method for AD HOC tracking of an object |
US7447558B2 (en) | 2004-09-18 | 2008-11-04 | The Ohio Willow Wood Company | Apparatus for determining a three dimensional shape of an object |
US20060062449A1 (en) * | 2004-09-18 | 2006-03-23 | The Ohio Willow Wood Company | Apparatus for determining a three dimensional shape of an object |
US20060095047A1 (en) * | 2004-10-08 | 2006-05-04 | De La Barrera Jose Luis M | System and method for performing arthroplasty of a joint and tracking a plumb line plane |
US8007448B2 (en) | 2004-10-08 | 2011-08-30 | Stryker Leibinger Gmbh & Co. Kg. | System and method for performing arthroplasty of a joint and tracking a plumb line plane |
US7636595B2 (en) | 2004-10-28 | 2009-12-22 | Medtronic Navigation, Inc. | Method and apparatus for calibrating non-linear instruments |
US20060184014A1 (en) * | 2004-12-02 | 2006-08-17 | Manfred Pfeiler | Registration aid for medical images |
US8280490B2 (en) * | 2004-12-02 | 2012-10-02 | Siemens Aktiengesellschaft | Registration aid for medical images |
US7835784B2 (en) | 2005-09-21 | 2010-11-16 | Medtronic Navigation, Inc. | Method and apparatus for positioning a reference frame |
US8467851B2 (en) | 2005-09-21 | 2013-06-18 | Medtronic Navigation, Inc. | Method and apparatus for positioning a reference frame |
US9168102B2 (en) | 2006-01-18 | 2015-10-27 | Medtronic Navigation, Inc. | Method and apparatus for providing a container to a sterile environment |
US10597178B2 (en) | 2006-01-18 | 2020-03-24 | Medtronic Navigation, Inc. | Method and apparatus for providing a container to a sterile environment |
US8112292B2 (en) | 2006-04-21 | 2012-02-07 | Medtronic Navigation, Inc. | Method and apparatus for optimizing a therapy |
US11857265B2 (en) | 2006-06-16 | 2024-01-02 | Board Of Regents Of The University Of Nebraska | Method and apparatus for computer aided surgery |
US20080077158A1 (en) * | 2006-06-16 | 2008-03-27 | Hani Haider | Method and Apparatus for Computer Aided Surgery |
US11116574B2 (en) | 2006-06-16 | 2021-09-14 | Board Of Regents Of The University Of Nebraska | Method and apparatus for computer aided surgery |
US20080049972A1 (en) * | 2006-07-07 | 2008-02-28 | Lockheed Martin Corporation | Mail imaging system with secondary illumination/imaging window |
US20080012981A1 (en) * | 2006-07-07 | 2008-01-17 | Goodwin Mark D | Mail processing system with dual camera assembly |
US20080035866A1 (en) * | 2006-07-07 | 2008-02-14 | Lockheed Martin Corporation | Mail imaging system with UV illumination interrupt |
US9597154B2 (en) | 2006-09-29 | 2017-03-21 | Medtronic, Inc. | Method and apparatus for optimizing a computer assisted surgical procedure |
US8660635B2 (en) | 2006-09-29 | 2014-02-25 | Medtronic, Inc. | Method and apparatus for optimizing a computer assisted surgical procedure |
US7256899B1 (en) | 2006-10-04 | 2007-08-14 | Ivan Faul | Wireless methods and systems for three-dimensional non-contact shape sensing |
US7336375B1 (en) | 2006-10-04 | 2008-02-26 | Ivan Faul | Wireless methods and systems for three-dimensional non-contact shape sensing |
US8791997B2 (en) * | 2007-05-04 | 2014-07-29 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. | Device and method for non-contact recording of spatial coordinates of a surface |
US20100141740A1 (en) * | 2007-05-04 | 2010-06-10 | Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev | Device and Method for Non-Contact Recording of Spatial Coordinates of a Surface |
US20090043556A1 (en) * | 2007-08-07 | 2009-02-12 | Axelson Stuart L | Method of and system for planning a surgery |
US8382765B2 (en) | 2007-08-07 | 2013-02-26 | Stryker Leibinger Gmbh & Co. Kg. | Method of and system for planning a surgery |
US8617173B2 (en) | 2007-08-07 | 2013-12-31 | Stryker Leibinger Gmbh & Co. Kg | System for assessing a fit of a femoral implant |
US8617174B2 (en) | 2007-08-07 | 2013-12-31 | Stryker Leibinger Gmbh & Co. Kg | Method of virtually planning a size and position of a prosthetic implant |
US10980400B2 (en) | 2007-09-27 | 2021-04-20 | Covidien Lp | Bronchoscope adapter and method |
US10390686B2 (en) | 2007-09-27 | 2019-08-27 | Covidien Lp | Bronchoscope adapter and method |
US8905920B2 (en) | 2007-09-27 | 2014-12-09 | Covidien Lp | Bronchoscope adapter and method |
US9986895B2 (en) | 2007-09-27 | 2018-06-05 | Covidien Lp | Bronchoscope adapter and method |
US9668639B2 (en) | 2007-09-27 | 2017-06-06 | Covidien Lp | Bronchoscope adapter and method |
US9575140B2 (en) | 2008-04-03 | 2017-02-21 | Covidien Lp | Magnetic interference detection system and method |
US8249332B2 (en) | 2008-05-22 | 2012-08-21 | Matrix Electronic Measuring Properties Llc | Stereoscopic measurement system and method |
US20090290787A1 (en) * | 2008-05-22 | 2009-11-26 | Matrix Electronic Measuring, L.P. | Stereoscopic measurement system and method |
US9454822B2 (en) | 2008-05-22 | 2016-09-27 | Matrix Electronic Measuring Properties, Llc | Stereoscopic measurement system and method |
US9482515B2 (en) | 2008-05-22 | 2016-11-01 | Matrix Electronic Measuring Properties, Llc | Stereoscopic measurement system and method |
US9449378B2 (en) | 2008-05-22 | 2016-09-20 | Matrix Electronic Measuring Properties, Llc | System and method for processing stereoscopic vehicle information |
US20090290759A1 (en) * | 2008-05-22 | 2009-11-26 | Matrix Electronic Measuring, L.P. | Stereoscopic measurement system and method |
US9286506B2 (en) | 2008-05-22 | 2016-03-15 | Matrix Electronic Measuring Properties, Llc | Stereoscopic measurement system and method |
US8345953B2 (en) | 2008-05-22 | 2013-01-01 | Matrix Electronic Measuring Properties, Llc | Stereoscopic measurement system and method |
US8326022B2 (en) | 2008-05-22 | 2012-12-04 | Matrix Electronic Measuring Properties, Llc | Stereoscopic measurement system and method |
US10096126B2 (en) | 2008-06-03 | 2018-10-09 | Covidien Lp | Feature-based registration method |
US11074702B2 (en) | 2008-06-03 | 2021-07-27 | Covidien Lp | Feature-based registration method |
US11783498B2 (en) | 2008-06-03 | 2023-10-10 | Covidien Lp | Feature-based registration method |
US9659374B2 (en) | 2008-06-03 | 2017-05-23 | Covidien Lp | Feature-based registration method |
US8473032B2 (en) | 2008-06-03 | 2013-06-25 | Superdimension, Ltd. | Feature-based registration method |
US9117258B2 (en) | 2008-06-03 | 2015-08-25 | Covidien Lp | Feature-based registration method |
US9237860B2 (en) | 2008-06-05 | 2016-01-19 | Varian Medical Systems, Inc. | Motion compensation for medical imaging and associated systems and methods |
US10674936B2 (en) | 2008-06-06 | 2020-06-09 | Covidien Lp | Hybrid registration method |
US9271803B2 (en) | 2008-06-06 | 2016-03-01 | Covidien Lp | Hybrid registration method |
US10285623B2 (en) | 2008-06-06 | 2019-05-14 | Covidien Lp | Hybrid registration method |
US11931141B2 (en) | 2008-06-06 | 2024-03-19 | Covidien Lp | Hybrid registration method |
US8452068B2 (en) | 2008-06-06 | 2013-05-28 | Covidien Lp | Hybrid registration method |
US8467589B2 (en) | 2008-06-06 | 2013-06-18 | Covidien Lp | Hybrid registration method |
US10478092B2 (en) | 2008-06-06 | 2019-11-19 | Covidien Lp | Hybrid registration method |
US10912487B2 (en) | 2008-07-10 | 2021-02-09 | Covidien Lp | Integrated multi-function endoscopic tool |
US10070801B2 (en) | 2008-07-10 | 2018-09-11 | Covidien Lp | Integrated multi-functional endoscopic tool |
US11241164B2 (en) | 2008-07-10 | 2022-02-08 | Covidien Lp | Integrated multi-functional endoscopic tool |
US11234611B2 (en) | 2008-07-10 | 2022-02-01 | Covidien Lp | Integrated multi-functional endoscopic tool |
US8932207B2 (en) | 2008-07-10 | 2015-01-13 | Covidien Lp | Integrated multi-functional endoscopic tool |
US8165658B2 (en) | 2008-09-26 | 2012-04-24 | Medtronic, Inc. | Method and apparatus for positioning a guide relative to a base |
US9453913B2 (en) | 2008-11-17 | 2016-09-27 | Faro Technologies, Inc. | Target apparatus for three-dimensional measurement system |
US9482755B2 (en) | 2008-11-17 | 2016-11-01 | Faro Technologies, Inc. | Measurement system having air temperature compensation between a target and a laser tracker |
US8731641B2 (en) | 2008-12-16 | 2014-05-20 | Medtronic Navigation, Inc. | Combination of electromagnetic and electropotential localization |
US8175681B2 (en) | 2008-12-16 | 2012-05-08 | Medtronic Navigation Inc. | Combination of electromagnetic and electropotential localization |
US8611984B2 (en) | 2009-04-08 | 2013-12-17 | Covidien Lp | Locatable catheter |
US9113813B2 (en) | 2009-04-08 | 2015-08-25 | Covidien Lp | Locatable catheter |
US10154798B2 (en) | 2009-04-08 | 2018-12-18 | Covidien Lp | Locatable catheter |
US9298078B2 (en) | 2009-07-10 | 2016-03-29 | Steropes Technologies, Llc | Method and apparatus for generating three-dimensional image information using a single imaging path |
US9442362B2 (en) | 2009-07-10 | 2016-09-13 | Steropes Technologies, Llc | Method and apparatus for generating three-dimensional image information |
US8494613B2 (en) | 2009-08-31 | 2013-07-23 | Medtronic, Inc. | Combination localization system |
US8494614B2 (en) | 2009-08-31 | 2013-07-23 | Regents Of The University Of Minnesota | Combination localization system |
US9146094B2 (en) | 2010-04-21 | 2015-09-29 | Faro Technologies, Inc. | Automatic measurement of dimensional data with a laser tracker |
US9400170B2 (en) | 2010-04-21 | 2016-07-26 | Faro Technologies, Inc. | Automatic measurement of dimensional data within an acceptance region by a laser tracker |
US9772394B2 (en) | 2010-04-21 | 2017-09-26 | Faro Technologies, Inc. | Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker |
US9007601B2 (en) | 2010-04-21 | 2015-04-14 | Faro Technologies, Inc. | Automatic measurement of dimensional data with a laser tracker |
US10480929B2 (en) | 2010-04-21 | 2019-11-19 | Faro Technologies, Inc. | Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker |
US9377885B2 (en) | 2010-04-21 | 2016-06-28 | Faro Technologies, Inc. | Method and apparatus for locking onto a retroreflector with a laser tracker |
US10209059B2 (en) | 2010-04-21 | 2019-02-19 | Faro Technologies, Inc. | Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker |
US10582834B2 (en) | 2010-06-15 | 2020-03-10 | Covidien Lp | Locatable expandable working channel and method |
US8687172B2 (en) | 2011-04-13 | 2014-04-01 | Ivan Faul | Optical digitizer with improved distance measurement capability |
US9164173B2 (en) | 2011-04-15 | 2015-10-20 | Faro Technologies, Inc. | Laser tracker that uses a fiber-optic coupler and an achromatic launch to align and collimate two wavelengths of light |
US9151830B2 (en) | 2011-04-15 | 2015-10-06 | Faro Technologies, Inc. | Six degree-of-freedom laser tracker that cooperates with a remote structured-light scanner |
US9157987B2 (en) | 2011-04-15 | 2015-10-13 | Faro Technologies, Inc. | Absolute distance meter based on an undersampling method |
US10302413B2 (en) | 2011-04-15 | 2019-05-28 | Faro Technologies, Inc. | Six degree-of-freedom laser tracker that cooperates with a remote sensor |
US9482746B2 (en) | 2011-04-15 | 2016-11-01 | Faro Technologies, Inc. | Six degree-of-freedom laser tracker that cooperates with a remote sensor |
US9207309B2 (en) | 2011-04-15 | 2015-12-08 | Faro Technologies, Inc. | Six degree-of-freedom laser tracker that cooperates with a remote line scanner |
US12232828B2 (en) | 2011-06-27 | 2025-02-25 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US10080617B2 (en) | 2011-06-27 | 2018-09-25 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US10219811B2 (en) | 2011-06-27 | 2019-03-05 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US11911117B2 (en) | 2011-06-27 | 2024-02-27 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US9498231B2 (en) | 2011-06-27 | 2016-11-22 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
WO2013033811A1 (en) * | 2011-09-08 | 2013-03-14 | Front Street Investment Management Inc. | Method and apparatus for illuminating a field of view of an optical system for generating three dimensional image information |
US8668342B2 (en) | 2011-11-30 | 2014-03-11 | Izi Medical Products | Material thickness control over retro-reflective marker |
US8668345B2 (en) | 2011-11-30 | 2014-03-11 | Izi Medical Products | Retro-reflective marker with snap on threaded post |
US8668343B2 (en) | 2011-11-30 | 2014-03-11 | Izi Medical Products | Reflective marker with alignment feature |
US8672490B2 (en) | 2011-11-30 | 2014-03-18 | Izi Medical Products | High reflectivity retro-reflective marker |
US8662684B2 (en) | 2011-11-30 | 2014-03-04 | Izi Medical Products | Radiopaque core |
US8668344B2 (en) | 2011-11-30 | 2014-03-11 | Izi Medical Products | Marker sphere including edged opening to aid in molding |
US8646921B2 (en) | 2011-11-30 | 2014-02-11 | Izi Medical Products | Reflective marker being radio-opaque for MRI |
US9964649B2 (en) | 2011-11-30 | 2018-05-08 | Izi Medical Products | Packaging for retro-reflective markers |
US9085401B2 (en) | 2011-11-30 | 2015-07-21 | Izi Medical Products | Packaging for retro-reflective markers |
US8641210B2 (en) | 2011-11-30 | 2014-02-04 | Izi Medical Products | Retro-reflective marker including colored mounting portion |
US8651274B2 (en) | 2011-11-30 | 2014-02-18 | Izi Medical Products | Packaging for retro-reflective markers |
USD705678S1 (en) | 2012-02-21 | 2014-05-27 | Faro Technologies, Inc. | Laser tracker |
US8661573B2 (en) | 2012-02-29 | 2014-03-04 | Izi Medical Products | Protective cover for medical device having adhesive mechanism |
US9041914B2 (en) | 2013-03-15 | 2015-05-26 | Faro Technologies, Inc. | Three-dimensional coordinate scanner and method of operation |
US10105149B2 (en) | 2013-03-15 | 2018-10-23 | Board Of Regents Of The University Of Nebraska | On-board tool tracking system and methods of computer assisted surgery |
US10952593B2 (en) | 2014-06-10 | 2021-03-23 | Covidien Lp | Bronchoscope adapter |
US9395174B2 (en) | 2014-06-27 | 2016-07-19 | Faro Technologies, Inc. | Determining retroreflector orientation by optimizing spatial fit |
US10426555B2 (en) | 2015-06-03 | 2019-10-01 | Covidien Lp | Medical instrument with sensor for use in a system and method for electromagnetic navigation |
US11006914B2 (en) | 2015-10-28 | 2021-05-18 | Medtronic Navigation, Inc. | Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient |
US11801024B2 (en) | 2015-10-28 | 2023-10-31 | Medtronic Navigation, Inc. | Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient |
US11160617B2 (en) | 2016-05-16 | 2021-11-02 | Covidien Lp | System and method to access lung tissue |
US11786317B2 (en) | 2016-05-16 | 2023-10-17 | Covidien Lp | System and method to access lung tissue |
US10478254B2 (en) | 2016-05-16 | 2019-11-19 | Covidien Lp | System and method to access lung tissue |
US10638952B2 (en) | 2016-10-28 | 2020-05-05 | Covidien Lp | Methods, systems, and computer-readable media for calibrating an electromagnetic navigation system |
US10751126B2 (en) | 2016-10-28 | 2020-08-25 | Covidien Lp | System and method for generating a map for electromagnetic navigation |
US10722311B2 (en) | 2016-10-28 | 2020-07-28 | Covidien Lp | System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map |
US11759264B2 (en) | 2016-10-28 | 2023-09-19 | Covidien Lp | System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map |
US11786314B2 (en) | 2016-10-28 | 2023-10-17 | Covidien Lp | System for calibrating an electromagnetic navigation system |
US11672604B2 (en) | 2016-10-28 | 2023-06-13 | Covidien Lp | System and method for generating a map for electromagnetic navigation |
US10615500B2 (en) | 2016-10-28 | 2020-04-07 | Covidien Lp | System and method for designing electromagnetic navigation antenna assemblies |
US10517505B2 (en) | 2016-10-28 | 2019-12-31 | Covidien Lp | Systems, methods, and computer-readable media for optimizing an electromagnetic navigation system |
US10792106B2 (en) | 2016-10-28 | 2020-10-06 | Covidien Lp | System for calibrating an electromagnetic navigation system |
US10446931B2 (en) | 2016-10-28 | 2019-10-15 | Covidien Lp | Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same |
US10418705B2 (en) | 2016-10-28 | 2019-09-17 | Covidien Lp | Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same |
US11219489B2 (en) | 2017-10-31 | 2022-01-11 | Covidien Lp | Devices and systems for providing sensors in parallel with medical tools |
Also Published As
Publication number | Publication date |
---|---|
DE69126035T2 (en) | 1997-08-14 |
DE69126035D1 (en) | 1997-06-12 |
EP0553266A1 (en) | 1993-08-04 |
JP2974775B2 (en) | 1999-11-10 |
ATE152823T1 (en) | 1997-05-15 |
CA2094039A1 (en) | 1992-04-16 |
JPH06501774A (en) | 1994-02-24 |
US5198877A (en) | 1993-03-30 |
WO1992007233A1 (en) | 1992-04-30 |
EP0553266A4 (en) | 1993-10-20 |
EP0553266B1 (en) | 1997-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE35816E (en) | 1998-06-02 | Method and apparatus for three-dimensional non-contact shape sensing |
US9967545B2 (en) | 2018-05-08 | System and method of acquiring three-dimensional coordinates using multiple coordinate measurment devices |
US9927522B2 (en) | 2018-03-27 | Determining positional information of an object in space |
EP0899584B1 (en) | 2004-02-25 | Position determining system |
AU711627B2 (en) | 1999-10-21 | Method and device for rapidly detecting the position of a target |
US6549288B1 (en) | 2003-04-15 | Structured-light, triangulation-based three-dimensional digitizer |
US8035823B2 (en) | 2011-10-11 | Hand-held surface profiler |
US20020062077A1 (en) | 2002-05-23 | 3-D ultrasound recording device |
US20020100884A1 (en) | 2002-08-01 | Digital 3-D model production method and apparatus |
EP2105698A1 (en) | 2009-09-30 | Three-dimensional coordinate measuring device |
US20010030754A1 (en) | 2001-10-18 | Body spatial dimension mapper |
CN105102925A (en) | 2015-11-25 | Three-dimensional coordinate scanner and method of operation |
JP2016514271A (en) | 2016-05-19 | Three-dimensional coordinate scanner and operation method |
GB2246044A (en) | 1992-01-15 | A zoom lens for a variable depth range camera |
US5363185A (en) | 1994-11-08 | Method and apparatus for identifying three-dimensional coordinates and orientation to a robot |
EP1680689B1 (en) | 2008-01-02 | Device for scanning three-dimensional objects |
WO1994015173A1 (en) | 1994-07-07 | Scanning sensor |
Guehring et al. | 2000 | Data processing and calibration of a cross-pattern stripe projector |
US10697754B2 (en) | 2020-06-30 | Three-dimensional coordinates of two-dimensional edge lines obtained with a tracker camera |
US6927864B2 (en) | 2005-08-09 | Method and system for determining dimensions of optically recognizable features |
Araki et al. | 1988 | High speed rangefinder |
AU718579B2 (en) | 2000-04-13 | Ultrasonographic 3-D imaging system |
JPH06207812A (en) | 1994-07-26 | Measurement point indicator for three-dimensional measurement |
Marszalec et al. | 1995 | A LED-array-based range-imaging sensor for fast three-dimensional shape measurements |
Johannesson | 2005 | Active Range Imaging 2 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
1999-08-26 | AS | Assignment |
Owner name: SILICON VALLEY BANK, CALIFORNIA Free format text: SECURITY INTEREST;ASSIGNORS:IMAGE GUIDED TECHNOLOGIES, INC., A CORPORATION OF COLORADO, F/K/A PIXSYS, INC.;SPRINGFIELD SURGICAL INSTRUMENTS, A CORPORATION OF MASSACHUSETTS, F/K/A BRIMFIELD PRECISION, INC.;REEL/FRAME:010188/0799 Effective date: 19990817 |
1999-11-01 | FEPP | Fee payment procedure |
Free format text: PAT HLDR NO LONGER CLAIMS SMALL ENT STAT AS SMALL BUSINESS (ORIGINAL EVENT CODE: LSM2); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
2000-11-06 | FPAY | Fee payment |
Year of fee payment: 8 |
2000-11-06 | SULP | Surcharge for late payment |
Year of fee payment: 7 |
2004-09-30 | FPAY | Fee payment |
Year of fee payment: 12 |
2008-04-03 | AS | Assignment |
Owner name: BMO CAPITAL CORPOORATION, CANADA Free format text: SECURITY INTEREST;ASSIGNOR:NORTHERN DIGITAL INC.;REEL/FRAME:020762/0157 Effective date: 20071221 Owner name: BMO CAPTIAL CORPORATION, CANADA Free format text: SECURITY AGREEMENT;ASSIGNOR:NORTHERN DIGITAL INC.;REEL/FRAME:020762/0131 Effective date: 20071221 Owner name: BANK OF MONTREAL, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTHERN DIGITAL INC.;REEL/FRAME:020762/0109 Effective date: 20071221 Owner name: BANK OF MONTREAL, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTHERN DIGITAL INC.;REEL/FRAME:020762/0082 Effective date: 20071221 |
2008-04-09 | AS | Assignment |
Owner name: BANK OF MONTREAL, CANADA Free format text: SECURITY INTEREST;ASSIGNOR:NORTHERN DIGITAL INC.;REEL/FRAME:020794/0239 Effective date: 20071221 |
2008-04-18 | AS | Assignment |
Owner name: BMO CAPITAL CORPORATION, CANADA Free format text: CORRECTION OF ASSINGEE INFORMATION FROM "BMO CAPTIAL CORPOORATION" TO "BMO CAPITAL CORPORATION";ASSIGNOR:NORTHERN DIGITAL INC.;REEL/FRAME:020828/0379 Effective date: 20071221 |
2010-09-08 | AS | Assignment |
Owner name: NORTHERN DIGITAL INC., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF MONTREAL;REEL/FRAME:024946/0944 Effective date: 20100804 |
2010-09-17 | AS | Assignment |
Owner name: NORTHERN DIGITAL INC., CANADA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BMO CAPITAL CORPORATION;REEL/FRAME:025000/0396 Effective date: 20100804 |