USRE36268E - Method and apparatus for amperometric diagnostic analysis - Google Patents
- ️Tue Aug 17 1999
USRE36268E - Method and apparatus for amperometric diagnostic analysis - Google Patents
Method and apparatus for amperometric diagnostic analysis Download PDFInfo
-
Publication number
- USRE36268E USRE36268E US08/679,312 US67931296A USRE36268E US RE36268 E USRE36268 E US RE36268E US 67931296 A US67931296 A US 67931296A US RE36268 E USRE36268 E US RE36268E Authority
- US
- United States Prior art keywords
- iaddend
- iadd
- blood sample
- cell
- electrodes Prior art date
- 1988-03-15 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/001—Enzyme electrodes
- C12Q1/004—Enzyme electrodes mediator-assisted
Definitions
- the present invention relates to a disposable electroanalytical cell and a method and apparatus for quantitatively determining the presence of biologically important compounds such as glucose; TSH; T4; hormones such as HCG; cardiac glycosides such as Digoxin; antiarrhythmics such as Lidocaine; antiepileptics such as phenobarbital; antibiotics such as Gentamicin; cholesterol; non-therapeutic drugs and the like from body fluids.
- biologically important compounds such as glucose; TSH; T4; hormones such as HCG; cardiac glycosides such as Digoxin; antiarrhythmics such as Lidocaine; antiepileptics such as phenobarbital; antibiotics such as Gentamicin; cholesterol; non-therapeutic drugs and the like from body fluids.
- Diabetes and specifically diabetes mellitus, is a metabolic disease characterized by deficient insulin production by the pancreas which results in abnormal levels of blood glucose. Although this disease afflicts only approximately 4% of the population in the United States, it is the third leading cause of death following heart disease and cancer. With proper maintenance of the patient's blood sugar through daily injections of insulin, and strict control of dietary intake, the prognosis for diabetics is excellent. However, the blood glucose levels must be closely followed in the patient either by clinical laboratory analysis or by daily analyses which the patient can conduct using relatively simple, non-technical, methods.
- Dioxygen is the only direct oxidant used with the enzyme cholesterol oxidase for the determination of both free and total cholesterol.
- oxygen must diffuse into the sensor solution during use from the surrounding air in order to provide sufficient reagent for a complete reaction with the analyte cholesterol in undiluted serum and whole blood specimens.
- the presence of the substance is determined by quantifying, either colorometrically or otherwise, the presence of hydrogen peroxide.
- the present methods of detection may include direct measurement of the hydrogen peroxide produced by either spectroscopic or electrochemical means and indirect methods in which the hydrogen peroxide is reacted with various dyes, in the presence of the enzyme peroxidase, to produce a color that is monitored.
- these tests require consistent user technique in order to yield reproducible results. For example, these tests require the removal of blood from a reagent pad at specified and critical time intervals. After the time interval, excess blood must be removed by washing and blotting, or by blotting alone, since the color measurement is taken at the top surface of the reagent pad. Color development is either read immediately or after a specified time interval.
- the present invention addresses the concerns of the physician by providing enzymatic amperometry methods and apparatus for monitoring compounds within whole blood, serum, and other body fluids.
- Enzymatic amperometry provides several advantages for controlling or eliminating operator dependant techniques as well as providing a greater linear dynamic range. A system based on this type of method could address the concerns of the physician hesitant to recommend self-testing for his patients.
- Enzymatic amperometry methods have been applied to the laboratory based measurement of a number of analytes including glucose, blood urea nitrogen, and lactate.
- the electrodes in these systems consist of bulk metal wires, cylinders or disks imbedded in an insulating material. The fabrication process results in individualistic characteristics for each electrode necessitating calibration of each sensor. These electrodes are also too costly for disposable use, necessitating meticulous attention to electrode maintenance for continued reliable use.
- the present invention address these requirements by providing miniaturized disposable electroanalytic sample cells for precise micro-aliquote sampling, a self-contained, automatic means for measuring the electrochemical reduction of the sample, and a method for using the cell and apparatus according to the present invention.
- the disposable cells according to the present invention are preferably laminated layers of metallized plastic and nonconducting material.
- the metallized layers provide the working and reference electrodes, the areas of which are reproducibly defined by the lamination process.
- An opening through these layers is designed to provide the sample-containing area or cell for the precise measurement of the sample. The insertion of the cell into the apparatus according to the present invention, automatically initiates the measurement cycle.
- a presently preferred embodiment of the invention which involves a two-step reaction sequence utilizing a chemical oxidation step using other oxidants than oxygen, and an electro-chemical reduction step suitable for quantifying the reaction production of the first step.
- One advantage to utilizing an oxidant other than dioxygen for the direct determination of an analyte is that they may be prepositioned in the sensor in a large excess of the analyte and thus ensure that the oxidant is not the limiting reagent (with dioxygen, there is normally insufficient oxidant initially present in the sensor solution for a quantitative conversion of the analyte).
- oxidation reaction a sample containing glucose, for example, is converted to gluconic acid and a reduction product of the oxidant.
- This chemical oxidation reaction has been found to precede to completion in the presence of an enzyme, glucose oxidase, which is highly specific for the substrate B-D-glucose, and catalyzes oxidations with single and double electron acceptors. It has been found, however, that the oxidation process does not proceed beyond the formation of gluconic acid, thus making this reaction particularly suited for the electrochemical measurement of glucose.
- oxidations with one electron acceptor using ferricyanide, ferricinium, cobalt (III) . .orthophenantroline.!. .Iadd.orthophenanthroline.Iaddend., and cobalt (III) dipyridyl are preferred.
- Benzoquinone is a two electron acceptor which also provides excellent electro-oxidation characteristics for amperometric quantitation.
- Amperometric determination of glucose for example, in accordance with the present invention utilizes Cottrell current micro-chronoamperometry in which glucose plus an oxidized electron acceptor produces gluconic acid and a reduced acceptor. This determination involves a preceding chemical oxidation step catalyzed by a bi-substrate bi-product enzymatic mechanism as will become apparent throughout this specification.
- the method and apparatus of the . .prevent.!. .Iadd.present .Iaddend.invention permit, in preferred embodiments, direct measurements of blood glucose, cholesterol and the like. Furthermore, the sample cell according to the . .prevent.!. .Iadd.present .Iaddend.invention, provides the testing of controlled volumes of blood without premeasuring. Insertion of the sample cell into the apparatus thus permits automatic functioning and timing of the reaction allowing for patient self-testing with a very high degree of precision and accuracy.
- the sample cell of the invention is used to control the sampling volume and reaction media and acts as the electrochemical sensor.
- benzoquinone is used as the electron acceptor.
- the basic chemical binary reaction utilized by the method according to the present invention is:
- the first reaction is an oxidation reaction which proceeds to completion in the presence of the enzyme glucose oxidase.
- Electrochemical oxidation takes place in the second part of the reaction and provides the means for quantifying the amount of hydroquinone produced in the oxidation reaction. This holds true whether catalytic oxidation is conducted with two-electron acceptors or one electron acceptors such as ferricyanide (wherein the redox couple would be Fe(CN) 6 -3 /Fe(CN) 6 -4 ), ferricinium, cobalt III . .orthophenantroline.!. .Iadd.orthophenanthroline .Iaddend.and cobalt (III) dipyridyl.
- Catalytic oxidation by glucose oxidase is highly specific for B-D-glucose, but is nonselective as to the oxidant. It has now been discovered that the preferred oxidants described above have sufficiently positive potentials to convert substantially all of the B-D-glucose to gluconic acid. Furthermore, this system provides a means by which amounts as small a 1 mg of glucose (in the preferred embodiment) to 1000 mg of glucose can be measured per deciliter of sample--results which have not previously been obtained using other glucose self-testing systems.
- the sensors containing the chemistry to perform the desired determination are used with a portable meter for self-testing systems.
- the sensor In use the sensor is inserted into the meter which turns the meter on and initiates a wait for the application of the sample.
- the meter recognizes sample application by the sudden charging current flow that occurs when the electrodes and the overlaying reagent layer are initially wetted by the sample fluid.
- the meter Once the sample application is detected, the meter begins the reaction incubation step (the length of which is chemistry dependent) to allow the enzymatic reaction to reach completion. This period is on the order of 15 to 90 seconds for glucose, with incubation times of 20 to 45 seconds preferred.
- the instrument then imposes a known potential across the electrodes and measures the current at specific time points during the Cottrell current decay.
- Current measurements can be made in the range of 2 to 30 seconds following potential application with measurement times of 10 to 20 seconds preferred. These current values are then used to calculate the analyte concentration which is then displayed. The meter will then wait for either the user to remove the sensor or for a predetermined period before shutting itself down.
- the present invention provides for a measurement system that eliminates several of the critical operator dependant variables that adversely affect the accuracy and reliability and provides for a greater dynamic range than other self-testing systems.
- FIG. 1 is an exploded view of a portable testing apparatus according to the present invention
- FIG. 2 is a plan view of the sampling cell of the present invention.
- FIG. 3 is an exploded view of the sample cell shown in FIG. 2;
- FIG. 4 is an exploded view of another embodiment of a sample cell according to the invention.
- FIG. 5 is a plan view of the cell shown in FIG. 4;
- FIG. 6 is still another embodiment of a sample cell
- FIG. 7 is a graph showing current as a function of glucose concentration
- FIG. 8 is a graphical presentation of Cottrell current as a function of glucose concentration.
- FIG. 9 is a presently preferred circuit diagram of an electrical circuit for use in the apparatus shown in FIG. 1.
- FIG. 10 is a preferred embodiment of the electrochemical cell.
- a portable electrochemical testing apparatus 10 for use in patient self-testing, such as, for example, for blood glucose levels.
- Apparatus 10 comprises a front and back housing 11 and 12, respectively, a front panel 13 and a circuit board 15.
- Front panel 13 includes graphic display panels 16 for providing information and instructions to the patient, and direct read-out of the test results.
- a start button 18 is provided to initiate an analysis, it is preferred that the system being operation when a sample cell 20 (FIG. 2) is inserted into the window 19 of the apparatus.
- sample cell 20 is a metallized plastic substrate having a specifically-sized opening 21 which defines a volumetric well 21, when the cell is assembled, for containing a reagent pad and the blood to be analyzed.
- Cell 20 comprises a first substrate 22 and a second substrate 23 which may be preferably made from styrene or other substantially non-conducting plastic.
- reference electrode 24 Positioned on second substrate 23 is reference electrode 24.
- Reference electrode 24 may be preferably manufactured, for example, by vapor depositing the electrode onto a substrate made from a material such as the polyimide Kapton.
- reference electrode 24 is a silver-silver chloride electrode. This electrode can be produced by . .first.!.
- the silver chloride layer may even be generated in-situ on a silver electrode when the reagent layer contains certain of the oxidants, such as ferricyanide, and chloride as shown in the following reactions:
- the silver-silver chloride electrode can be produced by depositing a layer of silver oxide (by reactive sputtering) onto the silver film. The silver oxide layer is then converted in-situ at the time of testing to silver chloride according to the reaction:
- the silver electrode is thus coated with a layer containing silver chloride.
- the reference electrode may also be of the type generally known as a "pseudo" reference electrode which relies upon the large excess of the oxidizing species to establish a known potential at a noble metal electrode.
- a noble metal electrode In a preferred embodiment, two electrodes of the same noble metal are used, however one is generally of greater surface area and is used as the reference electrode. The large excess of the oxidized species and the larger surface area of the reference resists a shift of the potential of the reference electrode.
- Indicator or working electrode 26 can be either a strip of platinum, gold, or palladium metallized plastic positioned on reference electrode 24 or alternately the working electrode 26 and the reference electrode may be manufactured as a coplanar unit with electrode 26 being sandwiched between coplanar electrode 24 material.
- sample cell 20 is prepared by sandwiching or laminating the electrodes between the substrate to form a composite unit.
- first substrate 22 is of a slightly shorter length so as to expose an end portion 27 of electrodes 24 and 26 and allow for electrical contact with the testing circuit contained in the apparatus.
- cell 20 is pushed into window 19 of the front panel to initiate testing.
- a reagent may be applied to well 21, or, preferably, a pad of dry reagent is positioned therein and a sample (drop) of blood is placed into the well 21 containing the reagent.
- sample cell 120 is shown having first 122 and second 123 substrates.
- Reference electrode 124 and working electrode 126 are laminated between substrates 122 and 123. Opening 121 is dimensioned to contain the sample for testing.
- End 130 (FIG. 5) is designed to be inserted into the apparatus, and electrical contact is made with the respective electrodes through cut-outs 131 and 132 on the cell.
- Reference electrode 124 also includes cut out 133 to permit electrical contact with working electrode 126.
- working electrode 226 is folded, thereby providing increased surface area around opening 221, to achieve increased sensitivity or specificity.
- reference electrode 224 is positioned beneath working electrode 226.
- Working electrode includes cut out 234 to permit electrical contact with reference electrode 224 through cut out 231 in substrate 222.
- End 230 of substrate 222 also includes cut out 232 to permit electrical contact with working electrode 226.
- the sample cell according to the present invention is positioned through window 19 (FIG. 1) to initiate the testing procedure.
- a potential is applied at portion 27 (FIG. 2) of the sample cell across electrodes 24 and 26 to detect the presence of the sample.
- the potential is removed and the incubation period initiated.
- a vibrator means 31 may be activated to provide agitation of the reagents in order to enhance dissolution (an incubation period of 20 to 45 seconds is conveniently used for the determination of glucose and no vibration is normally required).
- An electrical potential is next applied at portion 27 of the sample cell to electrodes 24 and 26 and the current through the sample is measured and displayed on display 16.
- the needed chemistry for the sell testing systems is incorporated into a dry reagent layer that is positioned onto the disposable cell creating a complete sensor for the intended analyte.
- the disposable electrochemical cell is constructed by the lamination of metallized plastics and nonconducting materials in such a way that there is a precisely defined working electrode area.
- the reagent layer is either directly coated onto the cell or preferably incorporated (coated) into a supporting matrix such as filter paper, membrane filter, woven fabric or non-woven fabric, which is then placed into the cell. When a supporting matrix is used, it pore size and void volume can be adjusted to provide the desired precision and mechanical support.
- the coating formulation generally includes a binder such as gelatin, carrageenan, methylcellulose, polyvinyl alcohol, polyvinylpyrrolidone, etc., that acts to delay the dissolution of the reagents until the reagent layer has adsorbed most of the fluid from the sample.
- concentration of the binder is generally on the order of 0.1 to 10% with 1-4% preferred.
- the reagent layer imbibes a fixed amount of the sample fluid when it is applied to the surface of the layer thus eliminating any need for premeasurement of sample volume. Furthermore, by virtue of measuring current flow rather than reflected light, there is no need to remove the blood from the surface of the reagent layer prior to measurement as there is with reflectance spectroscopy systems. While the fluid sample could be applied directly to the surface of the reagent layer, to facilitate spread of blood across the entire surface of the reagent layer the sensor preferably includes a dispersing spreading or wicking layer. This layer, generally a non-woven fabric or adsorbant paper, is positioned over the reagent layer and acts to rapidly distribute the blood over the reagent layer. In some applications this dispersing layer could incorporate additional reagents.
- the reagent layer was then cut into strips that just fit the window opening of the cells and these strips were place over the electrodes exposed within the windows.
- a wicking layer of a non-woven rayon fabric was then placed over this reagent layer and held in place with an overlay tape.
- Cottrell current (i t ) microchronoamperometry Determination of glucose by Cottrell current (i t ) microchronoamperometry with the present method is created in the reaction of hydroquinone to benzoquinone. Cottrell currents decay with time in accordance with the equation:
- the main difference between these two techniques consists of applying the appropriate controlled potential after the glucose-benzoquinone reaction is complete and correlating glucose concentrations with Cottrell currents measured at a fixed time thereafter.
- the current-time readout is shown in FIG. 8.
- Circuit 15 includes a microprocessor and LCD panel 16.
- the working and reference electrodes on the sample cell 20 make contact at contacts W (working electrode) and R (reference electrode), respectively.
- Voltage reference 41 is connected to battery 42 through analogue power switch 43.
- Current from the electrodes W and R is converted to a voltage by op amp 45. That voltage is converted into a digital signal (frequency) by and voltage to frequency converter 46 electrically connected to the microprocessor 48.
- the microprocessor 48 controls the timing of the signals. Measurement of current flow is converted by microprocessor 48 to equivalent glucose, cholesterol or other substance concentrations.
- Other circuits within the skills of a practiced engineer can obviously be utilized to obtain the advantages of the present invention.
- cell 400 consists of coplanar working 426 and reference 424 electrodes laminated between an upper 422 and lower 423 nonconducting material. Lamination is on an adhesive layer 425.
- the upper material 422 includes a die cut opening 428 which, along with the width of the working electrode material defines the working electrode area and provides (with an overlapping reagent layer not depicted) the sampling port of the cell.
- At one end of cell 400 is an open area 427 similar to end position 27 of FIG. 2.
- the generalized chemistry may be depicted as: ##STR1## where the enzymes cholesterol esterase (CE) and cholesterol oxidase (CO) catalyze reactions 1 and 2 respectively and CO permits electron transfer with a variety of electroactive couples (Ox and Red).
- Reaction 2 is novel in that electron acceptors other than dioxygen may be used to oxidize cholesterol in the presence of the enzyme cholesterol oxidase.
- Reaction 1 is well known to those in the field and is necessary for the determination of total cholesterol (free cholesterol and cholesterol esters).
- Reaction 3 is an electro-oxidation process for probing and quantitating the cholesterol.
- Cholesterol oxidase (CO) from a variety of sources will catalyze electron transfer from cholesterol to a variety of the oxidants including benzoquinone, benzoquinone derivatives such as methylbenzoquinone, ethylbenzoquinone, chlorobenzoquinone, ortho-benzoquinone (oxidized form of catechol), benzoquinonesulfonate, and potassium ferricyanide. It is also anticipated that the enzyme will allow electron transfer with other alternate oxidants. As indicated in Reaction 3, the reduced product can then be monitored amperometrically for the quantitative determination of cholesterol.
- Sources of the enzyme catalyzing the oxidation of cholesterol with alternate oxidants include CO from Nocardia, Streptomyces, Schizophyllum, Pseudomonas, and Brevibacterium; experimental conditions under which it is able to rapidly catalyze the oxidation of cholesterol by benzoquinone or any of the other oxidants depend somewhat upon the source of the enzyme.
- CO from Streptomyces rapidly catalyzes substrate oxidation with benzoquinone in phosphate buffer in the presence of any of a variety of the surfactants including octylgluconopyranoside and CHAPSO; the same reaction under identical conditions with CO from either Brevibacterium or Nocardia is slower.
- both Nocardia and Brevibacterium sources are active catalysts for cholesterol oxidation by alternate oxidants under other conditions.
- the oxidant also plays a role in which the enzyme is most active.
- cholesterol oxidase from Nocardia rapidly catalyzes substrate oxidation with benzoquinone in 0.2 molar TRIS buffer and 3 g/dL CHAPSO but is slower with ferricyanide under identical conditions;
- the Brevibacterium source of the enzyme is relatively inactive with ferricyanide in TRIS buffer with a variety of surfactants but when benzoquinone is used as the oxidant the reaction is very fast.
- the Schizophyllum source of the enzyme CO rapidly catalyzes the oxidation of cholesterol in phosphate buffer with either ferricyanide or benzoquinone and with a variety of surfactants as activators.
- cholesterol oxidase will catalyze the oxidation of cholesterol by ferricyanide.
- Additional examples where CO catalyzes cholesterol oxidation by ferricyanide include a Nocardia source in TRIS buffer with a variety of surfactants including sodium deoxycholate, sodium taurodeoxycholate, CHAPS, Thesit, and CHAPSO.
- CO from Nocardia will also catalyze substrate oxidation with ferricyanide in phosphate buffer with sodium dioctylsulfosuccinate, sodium deoxycholate, sodium taurodeoxycholate, and Triton X-100.
- the buffer concentration is from 0.1 to 0.4 molar.
- Surfactant concentration for maximum activity of the oxidase enzyme varies with each detergent.
- the enzyme in 0.2M TRIS is most active with detergent in the range from 20 to 90 millimolar. However, enzyme catalytic activity is observed up to . .an.!. .Iadd.and .Iaddend.through a 10% concentration. With octyl-gluconopyranoside, the maximum activity of the enzyme with the oxidant ferricyanide occurs at a detergent concentration of approximately 1.2%; however, the enzyme still maintains activity at higher and lower concentrations of the surfactant.
- Both esterase and CO require a surfactant for high activity.
- Specific surfactants include sodium deoxycholate, sodium taurodeoxycholate, sodium glycodeoxycholate, CHAPS (3-(3-chlolamidopropyl)dimethylammonio-1-propanesulfonate), CHAPSO (3-(3-chlolamidopropyl)dimethylammonio-2-hydroxy-1-propanesulfonate), octyl-gluconopyranoside, octylthio-gluconopyranoside, nonyl-gluconopyranoside, dodecyl-gluconopyranoside, Triton X-100, Dioctyl sulfosuccinate, Thesit (Hydroxypolyethoxydodecane), and lecithin (phosphatidylcholine).
- Buffers acceptable for this reaction to occur with the enzyme include phosphate, TRIS, MOPS, MES, HEPES, Tricine, Bicine, ACES, CAPS, and TAPS.
- An alternate generallized reaction scheme for the measurement of cholesterol in serum and other biological fluids is given ##STR3## where Ox, and Red 2 function as an electron mediator couple between the cholesterol and the electroactive couple Ox 2 /Red 2 .
- Ox 1 and Red 1 need not be electroactive because they do not have to participate in the electrooxidation process (Reaction 6).
- this couple with the assistance of the enzyme cholesterol oxidase must be able to accept electrons from cholesterol and relay them to the electroactive couple (Ox 2 /Red 2 ).
- Specific examples of this chemistry include
- Scheme II is beneficial when the rate of reaction of cholesterol with the electroactive oxidant as in Scheme I is so slow that it precludes its use in a practical sensor. As mentioned above, Scheme II is also beneficial when the electron mediator itself (Ox 1 /Red 1 ) is either not electroactive or exhibits poor electrochemistry under conditions of the enzyme chemistry. It is under these conditions that Scheme II is particularly applicable.
- Other electron mediators (Ox 1 /Red 1 ) between cholesterol and ferricyanide for use in Scheme II may be possible including phenazine ethosulfate, phenazine methosulfate, tetramethylbenzidine, derivatives of benzoquinone, naphthoquinone and naphthoquinone derivatives, anthraquinone and anthraquinone derivatives, catechol, phenylenediamine, . .tetramethylphenenediamine.!. .Iadd.tetramethylphenylenediamine.Iaddend., and other derivatives of phenylenediamine.
- the oxidized form of the electron relay accepts electrons from cholesterol
- either the oxidized or the reduced form of the mediator may be incorporated provided it reacts rapidly with both cholesterol and ferricyanide.
- reductant may be incorporated into the sensor in relatively small quantity (in comparison with the analyte to be determined) and still provide the electron relay.
- the reductant must also be isolated from ferricyanide in the sensor by incorporation into a separate reagent layer.
- the concentractions provided are . .that.!. .Iadd.those .Iaddend.of the solutions which are coated onto porous supports, filter paper or membranes; . .these.!. .Iadd.those .Iaddend.concentrations are reestablished when the membrane imbibes the serum or whole blood specimen.
- large pore sizes in the filter support are .Iadd.more .Iaddend.necessary than that used for glucose. This is because the cholesterol resides in the serum in large lipoproteins (chylomicrons. ...!. .Iadd., .Iaddend.LDL, VLDL, and HDL) which must penetrate the various layers of the sensor until they reach the reagents.
- the surfactants to the major extent break these natural micelles up into smaller micelles providing a greater total surface . .are.!. .Iadd.area .Iaddend.on which the enzymes catalyze the reaction.
- Due to the instability of benzoquinone.Iadd., .Iaddend. a small quantity of hydroquinone, which is more stable by nature of its lower vapor pressure, is incorporated into the sensor to assist electron mediation between cholesterol and ferricyanide.
- the hydroquinone oxidized to benzoquinone; the benzoquinone is then free to pick up electrons from the substrate and cycle them to ferricyanide. Under these conditions the rate of the reaction of cholesterol with a small quantity of benzoquinone is more rapid than that with a large excess of ferricyanide.
- the magnesium salt in this formulation increases stability of the esterase enzyme in the phosphate-free reagent layer; Lipase assists the break up of the lipoproteins.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
The present invention relates to a novel method and apparatus for the amperometric determination of an analyte, and in particular, to an apparatus for amperometric analysis utilizing a novel disposable electroanalytical cell for the quantitative determination of biologically important compounds from body fluids.
Description
The present application .Iadd.is a continuation of Ser. No. 08/176,863 filed Dec. 30, 1993, now abandoned; which is a Re-issue of Ser. No. 07/745,544 filed Aug. 15, 1991, now U.S. Pat. No. 5,108,564 which .Iaddend.is a division of application Ser. No. 07/322,598, filed Mar. 13, 1989, which is a continuation-in-part of our earlier filed application, U.S. Ser. No. 168,295, filed Mar. 15, 1988.Iadd., now abandoned.Iaddend..
FIELD OF THE INVENTIONThe present invention relates to a disposable electroanalytical cell and a method and apparatus for quantitatively determining the presence of biologically important compounds such as glucose; TSH; T4; hormones such as HCG; cardiac glycosides such as Digoxin; antiarrhythmics such as Lidocaine; antiepileptics such as phenobarbital; antibiotics such as Gentamicin; cholesterol; non-therapeutic drugs and the like from body fluids.
Although the present invention has broad applications, for purposes of illustration of the invention specific emphasis will be placed upon its application in quantitatively determining the presence of two biologically important compounds--glucose and cholesterol.
WITH RESPECT TO GLUCOSEDiabetes, and specifically diabetes mellitus, is a metabolic disease characterized by deficient insulin production by the pancreas which results in abnormal levels of blood glucose. Although this disease afflicts only approximately 4% of the population in the United States, it is the third leading cause of death following heart disease and cancer. With proper maintenance of the patient's blood sugar through daily injections of insulin, and strict control of dietary intake, the prognosis for diabetics is excellent. However, the blood glucose levels must be closely followed in the patient either by clinical laboratory analysis or by daily analyses which the patient can conduct using relatively simple, non-technical, methods.
At the present, current technology for monitoring blood glucose is based upon visual or instrumental determination of color change produced by enzymatic reactions on a dry reagent pad on a small plastic strip. These colorimetric methods which utilize the natural oxidant of glucose to gluconic acid, specifically oxygen, are based upon the reactions:
B-D-Glucose+O.sub.2 +H.sub.2 O→D-Gluconic Acid+H.sub.2 O.sub.2
H.sub.2 O.sub.2 +Reagent-H.sub.2 O+color.WITH RESPECT TO CHOLESTEROL
Current technology for the determination of cholesterol is also based upon similar methods. In the case of cholesterol, the methods presently used are based upon the generalized reactions:
Cholesterol+H.sub.2 O+O.sub.2 →Cholestenone+H.sub.2 O.sub.2
H.sub.2 O.sub.2 +Reagent→H.sub.2 O+color.
In all present techniques, Dioxygen is the only direct oxidant used with the enzyme cholesterol oxidase for the determination of both free and total cholesterol. Using conventional test methods, oxygen must diffuse into the sensor solution during use from the surrounding air in order to provide sufficient reagent for a complete reaction with the analyte cholesterol in undiluted serum and whole blood specimens.
In both instances, the presence of the substance is determined by quantifying, either colorometrically or otherwise, the presence of hydrogen peroxide. The present methods of detection may include direct measurement of the hydrogen peroxide produced by either spectroscopic or electrochemical means and indirect methods in which the hydrogen peroxide is reacted with various dyes, in the presence of the enzyme peroxidase, to produce a color that is monitored.
While relatively easy to use, these tests require consistent user technique in order to yield reproducible results. For example, these tests require the removal of blood from a reagent pad at specified and critical time intervals. After the time interval, excess blood must be removed by washing and blotting, or by blotting alone, since the color measurement is taken at the top surface of the reagent pad. Color development is either read immediately or after a specified time interval.
These steps are dependent upon good and consistent operating technique requiring strict attention to timing. Moreover, even utilizing good operating technique, colorimetric methods for determining glucose, for example, have been shown to have poor precision and accuracy, particularly in the hypoglycemic range. Furthermore, instruments used for the quantitative colorimetric measurement vary widely in their calibration methods: some provide no user calibration while others provide secondary standards.
Because of the general lack of precision and standardization of the various methods and apparatus presently available to test for biologically important compounds in body fluids, some physicians are hesitant to use such equipment for monitoring levels or dosage. They are particularly hesitant in recommending such methods for use by the patients themselves. Accordingly, it is desirable to have a method and apparatus which will permit not only physician but patient self-testing of such compounds with greater reliability.
The present invention addresses the concerns of the physician by providing enzymatic amperometry methods and apparatus for monitoring compounds within whole blood, serum, and other body fluids. Enzymatic amperometry provides several advantages for controlling or eliminating operator dependant techniques as well as providing a greater linear dynamic range. A system based on this type of method could address the concerns of the physician hesitant to recommend self-testing for his patients.
Enzymatic amperometry methods have been applied to the laboratory based measurement of a number of analytes including glucose, blood urea nitrogen, and lactate. Traditionally the electrodes in these systems consist of bulk metal wires, cylinders or disks imbedded in an insulating material. The fabrication process results in individualistic characteristics for each electrode necessitating calibration of each sensor. These electrodes are also too costly for disposable use, necessitating meticulous attention to electrode maintenance for continued reliable use. This maintenance is not likely to be performed properly by untrained personnel (such as patients), therefore to be successful, an enzyme amperometry method intended for self-testing (or non-traditional site testing) must be based on a disposable sensor that can be produced in a manner that allows it to give reproducible output from sensor to sensor and at a cost well below that of traditional electrodes.
The present invention address these requirements by providing miniaturized disposable electroanalytic sample cells for precise micro-aliquote sampling, a self-contained, automatic means for measuring the electrochemical reduction of the sample, and a method for using the cell and apparatus according to the present invention.
The disposable cells according to the present invention are preferably laminated layers of metallized plastic and nonconducting material. The metallized layers provide the working and reference electrodes, the areas of which are reproducibly defined by the lamination process. An opening through these layers is designed to provide the sample-containing area or cell for the precise measurement of the sample. The insertion of the cell into the apparatus according to the present invention, automatically initiates the measurement cycle.
To better understand the process of measurement, a presently preferred embodiment of the invention is described which involves a two-step reaction sequence utilizing a chemical oxidation step using other oxidants than oxygen, and an electro-chemical reduction step suitable for quantifying the reaction production of the first step. One advantage to utilizing an oxidant other than dioxygen for the direct determination of an analyte is that they may be prepositioned in the sensor in a large excess of the analyte and thus ensure that the oxidant is not the limiting reagent (with dioxygen, there is normally insufficient oxidant initially present in the sensor solution for a quantitative conversion of the analyte).
In the oxidation reaction, a sample containing glucose, for example, is converted to gluconic acid and a reduction product of the oxidant. This chemical oxidation reaction has been found to precede to completion in the presence of an enzyme, glucose oxidase, which is highly specific for the substrate B-D-glucose, and catalyzes oxidations with single and double electron acceptors. It has been found, however, that the oxidation process does not proceed beyond the formation of gluconic acid, thus making this reaction particularly suited for the electrochemical measurement of glucose.
In a presently preferred embodiment, oxidations with one electron acceptor using ferricyanide, ferricinium, cobalt (III) . .orthophenantroline.!. .Iadd.orthophenanthroline.Iaddend., and cobalt (III) dipyridyl are preferred. Benzoquinone is a two electron acceptor which also provides excellent electro-oxidation characteristics for amperometric quantitation.
Amperometric determination of glucose, for example, in accordance with the present invention utilizes Cottrell current micro-chronoamperometry in which glucose plus an oxidized electron acceptor produces gluconic acid and a reduced acceptor. This determination involves a preceding chemical oxidation step catalyzed by a bi-substrate bi-product enzymatic mechanism as will become apparent throughout this specification.
In this method of quantification, the measurement of a diffusion controlled current at an accurately specified time (e.g. 20, 30, or 50 seconds, for example) after the instant of application of a potential has the applicable equation for amperometry at a controlled potential (E=constant) of: ##EQU1## where i denotes current, nF is the number of coulombs per mole, A. .D.!. is the area of the electrode.Iadd., .Iaddend.D is the diffusion coefficient of the reduced form of the reagent, t is the preset time at which the current is measured, and C is the concentration of the metabolite. Measurements by the method according to the present invention of the current due to the reoxidation of the acceptors were found to be proportional to the glucose concentration in the sample.
The method and apparatus of the . .prevent.!. .Iadd.present .Iaddend.invention permit, in preferred embodiments, direct measurements of blood glucose, cholesterol and the like. Furthermore, the sample cell according to the . .prevent.!. .Iadd.present .Iaddend.invention, provides the testing of controlled volumes of blood without premeasuring. Insertion of the sample cell into the apparatus thus permits automatic functioning and timing of the reaction allowing for patient self-testing with a very high degree of precision and accuracy.
One of many of the presently preferred embodiments of the invention for use in measuring B-D glucose is described in detail to better understand the nature and scope of the invention. In particular, the method and apparatus according to this embodiment are designed to provide clinical self-monitoring of blood glucose levels by a diabetic patient. The sample cell of the invention is used to control the sampling volume and reaction media and acts as the electrochemical sensor. In this described embodiment, benzoquinone is used as the electron acceptor.
The basic chemical binary reaction utilized by the method according to the present invention is:
B-D-glucose+Benzoquinone+H.sub.2 O→Gluconic Acid+Hydroquinone
Hydroquinone→benzoquinone+2e-+2H+.
The first reaction is an oxidation reaction which proceeds to completion in the presence of the enzyme glucose oxidase. Electrochemical oxidation takes place in the second part of the reaction and provides the means for quantifying the amount of hydroquinone produced in the oxidation reaction. This holds true whether catalytic oxidation is conducted with two-electron acceptors or one electron acceptors such as ferricyanide (wherein the redox couple would be Fe(CN)6 -3 /Fe(CN)6 -4), ferricinium, cobalt III . .orthophenantroline.!. .Iadd.orthophenanthroline .Iaddend.and cobalt (III) dipyridyl.
Catalytic oxidation by glucose oxidase is highly specific for B-D-glucose, but is nonselective as to the oxidant. It has now been discovered that the preferred oxidants described above have sufficiently positive potentials to convert substantially all of the B-D-glucose to gluconic acid. Furthermore, this system provides a means by which amounts as small a 1 mg of glucose (in the preferred embodiment) to 1000 mg of glucose can be measured per deciliter of sample--results which have not previously been obtained using other glucose self-testing systems.
The sensors containing the chemistry to perform the desired determination, constructed in accordance with the present invention, are used with a portable meter for self-testing systems. In use the sensor is inserted into the meter which turns the meter on and initiates a wait for the application of the sample. The meter recognizes sample application by the sudden charging current flow that occurs when the electrodes and the overlaying reagent layer are initially wetted by the sample fluid. Once the sample application is detected, the meter begins the reaction incubation step (the length of which is chemistry dependent) to allow the enzymatic reaction to reach completion. This period is on the order of 15 to 90 seconds for glucose, with incubation times of 20 to 45 seconds preferred. Following the incubation period, the instrument then imposes a known potential across the electrodes and measures the current at specific time points during the Cottrell current decay. Current measurements can be made in the range of 2 to 30 seconds following potential application with measurement times of 10 to 20 seconds preferred. These current values are then used to calculate the analyte concentration which is then displayed. The meter will then wait for either the user to remove the sensor or for a predetermined period before shutting itself down.
The present invention provides for a measurement system that eliminates several of the critical operator dependant variables that adversely affect the accuracy and reliability and provides for a greater dynamic range than other self-testing systems.
These and other advantages of the present invention will become apparent from a perusal of the following detailed description of one embodiment presently preferred for measuring glucose and another for measuring cholesterol which is to be taken in conjunction with the accompanying drawings in which like numerals indicate like components and in which:
FIG. 1 is an exploded view of a portable testing apparatus according to the present invention;
FIG. 2 is a plan view of the sampling cell of the present invention;
FIG. 3 is an exploded view of the sample cell shown in FIG. 2;
FIG. 4 is an exploded view of another embodiment of a sample cell according to the invention;
FIG. 5 is a plan view of the cell shown in FIG. 4;
FIG. 6 is still another embodiment of a sample cell;
FIG. 7 is a graph showing current as a function of glucose concentration;
FIG. 8 is a graphical presentation of Cottrell current as a function of glucose concentration; and
FIG. 9 is a presently preferred circuit diagram of an electrical circuit for use in the apparatus shown in FIG. 1.
FIG. 10 is a preferred embodiment of the electrochemical cell.
With specific reference to FIG. 1, a portable
electrochemical testing apparatus10 is shown for use in patient self-testing, such as, for example, for blood glucose levels.
Apparatus10 comprises a front and back
housing11 and 12, respectively, a
front panel13 and a
circuit board15.
Front panel13 includes
graphic display panels16 for providing information and instructions to the patient, and direct read-out of the test results. While a
start button18 is provided to initiate an analysis, it is preferred that the system being operation when a sample cell 20 (FIG. 2) is inserted into the
window19 of the apparatus.
With reference to FIGS. 2 and 3.Iadd., .
Iaddend.sample cell20 is a metallized plastic substrate having a specifically-
sized opening21 which defines a
volumetric well21, when the cell is assembled, for containing a reagent pad and the blood to be analyzed.
Cell20 comprises a
first substrate22 and a
second substrate23 which may be preferably made from styrene or other substantially non-conducting plastic. Positioned on
second substrate23 is
reference electrode24.
Reference electrode24 may be preferably manufactured, for example, by vapor depositing the electrode onto a substrate made from a material such as the polyimide Kapton. In the preferred embodiment,
reference electrode24 is a silver-silver chloride electrode. This electrode can be produced by . .first.!. depositing a silver .Iadd.chloride .Iaddend.layer on a silver . .chloride.!. layer by either chemical or electrochemical means before the substrate is used to construct the cells. The silver chloride layer may even be generated in-situ on a silver electrode when the reagent layer contains certain of the oxidants, such as ferricyanide, and chloride as shown in the following reactions:
Ag+Ox→ag.sup.+ +Red
Ag.sup.+ +Cl.sup.- →AgCl.
Alternatively the silver-silver chloride electrode can be produced by depositing a layer of silver oxide (by reactive sputtering) onto the silver film. The silver oxide layer is then converted in-situ at the time of testing to silver chloride according to the reaction:
Ag.sub.2 O+H.sub.2 O+2Cl.sup.- →2AgCl+2(OH).sup.-
when the sensor is wetted by the sample fluid and reconstitutes the chloride containing reagent layer. The silver electrode is thus coated with a layer containing silver chloride.
The reference electrode may also be of the type generally known as a "pseudo" reference electrode which relies upon the large excess of the oxidizing species to establish a known potential at a noble metal electrode. In a preferred embodiment, two electrodes of the same noble metal are used, however one is generally of greater surface area and is used as the reference electrode. The large excess of the oxidized species and the larger surface area of the reference resists a shift of the potential of the reference electrode.
Indicator or working
electrode26 can be either a strip of platinum, gold, or palladium metallized plastic positioned on
reference electrode24 or alternately the working
electrode26 and the reference electrode may be manufactured as a coplanar unit with
electrode26 being sandwiched between
coplanar electrode24 material. Preferable,
sample cell20 is prepared by sandwiching or laminating the electrodes between the substrate to form a composite unit.
As shown in FIG. 2,
first substrate22 is of a slightly shorter length so as to expose an
end portion27 of
electrodes24 and 26 and allow for electrical contact with the testing circuit contained in the apparatus. In this embodiment, after a sample has been positioned within well 21,
cell20 is pushed into
window19 of the front panel to initiate testing. In this embodiment, a reagent may be applied to well 21, or, preferably, a pad of dry reagent is positioned therein and a sample (drop) of blood is placed into the well 21 containing the reagent.
Referring to FIGS. 4-6, alternative embodiments of
sample cell20 are shown. In FIG. 4,
sample cell120 is shown having first 122 and second 123 substrates.
Reference electrode124 and working
electrode126 are laminated between
substrates122 and 123.
Opening121 is dimensioned to contain the sample for testing. End 130 (FIG. 5) is designed to be inserted into the apparatus, and electrical contact is made with the respective electrodes through cut-
outs131 and 132 on the cell.
Reference electrode124 also includes cut out 133 to permit electrical contact with working
electrode126.
In FIG. 6, working
electrode226 is folded, thereby providing increased surface area around opening 221, to achieve increased sensitivity or specificity. In this case,
reference electrode224 is positioned beneath working
electrode226. Working electrode includes cut out 234 to permit electrical contact with
reference electrode224 through cut out 231 in
substrate222.
End230 of
substrate222 also includes cut out 232 to permit electrical contact with working
electrode226.
Referring to FIGS. 1 and 2, the sample cell according to the present invention is positioned through window 19 (FIG. 1) to initiate the testing procedure. Once inserted, a potential is applied at portion 27 (FIG. 2) of the sample cell across
electrodes24 and 26 to detect the presence of the sample. Once the sample's presence is detected, the potential is removed and the incubation period initiated. Optionally during this period, a vibrator means 31 (FIG. 1) may be activated to provide agitation of the reagents in order to enhance dissolution (an incubation period of 20 to 45 seconds is conveniently used for the determination of glucose and no vibration is normally required). An electrical potential is next applied at
portion27 of the sample cell to
electrodes24 and 26 and the current through the sample is measured and displayed on
display16.
. .The.!. .Iadd.To .Iaddend.fully take advantage of the above apparatus, the needed chemistry for the sell testing systems is incorporated into a dry reagent layer that is positioned onto the disposable cell creating a complete sensor for the intended analyte. The disposable electrochemical cell is constructed by the lamination of metallized plastics and nonconducting materials in such a way that there is a precisely defined working electrode area. The reagent layer is either directly coated onto the cell or preferably incorporated (coated) into a supporting matrix such as filter paper, membrane filter, woven fabric or non-woven fabric, which is then placed into the cell. When a supporting matrix is used, it pore size and void volume can be adjusted to provide the desired precision and mechanical support. In general, membrane filters or nonwoven fabrics provide the best materials for the reagent layer support. Pore sizes of 0.45 to 50 μm and void volumes of 50-90% are appropriate. The coating formulation generally includes a binder such as gelatin, carrageenan, methylcellulose, polyvinyl alcohol, polyvinylpyrrolidone, etc., that acts to delay the dissolution of the reagents until the reagent layer has adsorbed most of the fluid from the sample. The concentration of the binder is generally on the order of 0.1 to 10% with 1-4% preferred.
The reagent layer imbibes a fixed amount of the sample fluid when it is applied to the surface of the layer thus eliminating any need for premeasurement of sample volume. Furthermore, by virtue of measuring current flow rather than reflected light, there is no need to remove the blood from the surface of the reagent layer prior to measurement as there is with reflectance spectroscopy systems. While the fluid sample could be applied directly to the surface of the reagent layer, to facilitate spread of blood across the entire surface of the reagent layer the sensor preferably includes a dispersing spreading or wicking layer. This layer, generally a non-woven fabric or adsorbant paper, is positioned over the reagent layer and acts to rapidly distribute the blood over the reagent layer. In some applications this dispersing layer could incorporate additional reagents.
For glucose determination, cells utilizing the coplanar design were constructed having the reagent layer containing the following formulations:
______________________________________ Glucose oxidase 600 u/ml Potassium Ferricyanide 0.4M Phosphate Buffer 0.1M Potassium Chloride 0.5M Gelatin 2.0 g/dl ______________________________________
This was produced by coating a membrane filter with a solution of the above composition and air drying. The reagent layer was then cut into strips that just fit the window opening of the cells and these strips were place over the electrodes exposed within the windows. A wicking layer of a non-woven rayon fabric was then placed over this reagent layer and held in place with an overlay tape.
In order to prove the application of the technology according to the present invention, a large number of examples were run in aqueous solution at 25° C. The electrolyte consisted of a phosphate buffer of pH 6.8 which was about 0.1 molar total phosphate and 0.5M potassium chloride reagent. The potentials are referenced to a normal hydrogen electrode (NHE). In these tests it was found that any potential between approximately +0.8 and 1.2 volt (vs NHE) is suitable for the quantification of hydroquinone when benzoquinone is used as the oxidant. The limiting currents are proportional to hydroquinone concentrations in the range between 0.0001M and 0.050M.
Determination of glucose by Cottrell current (it) microchronoamperometry with the present method is created in the reaction of hydroquinone to benzoquinone. Cottrell currents decay with time in accordance with the equation:
i.sub.r t1/2=const
where t denotes time.
The main difference between these two techniques consists of applying the appropriate controlled potential after the glucose-benzoquinone reaction is complete and correlating glucose concentrations with Cottrell currents measured at a fixed time thereafter. The current-time readout is shown in FIG. 8. Proportionality between glucose concentrations and Cottrell currents (recorded at t=30 seconds after the application of potential) is shown in FIG. 7.
It should be noted that Cottrell chronoamperometry of metabolites needs the dual safeguards of enzymatic catalysis and controlled potential electrolysis. Gluconic acid yields of 99.9+ percent were attained in the presence of glucose oxidase. Concomitantly, equivalent amounts of benzoquinone were reduced to hydroquinone, which was conveniently quantitated in quiescent solutions, at stationary palladium thin film anodes or sample cells.
The results of these many tests demonstrates the microchronoamperometric methodology of the present invention and its practicality for glucose self-monitoring by diabetics.
In a presently preferred embodiment of the invention utilizing ferrocyanide, a number of tests were run showing certain improved operating capabilities.
Referring to FIG. 9, a schematic diagram of a
preferred circuit15 for use in the
apparatus10 is shown.
Circuit15 includes a microprocessor and
LCD panel16. The working and reference electrodes on the
sample cell20 make contact at contacts W (working electrode) and R (reference electrode), respectively.
Voltage reference41 is connected to
battery42 through
analogue power switch43. Current from the electrodes W and R is converted to a voltage by
op amp45. That voltage is converted into a digital signal (frequency) by and voltage to
frequency converter46 electrically connected to the
microprocessor48. The
microprocessor48 controls the timing of the signals. Measurement of current flow is converted by
microprocessor48 to equivalent glucose, cholesterol or other substance concentrations. Other circuits within the skills of a practiced engineer can obviously be utilized to obtain the advantages of the present invention.
With regard to FIG. 10,
cell400 consists of coplanar working 426 and
reference424 electrodes laminated between an upper 422 and lower 423 nonconducting material. Lamination is on an
adhesive layer425. The
upper material422 includes a die cut opening 428 which, along with the width of the working electrode material defines the working electrode area and provides (with an overlapping reagent layer not depicted) the sampling port of the cell. At one end of
cell400 is an
open area427 similar to end
position27 of FIG. 2.
The efficiency of using the apparatus according to the present invention to provide a means for in-home self testing by patients such as diabetics (in the preferred embodiment) can be seen in the following table in which the technology according to the present invention is compared to four commercially available units. As will be seen, the present invention is simpler, and in this instance simplicity breeds consistency in results.
______________________________________ GLUCOSE SYSTEM COMPARISONS Present Inven- Steps 1 2 3 4 tion ______________________________________ Turn Instrument On X X X X X Calibrate Instrument X X Finger Puncture X X X X X Apply Blood X X X X X Initiate Timing X X X Sequence Blot X X X Insert Strip to Read X X X X Read Results X X X X X Total Steps Per 8 8 7 5 4 Testing Detection System RS* RS RS RS Polaro- graphic Range (mg/dl) 10-400 40-400 25-450 40-400 0-1000 CV** Hypoglycemic 15% 15% 5% Euglycemic 10% 10% 3% Hyperglycemic 5% 5% 2% Correlation 0.921 0.862 0.95 ______________________________________ *RS--Reflectance Spectroscopy **Coefficient of variation
With specific regard to the determination of cholesterol utilizing the present invention, the generalized chemistry may be depicted as: ##STR1## where the enzymes cholesterol esterase (CE) and cholesterol oxidase (CO) catalyze
reactions1 and 2 respectively and CO permits electron transfer with a variety of electroactive couples (Ox and Red).
Reaction2 is novel in that electron acceptors other than dioxygen may be used to oxidize cholesterol in the presence of the enzyme cholesterol oxidase.
Reaction1 is well known to those in the field and is necessary for the determination of total cholesterol (free cholesterol and cholesterol esters). Reaction 3 is an electro-oxidation process for probing and quantitating the cholesterol.
Utilizing alternative oxidants according to the present invention, the specific reactions become: ##STR2##
Cholesterol oxidase (CO) from a variety of sources will catalyze electron transfer from cholesterol to a variety of the oxidants including benzoquinone, benzoquinone derivatives such as methylbenzoquinone, ethylbenzoquinone, chlorobenzoquinone, ortho-benzoquinone (oxidized form of catechol), benzoquinonesulfonate, and potassium ferricyanide. It is also anticipated that the enzyme will allow electron transfer with other alternate oxidants. As indicated in Reaction 3, the reduced product can then be monitored amperometrically for the quantitative determination of cholesterol.
Sources of the enzyme catalyzing the oxidation of cholesterol with alternate oxidants include CO from Nocardia, Streptomyces, Schizophyllum, Pseudomonas, and Brevibacterium; experimental conditions under which it is able to rapidly catalyze the oxidation of cholesterol by benzoquinone or any of the other oxidants depend somewhat upon the source of the enzyme. For example, CO from Streptomyces rapidly catalyzes substrate oxidation with benzoquinone in phosphate buffer in the presence of any of a variety of the surfactants including octylgluconopyranoside and CHAPSO; the same reaction under identical conditions with CO from either Brevibacterium or Nocardia is slower. However, both Nocardia and Brevibacterium sources are active catalysts for cholesterol oxidation by alternate oxidants under other conditions.
The oxidant also plays a role in which the enzyme is most active. For example, cholesterol oxidase from Nocardia rapidly catalyzes substrate oxidation with benzoquinone in 0.2 molar TRIS buffer and 3 g/dL CHAPSO but is slower with ferricyanide under identical conditions; the Brevibacterium source of the enzyme is relatively inactive with ferricyanide in TRIS buffer with a variety of surfactants but when benzoquinone is used as the oxidant the reaction is very fast. Alternatively, the Schizophyllum source of the enzyme CO rapidly catalyzes the oxidation of cholesterol in phosphate buffer with either ferricyanide or benzoquinone and with a variety of surfactants as activators.
As indicated, cholesterol oxidase will catalyze the oxidation of cholesterol by ferricyanide. Additional examples where CO catalyzes cholesterol oxidation by ferricyanide include a Nocardia source in TRIS buffer with a variety of surfactants including sodium deoxycholate, sodium taurodeoxycholate, CHAPS, Thesit, and CHAPSO. Furthermore, CO from Nocardia will also catalyze substrate oxidation with ferricyanide in phosphate buffer with sodium dioctylsulfosuccinate, sodium deoxycholate, sodium taurodeoxycholate, and Triton X-100. The buffer concentration is from 0.1 to 0.4 molar. Surfactant concentration for maximum activity of the oxidase enzyme varies with each detergent. For example, with deoxycholate or taurodeoxycholate, the enzyme in 0.2M TRIS is most active with detergent in the range from 20 to 90 millimolar. However, enzyme catalytic activity is observed up to . .an.!. .Iadd.and .Iaddend.through a 10% concentration. With octyl-gluconopyranoside, the maximum activity of the enzyme with the oxidant ferricyanide occurs at a detergent concentration of approximately 1.2%; however, the enzyme still maintains activity at higher and lower concentrations of the surfactant.
Both esterase and CO require a surfactant for high activity. Specific surfactants include sodium deoxycholate, sodium taurodeoxycholate, sodium glycodeoxycholate, CHAPS (3-(3-chlolamidopropyl)dimethylammonio-1-propanesulfonate), CHAPSO (3-(3-chlolamidopropyl)dimethylammonio-2-hydroxy-1-propanesulfonate), octyl-gluconopyranoside, octylthio-gluconopyranoside, nonyl-gluconopyranoside, dodecyl-gluconopyranoside, Triton X-100, Dioctyl sulfosuccinate, Thesit (Hydroxypolyethoxydodecane), and lecithin (phosphatidylcholine). Buffers acceptable for this reaction to occur with the enzyme include phosphate, TRIS, MOPS, MES, HEPES, Tricine, Bicine, ACES, CAPS, and TAPS. An alternate generallized reaction scheme for the measurement of cholesterol in serum and other biological fluids is given ##STR3## where Ox, and Red2 function as an electron mediator couple between the cholesterol and the electroactive couple Ox2 /Red2. In this case Ox1 and Red1 need not be electroactive because they do not have to participate in the electrooxidation process (Reaction 6). However, from both a thermodynamic and kinetic perspective, this couple with the assistance of the enzyme cholesterol oxidase must be able to accept electrons from cholesterol and relay them to the electroactive couple (Ox2 /Red2). Specific examples of this chemistry include
EXAMPLE 1 ##STR4## Scheme II is beneficial when the rate of reaction of cholesterol with the electroactive oxidant as in Scheme I is so slow that it precludes its use in a practical sensor. As mentioned above, Scheme II is also beneficial when the electron mediator itself (Ox1 /Red1) is either not electroactive or exhibits poor electrochemistry under conditions of the enzyme chemistry. It is under these conditions that Scheme II is particularly applicable. Other electron mediators (Ox1 /Red1) between cholesterol and ferricyanide for use in Scheme II may be possible including phenazine ethosulfate, phenazine methosulfate, tetramethylbenzidine, derivatives of benzoquinone, naphthoquinone and naphthoquinone derivatives, anthraquinone and anthraquinone derivatives, catechol, phenylenediamine, . .tetramethylphenenediamine.!. .Iadd.tetramethylphenylenediamine.Iaddend., and other derivatives of phenylenediamine.Furthermore, while it is understood that the oxidized form of the electron relay accepts electrons from cholesterol, in the sensor either the oxidized or the reduced form of the mediator may be incorporated provided it reacts rapidly with both cholesterol and ferricyanide. If the reduced form is sufficiently stable and the oxidized form is not, then reductant, may be incorporated into the sensor in relatively small quantity (in comparison with the analyte to be determined) and still provide the electron relay. However, this causes a corresponding background signal that must be accounted for. The reductant, must also be isolated from ferricyanide in the sensor by incorporation into a separate reagent layer.
Several formulations of the above chemistries encompassing both Schemes I and II have been prepare as dry films on membranes. These membranes are positioned in the sensor which can then be used for the determination of cholesterol. A preferred formulation of the reagents involving Scheme II consists of the following
Cholesterol Esterase @400 Units/mL
Cholesterol Oxidase from Streptomyces @200 Units/mL
0.05 molar Potassium Ferricyanide
0.5 molar Potassium Chloride
0.2 molar Phosphate, pH 6.9
3 g/dL CHAPSO
2 g/dL gelatin
and 0.0001 molar hydroquinone (in the spreading or wicking layer).
The concentractions provided are . .that.!. .Iadd.those .Iaddend.of the solutions which are coated onto porous supports, filter paper or membranes; . .these.!. .Iadd.those .Iaddend.concentrations are reestablished when the membrane imbibes the serum or whole blood specimen. For cholesterol determinations large pore sizes in the filter support are .Iadd.more .Iaddend.necessary than that used for glucose. This is because the cholesterol resides in the serum in large lipoproteins (chylomicrons. ...!. .Iadd., .Iaddend.LDL, VLDL, and HDL) which must penetrate the various layers of the sensor until they reach the reagents. The surfactants to the major extent break these natural micelles up into smaller micelles providing a greater total surface . .are.!. .Iadd.area .Iaddend.on which the enzymes catalyze the reaction. Due to the instability of benzoquinone.Iadd., .Iaddend.a small quantity of hydroquinone, which is more stable by nature of its lower vapor pressure, is incorporated into the sensor to assist electron mediation between cholesterol and ferricyanide. Upon introduction of the serum specimen into the sensor.Iadd., .Iaddend.the hydroquinone is oxidized to benzoquinone; the benzoquinone is then free to pick up electrons from the substrate and cycle them to ferricyanide. Under these conditions the rate of the reaction of cholesterol with a small quantity of benzoquinone is more rapid than that with a large excess of ferricyanide.
An alternate and preferred formulation of reagents utilizing Scheme II that may be incorporated into the reagent layer of the sensor is:
Cholesterol Oxidase from Streptomyces @200 Units/mL
Lipase from Candida @500 Units/mL
3 g/dL CHAPSO
0.2 molar TRIS, pH 7.5
0.05 molar Potassium Ferricyanide
0.5 molar Potassium Chloride
0.05 molar MgCl2
2 g/dL gelatin
and 0.001 molar hydroquinone (in the spreading layer).
The magnesium salt in this formulation increases stability of the esterase enzyme in the phosphate-free reagent layer; Lipase assists the break up of the lipoproteins. With these dry reagent layers incorporated into the sensor and using the evaluation methodology as described, the following results were obtained.
______________________________________ Serum Cholesterol, mg % Average Current, uA ______________________________________ 91 19.3 182 27.2 309 38.5 ______________________________________
These results demonstrate the quantitative response of the sensor to serum cholesterol levels.
Alternate and preferred embodiment of the sensor utilizing Scheme I is provided by reagent compositions:
Cholesterol Esterase @400 Units/mL
Cholesterol Oxidase from Nocardia @200 Units/mL
1 g/dL Triton X-100
0.1 molar TRIS buffer, pH 8.6
0.2 molar Potassium Ferricyanide
0.5 molar Potassium Chloride
0.02 molar MgCl2
2 g/dL gelatin
OR
Cholesterol Esterase @200 Units/mL
Cholesterol Oxidase from Streptomyces @200 Units/mL
0.06 molar Sodium deoxycholate
0.1 molar TRIS buffer, pH 8.6
0.2 molar Potassium Ferricyanide
0.5 molar Potassium Chloride
2 g/dL gelatin.
Thus, while we have illustrated and described the preferred embodiment of my invention, it is to be understood that this invention is capable of variation and modification, and we therefore do not wish or intend to be limited to the precise terms set forth, but desire and intend to avail ourselves of such changes and alterations which may be made for adapting the invention of the present invention to various usages and conditions. Accordingly, such changes and alterations are properly intended to be within the full range of equivalents, and therefore within the purview, of the following claims. The terms and expressions which have been employed in the foregoing specifications are used therein as terms of description and not of limitation, and thus there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims which follow.
Having thus described our invention and the manner and process of making and using it in such full, clear, concise, and exact terms so as to enable any person skilled in the art to which it pertains, or to with which it is most nearly connected, to make and use the same.
Claims (15)
1. A method of measuring the amount of a selected compound in body fluids comprising,
a) providing a measuring cell having at least a first and second electrode and said cell containing an oxidant and a buffer,
b) placing a sample of fluid to be tested in said cell,
c) reconstituting said oxidant and buffer with said sample fluid to generate a predetermined reaction,
d) allowing said reaction to proceed substantially to completion,
e) applying a potential across said electrodes and sample, and
f) measuring the resulting Cottrell current to determine the concentration of said selected compound present in said sample.
2. A method as set forth in claim 1, wherein the compound is selected from the group consisting of glucose, cholesterol, TSH, T4, hormones, antiarrhythmics, antiepileptics and nontherapeutic drugs.
3. A method as set forth in claim 1, wherein the oxidant is a material selected from the group consisting of benzoquinone, ferricyanide, ferricinium, .Iadd.orthophenanthroline .Iaddend.and Cobalt (III) dipyridyl.
4. The method as set forth in claim 1 including providing
as said first electrode a working electrode and as said second electrode a reference electrode.
5. The method of claim 1 including also providing in said cell . .and.!. .Iadd.an .Iaddend.enzyme as a catalyst and said enzyme is an oxidoreductase.
6. The method of claim 1 including selecting said buffer from the group consisting of phosphate, TRIS, MOPS, MES, HEPES, Tricine, Bicine, ACES, CAPS and TAPS. . .7. A method for measuring the amount of glucose in blood, comprising
a) providing a measuring cell having at least a first and second electrode and said cell containing an oxidant, a buffer and an enzyme,
b) placing a blood sample to be tested in said cell,
c) reconstituting said oxidant, buffer and enzyme with said blood sample to generate a predetermined reaction,
d) essentially immediately applying a potential across said electrodes and blood sample, and
e) measuring the resultant Cottrell current when the reaction has proceeded to completion to determine the concentration of said glucose present in
blood sample..!.. .8. The method of claim 7 including selecting said oxidant from the group consisting of benzoquinone, ferricyanide, ferricinium, Cobalt (III) orthophenantroline, and Cobalt (III) dipyridyl..!.. .9. The method of claim 7 including providing as said first electrode a working electrode and said second electrode a reference electrode..!.. .10. The method of claim 7 including adding as said enzyme,
glucose oxydase..!.11. The method of claim 1 wherein .Iadd.the sample of fluid is blood and .Iaddend.in step b) said placing of the blood sample to be tested in the cell generates a current and initiates a timing sequence, and wherein the reaction of step d) is allowed to proceed with an open circuit between said first and second . .electrode.!. .Iadd.electrodes.Iaddend.. .Iadd.12. A method of measuring the amount of an analyte in a blood sample, comprising:
a) adding the blood sample to an electrochemical cell that includes an electron transfer agent that will react in a reaction involving the analyte, thereby forming a detectable species;
b) incubating the reaction involving analyte and electron transfer agent in an open circuit until the reaction has substantially completed;
c) applying a sufficient potential difference between the electrodes of the electrochemical cell, after the incubation step, to readily transfer at least one electron between the detectable species and one of the electrodes, thereby resulting in a Cottrell current;
d) measuring the Cottrell current; and
e) correlating the measured Cottrell current to the amount of analyte in
the blood sample..Iaddend..Iadd.13. The method of claim 12, wherein adding the blood sample to the electrochemical cell causes a sudden charging current, which automatically initiates incubation step b) performed under open circuit..Iaddend..Iadd.14. The method of claim 13, wherein the Cottrell current is measured at a preset time following the incubation step..Iaddend..Iadd.15. The method of claim 12, wherein the electrochemical cell further includes a catalyst in sufficient amount to catalyze the reaction involving the analyte and the electron transfer agent..Iaddend..Iadd.16. The method of claim 15, wherein the catalyst is an enzyme..Iaddend..Iadd.17. The method of claim 16, wherein the analyte is glucose and the enzyme is glucose oxidase..Iaddend..Iadd.18. The method of claim 12, wherein the electron transfer agent is included in a reagent layer that is coated directly onto the electrochemical cell or is incorporated into a supporting matrix that is placed into the electrochemical cell..Iaddend..Iadd.19. The method of claim 18, wherein the supporting matrix is filter paper, membrane filter, woven fabric, or nonwoven fabric..Iaddend..Iadd.20. The method of claim 18, wherein the reagent layer further includes a binder..Iaddend..Iadd.21. The method of claim 20, wherein the binder is gelatin, carrageenan, methylcellulose, polyvinyl alcohol, or polyvinylpyrrolidone..Iaddend..Iadd.22. The method of claim 21, wherein a dispersing, spreading, or wicking layer overlays the reagent layer..Iaddend..Iadd.23. The method of claim 18, wherein adding the blood sample to the electrochemical cell causes a sudden charging current, which automatically initiates incubation step b) performed under open circuit..Iaddend..Iadd.24. The method of claim 23, wherein the Cottrell current is measured at a preset time following the incubation step..Iaddend..Iadd.25. The method of claim 24, wherein the reagent layer further includes an enzyme catalyst in sufficient amount to catalyze the reaction involving the analyte and the electron transfer
agent..Iaddend..Iadd.26. The method of claim 25, wherein the analyte is glucose in a concentration from about 1 milligram glucose per deciliter of blood sample to about 1000 milligrams glucose per deciliter of blood sample, and the fluid sample is blood..Iaddend..Iadd.27. The method of claim 26, wherein the electron transfer agent is ferricyanide, ferricinium, cobalt (III) orthophenanthroline, cobalt (III) dipyridyl, or benzoquinone..Iaddend..Iadd.28. The method of claim 12, wherein the analyte is glucose, TSH, T4, a hormone, a cardiac glycoside, an antiarrhythmic, an antiepileptic, an antibiotic, cholesterol, or a non-therapeutic drug..Iaddend..Iadd.29. The method of claim 25, wherein the analyte is glucose in a concentration from about 1 milligram glucose per deciliter of blood sample to about 1000 milligrams glucose per deciliter of blood sample, the incubation period is from about 15 seconds to about 160 seconds, and current measurements are made in the range from about 2 seconds to about 30 seconds following the incubation step..Iaddend..Iadd.30. A method of measuring the amount of an analyte in a blood sample, comprising:
a) adding the blood sample to an electrochemical cell that includes
an electron transfer agent,
a first catalyst in sufficient amount to catalyze a first reaction involving the analyte, and
a second catalyst in sufficient amount to catalyze a second reaction involving a product of the first reaction and the electron transfer agent, thereby forming a detectable species;
b) incubating the first and second reactions in an open circuit until the reactions have substantially completed;
c) applying a sufficient potential difference between electrodes of the electrochemical cell, after the incubation step, to readily transfer at least one electron between the detectable species and one of the electrodes, thereby resulting in a Cottrell current;
d) measuring the Cottrell current; and
e) correlating the measured Cottrell current to the amount of analyte in
the blood sample..Iaddend..Iadd.31. The method of claim 30, wherein adding the blood sample to the electrochemical cell causes a sudden charging current, which automatically initiates incubation step b) performed under open circuit..Iaddend..Iadd.32. The method of claim 31, wherein the Cottrell current is measured at a preset time following the incubation step..Iaddend..Iadd.33. A method of measuring the amount of cholesterol in a blood sample, comprising:
a) adding the blood sample to an electrochemical cell that includes
an electron transfer agent,
cholesterol esterase in sufficient amount to catalyze the hydrolysis of cholesterol esters in the blood sample, thereby forming cholesterol,
cholesterol oxidase in sufficient amount to catalyze a reaction involving cholesterol and the electron transfer agent, thereby forming a detectable species;
b) incubating the reactions of step a) in an open circuit until those reactions have substantially completed;
c) applying a sufficient potential difference between electrodes of the electrochemical cell, after the incubation step, to readily transfer at least one electron between the detectable species and one of the electrodes, thereby resulting in a Cottrell current;
d) measuring the Cottrell current; and
e) correlating the measured Cottrell current to the amount of cholesterol in the blood sample..Iaddend..Iadd.34. The method of claim 33, wherein adding the blood sample to the electrochemical cell causes a sudden charging current, which automatically initiates incubation step b) performed under open circuit..Iaddend..Iadd.35. The method of claim 34, wherein the Cottrell current is measured at a preset time following the incubation step..Iaddend..Iadd.36. The method of claim 35, wherein the electron transfer agent is ferricyanide or
benzoquinone..Iaddend..Iadd. A method of measuring the amount of an analyte in a blood sample, comprising:
a) adding the blood sample to an electrochemical cell that includes
first and second electron transfer agents,
a first catalyst in sufficient amount to catalyze a first reaction involving the analyte,
a second catalyst in sufficient amount to catalyze a second reaction involving a product of the first reaction and the first electron transfer agent, thereby forming an intermediate species that reacts with the second electron transfer agent, thereby forming a detectable species;
b) incubating the reactions of step a) in an open circuit until those reactions have substantially completed;
c) applying a sufficient potential difference between electrodes of the electrochemical cell, after the incubation step, to readily transfer at least one electron between the detectable species and one of the electrodes, thereby resulting in a Cottrell current;
d) measuring the Cottrell current; and
e) correlating the measured Cottrell current to the amount of analyte in the blood sample..Iaddend..Iadd.38. A method of measuring the amount of cholesterol in a blood sample, comprising:
a) adding the blood sample to an electrochemical cell that includes
first and second electron transfer agents,
cholesterol esterase in sufficient amount to catalyze the hydrolysis of cholesterol esters in the blood sample, thereby forming cholesterol,
cholesterol oxidase in sufficient amount to catalyze a reaction involving cholesterol and the first electron transfer agent, thereby forming an intermediate species that reacts with the second electron transfer agent, thereby forming a detectable species;
b) incubating the reactions of step a) in an open circuit until those reactions have substantially completed;
c) applying a sufficient potential difference between the electrodes of the electrochemical cell, after the incubation step, to readily transfer at least one electron between the detectable species and one of the electrodes, thereby resulting in a Cottrell current;
d) measuring the Cottrell current; and
e) correlating the measured Cottrell current to the amount of cholesterol
in the blood sample..Iaddend..Iadd.39. The method of claim 38, wherein adding the blood sample to the electrochemical cell causes a sudden charging current, which automatically initiates incubation step b) performed under open circuit..Iaddend..Iadd.40. The method of claim 39, wherein the Cottrell current is measured at a preset time following the incubation step..Iaddend..Iadd.41. The method of claim 40, wherein the first electron transfer agent is benzoquinone, phenazine ethosulfate, phenazine methosulfate, tetramethylbenzidine, a derivative of benzoquinone, naphthoquinone, a derivative of naphthoquinone, anthraquinone, a derivative of anthraquinone, catechol, phenylenediamine, tetramethylphenylenediamine, or a derivative of phenylenediamine..Iaddend..Iadd.42. The method of claim 41, wherein the
second electron transfer agent is ferricyanide..Iaddend..Iadd.43. A method for measuring the amount of a selected compound in a blood sample, comprising:
providing a measuring cell having at least first and second electrodes for contact with the blood sample introduced into the cell,
applying a potential to the electrodes to detect the presence of the blood sample in the cell,
placing the blood sample into the cell,
removing the potential to the electrodes after the blood sample is detected in the cell,
selectively oxidizing the compound in the blood sample with an oxidized electron acceptor to produce an oxidized form of the selected compound and a reduced electron acceptor, and
re-applying a potential across the cell electrodes after the selective oxidation of the compound in the blood sample has substantially completed and measuring the resulting Cottrell current, said current being proportional to the concentration of the reduced electron acceptor and the selected compound in the blood sample..Iaddend..Iadd.44. The method of claim 43, wherein placing the fluid sample into the measuring cell causes a sudden charging current, which automatically initiates removal of the potential from the electrodes and performance of the selective oxidation of the selected compound under open circuit..Iaddend..Iadd.45. The method of claim 44, wherein the Cottrell current is measured at the preset time after re-application of a potential across the measuring cell electrodes..Iaddend..Iadd.46. The method of claim 47, wherein placing the volume of blood into the measuring cell causes a sudden charging current, which automatically initiates removal of the potential across the electrodes and performance of the oxidation of glucose in the blood under
open circuit..Iaddend..Iadd.47. A method for measuring the amount of glucose in blood, comprising:
providing a measuring cell with at least first and second electrodes for contact with blood introduced into the cell,
applying a potential across the electrodes,
placing a volume of blood into the cell,
removing the potential across the electrodes after the volume of blood is placed into the measuring cell,
oxidizing the glucose in the blood with an oxidized electron acceptor in the presence of glucose oxidase to produce gluconic acid and a reduced electron acceptor,
re-applying a potential across the measuring cell electrodes after the oxidation of glucose has substantially completed, and
measuring the Cottrell current through the cell, the Cottrell current being proportional to the glucose concentration in the blood..Iaddend..Iadd.48. The method of claim 46, wherein the Cottrell current is measured at a preset time after re-application of a potential across the measuring cell electrodes..Iaddend.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/679,312 USRE36268E (en) | 1988-03-15 | 1996-07-12 | Method and apparatus for amperometric diagnostic analysis |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16829588A | 1988-03-15 | 1988-03-15 | |
US07/322,598 US5128015A (en) | 1988-03-15 | 1989-03-13 | Method and apparatus for amperometric diagnostic analysis |
US07/745,544 US5108564A (en) | 1988-03-15 | 1991-08-15 | Method and apparatus for amperometric diagnostic analysis |
US17686393A | 1993-12-30 | 1993-12-30 | |
US08/679,312 USRE36268E (en) | 1988-03-15 | 1996-07-12 | Method and apparatus for amperometric diagnostic analysis |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/745,544 Reissue US5108564A (en) | 1988-03-15 | 1991-08-15 | Method and apparatus for amperometric diagnostic analysis |
US17686393A Continuation | 1988-03-15 | 1993-12-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE36268E true USRE36268E (en) | 1999-08-17 |
Family
ID=27496781
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/679,312 Expired - Lifetime USRE36268E (en) | 1988-03-15 | 1996-07-12 | Method and apparatus for amperometric diagnostic analysis |
Country Status (1)
Country | Link |
---|---|
US (1) | USRE36268E (en) |
Cited By (114)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010045355A1 (en) * | 2000-03-09 | 2001-11-29 | Clinical Analysis Corporation | Medical diagnostic system |
US6572745B2 (en) | 2001-03-23 | 2003-06-03 | Virotek, L.L.C. | Electrochemical sensor and method thereof |
US6576102B1 (en) | 2001-03-23 | 2003-06-10 | Virotek, L.L.C. | Electrochemical sensor and method thereof |
US20040079652A1 (en) * | 2002-08-27 | 2004-04-29 | Bayer Healthcare Llc | Methods of determining glucose concentration in whole blood samples |
US20040094432A1 (en) * | 2002-04-25 | 2004-05-20 | Home Diagnostics, Inc. | Systems and methods for blood glucose sensing |
US20040138588A1 (en) * | 2002-11-06 | 2004-07-15 | Saikley Charles R | Automatic biological analyte testing meter with integrated lancing device and methods of use |
US20040182703A1 (en) * | 2002-04-25 | 2004-09-23 | Home Diagnostics, Inc. | Systems and methods for blood glucose sensing |
US20040253367A1 (en) * | 2003-06-12 | 2004-12-16 | Wogoman Frank W. | Sensor format and construction method for capillary-filled diagnostic sensors |
US20050045476A1 (en) * | 2002-04-25 | 2005-03-03 | Home Diagnostics, Inc. | Systems and methods for blood glucose sensing |
US20050147811A1 (en) * | 2002-12-17 | 2005-07-07 | Richard Baron | Adhesive articles which contain at least one hydrophilic or hydrophobic layer, method for making and uses for same |
US20050164329A1 (en) * | 2002-05-17 | 2005-07-28 | Wallace-Davis Emma N.K. | Analyte measurement |
US20050194265A1 (en) * | 2004-03-03 | 2005-09-08 | Apex Biotechnology Corp. | Method for reducing measuring bias in amperometric biosensors |
US7025774B2 (en) | 2001-06-12 | 2006-04-11 | Pelikan Technologies, Inc. | Tissue penetration device |
US20060108218A1 (en) * | 2001-03-05 | 2006-05-25 | Clinical Analysis Corporation | Test cell for use with medical diagnostic instrument |
US20060148096A1 (en) * | 2002-11-05 | 2006-07-06 | Jina Arvind N | Assay device, system and method |
US7198606B2 (en) | 2002-04-19 | 2007-04-03 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with analyte sensing |
US7208071B2 (en) | 2000-11-01 | 2007-04-24 | Rosemount Analytical Inc. | Amperometric sensor for low level dissolved oxygen with self-depleting sensor design |
US7229458B2 (en) | 2002-04-19 | 2007-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7232451B2 (en) | 2002-04-19 | 2007-06-19 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7244265B2 (en) | 2002-04-19 | 2007-07-17 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7258693B2 (en) | 2002-04-19 | 2007-08-21 | Pelikan Technologies, Inc. | Device and method for variable speed lancet |
US7291117B2 (en) | 2002-04-19 | 2007-11-06 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7297122B2 (en) | 2002-04-19 | 2007-11-20 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7297151B2 (en) | 2002-04-19 | 2007-11-20 | Elikan Technologies, Inc. | Method and apparatus for body fluid sampling with improved sensing |
US7316700B2 (en) | 2001-06-12 | 2008-01-08 | Pelikan Technologies, Inc. | Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties |
US7331931B2 (en) | 2002-04-19 | 2008-02-19 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7344894B2 (en) | 2001-10-16 | 2008-03-18 | Agilent Technologies, Inc. | Thermal regulation of fluidic samples within a diagnostic cartridge |
US7344507B2 (en) | 2002-04-19 | 2008-03-18 | Pelikan Technologies, Inc. | Method and apparatus for lancet actuation |
US7371247B2 (en) | 2002-04-19 | 2008-05-13 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
US20080112852A1 (en) * | 2002-04-25 | 2008-05-15 | Neel Gary T | Test Strips and System for Measuring Analyte Levels in a Fluid Sample |
US7374544B2 (en) | 2002-04-19 | 2008-05-20 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7410468B2 (en) | 2002-04-19 | 2008-08-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7485128B2 (en) | 2002-04-19 | 2009-02-03 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7491178B2 (en) | 2002-04-19 | 2009-02-17 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US20090090623A1 (en) * | 2007-05-21 | 2009-04-09 | Delta Electronics, Inc. | Biosensor having integrated heating element and electrode with metallic catalyst |
US20090093735A1 (en) * | 2006-03-29 | 2009-04-09 | Stephan Korner | Test unit and test system for analyzing body fluids |
US7524293B2 (en) | 2002-04-19 | 2009-04-28 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US20090145775A1 (en) * | 2007-12-10 | 2009-06-11 | Bayer Healthcare Llc | Reagents and methods for detecting analytes |
US7547287B2 (en) | 2002-04-19 | 2009-06-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7563232B2 (en) | 2002-04-19 | 2009-07-21 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7582099B2 (en) | 2002-04-19 | 2009-09-01 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
US7604592B2 (en) | 2003-06-13 | 2009-10-20 | Pelikan Technologies, Inc. | Method and apparatus for a point of care device |
US7648468B2 (en) | 2002-04-19 | 2010-01-19 | Pelikon Technologies, Inc. | Method and apparatus for penetrating tissue |
US20100012049A1 (en) * | 2006-04-12 | 2010-01-21 | Jms Co., Ltd | Cavitation heating system and method |
US7666149B2 (en) | 1997-12-04 | 2010-02-23 | Peliken Technologies, Inc. | Cassette of lancet cartridges for sampling blood |
US7674232B2 (en) | 2002-04-19 | 2010-03-09 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7682318B2 (en) | 2001-06-12 | 2010-03-23 | Pelikan Technologies, Inc. | Blood sampling apparatus and method |
US7699791B2 (en) | 2001-06-12 | 2010-04-20 | Pelikan Technologies, Inc. | Method and apparatus for improving success rate of blood yield from a fingerstick |
US7717863B2 (en) | 2002-04-19 | 2010-05-18 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7749174B2 (en) | 2001-06-12 | 2010-07-06 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge |
US7766846B2 (en) | 2008-01-28 | 2010-08-03 | Roche Diagnostics Operations, Inc. | Rapid blood expression and sampling |
EP2213231A1 (en) | 2009-01-30 | 2010-08-04 | Roche Diagnostics GmbH | Integrated body fluid meter and lancing device |
US7780631B2 (en) | 1998-03-30 | 2010-08-24 | Pelikan Technologies, Inc. | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
US7819822B2 (en) | 2004-03-06 | 2010-10-26 | Roche Diagnostics Operations, Inc. | Body fluid sampling device |
US7822454B1 (en) | 2005-01-03 | 2010-10-26 | Pelikan Technologies, Inc. | Fluid sampling device with improved analyte detecting member configuration |
US7850621B2 (en) | 2003-06-06 | 2010-12-14 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7862520B2 (en) | 2002-04-19 | 2011-01-04 | Pelikan Technologies, Inc. | Body fluid sampling module with a continuous compression tissue interface surface |
US7862696B2 (en) | 2006-09-22 | 2011-01-04 | Bayer Healthcare Llc | Biosensor system having enhanced stability and hematocrit performance |
WO2011000527A2 (en) | 2009-06-29 | 2011-01-06 | Roche Diagnostics Gmbh | Modular diabetes management systems |
US7892185B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7892183B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7901362B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
WO2011029567A1 (en) | 2009-09-09 | 2011-03-17 | Roche Diagnostics Gmbh | Storage containers for test elements |
US7909778B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
EP2339337A2 (en) | 2009-12-23 | 2011-06-29 | Roche Diagnostics GmbH | System for reading analyte test elements and for other uses |
US7976476B2 (en) | 2002-04-19 | 2011-07-12 | Pelikan Technologies, Inc. | Device and method for variable speed lancet |
WO2011092010A1 (en) | 2010-01-29 | 2011-08-04 | Roche Diagnostics Gmbh | Electrode arrangements for biosensors |
US8000762B2 (en) | 2004-03-06 | 2011-08-16 | Roche Diagnostics Operations, Inc. | Body fluid sampling device |
US8007656B2 (en) | 2003-10-24 | 2011-08-30 | Bayer Healthcare Llc | Enzymatic electrochemical biosensor |
US8026104B2 (en) | 2006-10-24 | 2011-09-27 | Bayer Healthcare Llc | Transient decay amperometry |
WO2012072251A1 (en) | 2010-12-02 | 2012-06-07 | Roche Diagnostics Gmbh | Test element ejection mechanism for a meter |
US8197421B2 (en) | 2002-04-19 | 2012-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
WO2012084194A1 (en) | 2010-12-22 | 2012-06-28 | Roche Diagnostics Gmbh | Systems and methods to compensate for sources of error during electrochemical testing |
US8221334B2 (en) | 2002-04-19 | 2012-07-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8262614B2 (en) | 2003-05-30 | 2012-09-11 | Pelikan Technologies, Inc. | Method and apparatus for fluid injection |
US8267870B2 (en) | 2002-04-19 | 2012-09-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling with hybrid actuation |
US8282576B2 (en) | 2003-09-29 | 2012-10-09 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
US8337421B2 (en) | 2001-06-12 | 2012-12-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8360992B2 (en) | 2002-04-19 | 2013-01-29 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8404100B2 (en) | 2005-09-30 | 2013-03-26 | Bayer Healthcare Llc | Gated voltammetry |
US8425757B2 (en) | 2005-07-20 | 2013-04-23 | Bayer Healthcare Llc | Gated amperometry |
WO2013079177A1 (en) | 2011-11-28 | 2013-06-06 | Roche Diagnostics Gmbh | Insert component for storage container for biosensor test elements |
US8556829B2 (en) | 2002-04-19 | 2013-10-15 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8574895B2 (en) | 2002-12-30 | 2013-11-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
US8641644B2 (en) | 2000-11-21 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US8652831B2 (en) | 2004-12-30 | 2014-02-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte measurement test time |
US8668656B2 (en) | 2003-12-31 | 2014-03-11 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
US8696880B2 (en) | 2004-02-06 | 2014-04-15 | Bayer Healthcare Llc | Oxidizable species as an internal reference for biosensors and method of use |
US8702624B2 (en) | 2006-09-29 | 2014-04-22 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US8721671B2 (en) | 2001-06-12 | 2014-05-13 | Sanofi-Aventis Deutschland Gmbh | Electric lancet actuator |
US8784335B2 (en) | 2002-04-19 | 2014-07-22 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling device with a capacitive sensor |
US8828203B2 (en) | 2004-05-20 | 2014-09-09 | Sanofi-Aventis Deutschland Gmbh | Printable hydrogels for biosensors |
WO2014140164A1 (en) | 2013-03-15 | 2014-09-18 | Roche Diagnostics Gmbh | Methods of using information from recovery pulses in electrochemical analyte measurements as well as devices, apparatuses and systems incorporating the same |
WO2014140172A1 (en) | 2013-03-15 | 2014-09-18 | Roche Diagnostics Gmbh | Methods of failsafing electrochemical measurements of an analyte as well as devices, apparatuses and systems incorporating the same |
WO2014140177A2 (en) | 2013-03-15 | 2014-09-18 | Roche Diagnostics Gmbh | Methods of detecting high antioxidant levels during electrochemical measurements and failsafing an analyte concentration therefrom as well as devices, apparatuses and systems incorporting the same |
US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
WO2014025415A3 (en) * | 2012-08-08 | 2015-06-18 | Scanadu Incorporated | Quantitative colormetric analysis of biological analytes in an automatically calibrated environment |
US9144401B2 (en) | 2003-06-11 | 2015-09-29 | Sanofi-Aventis Deutschland Gmbh | Low pain penetrating member |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
US9285323B2 (en) | 2012-08-08 | 2016-03-15 | Scanadu Incorporated | Quantifying color changes of chemical test pads induced concentrations of biological analytes under different lighting conditions |
US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9351680B2 (en) | 2003-10-14 | 2016-05-31 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a variable user interface |
US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
US9386944B2 (en) | 2008-04-11 | 2016-07-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte detecting device |
US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9528941B2 (en) | 2012-08-08 | 2016-12-27 | Scanadu Incorporated | Method and apparatus for determining analyte concentration by quantifying and interpreting color information captured in a continuous or periodic manner |
US9775553B2 (en) | 2004-06-03 | 2017-10-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US9820684B2 (en) | 2004-06-03 | 2017-11-21 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US9863811B2 (en) | 2014-08-15 | 2018-01-09 | Scanadu Incorporated | Precision luxmeter methods for digital cameras to quantify colors in uncontrolled lighting environments |
EP3385706A1 (en) | 2013-03-15 | 2018-10-10 | Roche Diabetes Care GmbH | Methods of scaling data used to construct biosensor algorithms as well as devices, apparatuses and systems incorporating the same |
US10451577B2 (en) | 2016-03-16 | 2019-10-22 | Arkray, Inc. | Substance measuring method and measuring apparatus using electrochemical biosensor |
US11230727B2 (en) | 2016-10-05 | 2022-01-25 | Roche Diabetes Care, Inc. | Detection reagents and electrode arrangements for multi-analyte diagnostic test elements, as well as methods of using the same |
Citations (67)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3838033A (en) * | 1971-09-09 | 1974-09-24 | Hoffmann La Roche | Enzyme electrode |
US3925183A (en) * | 1972-06-16 | 1975-12-09 | Energetics Science | Gas detecting and quantitative measuring device |
US4005002A (en) * | 1973-08-06 | 1977-01-25 | Hoffmann-La Roche Inc. | Apparatus for measuring substrate concentrations |
US4169779A (en) * | 1978-12-26 | 1979-10-02 | Catalyst Research Corporation | Electrochemical cell for the detection of hydrogen sulfide |
JPS5510584A (en) * | 1978-07-10 | 1980-01-25 | Matsushita Electric Ind Co Ltd | Enzyme electrode and its manufacture |
US4217196A (en) * | 1978-05-30 | 1980-08-12 | Albert Huch | Dish-electrode concentration meter with detachable transducer |
US4224125A (en) * | 1977-09-28 | 1980-09-23 | Matsushita Electric Industrial Co., Ltd. | Enzyme electrode |
US4225410A (en) * | 1978-12-04 | 1980-09-30 | Technicon Instruments Corporation | Integrated array of electrochemical sensors |
US4321123A (en) * | 1978-04-21 | 1982-03-23 | Matsushita Electric Industrial Co., Ltd. | Coenzyme immobilized electrode |
JPS5798853A (en) * | 1980-12-12 | 1982-06-19 | Matsushita Electric Ind Co Ltd | Enzyme electrode |
US4392933A (en) * | 1978-10-31 | 1983-07-12 | Matsushita Electric Industrial Co., Ltd. | Electrochemical measuring apparatus comprising enzyme electrode |
US4407959A (en) * | 1980-10-29 | 1983-10-04 | Fuji Electric Co., Ltd. | Blood sugar analyzing apparatus |
US4420564A (en) * | 1980-11-21 | 1983-12-13 | Fuji Electric Company, Ltd. | Blood sugar analyzer having fixed enzyme membrane sensor |
US4431507A (en) * | 1981-01-14 | 1984-02-14 | Matsushita Electric Industrial Co., Ltd. | Enzyme electrode |
JPS59166852A (en) * | 1983-03-11 | 1984-09-20 | Matsushita Electric Ind Co Ltd | Biosensor |
EP0136362A1 (en) * | 1983-03-11 | 1985-04-10 | Matsushita Electric Industrial Co., Ltd. | Biosensor |
GB2154003A (en) * | 1983-12-16 | 1985-08-29 | Genetics Int Inc | Diagnostic aid |
JPS60173459A (en) * | 1984-02-20 | 1985-09-06 | Matsushita Electric Ind Co Ltd | Biosensor |
JPS60173458A (en) * | 1984-02-20 | 1985-09-06 | Matsushita Electric Ind Co Ltd | Biosensor |
JPS60173457A (en) * | 1984-02-20 | 1985-09-06 | Matsushita Electric Ind Co Ltd | Biosensor |
US4545382A (en) * | 1981-10-23 | 1985-10-08 | Genetics International, Inc. | Sensor for components of a liquid mixture |
JPS60211350A (en) * | 1984-04-06 | 1985-10-23 | Matsushita Electric Ind Co Ltd | Biosensor |
US4579643A (en) * | 1983-11-18 | 1986-04-01 | Ngk Insulators, Ltd. | Electrochemical device |
JPS6190050A (en) * | 1984-10-09 | 1986-05-08 | Matsushita Electric Ind Co Ltd | Production of chip for biosensor |
JPS6191558A (en) * | 1984-10-12 | 1986-05-09 | Matsushita Electric Ind Co Ltd | Biosensor |
WO1986004926A1 (en) * | 1985-02-21 | 1986-08-28 | Genetics International Inc. | Assay for degradable substrates by electrochemical detection of redox species |
JPS61294356A (en) * | 1985-06-21 | 1986-12-25 | Matsushita Electric Ind Co Ltd | Biosensor |
EP0206218A2 (en) * | 1985-06-28 | 1986-12-30 | Miles Inc. | Electrode for electrochemical sensors |
WO1986007632A1 (en) * | 1985-06-21 | 1986-12-31 | Matsushita Electric Industrial Co., Ltd. | Biosensor and method of manufacturing same |
US4654197A (en) * | 1983-10-18 | 1987-03-31 | Aktiebolaget Leo | Cuvette for sampling and analysis |
US4655901A (en) * | 1983-08-09 | 1987-04-07 | Ngk Insulators, Ltd. | Oxygen sensor element |
JPS62156553A (en) * | 1985-12-27 | 1987-07-11 | Daikin Ind Ltd | concentration measuring device |
US4682602A (en) * | 1981-05-07 | 1987-07-28 | Ottosensor Corporation | Probe for medical application |
EP0230786A1 (en) * | 1985-12-24 | 1987-08-05 | MediSense, Inc. | Assay for cholesterol and derivatives thereof |
EP0241309A2 (en) * | 1986-04-10 | 1987-10-14 | MediSense, Inc. | Measurement of electroactive species in solution |
US4711245A (en) * | 1983-05-05 | 1987-12-08 | Genetics International, Inc. | Sensor for components of a liquid mixture |
JPS633249A (en) * | 1986-06-23 | 1988-01-08 | Matsushita Electric Ind Co Ltd | Biosensor |
EP0255291A1 (en) * | 1986-07-23 | 1988-02-03 | Unilever Plc | Method and apparatus for electrochemical measurements |
JPS6358149A (en) * | 1986-08-28 | 1988-03-12 | Matsushita Electric Ind Co Ltd | Biosensor |
JPS63128252A (en) * | 1986-11-18 | 1988-05-31 | Matsushita Electric Ind Co Ltd | Biosensor |
US4758323A (en) * | 1983-05-05 | 1988-07-19 | Genetics International, Inc. | Assay systems using more than one enzyme |
US4796014A (en) * | 1987-03-24 | 1989-01-03 | Chia Jack T | Device for detecting urine in diapers |
US4810633A (en) * | 1984-06-04 | 1989-03-07 | Miles Inc. | Enzymatic ethanol test |
US4820399A (en) * | 1984-08-31 | 1989-04-11 | Shimadzu Corporation | Enzyme electrodes |
US4820636A (en) * | 1985-02-21 | 1989-04-11 | Medisense, Inc. | Electrochemical assay for cis-diols |
US4830959A (en) * | 1985-11-11 | 1989-05-16 | Medisense, Inc. | Electrochemical enzymic assay procedures |
US4836904A (en) * | 1985-03-28 | 1989-06-06 | Medisense, Inc. | Graphite electrode with modified surface |
US4894137A (en) * | 1986-09-12 | 1990-01-16 | Omron Tateisi Electronics Co. | Enzyme electrode |
EP0170375B1 (en) * | 1984-06-13 | 1990-05-16 | Unilever Plc | Devices for use in chemical test procedures |
US4927516A (en) * | 1986-06-27 | 1990-05-22 | Terumo Kabushiki Kaisha | Enzyme sensor |
US4935105A (en) * | 1987-02-24 | 1990-06-19 | Imperial Chemical Industries Plc | Methods of operating enzyme electrode sensors |
US4935106A (en) * | 1985-11-15 | 1990-06-19 | Smithkline Diagnostics, Inc. | Ion selective/enzymatic electrode medical analyzer device and method of use |
US4948727A (en) * | 1984-10-12 | 1990-08-14 | Medisense, Inc. | Chemical sensor |
US4952300A (en) * | 1987-03-19 | 1990-08-28 | Howard Diamond | Multiparameter analytical electrode structure and method of measurement |
US4959305A (en) * | 1986-06-18 | 1990-09-25 | Miles Inc. | Reversible immobilization of assay reagents in a multizone test device |
US4970145A (en) * | 1986-05-27 | 1990-11-13 | Cambridge Life Sciences Plc | Immobilized enzyme electrodes |
US4995402A (en) * | 1988-10-12 | 1991-02-26 | Thorne, Smith, Astill Technologies, Inc. | Medical droplet whole blood and like monitoring |
US5030310A (en) * | 1985-06-28 | 1991-07-09 | Miles Inc. | Electrode for electrochemical sensors |
US5049487A (en) * | 1986-08-13 | 1991-09-17 | Lifescan, Inc. | Automated initiation of timing of reflectance readings |
US5140393A (en) * | 1985-10-08 | 1992-08-18 | Sharp Kabushiki Kaisha | Sensor device |
US5141868A (en) * | 1984-06-13 | 1992-08-25 | Internationale Octrooi Maatschappij "Octropa" Bv | Device for use in chemical test procedures |
US5171689A (en) * | 1984-11-08 | 1992-12-15 | Matsushita Electric Industrial Co., Ltd. | Solid state bio-sensor |
EP0785901A1 (en) * | 1994-10-14 | 1997-07-30 | Ier | Cartridge and roller for a consumable ribbon, receiving apparatus, and rotational roller coupling method |
EP0786361A1 (en) * | 1996-01-26 | 1997-07-30 | COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN-MICHELIN & CIE | Method for processing signals in a tyre monitoring system of a running vehicle |
EP1251371A1 (en) * | 2000-01-27 | 2002-10-23 | Idemitsu Petrochemical Co., Ltd. | Light guide plates and process for producing the same |
EP1279581A1 (en) * | 2001-07-16 | 2003-01-29 | Siemens Aktiengesellschaft | External train length measuring device |
EP1363621A1 (en) * | 2000-11-30 | 2003-11-26 | Teva Pharmaceutical Industries Ltd. | Novel crystal forms of atorvastatin hemi-calcium and processes for their preparation as well as novel processes for preparing other forms |
-
1996
- 1996-07-12 US US08/679,312 patent/USRE36268E/en not_active Expired - Lifetime
Patent Citations (71)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3838033A (en) * | 1971-09-09 | 1974-09-24 | Hoffmann La Roche | Enzyme electrode |
US3925183A (en) * | 1972-06-16 | 1975-12-09 | Energetics Science | Gas detecting and quantitative measuring device |
US4005002A (en) * | 1973-08-06 | 1977-01-25 | Hoffmann-La Roche Inc. | Apparatus for measuring substrate concentrations |
US4224125A (en) * | 1977-09-28 | 1980-09-23 | Matsushita Electric Industrial Co., Ltd. | Enzyme electrode |
US4321123A (en) * | 1978-04-21 | 1982-03-23 | Matsushita Electric Industrial Co., Ltd. | Coenzyme immobilized electrode |
US4217196A (en) * | 1978-05-30 | 1980-08-12 | Albert Huch | Dish-electrode concentration meter with detachable transducer |
JPS5510584A (en) * | 1978-07-10 | 1980-01-25 | Matsushita Electric Ind Co Ltd | Enzyme electrode and its manufacture |
US4392933A (en) * | 1978-10-31 | 1983-07-12 | Matsushita Electric Industrial Co., Ltd. | Electrochemical measuring apparatus comprising enzyme electrode |
US4225410A (en) * | 1978-12-04 | 1980-09-30 | Technicon Instruments Corporation | Integrated array of electrochemical sensors |
US4169779A (en) * | 1978-12-26 | 1979-10-02 | Catalyst Research Corporation | Electrochemical cell for the detection of hydrogen sulfide |
US4407959A (en) * | 1980-10-29 | 1983-10-04 | Fuji Electric Co., Ltd. | Blood sugar analyzing apparatus |
US4420564A (en) * | 1980-11-21 | 1983-12-13 | Fuji Electric Company, Ltd. | Blood sugar analyzer having fixed enzyme membrane sensor |
JPS5798853A (en) * | 1980-12-12 | 1982-06-19 | Matsushita Electric Ind Co Ltd | Enzyme electrode |
US4431507A (en) * | 1981-01-14 | 1984-02-14 | Matsushita Electric Industrial Co., Ltd. | Enzyme electrode |
US4682602A (en) * | 1981-05-07 | 1987-07-28 | Ottosensor Corporation | Probe for medical application |
US4545382A (en) * | 1981-10-23 | 1985-10-08 | Genetics International, Inc. | Sensor for components of a liquid mixture |
JPS59166852A (en) * | 1983-03-11 | 1984-09-20 | Matsushita Electric Ind Co Ltd | Biosensor |
EP0136362A1 (en) * | 1983-03-11 | 1985-04-10 | Matsushita Electric Industrial Co., Ltd. | Biosensor |
US4758323A (en) * | 1983-05-05 | 1988-07-19 | Genetics International, Inc. | Assay systems using more than one enzyme |
US4711245A (en) * | 1983-05-05 | 1987-12-08 | Genetics International, Inc. | Sensor for components of a liquid mixture |
US4655901A (en) * | 1983-08-09 | 1987-04-07 | Ngk Insulators, Ltd. | Oxygen sensor element |
US4654197A (en) * | 1983-10-18 | 1987-03-31 | Aktiebolaget Leo | Cuvette for sampling and analysis |
US4579643A (en) * | 1983-11-18 | 1986-04-01 | Ngk Insulators, Ltd. | Electrochemical device |
GB2154003A (en) * | 1983-12-16 | 1985-08-29 | Genetics Int Inc | Diagnostic aid |
JPS60173459A (en) * | 1984-02-20 | 1985-09-06 | Matsushita Electric Ind Co Ltd | Biosensor |
JPS60173458A (en) * | 1984-02-20 | 1985-09-06 | Matsushita Electric Ind Co Ltd | Biosensor |
JPS60173457A (en) * | 1984-02-20 | 1985-09-06 | Matsushita Electric Ind Co Ltd | Biosensor |
JPS60211350A (en) * | 1984-04-06 | 1985-10-23 | Matsushita Electric Ind Co Ltd | Biosensor |
US4810633A (en) * | 1984-06-04 | 1989-03-07 | Miles Inc. | Enzymatic ethanol test |
US5141868A (en) * | 1984-06-13 | 1992-08-25 | Internationale Octrooi Maatschappij "Octropa" Bv | Device for use in chemical test procedures |
EP0170375B1 (en) * | 1984-06-13 | 1990-05-16 | Unilever Plc | Devices for use in chemical test procedures |
US4820399A (en) * | 1984-08-31 | 1989-04-11 | Shimadzu Corporation | Enzyme electrodes |
EP0177743B1 (en) * | 1984-08-31 | 1991-11-06 | Shimadzu Corporation | Enzyme electrodes |
JPS6190050A (en) * | 1984-10-09 | 1986-05-08 | Matsushita Electric Ind Co Ltd | Production of chip for biosensor |
US4948727A (en) * | 1984-10-12 | 1990-08-14 | Medisense, Inc. | Chemical sensor |
JPS6191558A (en) * | 1984-10-12 | 1986-05-09 | Matsushita Electric Ind Co Ltd | Biosensor |
US5171689A (en) * | 1984-11-08 | 1992-12-15 | Matsushita Electric Industrial Co., Ltd. | Solid state bio-sensor |
WO1986004926A1 (en) * | 1985-02-21 | 1986-08-28 | Genetics International Inc. | Assay for degradable substrates by electrochemical detection of redox species |
US4820636A (en) * | 1985-02-21 | 1989-04-11 | Medisense, Inc. | Electrochemical assay for cis-diols |
US4836904A (en) * | 1985-03-28 | 1989-06-06 | Medisense, Inc. | Graphite electrode with modified surface |
EP0230472A1 (en) * | 1985-06-21 | 1987-08-05 | Matsushita Electric Industrial Co., Ltd. | Biosensor and method of manufacturing same |
JPS61294356A (en) * | 1985-06-21 | 1986-12-25 | Matsushita Electric Ind Co Ltd | Biosensor |
US4897173A (en) * | 1985-06-21 | 1990-01-30 | Matsushita Electric Industrial Co., Ltd. | Biosensor and method for making the same |
WO1986007632A1 (en) * | 1985-06-21 | 1986-12-31 | Matsushita Electric Industrial Co., Ltd. | Biosensor and method of manufacturing same |
EP0206218A2 (en) * | 1985-06-28 | 1986-12-30 | Miles Inc. | Electrode for electrochemical sensors |
US4938860A (en) * | 1985-06-28 | 1990-07-03 | Miles Inc. | Electrode for electrochemical sensors |
US5030310A (en) * | 1985-06-28 | 1991-07-09 | Miles Inc. | Electrode for electrochemical sensors |
US5140393A (en) * | 1985-10-08 | 1992-08-18 | Sharp Kabushiki Kaisha | Sensor device |
US4830959A (en) * | 1985-11-11 | 1989-05-16 | Medisense, Inc. | Electrochemical enzymic assay procedures |
US4935106A (en) * | 1985-11-15 | 1990-06-19 | Smithkline Diagnostics, Inc. | Ion selective/enzymatic electrode medical analyzer device and method of use |
EP0230786A1 (en) * | 1985-12-24 | 1987-08-05 | MediSense, Inc. | Assay for cholesterol and derivatives thereof |
JPS62156553A (en) * | 1985-12-27 | 1987-07-11 | Daikin Ind Ltd | concentration measuring device |
EP0241309A2 (en) * | 1986-04-10 | 1987-10-14 | MediSense, Inc. | Measurement of electroactive species in solution |
US4970145A (en) * | 1986-05-27 | 1990-11-13 | Cambridge Life Sciences Plc | Immobilized enzyme electrodes |
US4959305A (en) * | 1986-06-18 | 1990-09-25 | Miles Inc. | Reversible immobilization of assay reagents in a multizone test device |
JPS633249A (en) * | 1986-06-23 | 1988-01-08 | Matsushita Electric Ind Co Ltd | Biosensor |
US4927516A (en) * | 1986-06-27 | 1990-05-22 | Terumo Kabushiki Kaisha | Enzyme sensor |
EP0255291A1 (en) * | 1986-07-23 | 1988-02-03 | Unilever Plc | Method and apparatus for electrochemical measurements |
US5049487A (en) * | 1986-08-13 | 1991-09-17 | Lifescan, Inc. | Automated initiation of timing of reflectance readings |
JPS6358149A (en) * | 1986-08-28 | 1988-03-12 | Matsushita Electric Ind Co Ltd | Biosensor |
US4894137A (en) * | 1986-09-12 | 1990-01-16 | Omron Tateisi Electronics Co. | Enzyme electrode |
JPS63128252A (en) * | 1986-11-18 | 1988-05-31 | Matsushita Electric Ind Co Ltd | Biosensor |
US4935105A (en) * | 1987-02-24 | 1990-06-19 | Imperial Chemical Industries Plc | Methods of operating enzyme electrode sensors |
US4952300A (en) * | 1987-03-19 | 1990-08-28 | Howard Diamond | Multiparameter analytical electrode structure and method of measurement |
US4796014A (en) * | 1987-03-24 | 1989-01-03 | Chia Jack T | Device for detecting urine in diapers |
US4995402A (en) * | 1988-10-12 | 1991-02-26 | Thorne, Smith, Astill Technologies, Inc. | Medical droplet whole blood and like monitoring |
EP0785901A1 (en) * | 1994-10-14 | 1997-07-30 | Ier | Cartridge and roller for a consumable ribbon, receiving apparatus, and rotational roller coupling method |
EP0786361A1 (en) * | 1996-01-26 | 1997-07-30 | COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN-MICHELIN & CIE | Method for processing signals in a tyre monitoring system of a running vehicle |
EP1251371A1 (en) * | 2000-01-27 | 2002-10-23 | Idemitsu Petrochemical Co., Ltd. | Light guide plates and process for producing the same |
EP1363621A1 (en) * | 2000-11-30 | 2003-11-26 | Teva Pharmaceutical Industries Ltd. | Novel crystal forms of atorvastatin hemi-calcium and processes for their preparation as well as novel processes for preparing other forms |
EP1279581A1 (en) * | 2001-07-16 | 2003-01-29 | Siemens Aktiengesellschaft | External train length measuring device |
Non-Patent Citations (15)
* Cited by examiner, † Cited by third partyTitle |
---|
Biochemica Information; pp. 18, 19, 27 and 28 (J. Keesey, ed., Boehringer Mannheim Biochemicals, 1987) no month available. * |
Laboratory Techniques in Electroanalytical Chemistry; pp. 51 64 and 124 (Kissinger and Heineman, eds., 1984) no month available. * |
Laboratory Techniques in Electroanalytical Chemistry; pp. 51-64 and 124 (Kissinger and Heineman, eds., 1984) no month available. |
Myland, Janice C. and Oldham, Keith B.; "Membrane-Covered Oxygen Sensors: An Exact Treatment of the Switch-on Transient"; Aug. 1984; pp. 1815-1823; J. Electrochem. Soc. |
Myland, Janice C. and Oldham, Keith B.; Membrane Covered Oxygen Sensors: An Exact Treatment of the Switch on Transient ; Aug. 1984; pp. 1815 1823; J. Electrochem. Soc. * |
Talbott et al.; "A New Microchemical Approach to Amperometric Analysis", Feb. 1988, vol. 37, pp. 5-12, Microchemical Journal. |
Talbott et al.; A New Microchemical Approach to Amperometric Analysis , Feb. 1988, vol. 37, pp. 5 12, Microchemical Journal. * |
Talbott, Jonathan Lee; "Enzymatic Amperometry of Glucose"; 1988; Pennsylvania State University (Thesis for Doctor of Philosophy in Chemistry) no month available. |
Talbott, Jonathan Lee; Enzymatic Amperometry of Glucose ; 1988; Pennsylvania State University (Thesis for Doctor of Philosophy in Chemistry) no month available. * |
Tokuda, Koichi; "Measurement of Current--Potential Curves"; 1986; pp. 471-475; Denki Kagaku (English Translation Included) no month available. |
Tokuda, Koichi; Measurement of Current Potential Curves ; 1986; pp. 471 475; Denki Kagaku (English Translation Included) no month available. * |
Van Nostrand Reinhold Encyclopedia of Chemistry; pp. 149 150 (4th edition 1984) no month available. * |
Van Nostrand Reinhold Encyclopedia of Chemistry; pp. 149-150 (4th edition 1984) no month available. |
Williams et al.; "Electrochemical--Enzymatic Analysis of Blood Glucose and Lactate"; Jan. 1970; pp. 118-121; Analytical Chemistry. |
Williams et al.; Electrochemical Enzymatic Analysis of Blood Glucose and Lactate ; Jan. 1970; pp. 118 121; Analytical Chemistry. * |
Cited By (244)
* Cited by examiner, † Cited by third partyPublication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7666149B2 (en) | 1997-12-04 | 2010-02-23 | Peliken Technologies, Inc. | Cassette of lancet cartridges for sampling blood |
US7780631B2 (en) | 1998-03-30 | 2010-08-24 | Pelikan Technologies, Inc. | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
US8439872B2 (en) | 1998-03-30 | 2013-05-14 | Sanofi-Aventis Deutschland Gmbh | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
US20010045355A1 (en) * | 2000-03-09 | 2001-11-29 | Clinical Analysis Corporation | Medical diagnostic system |
US7041206B2 (en) | 2000-03-09 | 2006-05-09 | Clinical Analysis Corporation | Medical diagnostic system |
US7208071B2 (en) | 2000-11-01 | 2007-04-24 | Rosemount Analytical Inc. | Amperometric sensor for low level dissolved oxygen with self-depleting sensor design |
US8641644B2 (en) | 2000-11-21 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US20060108218A1 (en) * | 2001-03-05 | 2006-05-25 | Clinical Analysis Corporation | Test cell for use with medical diagnostic instrument |
US20050067737A1 (en) * | 2001-03-23 | 2005-03-31 | Craig Rappin | Method of making sensor |
US6572745B2 (en) | 2001-03-23 | 2003-06-03 | Virotek, L.L.C. | Electrochemical sensor and method thereof |
US6576102B1 (en) | 2001-03-23 | 2003-06-10 | Virotek, L.L.C. | Electrochemical sensor and method thereof |
US6849216B2 (en) | 2001-03-23 | 2005-02-01 | Virotek, L.L.C. | Method of making sensor |
US7025774B2 (en) | 2001-06-12 | 2006-04-11 | Pelikan Technologies, Inc. | Tissue penetration device |
US7981055B2 (en) | 2001-06-12 | 2011-07-19 | Pelikan Technologies, Inc. | Tissue penetration device |
US8206317B2 (en) | 2001-06-12 | 2012-06-26 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9802007B2 (en) | 2001-06-12 | 2017-10-31 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US8123700B2 (en) | 2001-06-12 | 2012-02-28 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
US8622930B2 (en) | 2001-06-12 | 2014-01-07 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8016774B2 (en) | 2001-06-12 | 2011-09-13 | Pelikan Technologies, Inc. | Tissue penetration device |
US8211037B2 (en) | 2001-06-12 | 2012-07-03 | Pelikan Technologies, Inc. | Tissue penetration device |
US9694144B2 (en) | 2001-06-12 | 2017-07-04 | Sanofi-Aventis Deutschland Gmbh | Sampling module device and method |
US8216154B2 (en) | 2001-06-12 | 2012-07-10 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7041068B2 (en) | 2001-06-12 | 2006-05-09 | Pelikan Technologies, Inc. | Sampling module device and method |
US8282577B2 (en) | 2001-06-12 | 2012-10-09 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
US8641643B2 (en) | 2001-06-12 | 2014-02-04 | Sanofi-Aventis Deutschland Gmbh | Sampling module device and method |
US8679033B2 (en) | 2001-06-12 | 2014-03-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7988645B2 (en) | 2001-06-12 | 2011-08-02 | Pelikan Technologies, Inc. | Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties |
US8206319B2 (en) | 2001-06-12 | 2012-06-26 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9937298B2 (en) | 2001-06-12 | 2018-04-10 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8721671B2 (en) | 2001-06-12 | 2014-05-13 | Sanofi-Aventis Deutschland Gmbh | Electric lancet actuator |
US7909775B2 (en) | 2001-06-12 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
US7850622B2 (en) | 2001-06-12 | 2010-12-14 | Pelikan Technologies, Inc. | Tissue penetration device |
US8845550B2 (en) | 2001-06-12 | 2014-09-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8337421B2 (en) | 2001-06-12 | 2012-12-25 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7749174B2 (en) | 2001-06-12 | 2010-07-06 | Pelikan Technologies, Inc. | Method and apparatus for lancet launching device intergrated onto a blood-sampling cartridge |
US7699791B2 (en) | 2001-06-12 | 2010-04-20 | Pelikan Technologies, Inc. | Method and apparatus for improving success rate of blood yield from a fingerstick |
US7682318B2 (en) | 2001-06-12 | 2010-03-23 | Pelikan Technologies, Inc. | Blood sampling apparatus and method |
US8360991B2 (en) | 2001-06-12 | 2013-01-29 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7316700B2 (en) | 2001-06-12 | 2008-01-08 | Pelikan Technologies, Inc. | Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties |
US8382683B2 (en) | 2001-06-12 | 2013-02-26 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9427532B2 (en) | 2001-06-12 | 2016-08-30 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7344894B2 (en) | 2001-10-16 | 2008-03-18 | Agilent Technologies, Inc. | Thermal regulation of fluidic samples within a diagnostic cartridge |
US9560993B2 (en) | 2001-11-21 | 2017-02-07 | Sanofi-Aventis Deutschland Gmbh | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
US7291117B2 (en) | 2002-04-19 | 2007-11-06 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7909777B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
US7410468B2 (en) | 2002-04-19 | 2008-08-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7485128B2 (en) | 2002-04-19 | 2009-02-03 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7491178B2 (en) | 2002-04-19 | 2009-02-17 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8403864B2 (en) | 2002-04-19 | 2013-03-26 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7371247B2 (en) | 2002-04-19 | 2008-05-13 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
US7524293B2 (en) | 2002-04-19 | 2009-04-28 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8388551B2 (en) | 2002-04-19 | 2013-03-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for multi-use body fluid sampling device with sterility barrier release |
US9498160B2 (en) | 2002-04-19 | 2016-11-22 | Sanofi-Aventis Deutschland Gmbh | Method for penetrating tissue |
US7344507B2 (en) | 2002-04-19 | 2008-03-18 | Pelikan Technologies, Inc. | Method and apparatus for lancet actuation |
US7547287B2 (en) | 2002-04-19 | 2009-06-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7563232B2 (en) | 2002-04-19 | 2009-07-21 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9339612B2 (en) | 2002-04-19 | 2016-05-17 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7582099B2 (en) | 2002-04-19 | 2009-09-01 | Pelikan Technologies, Inc | Method and apparatus for penetrating tissue |
US9314194B2 (en) | 2002-04-19 | 2016-04-19 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US7648468B2 (en) | 2002-04-19 | 2010-01-19 | Pelikon Technologies, Inc. | Method and apparatus for penetrating tissue |
US9248267B2 (en) | 2002-04-19 | 2016-02-02 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
US7331931B2 (en) | 2002-04-19 | 2008-02-19 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7297151B2 (en) | 2002-04-19 | 2007-11-20 | Elikan Technologies, Inc. | Method and apparatus for body fluid sampling with improved sensing |
US7674232B2 (en) | 2002-04-19 | 2010-03-09 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7297122B2 (en) | 2002-04-19 | 2007-11-20 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8414503B2 (en) | 2002-04-19 | 2013-04-09 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US7708701B2 (en) | 2002-04-19 | 2010-05-04 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device |
US7713214B2 (en) | 2002-04-19 | 2010-05-11 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing |
US7717863B2 (en) | 2002-04-19 | 2010-05-18 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7731729B2 (en) | 2002-04-19 | 2010-06-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7258693B2 (en) | 2002-04-19 | 2007-08-21 | Pelikan Technologies, Inc. | Device and method for variable speed lancet |
US9226699B2 (en) | 2002-04-19 | 2016-01-05 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling module with a continuous compression tissue interface surface |
US9186468B2 (en) | 2002-04-19 | 2015-11-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US9089294B2 (en) | 2002-04-19 | 2015-07-28 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US7244265B2 (en) | 2002-04-19 | 2007-07-17 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US9072842B2 (en) | 2002-04-19 | 2015-07-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8382682B2 (en) | 2002-04-19 | 2013-02-26 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8905945B2 (en) | 2002-04-19 | 2014-12-09 | Dominique M. Freeman | Method and apparatus for penetrating tissue |
US7833171B2 (en) | 2002-04-19 | 2010-11-16 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7232451B2 (en) | 2002-04-19 | 2007-06-19 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7229458B2 (en) | 2002-04-19 | 2007-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7862520B2 (en) | 2002-04-19 | 2011-01-04 | Pelikan Technologies, Inc. | Body fluid sampling module with a continuous compression tissue interface surface |
US8845549B2 (en) | 2002-04-19 | 2014-09-30 | Sanofi-Aventis Deutschland Gmbh | Method for penetrating tissue |
US8808201B2 (en) | 2002-04-19 | 2014-08-19 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for penetrating tissue |
US7875047B2 (en) | 2002-04-19 | 2011-01-25 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with sterility barrier release |
US7874994B2 (en) | 2002-04-19 | 2011-01-25 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7892185B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7892183B2 (en) | 2002-04-19 | 2011-02-22 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US7901365B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7901362B2 (en) | 2002-04-19 | 2011-03-08 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8784335B2 (en) | 2002-04-19 | 2014-07-22 | Sanofi-Aventis Deutschland Gmbh | Body fluid sampling device with a capacitive sensor |
US7226461B2 (en) | 2002-04-19 | 2007-06-05 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with sterility barrier release |
US7374544B2 (en) | 2002-04-19 | 2008-05-20 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7909778B2 (en) | 2002-04-19 | 2011-03-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7914465B2 (en) | 2002-04-19 | 2011-03-29 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US7938787B2 (en) | 2002-04-19 | 2011-05-10 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8372016B2 (en) | 2002-04-19 | 2013-02-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling and analyte sensing |
US8690796B2 (en) | 2002-04-19 | 2014-04-08 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US7976476B2 (en) | 2002-04-19 | 2011-07-12 | Pelikan Technologies, Inc. | Device and method for variable speed lancet |
US7981056B2 (en) | 2002-04-19 | 2011-07-19 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US7198606B2 (en) | 2002-04-19 | 2007-04-03 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with analyte sensing |
US7988644B2 (en) | 2002-04-19 | 2011-08-02 | Pelikan Technologies, Inc. | Method and apparatus for a multi-use body fluid sampling device with sterility barrier release |
US9724021B2 (en) | 2002-04-19 | 2017-08-08 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8366637B2 (en) | 2002-04-19 | 2013-02-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US9795334B2 (en) | 2002-04-19 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8007446B2 (en) | 2002-04-19 | 2011-08-30 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8430828B2 (en) | 2002-04-19 | 2013-04-30 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a multi-use body fluid sampling device with sterility barrier release |
US8360992B2 (en) | 2002-04-19 | 2013-01-29 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8636673B2 (en) | 2002-04-19 | 2014-01-28 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8062231B2 (en) | 2002-04-19 | 2011-11-22 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8435190B2 (en) | 2002-04-19 | 2013-05-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8079960B2 (en) | 2002-04-19 | 2011-12-20 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US8267870B2 (en) | 2002-04-19 | 2012-09-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling with hybrid actuation |
US8157748B2 (en) | 2002-04-19 | 2012-04-17 | Pelikan Technologies, Inc. | Methods and apparatus for lancet actuation |
US8579831B2 (en) | 2002-04-19 | 2013-11-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8562545B2 (en) | 2002-04-19 | 2013-10-22 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US8197423B2 (en) | 2002-04-19 | 2012-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8197421B2 (en) | 2002-04-19 | 2012-06-12 | Pelikan Technologies, Inc. | Method and apparatus for penetrating tissue |
US8202231B2 (en) | 2002-04-19 | 2012-06-19 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8491500B2 (en) | 2002-04-19 | 2013-07-23 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US9839386B2 (en) | 2002-04-19 | 2017-12-12 | Sanofi-Aventis Deustschland Gmbh | Body fluid sampling device with capacitive sensor |
US8556829B2 (en) | 2002-04-19 | 2013-10-15 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8496601B2 (en) | 2002-04-19 | 2013-07-30 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
US9907502B2 (en) | 2002-04-19 | 2018-03-06 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8221334B2 (en) | 2002-04-19 | 2012-07-17 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US8235915B2 (en) | 2002-04-19 | 2012-08-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for penetrating tissue |
US20040094432A1 (en) * | 2002-04-25 | 2004-05-20 | Home Diagnostics, Inc. | Systems and methods for blood glucose sensing |
US6964871B2 (en) | 2002-04-25 | 2005-11-15 | Home Diagnostics, Inc. | Systems and methods for blood glucose sensing |
US6946299B2 (en) | 2002-04-25 | 2005-09-20 | Home Diagnostics, Inc. | Systems and methods for blood glucose sensing |
US20040182703A1 (en) * | 2002-04-25 | 2004-09-23 | Home Diagnostics, Inc. | Systems and methods for blood glucose sensing |
US20040104131A1 (en) * | 2002-04-25 | 2004-06-03 | Home Diagnostics, Inc. | Systems and methods for blood glucose sensing |
US6953693B2 (en) | 2002-04-25 | 2005-10-11 | Home Diagnostics, Inc. | Systems and methods for blood glucose sensing |
US20080112852A1 (en) * | 2002-04-25 | 2008-05-15 | Neel Gary T | Test Strips and System for Measuring Analyte Levels in a Fluid Sample |
US6743635B2 (en) | 2002-04-25 | 2004-06-01 | Home Diagnostics, Inc. | System and methods for blood glucose sensing |
US20050045476A1 (en) * | 2002-04-25 | 2005-03-03 | Home Diagnostics, Inc. | Systems and methods for blood glucose sensing |
US6959247B2 (en) | 2002-04-25 | 2005-10-25 | Home Diagnostics, Inc. | Systems and methods for blood glucose sensing |
US7160251B2 (en) | 2002-04-25 | 2007-01-09 | Home Diagnostics, Inc. | Systems and methods for blood glucose sensing |
US20070089987A1 (en) * | 2002-04-25 | 2007-04-26 | Home Diagnostics, Inc. | Systems and methods for blood glucose sensing |
US7819161B2 (en) | 2002-04-25 | 2010-10-26 | Nipro Diagnostics, Inc. | Systems and methods for blood glucose sensing |
US7534583B2 (en) | 2002-05-17 | 2009-05-19 | Oxford Biosencors Limited | Analyte measurement |
US20050164329A1 (en) * | 2002-05-17 | 2005-07-28 | Wallace-Davis Emma N.K. | Analyte measurement |
US20040079652A1 (en) * | 2002-08-27 | 2004-04-29 | Bayer Healthcare Llc | Methods of determining glucose concentration in whole blood samples |
US7670853B2 (en) | 2002-11-05 | 2010-03-02 | Abbott Diabetes Care Inc. | Assay device, system and method |
US20100190268A1 (en) * | 2002-11-05 | 2010-07-29 | Abbott Diabetes Care Inc. | Assay Device, System and Method |
US20060148096A1 (en) * | 2002-11-05 | 2006-07-06 | Jina Arvind N | Assay device, system and method |
US20040138588A1 (en) * | 2002-11-06 | 2004-07-15 | Saikley Charles R | Automatic biological analyte testing meter with integrated lancing device and methods of use |
US9060727B2 (en) | 2002-11-06 | 2015-06-23 | Abbott Diabetes Care Inc. | Automatic biological analyte testing meter with integrated lancing device and methods of use |
US8079961B2 (en) | 2002-11-06 | 2011-12-20 | Abbott Diabetes Care Inc. | Automatic biological analyte testing meter with integrated lancing device and methods of use |
US7572237B2 (en) | 2002-11-06 | 2009-08-11 | Abbott Diabetes Care Inc. | Automatic biological analyte testing meter with integrated lancing device and methods of use |
US7175897B2 (en) | 2002-12-17 | 2007-02-13 | Avery Dennison Corporation | Adhesive articles which contain at least one hydrophilic or hydrophobic layer, method for making and uses for same |
US20050147811A1 (en) * | 2002-12-17 | 2005-07-07 | Richard Baron | Adhesive articles which contain at least one hydrophilic or hydrophobic layer, method for making and uses for same |
US9034639B2 (en) | 2002-12-30 | 2015-05-19 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
US8574895B2 (en) | 2002-12-30 | 2013-11-05 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus using optical techniques to measure analyte levels |
US8262614B2 (en) | 2003-05-30 | 2012-09-11 | Pelikan Technologies, Inc. | Method and apparatus for fluid injection |
US7850621B2 (en) | 2003-06-06 | 2010-12-14 | Pelikan Technologies, Inc. | Method and apparatus for body fluid sampling and analyte sensing |
US8251921B2 (en) | 2003-06-06 | 2012-08-28 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for body fluid sampling and analyte sensing |
US9144401B2 (en) | 2003-06-11 | 2015-09-29 | Sanofi-Aventis Deutschland Gmbh | Low pain penetrating member |
US10034628B2 (en) | 2003-06-11 | 2018-07-31 | Sanofi-Aventis Deutschland Gmbh | Low pain penetrating member |
US7544277B2 (en) * | 2003-06-12 | 2009-06-09 | Bayer Healthcare, Llc | Electrochemical test sensors |
US20040253367A1 (en) * | 2003-06-12 | 2004-12-16 | Wogoman Frank W. | Sensor format and construction method for capillary-filled diagnostic sensors |
US7604592B2 (en) | 2003-06-13 | 2009-10-20 | Pelikan Technologies, Inc. | Method and apparatus for a point of care device |
US8945910B2 (en) | 2003-09-29 | 2015-02-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
US8282576B2 (en) | 2003-09-29 | 2012-10-09 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for an improved sample capture device |
US9351680B2 (en) | 2003-10-14 | 2016-05-31 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a variable user interface |
US8007656B2 (en) | 2003-10-24 | 2011-08-30 | Bayer Healthcare Llc | Enzymatic electrochemical biosensor |
US8691073B2 (en) | 2003-10-24 | 2014-04-08 | Bayer Healthcare Llc | Enzymatic electrochemical biosensor |
US9157111B2 (en) | 2003-10-24 | 2015-10-13 | Bayer Healthcare Llc | Method of making an electrochemical sensor strip |
US10982251B2 (en) | 2003-10-24 | 2021-04-20 | Ascensia Diabetes Care Holdings Ag | Method of making an electrochemical sensor strip |
US10457971B2 (en) | 2003-10-24 | 2019-10-29 | Ascensia Diabetes Care Holdings Ag | Method of making an electrochemical sensor strip |
US9803228B2 (en) | 2003-10-24 | 2017-10-31 | Ascensia Diabetes Care Holdings Ag | Electrochemical sensor strip |
US8668656B2 (en) | 2003-12-31 | 2014-03-11 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
US8296918B2 (en) | 2003-12-31 | 2012-10-30 | Sanofi-Aventis Deutschland Gmbh | Method of manufacturing a fluid sampling device with improved analyte detecting member configuration |
US9561000B2 (en) | 2003-12-31 | 2017-02-07 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for improving fluidic flow and sample capture |
US8696880B2 (en) | 2004-02-06 | 2014-04-15 | Bayer Healthcare Llc | Oxidizable species as an internal reference for biosensors and method of use |
US10067082B2 (en) | 2004-02-06 | 2018-09-04 | Ascensia Diabetes Care Holdings Ag | Biosensor for determining an analyte concentration |
US9410917B2 (en) | 2004-02-06 | 2016-08-09 | Ascensia Diabetes Care Holdings Ag | Method of using a biosensor |
US20050194265A1 (en) * | 2004-03-03 | 2005-09-08 | Apex Biotechnology Corp. | Method for reducing measuring bias in amperometric biosensors |
US8000762B2 (en) | 2004-03-06 | 2011-08-16 | Roche Diagnostics Operations, Inc. | Body fluid sampling device |
EP2705792A1 (en) | 2004-03-06 | 2014-03-12 | F. Hoffmann-La Roche AG | Body fluid sampling device |
EP2727531A2 (en) | 2004-03-06 | 2014-05-07 | Roche Diagnostics GmbH | Body fluid sampling device |
US8162854B2 (en) | 2004-03-06 | 2012-04-24 | Roche Diagnostics Operations, Inc. | Body fluid sampling device |
US8814808B2 (en) | 2004-03-06 | 2014-08-26 | Roche Diagnostics Operations, Inc. | Body fluid sampling device |
US8369918B2 (en) | 2004-03-06 | 2013-02-05 | Roche Diagnostics Operations, Inc. | Body fluid sampling device |
US9022952B2 (en) | 2004-03-06 | 2015-05-05 | Roche Diagnostics Operations, Inc. | Body fluid sampling device |
US7819822B2 (en) | 2004-03-06 | 2010-10-26 | Roche Diagnostics Operations, Inc. | Body fluid sampling device |
US8828203B2 (en) | 2004-05-20 | 2014-09-09 | Sanofi-Aventis Deutschland Gmbh | Printable hydrogels for biosensors |
US9261476B2 (en) | 2004-05-20 | 2016-02-16 | Sanofi Sa | Printable hydrogel for biosensors |
US9775553B2 (en) | 2004-06-03 | 2017-10-03 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US9820684B2 (en) | 2004-06-03 | 2017-11-21 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for a fluid sampling device |
US8652831B2 (en) | 2004-12-30 | 2014-02-18 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte measurement test time |
US7822454B1 (en) | 2005-01-03 | 2010-10-26 | Pelikan Technologies, Inc. | Fluid sampling device with improved analyte detecting member configuration |
US8877035B2 (en) | 2005-07-20 | 2014-11-04 | Bayer Healthcare Llc | Gated amperometry methods |
US8425757B2 (en) | 2005-07-20 | 2013-04-23 | Bayer Healthcare Llc | Gated amperometry |
US9110013B2 (en) | 2005-09-30 | 2015-08-18 | Bayer Healthcare Llc | Gated voltammetry methods |
US9835582B2 (en) | 2005-09-30 | 2017-12-05 | Ascensia Diabetes Care Holdings Ag | Devices using gated voltammetry methods |
US11435312B2 (en) | 2005-09-30 | 2022-09-06 | Ascensia Diabetes Care Holdings Ag | Devices using gated voltammetry methods |
US8404100B2 (en) | 2005-09-30 | 2013-03-26 | Bayer Healthcare Llc | Gated voltammetry |
US8647489B2 (en) | 2005-09-30 | 2014-02-11 | Bayer Healthcare Llc | Gated voltammetry devices |
US10670553B2 (en) | 2005-09-30 | 2020-06-02 | Ascensia Diabetes Care Holdings Ag | Devices using gated voltammetry methods |
US20090093735A1 (en) * | 2006-03-29 | 2009-04-09 | Stephan Korner | Test unit and test system for analyzing body fluids |
US20100012049A1 (en) * | 2006-04-12 | 2010-01-21 | Jms Co., Ltd | Cavitation heating system and method |
US8702965B2 (en) | 2006-09-22 | 2014-04-22 | Bayer Healthcare Llc | Biosensor methods having enhanced stability and hematocrit performance |
US8728299B2 (en) | 2006-09-22 | 2014-05-20 | Bayer Healthcare Llc | Biosensor performance increasing methods having enhanced stability and hematocrit performance |
US9459229B2 (en) | 2006-09-22 | 2016-10-04 | Ascenia Diabetes Care Holdings AG | Electrochemical test sensor |
US7862696B2 (en) | 2006-09-22 | 2011-01-04 | Bayer Healthcare Llc | Biosensor system having enhanced stability and hematocrit performance |
US9239312B2 (en) | 2006-09-22 | 2016-01-19 | Bayer Healthcare Llc | Methods of determining analyte concentration having enhanced stability and hematocrit performance |
US20110115504A1 (en) * | 2006-09-22 | 2011-05-19 | Bayer Healthcare Llc | Biosensor Methods Having Enhanced Stability and Hematocrit Performance |
US10261044B2 (en) | 2006-09-22 | 2019-04-16 | Ascensia Diabetes Care Holdings Ag | Electrochemical test sensor |
US8702624B2 (en) | 2006-09-29 | 2014-04-22 | Sanofi-Aventis Deutschland Gmbh | Analyte measurement device with a single shot actuator |
US9005527B2 (en) | 2006-10-24 | 2015-04-14 | Bayer Healthcare Llc | Transient decay amperometry biosensors |
US10190150B2 (en) | 2006-10-24 | 2019-01-29 | Ascensia Diabetes Care Holdings Ag | Determining analyte concentration from variant concentration distribution in measurable species |
US8026104B2 (en) | 2006-10-24 | 2011-09-27 | Bayer Healthcare Llc | Transient decay amperometry |
US8470604B2 (en) | 2006-10-24 | 2013-06-25 | Bayer Healthcare Llc | Transient decay amperometry |
US11091790B2 (en) | 2006-10-24 | 2021-08-17 | Ascensia Diabetes Care Holdings Ag | Determining analyte concentration from variant concentration distribution in measurable species |
US20090090623A1 (en) * | 2007-05-21 | 2009-04-09 | Delta Electronics, Inc. | Biosensor having integrated heating element and electrode with metallic catalyst |
US20090145775A1 (en) * | 2007-12-10 | 2009-06-11 | Bayer Healthcare Llc | Reagents and methods for detecting analytes |
US10696998B2 (en) | 2007-12-10 | 2020-06-30 | Ascensia Diabetes Care Holdings Ag | Reagents and methods for detecting analytes |
US11180790B2 (en) | 2007-12-10 | 2021-11-23 | Ascensia Diabetes Care Holdings Ag | Reagents and methods for detecting analytes |
US7766846B2 (en) | 2008-01-28 | 2010-08-03 | Roche Diagnostics Operations, Inc. | Rapid blood expression and sampling |
US9386944B2 (en) | 2008-04-11 | 2016-07-12 | Sanofi-Aventis Deutschland Gmbh | Method and apparatus for analyte detecting device |
US9375169B2 (en) | 2009-01-30 | 2016-06-28 | Sanofi-Aventis Deutschland Gmbh | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
EP2213231A1 (en) | 2009-01-30 | 2010-08-04 | Roche Diagnostics GmbH | Integrated body fluid meter and lancing device |
WO2011000527A2 (en) | 2009-06-29 | 2011-01-06 | Roche Diagnostics Gmbh | Modular diabetes management systems |
WO2011029567A1 (en) | 2009-09-09 | 2011-03-17 | Roche Diagnostics Gmbh | Storage containers for test elements |
EP2339337A2 (en) | 2009-12-23 | 2011-06-29 | Roche Diagnostics GmbH | System for reading analyte test elements and for other uses |
WO2011092010A1 (en) | 2010-01-29 | 2011-08-04 | Roche Diagnostics Gmbh | Electrode arrangements for biosensors |
US8965476B2 (en) | 2010-04-16 | 2015-02-24 | Sanofi-Aventis Deutschland Gmbh | Tissue penetration device |
US9795747B2 (en) | 2010-06-02 | 2017-10-24 | Sanofi-Aventis Deutschland Gmbh | Methods and apparatus for lancet actuation |
WO2012072251A1 (en) | 2010-12-02 | 2012-06-07 | Roche Diagnostics Gmbh | Test element ejection mechanism for a meter |
WO2012084194A1 (en) | 2010-12-22 | 2012-06-28 | Roche Diagnostics Gmbh | Systems and methods to compensate for sources of error during electrochemical testing |
EP3575790A2 (en) | 2011-11-28 | 2019-12-04 | Roche Diabetes Care GmbH | Insert component for storage container for biosensor test elements |
WO2013079177A1 (en) | 2011-11-28 | 2013-06-06 | Roche Diagnostics Gmbh | Insert component for storage container for biosensor test elements |
US9285323B2 (en) | 2012-08-08 | 2016-03-15 | Scanadu Incorporated | Quantifying color changes of chemical test pads induced concentrations of biological analytes under different lighting conditions |
US9311520B2 (en) | 2012-08-08 | 2016-04-12 | Scanadu Incorporated | Method and apparatus for performing and quantifying color changes induced by specific concentrations of biological analytes in an automatically calibrated environment |
US9528941B2 (en) | 2012-08-08 | 2016-12-27 | Scanadu Incorporated | Method and apparatus for determining analyte concentration by quantifying and interpreting color information captured in a continuous or periodic manner |
WO2014025415A3 (en) * | 2012-08-08 | 2015-06-18 | Scanadu Incorporated | Quantitative colormetric analysis of biological analytes in an automatically calibrated environment |
WO2014140177A2 (en) | 2013-03-15 | 2014-09-18 | Roche Diagnostics Gmbh | Methods of detecting high antioxidant levels during electrochemical measurements and failsafing an analyte concentration therefrom as well as devices, apparatuses and systems incorporting the same |
WO2014140172A1 (en) | 2013-03-15 | 2014-09-18 | Roche Diagnostics Gmbh | Methods of failsafing electrochemical measurements of an analyte as well as devices, apparatuses and systems incorporating the same |
WO2014140164A1 (en) | 2013-03-15 | 2014-09-18 | Roche Diagnostics Gmbh | Methods of using information from recovery pulses in electrochemical analyte measurements as well as devices, apparatuses and systems incorporating the same |
EP3385706A1 (en) | 2013-03-15 | 2018-10-10 | Roche Diabetes Care GmbH | Methods of scaling data used to construct biosensor algorithms as well as devices, apparatuses and systems incorporating the same |
US9863811B2 (en) | 2014-08-15 | 2018-01-09 | Scanadu Incorporated | Precision luxmeter methods for digital cameras to quantify colors in uncontrolled lighting environments |
US10451577B2 (en) | 2016-03-16 | 2019-10-22 | Arkray, Inc. | Substance measuring method and measuring apparatus using electrochemical biosensor |
US11230727B2 (en) | 2016-10-05 | 2022-01-25 | Roche Diabetes Care, Inc. | Detection reagents and electrode arrangements for multi-analyte diagnostic test elements, as well as methods of using the same |
US12024735B2 (en) | 2016-10-05 | 2024-07-02 | Roche Diabetes Care, Inc. | Detection reagents and electrode arrangements for multi-analyte diagnostic test elements, as well as methods of using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE36268E (en) | 1999-08-17 | Method and apparatus for amperometric diagnostic analysis |
US5108564A (en) | 1992-04-28 | Method and apparatus for amperometric diagnostic analysis |
US5128015A (en) | 1992-07-07 | Method and apparatus for amperometric diagnostic analysis |
US6153069A (en) | 2000-11-28 | Apparatus for amperometric Diagnostic analysis |
CA2224308C (en) | 2008-05-06 | Electrochemical biosensor test strip |
EP0636879B1 (en) | 2002-01-16 | Method for producing a biosensor |
US6855243B2 (en) | 2005-02-15 | Electrochemical test strip having a plurality of reaction chambers and methods for using the same |
EP0710358B1 (en) | 2001-05-30 | Potentiometric biosensor and the method of its use |
US6767441B1 (en) | 2004-07-27 | Biosensor with peroxidase enzyme |
Hilditch et al. | 1991 | Disposable electrochemical biosensors |
US6214612B1 (en) | 2001-04-10 | Cholesterol sensor containing electrodes, cholesterol dehydrogenase, nicotinamide adenine dinucleotide and oxidized electron mediator |
CA2415342A1 (en) | 2002-01-24 | Hemoglobin sensor |
AU644059B2 (en) | 1993-12-02 | Method and apparatus for amperometric diagnostic analysis |
RU2271536C2 (en) | 2006-03-10 | Method for measuring hemoglobin quantity |
CA1340516C (en) | 1999-04-27 | Method and apparatus for amperometric diagnostic analysis |
JP2543057B2 (en) | 1996-10-16 | Biosensor manufacturing method and biosensor electrode plate manufacturing method |
IL153582A (en) | 2008-03-20 | Hemoglobin sensor |
MXPA97010374A (en) | 1998-11-09 | Electroquim biosensor test strip |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
1999-02-11 | AS | Assignment |
Owner name: ROCHE DIAGNOSTICS CORPORATION, INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOEHRINGER MANNHEIM CORPORATION;REEL/FRAME:009730/0414 Effective date: 19981211 |
1999-10-18 | FPAY | Fee payment |
Year of fee payment: 8 |
2003-09-29 | FPAY | Fee payment |
Year of fee payment: 12 |
2004-09-02 | AS | Assignment |
Owner name: ROCHE DIAGNOSTICS OPERATIONS, INC.,INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCHE DIAGNOSTICS CORPORATION;REEL/FRAME:015215/0061 Effective date: 20040101 Owner name: ROCHE DIAGNOSTICS OPERATIONS, INC., INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCHE DIAGNOSTICS CORPORATION;REEL/FRAME:015215/0061 Effective date: 20040101 |
2004-09-07 | AS | Assignment |
Owner name: CORANGE INTERNATIONAL LIMITED (UNDIVIDED 1/2 INTER Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCHE DIAGNOSTICS OPERATIONS, INC.;REEL/FRAME:015756/0677 Effective date: 20040423 |
2009-05-05 | AS | Assignment |
Owner name: ROCHE OPERATIONS LTD.,BERMUDA Free format text: CHANGE OF NAME;ASSIGNOR:CORANGE INTERNATIONAL LIMITED;REEL/FRAME:022634/0371 Effective date: 20080715 Owner name: ROCHE OPERATIONS LTD., BERMUDA Free format text: CHANGE OF NAME;ASSIGNOR:CORANGE INTERNATIONAL LIMITED;REEL/FRAME:022634/0371 Effective date: 20080715 |
2010-02-05 | AS | Assignment |
Owner name: BOEHRINGER MANNHEIM CORPORATION,INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TALL OAK VENTURES;REEL/FRAME:023892/0975 Effective date: 19921013 |
2015-06-23 | AS | Assignment |
Owner name: ROCHE DIABETES CARE, INC., INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCHE DIAGNOSTICS OPERATIONS, INC.;REEL/FRAME:036008/0670 Effective date: 20150302 |
2024-04-24 | AS | Assignment |
Owner name: ROCHE DIABETES CARE, INC., INDIANA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCHE OPERATIONS LTD.;REEL/FRAME:067204/0694 Effective date: 20201215 |