USRE38670E1 - Apparatus for tissue treatment - Google Patents
- ️Tue Dec 14 2004
USRE38670E1 - Apparatus for tissue treatment - Google Patents
Apparatus for tissue treatment Download PDFInfo
-
Publication number
- USRE38670E1 USRE38670E1 US09/973,464 US97346401A USRE38670E US RE38670 E1 USRE38670 E1 US RE38670E1 US 97346401 A US97346401 A US 97346401A US RE38670 E USRE38670 E US RE38670E Authority
- US
- United States Prior art keywords
- tissue
- light
- handpiece
- light beam
- handpiece according Prior art date
- 1997-08-29 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000011282 treatment Methods 0.000 title claims abstract description 57
- 239000013307 optical fiber Substances 0.000 claims description 24
- 230000005540 biological transmission Effects 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 7
- 230000004044 response Effects 0.000 claims description 6
- 230000001427 coherent effect Effects 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- 238000003384 imaging method Methods 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims description 2
- 230000010259 detection of temperature stimulus Effects 0.000 claims 1
- 210000001519 tissue Anatomy 0.000 abstract description 132
- 210000002615 epidermis Anatomy 0.000 abstract description 6
- 210000003780 hair follicle Anatomy 0.000 abstract description 5
- 206010008570 Chloasma Diseases 0.000 abstract description 3
- 208000003351 Melanosis Diseases 0.000 abstract description 3
- 206010064127 Solar lentigo Diseases 0.000 abstract description 3
- 241000212749 Zesius chrysomallus Species 0.000 abstract description 3
- 206010052428 Wound Diseases 0.000 abstract description 2
- 208000027418 Wounds and injury Diseases 0.000 abstract description 2
- 210000004204 blood vessel Anatomy 0.000 abstract 1
- 230000001902 propagating effect Effects 0.000 abstract 1
- 239000000835 fiber Substances 0.000 description 22
- 210000004027 cell Anatomy 0.000 description 13
- 230000006870 function Effects 0.000 description 11
- 239000002537 cosmetic Substances 0.000 description 8
- 239000003365 glass fiber Substances 0.000 description 8
- 230000003247 decreasing effect Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000003287 optical effect Effects 0.000 description 7
- 238000005253 cladding Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 5
- 208000032544 Cicatrix Diseases 0.000 description 4
- 210000004209 hair Anatomy 0.000 description 4
- 231100000241 scar Toxicity 0.000 description 4
- 230000037387 scars Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 210000004927 skin cell Anatomy 0.000 description 3
- 210000003462 vein Anatomy 0.000 description 3
- 229910021607 Silver chloride Inorganic materials 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000000649 photocoagulation Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- ADZWSOLPGZMUMY-UHFFFAOYSA-M silver bromide Chemical compound [Ag]Br ADZWSOLPGZMUMY-UHFFFAOYSA-M 0.000 description 2
- -1 silver halide Chemical class 0.000 description 2
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 206010013786 Dry skin Diseases 0.000 description 1
- 208000012661 Dyskinesia Diseases 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 229910052689 Holmium Inorganic materials 0.000 description 1
- 208000015592 Involuntary movements Diseases 0.000 description 1
- 101100380295 Mus musculus Asah1 gene Proteins 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000037336 dry skin Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000001815 facial effect Effects 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- KJZYNXUDTRRSPN-UHFFFAOYSA-N holmium atom Chemical compound [Ho] KJZYNXUDTRRSPN-UHFFFAOYSA-N 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000036244 malformation Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000017311 musculoskeletal movement, spinal reflex action Effects 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 210000000707 wrist Anatomy 0.000 description 1
- PEUPCBAALXHYHP-UHFFFAOYSA-L zinc;selenite Chemical compound [Zn+2].[O-][Se]([O-])=O PEUPCBAALXHYHP-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/0616—Skin treatment other than tanning
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/203—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
- A61B2017/00057—Light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00743—Type of operation; Specification of treatment sites
- A61B2017/00747—Dermatology
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00452—Skin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00452—Skin
- A61B2018/00458—Deeper parts of the skin, e.g. treatment of vascular disorders or port wine stains
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00452—Skin
- A61B2018/0047—Upper parts of the skin, e.g. skin peeling or treatment of wrinkles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00452—Skin
- A61B2018/00476—Hair follicles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00904—Automatic detection of target tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B2018/2015—Miscellaneous features
- A61B2018/2025—Miscellaneous features with a pilot laser
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B2018/2035—Beam shaping or redirecting; Optical components therefor
- A61B2018/20351—Scanning mechanisms
- A61B2018/20359—Scanning mechanisms by movable mirrors, e.g. galvanometric
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/373—Surgical systems with images on a monitor during operation using light, e.g. by using optical scanners
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N2005/0635—Radiation therapy using light characterised by the body area to be irradiated
- A61N2005/0643—Applicators, probes irradiating specific body areas in close proximity
- A61N2005/0644—Handheld applicators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/06—Radiation therapy using light
- A61N5/0613—Apparatus adapted for a specific treatment
- A61N5/0616—Skin treatment other than tanning
- A61N5/0617—Hair treatment
Definitions
- the present invention relates to an apparatus with a handpiece for tissue treatment, such as cosmetic tissue resurfacing.
- a laser ablates a thin epidermal layer of illuminated derma of a patient.
- a new epidermal layer is formed on the ablated surface having the look of the derma of a young person, i.e. the new epidermal layer is formed without previously existing scars, wrinkles, etc.
- Lasers that operate at a wavelength that is absorbed in water are used for cosmetic tissue resurfacing.
- the laser power density (W/mm 2 ) at illuminated cells is sufficient, cellular water is superheated causing small explosions that disrupt heated cells.
- Residual heat may cause non-ablated cells to char and become necrotic, whereby new scars may be formed and thus, it is desirable to apply laser power for a short time, to minimize transmission of conducted heat to underlying and surrounding tissue.
- the amount of energy must be sufficient for the dermal cells to vaporize and, simultaneously, the amount of residual energy heating non-ablated cells must be so low that non-ablated cells will not be damaged.
- Apparatuses for cosmetic tissue resurfacing comprising a CO 2 laser emitting a laser beam and a laser articulating arm with mirrors for reflection of the laser beam, so that the laser beam is transmitted inside the articulating arm.
- the arm has a number of joints, so that the arm can be moved around by an operator.
- a handpiece to be held by the operator is connected to the arm.
- the laser beam is moved or scanned across a target surface by movable mirrors connected to motors and mounted in the arm.
- the scan pattern of the laser beam is an archimedes spiral.
- the laser spot formed by the laser beam on the target surface moves along the spiral at a constant angular speed.
- the apparatus typically has a large mass and a large inertia (typically also due to counter-balancing masses) which makes the operation and movement of the arm elaborate and heavy.
- tissue to be treated Apart from being able to accurately control the amount of light energy transmitted towards tissue to be treated, it is also desirable to be able to automatically control whether or not light is transmitted towards tissue. If, for example, a laser is pointed at healthy tissue, it is desirable that it is detected that the tissue is healthy and that transmission of a laser beam be inhibited whereby damage to healthy tissue is prevented.
- an apparatus for tissue treatment comprising a light emitter for emission of a light beam and an optical fiber for transmission of the light beam.
- the fiber has a beam-inlet end that is aligned with the emitted light beam so that the light beam is coupled into the optical fiber and a beam-outlet end for emission of the transmitted light beam.
- the apparatus comprises a handpiece coupled to the optical fiber at the beam-outlet end and comprising an output for emission of the first light beam towards a target area of tissue to be treated, detector means for detecting the type of tissue at the target area, and first light beam control means for controlling parameters of the first light beam emitted towards the target area in response to the detected type of tissue whereby various types of tissue can automatically be treated differently.
- Light sources such as lasers, generating light at wavelengths with a high absorption in water, preferably wavelengths larger than 190 nm, such as wavelengths in the range from 190 nm to 1900 nm, preferably from 700 nm to 900 nm, and even more preferred approximately 810 nm, or, preferably wavelengths larger than 1900 nm, such as wavelengths in the range from 1900 nm to 3000 nm, preferably from 1900 nm to 2100 nm, and even more preferred approximately 1940 nm, or, from 2800 nm to 3000 nm, and even more preferred approximately 2930 nm, or wavelengths equal to or greater than 4500 mm, such as wavelengths in the range from 4500 nm to 11000 nm, preferably from 4500 nm to 5500
- the apparatus according to the invention may be used for ablating a thin epidermal layer of the derma of a patient, removing marks on the tissue, such as marks from chloasma, liver spots, red spots, tattoos, blood wessels just below the surface, etc, as well as warts, wounds, hair follicles, etc, and hereafter the terms tissue and resurfacing will include these marks and treatments thereof.
- the light source utilized in the present invention is a laser, but other light sources, such as light emitting diodes and halogen bulbs, may be utilized.
- the laser may be any laser capable of emitting light with sufficient power for illuminated cells to vaporize, such as CO 2 lasers, YAG lasers, such as Erbium YAG lasers, Holmium YAG lasers, etc., semi conductor lasers, pulsed lasers, gas lasers, solid state lasers, Hg lasers, excimer lasers, etc.
- a power density greater than about 50 W/mm 2 is adequate for vaporizing cells with a minimum of damage to the surrounding tissue.
- the wavelength of the light is preferred to be approx. 800 nm. At this wavelength the absorbtion of the light in the hair follicles is lower than at higher wavelengths, and the power density must therefore be higher than 180 W/mm 2 , preferable higher than 300 W/mm 2 . Generally, the power density is adapted to the wavelength and the tissue to be treated.
- the optical fiber may be any fiber, such as a polycrystalline silver halide fiber, etc, that is suitable for transmission of light emitted from the light emitter and that is made of a material that allows repeated bending of the fiber, so that an operator can freely manipulate the handpiece in order to direct the light beam toward various areas of a patient.
- a handpiece is a single unit for conveniently holding in one hand by an operator of the handpiece.
- the handpiece ergonomically so that a comfortable hand grip is provided for the operator of the apparatus. For example, it is preferred to direct the light beam towards a target area at a substantially right angle to the area.
- the ergonomic form of the handpiece allows the operator to point the light beam at a substantially right angle to the target surface without having to bend the wrist in an uncomfortable way.
- tissue towards which the hand piece is directed (the hand piece is said to be directed towards a specific area if that area is illuminated when the light beam emitted by the handpiece is turned on) is treated and to what extent it may be treated. For example, if the handpiece is directed towards healthy tissue, turn on of the light beam should be inhibited.
- Tissue may be classified into specific tissue types according to predetermined values of various parameters, such as color, temperature, texture, elasticity, size, shape, etc.
- the detector means may comprise light detectors for detection of intensity of light emitted from tissue at the target area, the target area being the area the handpiece is currently directed at.
- the light detector is preferably a semiconductor light detector, such as a photodiode, etc.
- the handpiece may comprise two light sources emitting light of different wavelengths, preferably two light emitting diodes, one for emission of light in the wavelength range where the light is considered red and the other for emission of light in the wavelength range where the light is considered green.
- the light sources may alternatively emit light in the ultra violet or infrared wavelength range. Light from the light sources is transmitted towards the target area and is reflected by tissue at the target area. The reflected light is detected by the detector means and the intensity of reflected light in the two wavelength ranges in question characterizes the type of tissue that is illuminated.
- the first light beam control means comprises outputs for controlling various parameters of light emitted by the light emitter, such as wavelength, output power, duty cycle, etc. Based on tissue type parameter values as measured by the detector means, the first light beam control means adjusts parameters of the emitted light correspondingly. For example, when two light sources are utilized for detection of tissue type as previously described, predetermined reflected light intensity value ranges for the two wavelength ranges may be stored in a memory of the first light beam control means. During treatment, measured values of reflected light intensity are compared with the stored predetermined ranges and when measured values are within the stored ranges treatment is enabled and otherwise it is disabled.
- the wavelength and/or the power of treating light emitted by the light emitter may be adjusted according to the measured values.
- a plurality of predetermined ranges of reflected light intensity may be stored in the memory and during treatment the measured values may be compared to the stored ranges and the value of the wavelength and/or the power of treating light may be set according to relations between measured values and stored ranges.
- the first light beam control means may calculate and control the wavelength and/or the power of treating light as a predetermined function of measured values of reflected light.
- the output power of the first light beam may be adjusted by adjustment of the continuous output power of the light emitter, by adjustment of the duty cycle of the light emitter, etc.
- the handpiece may comprise an infrared detector, such as an infrared photodetector, for detection of intensity of infrared light emitted from tissue at the target surface, e.g. for determination of the temperature of the tissue.
- temperature may be utilized for characterization of tissue types.
- tissue temperature may be utilized for monitoring of treatment progress and quality. The temperature of treated tissue increases during treatment and measurement of tissue temperature may be utilized for verification of the effect of the treatment. For example, when a specific tissue temperature is reached within a specific area, treatment of that tissue may be terminated, e.g. further treatment may be inhibited, as sufficient treatment has already been accomplished. Further, if a certain temperature has not been reached during treatment, output power of the light emitter may be increased to increase efficiency of the treatment.
- the handpiece may comprise means for automatically controlling the distance from the handpiece of the focus point in such a way that the light beam is automatically focused at the target area during treatment.
- the detector means may comprise a detector array and array optics for forming an image of the target area on the array. Further, the detector means may comprise image processing means for processing the output signals from the detector array. Preferably, the imaging means is adapted to calculate the size of a spot of light illuminated by the first light beam, or another light source of the apparatus, and imaged onto the detector array.
- the handpiece may further comprise output optics for focusing the first light beam onto the surface of tissue to be treated and movably positioned at the output of the handpiece for adjustment of the distance between the handpiece and the focus point, and focus control means for adjusting the position of the output optics in repsonse to the value of the calculated spot size.
- two crossing visible light beams are emitted from the handpiece, the cross point of the beams indicating the focus point of the first beam.
- the imaging means are adapted to detect the number of spots imaged onto the detector array, and the focus control means are adapted to adjust the position of the output optics in response to the number of spots and, preferably, the distance between them (if more than one).
- the handpiece may comprise deflection means that includes any optical component or components suitable for deflecting light of the wavelength in question, such as mirrors, prisms, grids, diffractive optical elements, such as holograms, etc, etc.
- deflection means that includes any optical component or components suitable for deflecting light of the wavelength in question, such as mirrors, prisms, grids, diffractive optical elements, such as holograms, etc, etc.
- the deflecting means are preferably movably mounted for displacement of the deflecting means as a function of time, so that the light beam emitted from the handpiece can be scanned across a surface along a desired curve, while the handpiece is kept in a fixed position.
- the deflecting means are rotatably mounted, and the actual deflection of the light beam is determined by the current angular position of the deflecting means. It is preferred that the surface is scanned along a substantially straight line.
- actuators may be utilized to control positions of the deflecting and focusing means, such as piezo electric crystals, the displacement of which is controlled by applying a specific electric voltage to their electrodes, electro motors generating linear or rotational displacements, galvanometers, magnetically activated or controlled actuators, pneumatic actuators, hydraulic actuators, etc.
- the positions of the deflecting means may be controlled by controlling means adapted to control the deflection means to deflect the light beam to traverse a target surface along a desired curve.
- a handpiece having two mirrors that are rotatably mounted in the path of the light beam in the handpiece.
- the rotational axis of the mirrors may be substantially perpendicular to each other in order to obtain two dimensional deflection of the light beam.
- the movable deflecting means may comprise one mirror that is rotatable around two axes that may be substantially perpendicular to each other.
- the mirrors may be connected to electro motors for angular positioning of the mirrors, e.g. each mirror may be directly connected to a corresponding shaft of a motor, whereby each motor is used for angular positioning of the corresponding mirror.
- one motor may be a linear motor, such as a linear step motor, generating linear displacements.
- the shaft of this motor may be connected to the mirror at a first edge of the mirror, while a second and opposite edge of the mirror is rotatably connected to the handpiece. By pushing or pulling the first edge by the linear motor, the mirror is rotated about its rotational axis.
- the other motor preferably a galvanometer, may be connected to the other mirror in the conventional way described above, whereby the two mirrors may be rotated around substantially perpendicular axes.
- the galvanometer preferably generates the line scan as the galvanometer can move the mirror at a high speed, and the linear motor preferably generates the displacement of the light beam to the next line to be scanned.
- the movable deflection means In order to control positioning of curves on the target area this accurately, it is preferred to position the movable deflection means extremely accurately in the handpiece. In the preferred embodiment of the invention, this is accomplished by utilisation of printed circuit technology providing high accuracies of hole positioning of 0.05 mm.
- the mirrors are rotated around shafts that are mounted in printed circuit boards providing the required positioning accuracy. Further, the motors rotating the mirrors are also mounted on the printed circuit boards providing electrical connections to the motors and the mechanical support and positioning needed.
- each line is preferred to scan in the same direction ensuring uniform heating of cells across the scan area. Further, it is preferred to turn off the light beam, e.g. by switching off the light emitter, by inserting a light obstructing member in the light path of the beam, etc, while the light beam is moved from the end of a line having been scanned to the start of the next line to be scanned, to avoid over illuminating areas of the two lines to be scanned.
- the light beam may be moved at a speed significantly larger than the scan speed, during movement from the end of a line to the start of the next line.
- the intensity within the beam of a light beam as generated by the light emitter varies as a normal function of the distance from the centre of the beam.
- the optical fiber may be designed or selected to be dispersive in such a way that the intensity function of the light beam emitted from the fiber as a function of the distance to the centre of the beam is substantially rectangular, i.e. the intensity of the beam leaving the fiber decays more slowly towards the edge of the beam than the intensity of a beam as generated by the light emitter whereby heat is more uniformly generated in cells across a scanned line of tissue.
- scan areas of any shape may be generated.
- the shape of the scan area may for example be polygonal, such as rectangular, quadratic, triangular, etc., or circular, elliptic, etc.
- the detector means may be utilized for detection of various tissue parameters during scanning of the first light beam across a tissue area so that treatment and tissue parameter determination are performed substantially simultaneously including adjustment of light beam parameters according to detected tissue parameter values.
- the light beam control means further comprises switching means for preventing emission of the first light beam and being controlling by the first light beam control means so that emission of the first light beam is prevented during a first scan of the light beam from a predetermined first position to a predetermined second position along a predetermined path.
- the apparatus may further comprise tissue type storage means for storage of coherent data sets of signal values provided by the detector means at predetermined positions along the predetermined path of the light beam and the corresponding positions of the deflection means thereby mapping tissue parameters as a function of relative position within the target area of the tissue in the storage.
- the first light beam control means may further be adapted to control parameters of the first light beam during a second movement of the light beam along the above-mentioned predetermined path in accordance with the coherent data sets stored.
- the surface tissue area with hair to be removed is scanned by the handpiece.
- the hair follicles are detected by color determinations as described above and their positions along the scanned path of the light beam are stored in the tissue type storage means.
- the treating light beam is turned on and off according to the content of the tissue type storage means so that solely the hair follicles detected during the first scan are treated preventing the surrounding tissue from being damaged.
- Parameter values such as color, temperature, etc, stored in the tissue type storage may be displayed on a display unit, such as a CRT, LCD, etc, e.g. as graphical three dimensional plots showing surface profiles of the actual parameters of scanned areas. Further, the parameter values may be processed, e.g. providing averages, weighted averages, correlation, cross-correlation, etc, and the value may be displayed, e.g. on the display unit or, on a separate display on the handpiece.
- a display unit such as a CRT, LCD, etc
- the parameter values may be processed, e.g. providing averages, weighted averages, correlation, cross-correlation, etc, and the value may be displayed, e.g. on the display unit or, on a separate display on the handpiece.
- the output power of the first and treating light beam may be adjusted by adjusting the duty cycle of the beam, i.e. by pulse width modulating the light emitter.
- a scanned line is broken into a plurality of line segments.
- a fade-in scan area may be created by starting the line with short pulses of light between longer periods of no light. As the line is traversed, the duration of light pulses is gradually increased and the periods with no light is gradually decreased. Finally, at the end of the fade-in area the light is not pulsed, and the scan line may be completed with maximum light intensity.
- a fade-out scan area may be created by starting a scan line with maximum light intensity, and at the start of the fade-out area, the light emitter is pulse width modulated to transmit shorter and shorter pulses of light between longer and longer periods of no light. Finally, at the end of the fade-out area, the light is not pulsed, and the scan line is completed with no light intensity.
- Fade-in or fade-out scan patterns may also be created by gradually increasing or decreasing, respectively, the output power of the light emitter, or by decreasing or increasing, respectively, the scan speed of the light beam, i.e. the speed at which the spot illuminated by the first light beam moves on a surface to be treated.
- Various shapes such as polygonal, such as rectangular, quadratic, triangular, etc, circular, elliptic, etc, of the area including fading area to be scanned by the first light beam may be selected by the user.
- treatment of tissue may be automatically controlled as described above, e.g. a rectangular shape of an area to be treated may be selected, however, if the handpiece is directed at healthy tissue the area will be scanned to determine tissue type and no treatment will be performed.
- a scan line with fade-in and/or fade-out effects creates a smooth transition from a non-treated area of the tissue to a treated area of the tissue. This is advantageous when using the apparatus of the present invention for treatment of small marks on the tissue such as marks from chloasma, liver spots, red spots, tattos, blood wessels etc.
- the first light beam control means may be adapted to control the intensity of the light beam and/or the velocity of the scanning light beam along a desired curve as a function of the position of the light beam inside the area of the target tissue area.
- the first light beam control means may be adapted to provide a substantially constant intensity of the light beam and a substantially constant scan velocity of the first light beam.
- the fade-in and fade-out effect may be provided either by scanning the light beam with a velocity larger than the substantially constant scan velocity within the treatment area of tissue or, by decreasing the output power of the first light beam.
- the first light beam control means may be adapted to control the power-per-area of the light beam when scanned along a desired curve on a target tissue area to be treated. For example, when ablating tissue it is presently preferred to maintain the power-per-area of the first light beam inside a first part of the target tissue area at a substantially constant level.
- the power-per-area of the light beam when outside a first part of the target tissue area may depend on the distance to the first part of the target tissue area, and it is preferred that the power-per-area of the light beam increases with decreasing distance to the first part of the target tissue area.
- a light source generating visible light may be provided for generating a visible light beam that is used to assist the operator by indicating areas towards which the invisible and treating light is directed during scanning.
- the input connector of the handpiece may be further adapted to connect a second beam-outlet end of a second optical fiber for transmission of a visible light beam to the handpiece.
- the second optical fiber is preferably properly aligned in the connector in relation to the desired path of the visible light.
- the handpiece may further comprise second movable deflecting means for variable deflection of the visible light beam in such a way that the treating light beam and the visible light beams emitted from the output of the handpiece illuminate substantially the same area of a target surface.
- two crossing visible light beams may be emitted from the handpiece, the cross point of the beams indicating the focus point of the first beam.
- common moving deflecting means are utilised for deflection of all light beams emitted from the handpiece.
- Zinc selenite lenses may be utilized, as they are transparent for visible light as well as for infra-red light.
- the visible light beam may, e.g. between scans of the treating light beam, be scanned around at least a part of the circumference of the scan area thereby indicating the size, shape and position of the scan area to be scanned.
- the visible light beam may, e.g. between scans of the ablating light beam, be scanned along one edge of the polygon.
- the temperature of the target tissue area may be measured immediately after treatment.
- the surface temperature is measured by measuring the infrared irradiation from the surface with the detector means of the handpiece. This temperature provide an objective measure of the quality of the treatment. A high temperature in the surface skin indicates that the energy has been absorbed in the surface tissue, whereas a low surface temperature indicates that the energy has been absorbed in the depths of the tissue. It is also possible to provide an interface to a PC (or any other calculating unit) for further calculations on the temperature data.
- the handpiece may comprise a distance member connected to the handpiece at the output with fastening means.
- the fastening means comprises a magnet so that a used distance member can easily be disconnected from the handpiece, e.g. for autoclaving, and so that a new member can easily be connected to the handpiece.
- interfacing means for selection of parameters of the cosmetic resurfacing apparatus.
- the interfacing means may comprise push buttons, selectors, rotary switches, etc.
- the interfacing means may also comprise a display for showing the mean temperature of the surface immediately after the treatment.
- the parameters selectable from the handpiece may comprise the scan velocity, the ablating and the visible light beam intensities, the size and shape of the scan area, and fade-out effects.
- FIG. 1 shows a cross section of a cable for transmission of light from a laser source to the handpiece according to the invention
- FIG. 2 shows a cross section of a handpiece according to the present invention
- FIG. 3 shows the lens system of the handpiece shown in FIG. 2 in treatment mode in greater detail
- FIG. 4 shows the dashed area of FIG. 2, the detector means in more detail
- FIG. 5 shows detector means of the handpiece shown in FIG. 2 in sensing mode in greater detail.
- FIG. 6 shows a circular and a quadratic scan area
- FIG. 7 shows a circular and a quadratic scan area with a single-sided fade-out scan pattern
- FIG. 8 shows a circular and a quadratic scan area with a four-sided fade-out scan pattern
- FIG. 9 shows a cross section of a standard laser beam and an example of a cross section of a laser beam more suitable for use in the handpiece of the present invention.
- FIG. 1 shows a cross section of a cable 1 for transmission of light from a laser source to the handpiece of an apparatus for tissue treatment.
- An optical fiber 2 is positioned at the centre of the cable 1 .
- the optical fiber 2 is made of silver chloride and silver bromide (silver halide), which is especially designed for light at a wavelength of app. 10.6 ⁇ m.
- the optical fiber 2 is covered by a cladding 3 , also made of silver bromide and silver chloride but mixed in another ratio, which prevents the light travelling in the fiber 2 to escape from the fiber 2 .
- the diameter of the fiber 2 is app. 500 ⁇ m, while the cladding 3 is app. 50 ⁇ m thick.
- the fiber 2 and the cladding 3 are protected against influence from the environment by a teflon tube 4 .
- the fiber 2 and the cladding 3 are also protected against mechanical stress by a plastic tube 5 also protecting the teflon tube 4 .
- the fiber 2 , the cladding 3 , the teflon tube 4 and the plastic tube 5 can be considered as an optical fiber unit 10 .
- Included in the cable 1 are two glass fibers 6 , 7 and a wire 8 .
- the two glass fibers 6 , 7 are specially designed optical fibres designed with a small NA (numerical aperture) designed for visible light at a wavelength of app. 650 nm.
- the wire 8 is provided for protecting the cable 1 against tensions and overloads.
- the optical fiber unit 10 , the two glass fibers 6 , 7 , and the wire 8 are surrounded by a spiral tube 9 made of stainless steel.
- the optical fiber unit 10 , the two glass fibers 6 , 7 , and the wire 8 are not fixed in position relative to each other inside the spiral tube 9 , but can move in relative to each other inside the spiral tube 9 , but can move in relation to each other. This makes the cable 1 very flexible when it is moved, and it provides at the same time a good protection of the fragile fibers 2 , 6 , 7 .
- compressed air is blown. The air is blown out in front of the optics, blowing away any ablated material that otherwise could deposit on the optics.
- the light beam from a CO 2 laser is coupled into the optical fiber 2 at one end of the fiber 2 positioned at one end of the cable 1 .
- light beams from two diode lasers are coupled into the glass fibers 6 , 7 , respectively.
- the light beams are transmitted in the respective fibers from the inlet end to the outlet end, which is connected to a handpiece.
- FIG. 2 shows a handpiece 38 of an apparatus for tissue treatment according to the present invention.
- the cable 1 (not shown in FIG. 2) is connected to the handpiece 38 at a fiber inlet part 20 , and guided through a tube 22 which is held in place in the handpiece 38 by the holding and heat distributing means 31 .
- the fiber inlet part 20 also serves as a cable protecting sleeve.
- the light beams transmitted in the optical fiber 2 and the two glass fibers 6 , 7 are radiated from the outlet ends of the fibers 2 , 6 , 7 through a lens system 39 (see FIG. 3) to an object, e.g. a human tissue surface.
- the outlet ends of the fibers 2 , 6 , 7 are positioned at a distance appropriate for the focusing lens 21 to focus the light from the fibers 2 , 6 , 7 on the object.
- the lens system 39 is shown in greater detail.
- the light beams radiated from the outlet end of the fibers 2 , 6 , 7 are focused by the first focusing lens 21 and collimated by the collimating lens 23 .
- the collimated light beam is transmitted from the collimating lens 23 via the deflecting means comprising a first mirror 24 and a second mirror 25 to a second focusing lens 30 which focuses the light beams on the target 40 , which e.g. can be the facial tissue of a human being.
- the first mirror 24 is mounted on an indicator 45 of a galvanometer 26 positioned in the handpiece 38 of the tissue treatment apparatus according to the invention.
- an electric current is sent through the coil of the galvanometer 26 , the magnetic field generated by the current will make the indicator 45 rotate around the longitudinal axis of the indicator 45 .
- the first mirror 24 will thereby by rotated, and the light beams will be deflected at an angle twice the angle rotated by the mirror 24 .
- the second mirror 25 is mounted on an arm 46 actuated by a linear actuator 29 .
- the linear actuator 29 activates the actuator arm 47
- the arm 46 and thereby the second mirror 25
- a spring 28 is connected to one end of the arm 46 and to a non-moving part of the linear actuator 29 in the other end so as to neutralize wobble that may be present in the axle 48 .
- the second mirror 25 is rotated around the axle 48
- the light incident on the second mirror 25 is deflected in an angle twice the angle rotated by the mirror 25 .
- the linear actuator 29 may be controlled by applying a sequence of pulses across the terminals (not shown) of the actuator 29 .
- the direction of light beams sent through the focusing lens 30 towards the target 40 can be controlled. It is thus possible to create different kinds of scan patterns of the light beam, such as rectangular or circular scan patterns.
- a rotating arm 100 with a mirror 101 is by a solenoid 109 positioned in the beam path of the first laser light beam when the optical system is in a sensing mode as explained further below.
- the detector means comprises a detector 110 and two light sources 102 , 103 mounted in a holder for optical elements.
- the detector means further comprises a movable mirror 101 .
- the movable mirror 101 In sensing mode, the movable mirror 101 is positioned so as to transmit the sensing light beams emitted from the light sources 102 , 103 mounted in the optical holder 107 via the fixed mirror 104 to the first mirror 24 , the second mirror 25 , and the second focusing lens 30 which focuses the light beams on the target 40 .
- the reflected sensing beams reflected from the target 40 are directed back to the detector means via the focusing lens 30 and the movable mirrors 24 , 25 . From the mirror 101 at the rotating arm 100 the reflected sensing beams are directed to the fixed mirror 104 , wherefrom they are directed towards the detector 110 for intensity detection.
- the detector means are schematically shown in greater detail, where the fixed mirror 104 , however, is omitted to facilitate understanding of the operation.
- the light sources 102 , 103 are laser diodes which emit light at different wavelengths.
- the emitted sensing light beams are directed one at the time through collimating lenses 113 to collimate the beams and to beamsplitters 111 reflecting the sensing light beams towards the movable mirror 101 wherefrom the light is directed to the target 40 via mirror 24 , mirror 25 and focusing lens 30 .
- the sensing light beams pass the same optical system as the light beams emitted from the outlet end of the fibers, they may be scanned across the target 40 and the position of the sensing beams will be known at any time.
- the beams reflected from the target 40 follow the same path back to the beamsplitters 111 .
- the polarisation of the light beams is changed when the light is reflected from the target 40 , and since the transmittance of the beamsplitters 111 are dependent on the polarisation of the incident light beam the reflected sensing light beams reflected from the target 40 are transmitted through the beamsplitters, without reflection.
- the detector 110 Before the beam reaches the detector 110 , it passes a polarisation filter 114 and a blockout filter 115 to increase signal to noise ratio, and a third focusing lens 112 to focus the beam at the detector.
- a red and a green light beam from respectively light sources 102 , 103 , respectively are alternately directed towards the target 40 .
- the reflection of the red and the green light beams, respectively, from the target 40 are directed to the detector by the deflection means and are detected at the detector 110 .
- the differences in the reflected light from light sources 102 , 103 are calculated and the type of tissue, i.e. the color of the tissue, to be treated is thereby determined.
- the sensing beams may be visible light beams of any color, or it may be ultra violet light beams, or it may be infrared light beams.
- the optics and electronics of the handpiece 38 are protected by a plastic housing 36 provided in an ergonomical shape.
- An air tube 34 may be positioned on the handpiece 38 for providing suction of air from in front of the optics of the handpiece 38 in order to absorb any material ablated from the tissue of the object being treated with the apparatus of the present invention.
- the presently preferred embodiment of the handpiece 38 further comprises a magnetic distance member 33 connected to the handpiece 38 with a magnet 32 .
- the distance member 33 is magnetic, it is easy to connect to and disconnect from the handpiece 38 .
- the detector detects the light and calculates the type of tissue to be treated, but it is also possible to include an infrared light detector for determination of the temperature of the target.
- a mirror 101 is mounted on the rotating arm 100 , whereby simultaneously sensing and treatment is not possible.
- a beamsplitter By replacing the mirror with a beamsplitter, it is possible to simultaneously treat and sense.
- the present handpiece has three functions each with 3 different modes.
- the operator may choose between high, medium, or low scan speed modes.
- high, medium, or low scan speed modes When scanning on different types of tissue, it is preferred to adjust the scan speed of the light beam in stead of adjusting the output power of the light beam.
- tissue with a low absorption of light such as dry skin
- the scan speed mode should be set to low.
- the scan speed mode should be set to medium, and when scanning on tissue with a high absorbtion of light, the high scan speed mode should be selected.
- the operator may chose between three different modes defining three different scan patterns, which patterns are a line, a circular pattern and a quadratic pattern.
- the third function enables the operator to choose between three different sizes of the scan pattern. If the scan pattern is quadratic, the area may be approx. 9*9 mm, approx. 6*6 mm, or approx. 3*3 mm, if the scan pattern is circular, the diameter of the circle may be approx. 9 mm, approx. 6 mm, or approx. 3 mm, and if the scan pattern is a line, the length of the line may be approx. 9 mm, approx. 6 mm, or approx. 3 mm.
- FIG. 6 a quadratic scan area 52 and a circular scan area 51 are shown.
- the actual laser scan area is indicated by reference numeral 50 , but only the scan areas 51 , 52 are used for tissue treatment.
- the thin lines 53 and the thick lines 54 indicate the path which the laser beam follows during a scan.
- the thin lines 53 indicate parts of the scan where the laser is turned off, while the thick lines 54 indicate parts of the scan where the laser is turned on.
- the scan is performed as a slow forward/fast return-scan (a TV-scan, but without interlacing).
- the scan starts at the lower left corner of the actual scan area 50 .
- the laser beam is moved towards the right, and when the laser beam enters the tissue treatment scan area 51 or 52 , the laser is turned on.
- the laser beam leaves the tissue treatment scan area 51 or 52 , the laser is turned off, and when the laser beam reaches the right edge of the actual scan area 59 , the beam is quickly retraced or moved to the left edge of the actual scan area 50 , and a new scan line can be initiated.
- the speed of the movement of the laser beam may be increased to a speed sufficiently high for the laser beam not to ablate the tissue surface.
- the fast movement (trace and retrace) of the laser beam between the right and left edges of the actual scan area 50 is accomplished by controlling the galvanometer 26 .
- the first part of the scan line is not used for tissue treatment.
- the slower movement of the laser beam from the bottom to the top of the actual scan area 50 is accomplished by controlling the linear actuator 29 in a constant movement of the mirror 25 .
- a quadratic scan area of approx. 9*9 mm comprises 30 scan lines, and the max. scanning speed is app. 300 mm/s.
- the operator of the apparatus controls the scanning using a pedal.
- a scanning starts.
- the CO 2 laser is turned off, and the visible light beam scans around at least a part of the circumference of the scan area 51 or 52 thereby indicating the size, shape and position of the scanned area 51 or 52 .
- the operator may now move the handpiece and select a new scan area, e.g. a scan area abutting the area just scanned, and when the operator releases the pedal and again activates it, a new scanning will take place. In this way, the operator of the apparatus may easily scan larger areas of the tissue by scanning several neighbouring areas.
- FIG. 7 a quadratic scan area 52 and a circular scan area 51 with single-sided fade-out intensity scan lines 60 are shown.
- the fade-out intensity is accomplished by pulse modulating the laser power in shorter pulses as the intensity is faded out.
- FIG. 8 a quadratic scan area 52 and a circular scan area 51 with four-sided fade-out intensity scan lines 60 are shown.
- the effect of using the fade-out intensity scan lines 60 is to create a smooth transition from a non-ablated area of the tissue to an ablated area.
- the size and shape of the fade-in and fade-out scan areas may be selected using selectors on the handpiece 38 .
- a fade-in or a fade-out effect may be accomplished by gradually increasing or decreasing the intensity of the laser light, respectively, or by decreasing or increasing the speed of the movement of the laser beam, respectively.
- FIG. 9a the beam profile for a standard laser beam transmitted via mirrors and standard lenses is shown.
- the beam profile is Gaussian with a high light intensity in the center of the beam. Only the high intensity center of the beam can ablate the tissue.
- FIG. 9b a typical beam profile for a laser beam transmitted through the optical fiber 2 used in the apparatus according to the present invention is shown.
- the high intensity part of the beam profile is not limited to the center of the profile, but almost the complete beam profile has a sufficiently high intensity for ablating the tissue.
- the laser light at 10.6 ⁇ m wavelength is transmitted through the 500 ⁇ m optical fiber 2 , the laser light is changed from a single mode laser beam to a multi mode laser beam.
- a multi mode laser beam has a more uniform intensity profile compared to the single mode laser beam.
- One of the advantages of using a broadened light beam is, that the risk of drawing lines on the tissue as with the high intensity Gaussian beam is minimized.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Optics & Photonics (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Surgery (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Electromagnetism (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Laser Surgery Devices (AREA)
- Radiation-Therapy Devices (AREA)
Abstract
An apparatus for tissue treatment is provided, comprising a light emitter for emission of a first light beam, director for directing the first light beam towards a target area to be treated, detector for detecting at least one tissue parameter at the target area, and first light beam controller for controlling at least one parameter without interruption of the propagating light beam. The tissue parameter may be selected from the group of texture, elasticity, size and shape. The apparatus may be used for ablating a thin epidermal layer of the derma of a patient and also marks on the tissue such as marks from chloasma, liver spots, red spots, tattoos, blood vessels just below the surface, etc. as well as warts, wounds, hair follicles, etc. may be ablated or treated.
Description
The present invention relates to an apparatus with a handpiece for tissue treatment, such as cosmetic tissue resurfacing.
BACKGROUND OF THE INVENTIONIt is known to utilise laser light for tissue treatment, such as cosmetic tissue resurfacing, removal of hair, photocoagulation of veins, etc.
During cosmetic tissue resurfacing, a laser ablates a thin epidermal layer of illuminated derma of a patient. During healing, a new epidermal layer is formed on the ablated surface having the look of the derma of a young person, i.e. the new epidermal layer is formed without previously existing scars, wrinkles, etc.
Lasers that operate at a wavelength that is absorbed in water are used for cosmetic tissue resurfacing. When the laser power density (W/mm2) at illuminated cells is sufficient, cellular water is superheated causing small explosions that disrupt heated cells.
During removal of an epidermal layer, it is essential not to damage underlying or surrounding tissue. Residual heat may cause non-ablated cells to char and become necrotic, whereby new scars may be formed and thus, it is desirable to apply laser power for a short time, to minimize transmission of conducted heat to underlying and surrounding tissue.
It is therefore desired to accurately control the amount of light energy transferred to derma to be ablated. The amount of energy must be sufficient for the dermal cells to vaporize and, simultaneously, the amount of residual energy heating non-ablated cells must be so low that non-ablated cells will not be damaged.
Apparatuses for cosmetic tissue resurfacing are known, comprising a CO2 laser emitting a laser beam and a laser articulating arm with mirrors for reflection of the laser beam, so that the laser beam is transmitted inside the articulating arm. Further, the arm has a number of joints, so that the arm can be moved around by an operator. A handpiece to be held by the operator is connected to the arm. The laser beam is moved or scanned across a target surface by movable mirrors connected to motors and mounted in the arm. The scan pattern of the laser beam is an archimedes spiral. The laser spot formed by the laser beam on the target surface moves along the spiral at a constant angular speed.
It is a disadvantage of the known apparatus that the energy density delivered to the target surface is non-uniform across the scanned surface area of the spiral, as more energy is delivered at the centre of the spiral than at the circumferential of the spiral.
It is another disadvantage of the known apparatus that the circular outline of the scan pattern leads to non-uniform scanning of an area that is larger than the area of the scan spiral as either 1) areas that have not been scanned will remain on the surface, when abutting spirals or 2) ablated areas will be scanned more than once, due to overlap of spirals.
It is yet another disadvantage of the known apparatus that evaporated derma is exhausted through the internal of the laser articulation arm, whereby optics and other members in the arm get dirty.
It is still another disadvantage of the known apparatus that it is very laborious to disassemble members, that may have been in contact with a patient, from the handpiece, e.g., for autoclaving.
It is still another disadvantage of the known apparatus that movement of the handpiece is restrained by the laser articulation arm, as the construction of tubes interconnected by joints is not fully flexible.
In addition, the apparatus typically has a large mass and a large inertia (typically also due to counter-balancing masses) which makes the operation and movement of the arm elaborate and heavy.
Under the name Uni-laser 450P, Asah Medico A/S, Denmark, markets an apparatus for cosmetic tissue resurfacing, comprising a CO2 laser and an optical fiber coupled to the laser at one end and to a handpiece at the other end. The laser beam is manually scanned across the treatment surface by corresponding movement of the handpiece whereby the quality of the treatment is determined and limited by the skill of the operator.
Apart from being able to accurately control the amount of light energy transmitted towards tissue to be treated, it is also desirable to be able to automatically control whether or not light is transmitted towards tissue. If, for example, a laser is pointed at healthy tissue, it is desirable that it is detected that the tissue is healthy and that transmission of a laser beam be inhibited whereby damage to healthy tissue is prevented.
It is a disadvantage of known apparatuses that the exact circumference of the surface tissue area to be treated is defined manually by the operator. Manual control easily results in accidental damage to healthy tissue due to involuntary movements of the hand.
In U.S. Pat. No. 5,531,740, an apparatus is disclosed for automatically delivering a laser beam to an intricated colored region of a treatment area, e.g. for laser photocoagulation treatment of malformed veins. Typically, venular malformation forms an extremely intricate pattern and consequently, the task of precisely delivering the laser beam exclusively to the malformed veins becomes quite formidable. During scanning over the treatment region, the color of tissue to be treated is detected and the laser automatically treats only areas having a specified color.
It is a disadvantage of the apparatus that it is bulky and cannot easily be moved into treatment positions in relation to various surfaces of a human body. Rather, a tissue surface to be treated has to be brought into a specific position in relation to the apparatus before treatment can take place.
It is still another disadvantage of the known apparatuses that the distance between the surface to be treated and the output laser beam optics is unknown so that the degree of focusing of the laser beam on the surface to be treated is dependent on the operator.
It is yet another disadvantage of known apparatuses that no feed-back on the quality of the treatment currently in progress is provided.
SUMMARY OF THE INVENTIONIt is an object of the present invention to provide an apparatus for tissue treatment having a handpiece that can be moved around, i.e. traversed and rotated, freely by an operator, i.e. without exerting forces acting against the movement.
It is another object of the present invention to provide an apparatus for tissue treatment in which tissue type of tissue at the area to be illuminated by the treating light beam is detected and in which parameters of the laser beam is adjusted according to detected tissue type.
It is a further object of the present invention to provide an apparatus for tissue treatment that includes means for detecting the distance between the surface of tissue to be treated and the output optics focusing treating light onto the surface so that optimum focusing conditions may automatically be obtained during treatment.
It is still another object of the present invention to provide an apparatus for tissue treatment that includes a temperature measuring device for measurement of tissue surface temperature.
It is yet still another object of the present invention to provide an apparatus for tissue treatment that is adapted to automatically and accurately treat tissue to a desired depth with causing only a minimum of damage to surrounding tissue that are not treated.
It is a further object of the present invention to provide an apparatus for cosmetic tissue resurfacing that is adapted to ablate dermal cells uniformly and from a large area of a patient.
According to the invention, the above-mentioned and other objects are fulfilled by an apparatus for tissue treatment, comprising a light emitter for emission of a light beam and an optical fiber for transmission of the light beam. The fiber has a beam-inlet end that is aligned with the emitted light beam so that the light beam is coupled into the optical fiber and a beam-outlet end for emission of the transmitted light beam. Further, the apparatus comprises a handpiece coupled to the optical fiber at the beam-outlet end and comprising an output for emission of the first light beam towards a target area of tissue to be treated, detector means for detecting the type of tissue at the target area, and first light beam control means for controlling parameters of the first light beam emitted towards the target area in response to the detected type of tissue whereby various types of tissue can automatically be treated differently.
Cellular water absorbs light energy and transfers the light energy into heat. Applying light energy to the cells is therefore an efficient way of destroying, e.g. ablating, tissue. That, it is preferred to use light sources, such as lasers, generating light at wavelengths with a high absorption in water, preferably wavelengths larger than 190 nm, such as wavelengths in the range from 190 nm to 1900 nm, preferably from 700 nm to 900 nm, and even more preferred approximately 810 nm, or, preferably wavelengths larger than 1900 nm, such as wavelengths in the range from 1900 nm to 3000 nm, preferably from 1900 nm to 2100 nm, and even more preferred approximately 1940 nm, or, from 2800 nm to 3000 nm, and even more preferred approximately 2930 nm, or wavelengths equal to or greater than 4500 mm, such as wavelengths in the range from 4500 nm to 11000 nm, preferably from 4500 nm to 5500 nm, alternatively from 10000 nm to 11000 nm, such as around 10600 nm.
The apparatus according to the invention may be used for ablating a thin epidermal layer of the derma of a patient, removing marks on the tissue, such as marks from chloasma, liver spots, red spots, tattoos, blood wessels just below the surface, etc, as well as warts, wounds, hair follicles, etc, and hereafter the terms tissue and resurfacing will include these marks and treatments thereof.
It is preferred, that the light source utilized in the present invention is a laser, but other light sources, such as light emitting diodes and halogen bulbs, may be utilized.
The laser may be any laser capable of emitting light with sufficient power for illuminated cells to vaporize, such as CO2 lasers, YAG lasers, such as Erbium YAG lasers, Holmium YAG lasers, etc., semi conductor lasers, pulsed lasers, gas lasers, solid state lasers, Hg lasers, excimer lasers, etc.
Typically, a power density greater than about 50 W/mm2, such as a power density in the range from about 50 W/mm2 to about 180 W/mm2, is adequate for vaporizing cells with a minimum of damage to the surrounding tissue.
However, when removing hairs, the wavelength of the light is preferred to be approx. 800 nm. At this wavelength the absorbtion of the light in the hair follicles is lower than at higher wavelengths, and the power density must therefore be higher than 180 W/mm2, preferable higher than 300 W/mm2. Generally, the power density is adapted to the wavelength and the tissue to be treated.
The optical fiber may be any fiber, such as a polycrystalline silver halide fiber, etc, that is suitable for transmission of light emitted from the light emitter and that is made of a material that allows repeated bending of the fiber, so that an operator can freely manipulate the handpiece in order to direct the light beam toward various areas of a patient.
A handpiece is a single unit for conveniently holding in one hand by an operator of the handpiece.
It is preferred to shape the handpiece ergonomically so that a comfortable hand grip is provided for the operator of the apparatus. For example, it is preferred to direct the light beam towards a target area at a substantially right angle to the area. The ergonomic form of the handpiece allows the operator to point the light beam at a substantially right angle to the target surface without having to bend the wrist in an uncomfortable way.
As already mentioned, it is desirable to automatically control whether or not tissue towards which the hand piece is directed (the hand piece is said to be directed towards a specific area if that area is illuminated when the light beam emitted by the handpiece is turned on) is treated and to what extent it may be treated. For example, if the handpiece is directed towards healthy tissue, turn on of the light beam should be inhibited.
Tissue may be classified into specific tissue types according to predetermined values of various parameters, such as color, temperature, texture, elasticity, size, shape, etc.
For example various marks may be detected by their color. Thus, the detector means may comprise light detectors for detection of intensity of light emitted from tissue at the target area, the target area being the area the handpiece is currently directed at.
The light detector is preferably a semiconductor light detector, such as a photodiode, etc.
Further, the handpiece may comprise two light sources emitting light of different wavelengths, preferably two light emitting diodes, one for emission of light in the wavelength range where the light is considered red and the other for emission of light in the wavelength range where the light is considered green. The light sources may alternatively emit light in the ultra violet or infrared wavelength range. Light from the light sources is transmitted towards the target area and is reflected by tissue at the target area. The reflected light is detected by the detector means and the intensity of reflected light in the two wavelength ranges in question characterizes the type of tissue that is illuminated.
The first light beam control means comprises outputs for controlling various parameters of light emitted by the light emitter, such as wavelength, output power, duty cycle, etc. Based on tissue type parameter values as measured by the detector means, the first light beam control means adjusts parameters of the emitted light correspondingly. For example, when two light sources are utilized for detection of tissue type as previously described, predetermined reflected light intensity value ranges for the two wavelength ranges may be stored in a memory of the first light beam control means. During treatment, measured values of reflected light intensity are compared with the stored predetermined ranges and when measured values are within the stored ranges treatment is enabled and otherwise it is disabled.
Further, the wavelength and/or the power of treating light emitted by the light emitter may be adjusted according to the measured values. For example, a plurality of predetermined ranges of reflected light intensity may be stored in the memory and during treatment the measured values may be compared to the stored ranges and the value of the wavelength and/or the power of treating light may be set according to relations between measured values and stored ranges. Alternatively, the first light beam control means may calculate and control the wavelength and/or the power of treating light as a predetermined function of measured values of reflected light.
The output power of the first light beam may be adjusted by adjustment of the continuous output power of the light emitter, by adjustment of the duty cycle of the light emitter, etc.
The handpiece may comprise an infrared detector, such as an infrared photodetector, for detection of intensity of infrared light emitted from tissue at the target surface, e.g. for determination of the temperature of the tissue. Like color, temperature may be utilized for characterization of tissue types. Further, tissue temperature may be utilized for monitoring of treatment progress and quality. The temperature of treated tissue increases during treatment and measurement of tissue temperature may be utilized for verification of the effect of the treatment. For example, when a specific tissue temperature is reached within a specific area, treatment of that tissue may be terminated, e.g. further treatment may be inhibited, as sufficient treatment has already been accomplished. Further, if a certain temperature has not been reached during treatment, output power of the light emitter may be increased to increase efficiency of the treatment.
To obtain an optimum result of treatment, it is important to keep the light beam focused at the target area during treatment.
The handpiece may comprise means for automatically controlling the distance from the handpiece of the focus point in such a way that the light beam is automatically focused at the target area during treatment.
Thus, the detector means may comprise a detector array and array optics for forming an image of the target area on the array. Further, the detector means may comprise image processing means for processing the output signals from the detector array. Preferably, the imaging means is adapted to calculate the size of a spot of light illuminated by the first light beam, or another light source of the apparatus, and imaged onto the detector array.
The handpiece may further comprise output optics for focusing the first light beam onto the surface of tissue to be treated and movably positioned at the output of the handpiece for adjustment of the distance between the handpiece and the focus point, and focus control means for adjusting the position of the output optics in repsonse to the value of the calculated spot size.
According to another embodiment of the invention, two crossing visible light beams are emitted from the handpiece, the cross point of the beams indicating the focus point of the first beam. The imaging means are adapted to detect the number of spots imaged onto the detector array, and the focus control means are adapted to adjust the position of the output optics in response to the number of spots and, preferably, the distance between them (if more than one).
The handpiece may comprise deflection means that includes any optical component or components suitable for deflecting light of the wavelength in question, such as mirrors, prisms, grids, diffractive optical elements, such as holograms, etc, etc.
The deflecting means are preferably movably mounted for displacement of the deflecting means as a function of time, so that the light beam emitted from the handpiece can be scanned across a surface along a desired curve, while the handpiece is kept in a fixed position. Preferably, the deflecting means are rotatably mounted, and the actual deflection of the light beam is determined by the current angular position of the deflecting means. It is preferred that the surface is scanned along a substantially straight line.
Various actuators may be utilized to control positions of the deflecting and focusing means, such as piezo electric crystals, the displacement of which is controlled by applying a specific electric voltage to their electrodes, electro motors generating linear or rotational displacements, galvanometers, magnetically activated or controlled actuators, pneumatic actuators, hydraulic actuators, etc.
The positions of the deflecting means may be controlled by controlling means adapted to control the deflection means to deflect the light beam to traverse a target surface along a desired curve.
According to a preferred embodiment of the invention, a handpiece is provided, having two mirrors that are rotatably mounted in the path of the light beam in the handpiece. The rotational axis of the mirrors may be substantially perpendicular to each other in order to obtain two dimensional deflection of the light beam.
Alternatively, the movable deflecting means may comprise one mirror that is rotatable around two axes that may be substantially perpendicular to each other.
The mirrors may be connected to electro motors for angular positioning of the mirrors, e.g. each mirror may be directly connected to a corresponding shaft of a motor, whereby each motor is used for angular positioning of the corresponding mirror.
In order to minimize the size of the handpiece, it is preferred to mount the motors with their respective shafts in a common plane. For example, one motor may be a linear motor, such as a linear step motor, generating linear displacements. The shaft of this motor may be connected to the mirror at a first edge of the mirror, while a second and opposite edge of the mirror is rotatably connected to the handpiece. By pushing or pulling the first edge by the linear motor, the mirror is rotated about its rotational axis. The other motor, preferably a galvanometer, may be connected to the other mirror in the conventional way described above, whereby the two mirrors may be rotated around substantially perpendicular axes.
When a target area is scanned line by line, it is preferred that movement of one mirror generates the line scan, while movement of the other mirror moves the light beam to the next line. In the example above, the galvanometer preferably generates the line scan as the galvanometer can move the mirror at a high speed, and the linear motor preferably generates the displacement of the light beam to the next line to be scanned.
As mentioned earlier, it is preferred to control the amount of energy delivered to cells to be ablated, as the amount of energy must be sufficient for the dermal cells to vaporize and, simultaneously, the amount of residual energy heating non-ablated cells must be so low that non-ablated cells will not be seriously damaged. Thus, when an area of tissue is scanned, e.g. line by line, it is preferred that neighbouring lines substantially abut each other. Clinical investigations have shown that, typically, an overlap of 0.1 to 0.2 mm is acceptable, and a distance between scanned areas of up to 0.1-0.2 mm is acceptable.
In order to control positioning of curves on the target area this accurately, it is preferred to position the movable deflection means extremely accurately in the handpiece. In the preferred embodiment of the invention, this is accomplished by utilisation of printed circuit technology providing high accuracies of hole positioning of 0.05 mm. The mirrors are rotated around shafts that are mounted in printed circuit boards providing the required positioning accuracy. Further, the motors rotating the mirrors are also mounted on the printed circuit boards providing electrical connections to the motors and the mechanical support and positioning needed.
When scanning a scan area line by line, it is preferred to scan each line in the same direction ensuring uniform heating of cells across the scan area. Further, it is preferred to turn off the light beam, e.g. by switching off the light emitter, by inserting a light obstructing member in the light path of the beam, etc, while the light beam is moved from the end of a line having been scanned to the start of the next line to be scanned, to avoid over illuminating areas of the two lines to be scanned.
Instead of turning the light emitter off, the light beam may be moved at a speed significantly larger than the scan speed, during movement from the end of a line to the start of the next line.
Typically, the intensity within the beam of a light beam as generated by the light emitter varies as a normal function of the distance from the centre of the beam. The optical fiber may be designed or selected to be dispersive in such a way that the intensity function of the light beam emitted from the fiber as a function of the distance to the centre of the beam is substantially rectangular, i.e. the intensity of the beam leaving the fiber decays more slowly towards the edge of the beam than the intensity of a beam as generated by the light emitter whereby heat is more uniformly generated in cells across a scanned line of tissue.
By adequate control of the starting position of a line to be scanned and the stop position of scanning along the line, it is seen that scan areas of any shape may be generated. The shape of the scan area may for example be polygonal, such as rectangular, quadratic, triangular, etc., or circular, elliptic, etc.
The detector means may be utilized for detection of various tissue parameters during scanning of the first light beam across a tissue area so that treatment and tissue parameter determination are performed substantially simultaneously including adjustment of light beam parameters according to detected tissue parameter values.
However, it is presently preferred that the light beam control means further comprises switching means for preventing emission of the first light beam and being controlling by the first light beam control means so that emission of the first light beam is prevented during a first scan of the light beam from a predetermined first position to a predetermined second position along a predetermined path. The apparatus may further comprise tissue type storage means for storage of coherent data sets of signal values provided by the detector means at predetermined positions along the predetermined path of the light beam and the corresponding positions of the deflection means thereby mapping tissue parameters as a function of relative position within the target area of the tissue in the storage.
The first light beam control means may further be adapted to control parameters of the first light beam during a second movement of the light beam along the above-mentioned predetermined path in accordance with the coherent data sets stored.
For example, without automatic control of tissue treatment, removal of hair is a difficult task to perform as a large number of small spots having diameters of approximately 1 mm have to be pinpointed by the operator performing the treatment. According to the present invention, the surface tissue area with hair to be removed is scanned by the handpiece. Hereby the hair follicles are detected by color determinations as described above and their positions along the scanned path of the light beam are stored in the tissue type storage means. During a second and repeated scan of the tissue area, the treating light beam is turned on and off according to the content of the tissue type storage means so that solely the hair follicles detected during the first scan are treated preventing the surrounding tissue from being damaged.
Parameter values, such as color, temperature, etc, stored in the tissue type storage may be displayed on a display unit, such as a CRT, LCD, etc, e.g. as graphical three dimensional plots showing surface profiles of the actual parameters of scanned areas. Further, the parameter values may be processed, e.g. providing averages, weighted averages, correlation, cross-correlation, etc, and the value may be displayed, e.g. on the display unit or, on a separate display on the handpiece.
The output power of the first and treating light beam may be adjusted by adjusting the duty cycle of the beam, i.e. by pulse width modulating the light emitter. Thereby, a scanned line is broken into a plurality of line segments. A fade-in scan area may be created by starting the line with short pulses of light between longer periods of no light. As the line is traversed, the duration of light pulses is gradually increased and the periods with no light is gradually decreased. Finally, at the end of the fade-in area the light is not pulsed, and the scan line may be completed with maximum light intensity.
Similar, a fade-out scan area may be created by starting a scan line with maximum light intensity, and at the start of the fade-out area, the light emitter is pulse width modulated to transmit shorter and shorter pulses of light between longer and longer periods of no light. Finally, at the end of the fade-out area, the light is not pulsed, and the scan line is completed with no light intensity.
Fade-in or fade-out scan patterns may also be created by gradually increasing or decreasing, respectively, the output power of the light emitter, or by decreasing or increasing, respectively, the scan speed of the light beam, i.e. the speed at which the spot illuminated by the first light beam moves on a surface to be treated.
Alternatively, any combination of these methods may be used.
Various shapes, such as polygonal, such as rectangular, quadratic, triangular, etc, circular, elliptic, etc, of the area including fading area to be scanned by the first light beam may be selected by the user. Within the selected shape, treatment of tissue may be automatically controlled as described above, e.g. a rectangular shape of an area to be treated may be selected, however, if the handpiece is directed at healthy tissue the area will be scanned to determine tissue type and no treatment will be performed.
A scan line with fade-in and/or fade-out effects creates a smooth transition from a non-treated area of the tissue to a treated area of the tissue. This is advantageous when using the apparatus of the present invention for treatment of small marks on the tissue such as marks from chloasma, liver spots, red spots, tattos, blood wessels etc.
The first light beam control means may be adapted to control the intensity of the light beam and/or the velocity of the scanning light beam along a desired curve as a function of the position of the light beam inside the area of the target tissue area.
Within an area of tissue all of which is of a type to be ablated, the first light beam control means may be adapted to provide a substantially constant intensity of the light beam and a substantially constant scan velocity of the first light beam.
If desired, the fade-in and fade-out effect may be provided either by scanning the light beam with a velocity larger than the substantially constant scan velocity within the treatment area of tissue or, by decreasing the output power of the first light beam.
The first light beam control means may be adapted to control the power-per-area of the light beam when scanned along a desired curve on a target tissue area to be treated. For example, when ablating tissue it is presently preferred to maintain the power-per-area of the first light beam inside a first part of the target tissue area at a substantially constant level.
In order to create the fade-in or fade-out effect, the power-per-area of the light beam when outside a first part of the target tissue area may depend on the distance to the first part of the target tissue area, and it is preferred that the power-per-area of the light beam increases with decreasing distance to the first part of the target tissue area.
In the case where the first light beam is invisible, e.g. utilizing an infra red emitter, an ultra violet emitter, etc, a light source generating visible light may be provided for generating a visible light beam that is used to assist the operator by indicating areas towards which the invisible and treating light is directed during scanning. For example, the input connector of the handpiece may be further adapted to connect a second beam-outlet end of a second optical fiber for transmission of a visible light beam to the handpiece. The second optical fiber is preferably properly aligned in the connector in relation to the desired path of the visible light. The handpiece may further comprise second movable deflecting means for variable deflection of the visible light beam in such a way that the treating light beam and the visible light beams emitted from the output of the handpiece illuminate substantially the same area of a target surface.
Further, two crossing visible light beams may be emitted from the handpiece, the cross point of the beams indicating the focus point of the first beam.
Preferably, common moving deflecting means are utilised for deflection of all light beams emitted from the handpiece. Zinc selenite lenses may be utilized, as they are transparent for visible light as well as for infra-red light.
In order to further assist the operator of the apparatus, the visible light beam may, e.g. between scans of the treating light beam, be scanned around at least a part of the circumference of the scan area thereby indicating the size, shape and position of the scan area to be scanned.
When a polygonal shape of the scan area has been selected, the visible light beam may, e.g. between scans of the ablating light beam, be scanned along one edge of the polygon.
In order to further assist the operator of the apparatus, the temperature of the target tissue area may be measured immediately after treatment. The surface temperature is measured by measuring the infrared irradiation from the surface with the detector means of the handpiece. This temperature provide an objective measure of the quality of the treatment. A high temperature in the surface skin indicates that the energy has been absorbed in the surface tissue, whereas a low surface temperature indicates that the energy has been absorbed in the depths of the tissue. It is also possible to provide an interface to a PC (or any other calculating unit) for further calculations on the temperature data.
In order to assist the operator of the apparatus in keeping a constant distance from the output of the handpiece to the surface of the tissue to be ablated, the handpiece may comprise a distance member connected to the handpiece at the output with fastening means.
As the distance member will touch the patient, it is desirable to insert a new, disinfected member before treatment of a new patient and thus, it is preferred that the fastening means comprises a magnet so that a used distance member can easily be disconnected from the handpiece, e.g. for autoclaving, and so that a new member can easily be connected to the handpiece.
In order to increase the ease of use of the handpiece, it may be provided with interfacing means for selection of parameters of the cosmetic resurfacing apparatus. The interfacing means may comprise push buttons, selectors, rotary switches, etc. The interfacing means may also comprise a display for showing the mean temperature of the surface immediately after the treatment.
The parameters selectable from the handpiece may comprise the scan velocity, the ablating and the visible light beam intensities, the size and shape of the scan area, and fade-out effects.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
BRIEF DESCRIPTION OF THE DRAWINGSIn the following, a preferred embodiment of a tissue treatment apparatus comprising detector means will be described with reference to the drawings, wherein
FIG. 1 shows a cross section of a cable for transmission of light from a laser source to the handpiece according to the invention,
FIG. 2 shows a cross section of a handpiece according to the present invention,
FIG. 3 shows the lens system of the handpiece shown in FIG. 2 in treatment mode in greater detail,
FIG. 4 shows the dashed area of FIG. 2, the detector means in more detail,
FIG. 5 shows detector means of the handpiece shown in FIG. 2 in sensing mode in greater detail.
FIG. 6 shows a circular and a quadratic scan area,
FIG. 7 shows a circular and a quadratic scan area with a single-sided fade-out scan pattern,
FIG. 8 shows a circular and a quadratic scan area with a four-sided fade-out scan pattern, and
FIG. 9 shows a cross section of a standard laser beam and an example of a cross section of a laser beam more suitable for use in the handpiece of the present invention.
DETAILED DESCRIPTION OF THE DRAWINGSFIG. 1 shows a cross section of a
cable1 for transmission of light from a laser source to the handpiece of an apparatus for tissue treatment. An
optical fiber2 is positioned at the centre of the
cable1. The
optical fiber2 is made of silver chloride and silver bromide (silver halide), which is especially designed for light at a wavelength of app. 10.6 μm. The
optical fiber2 is covered by a
cladding3, also made of silver bromide and silver chloride but mixed in another ratio, which prevents the light travelling in the
fiber2 to escape from the
fiber2. The diameter of the
fiber2 is app. 500 μm, while the
cladding3 is app. 50 μm thick. The
fiber2 and the
cladding3 are protected against influence from the environment by a
teflon tube4. The
fiber2 and the
cladding3 are also protected against mechanical stress by a
plastic tube5 also protecting the
teflon tube4. The
fiber2, the
cladding3, the
teflon tube4 and the
plastic tube5 can be considered as an
optical fiber unit10. Included in the
cable1 are two
glass fibers6, 7 and a
wire8. The two
glass fibers6, 7 are specially designed optical fibres designed with a small NA (numerical aperture) designed for visible light at a wavelength of app. 650 nm. The
wire8 is provided for protecting the
cable1 against tensions and overloads. The
optical fiber unit10, the two
glass fibers6, 7, and the
wire8 are surrounded by a
spiral tube9 made of stainless steel. The
optical fiber unit10, the two
glass fibers6, 7, and the
wire8 are not fixed in position relative to each other inside the
spiral tube9, but can move in relative to each other inside the
spiral tube9, but can move in relation to each other. This makes the
cable1 very flexible when it is moved, and it provides at the same time a good protection of the
fragile fibers2, 6, 7. Inside the
spiral tube9 and along the
optical fiber unit10, the two
glass fibers6, 7, and the
wire8, compressed air is blown. The air is blown out in front of the optics, blowing away any ablated material that otherwise could deposit on the optics.
The light beam from a CO2 laser is coupled into the
optical fiber2 at one end of the
fiber2 positioned at one end of the
cable1. At the same end of the
cable1, light beams from two diode lasers are coupled into the
glass fibers6, 7, respectively. The light beams are transmitted in the respective fibers from the inlet end to the outlet end, which is connected to a handpiece.
FIG. 2 shows a
handpiece38 of an apparatus for tissue treatment according to the present invention. The cable 1 (not shown in FIG. 2) is connected to the
handpiece38 at a
fiber inlet part20, and guided through a
tube22 which is held in place in the
handpiece38 by the holding and
heat distributing means31. The
fiber inlet part20 also serves as a cable protecting sleeve. The light beams transmitted in the
optical fiber2 and the two
glass fibers6, 7 are radiated from the outlet ends of the
fibers2, 6, 7 through a lens system 39 (see FIG. 3) to an object, e.g. a human tissue surface. The outlet ends of the
fibers2, 6, 7 are positioned at a distance appropriate for the focusing
lens21 to focus the light from the
fibers2, 6, 7 on the object.
In FIG. 3, the
lens system39 is shown in greater detail. The light beams radiated from the outlet end of the
fibers2, 6, 7 are focused by the first focusing
lens21 and collimated by the collimating
lens23. The collimated light beam is transmitted from the collimating
lens23 via the deflecting means comprising a
first mirror24 and a
second mirror25 to a second focusing
lens30 which focuses the light beams on the
target40, which e.g. can be the facial tissue of a human being.
As shown in FIG. 2, the
first mirror24 is mounted on an
indicator45 of a
galvanometer26 positioned in the
handpiece38 of the tissue treatment apparatus according to the invention. When an electric current is sent through the coil of the
galvanometer26, the magnetic field generated by the current will make the
indicator45 rotate around the longitudinal axis of the
indicator45. The
first mirror24 will thereby by rotated, and the light beams will be deflected at an angle twice the angle rotated by the
mirror24.
The
second mirror25 is mounted on an
arm46 actuated by a
linear actuator29. When the
linear actuator29 activates the
actuator arm47, the
arm46, and thereby the
second mirror25, is rotated around the
axle48. A
spring28 is connected to one end of the
arm46 and to a non-moving part of the
linear actuator29 in the other end so as to neutralize wobble that may be present in the
axle48. When the
second mirror25 is rotated around the
axle48, the light incident on the
second mirror25 is deflected in an angle twice the angle rotated by the
mirror25. The
linear actuator29 may be controlled by applying a sequence of pulses across the terminals (not shown) of the
actuator29.
By controlling the current to the coil of the
galvanometer26 and the pulse sequence applied across the terminals of the
linear actuator29, the direction of light beams sent through the focusing
lens30 towards the
target40 can be controlled. It is thus possible to create different kinds of scan patterns of the light beam, such as rectangular or circular scan patterns.
A
rotating arm100 with a
mirror101 is by a
solenoid109 positioned in the beam path of the first laser light beam when the optical system is in a sensing mode as explained further below.
In FIG. 4, the part of the handpiece defined by the dashed line in FIG. 2 comprising the detector means is shown in greater detail. The detector means comprises a
detector110 and two
light sources102, 103 mounted in a holder for optical elements. The detector means further comprises a
movable mirror101. In sensing mode, the
movable mirror101 is positioned so as to transmit the sensing light beams emitted from the
light sources102, 103 mounted in the
optical holder107 via the fixed
mirror104 to the
first mirror24, the
second mirror25, and the second focusing
lens30 which focuses the light beams on the
target40. Likewise, the reflected sensing beams reflected from the
target40 are directed back to the detector means via the focusing
lens30 and the
movable mirrors24, 25. From the
mirror101 at the
rotating arm100 the reflected sensing beams are directed to the fixed
mirror104, wherefrom they are directed towards the
detector110 for intensity detection.
In FIG. 5 the detector means are schematically shown in greater detail, where the fixed
mirror104, however, is omitted to facilitate understanding of the operation. The
light sources102, 103 are laser diodes which emit light at different wavelengths. The emitted sensing light beams are directed one at the time through
collimating lenses113 to collimate the beams and to
beamsplitters111 reflecting the sensing light beams towards the
movable mirror101 wherefrom the light is directed to the
target40 via
mirror24,
mirror25 and focusing
lens30. As the sensing light beams pass the same optical system as the light beams emitted from the outlet end of the fibers, they may be scanned across the
target40 and the position of the sensing beams will be known at any time. The beams reflected from the
target40 follow the same path back to the
beamsplitters111. The polarisation of the light beams is changed when the light is reflected from the
target40, and since the transmittance of the
beamsplitters111 are dependent on the polarisation of the incident light beam the reflected sensing light beams reflected from the
target40 are transmitted through the beamsplitters, without reflection. Before the beam reaches the
detector110, it passes a
polarisation filter114 and a
blockout filter115 to increase signal to noise ratio, and a third focusing
lens112 to focus the beam at the detector. To determine the type of tissue at the target 40 a red and a green light beam from respectively
light sources102, 103, respectively, are alternately directed towards the
target40. The reflection of the red and the green light beams, respectively, from the
target40 are directed to the detector by the deflection means and are detected at the
detector110. The differences in the reflected light from
light sources102, 103 are calculated and the type of tissue, i.e. the color of the tissue, to be treated is thereby determined. Depending upon the type of tissue parameters to be determined, it is of course envisaged that the sensing beams may be visible light beams of any color, or it may be ultra violet light beams, or it may be infrared light beams.
The optics and electronics of the
handpiece38 are protected by a
plastic housing36 provided in an ergonomical shape. An
air tube34 may be positioned on the
handpiece38 for providing suction of air from in front of the optics of the
handpiece38 in order to absorb any material ablated from the tissue of the object being treated with the apparatus of the present invention.
The light beams from the two
glass fibers6, 7 transmitted from the
cable1 through the optics of the handpiece and to the object, intersects at a distance equal to the focal length of the focusing
lens30, i.e. at the distance where the light from the CO2 laser is focused. This is the distance at which the handpiece should be held from the object to get the best treatment result, and the intersection of the two visible light beams helps the operator keeping the correct distance to the tissue surface.
Because of the importance of keeping the CO2 focal point on the tissue surface, the presently preferred embodiment of the
handpiece38 further comprises a
magnetic distance member33 connected to the
handpiece38 with a
magnet32. As the
distance member33 is magnetic, it is easy to connect to and disconnect from the
handpiece38.
In the apparatus here shown the detector detects the light and calculates the type of tissue to be treated, but it is also possible to include an infrared light detector for determination of the temperature of the target.
Furthermore, in the apparatus shown a
mirror101 is mounted on the
rotating arm100, whereby simultaneously sensing and treatment is not possible. By replacing the mirror with a beamsplitter, it is possible to simultaneously treat and sense.
The present handpiece has three functions each with 3 different modes. In the first function, the operator may choose between high, medium, or low scan speed modes. When scanning on different types of tissue, it is preferred to adjust the scan speed of the light beam in stead of adjusting the output power of the light beam. When scanning on tissue with a low absorption of light, such as dry skin, it is preferred to generate a high power density on the tissue, and the scan speed mode should be set to low. When scanning on tissue with an average absorption of light, the scan speed mode should be set to medium, and when scanning on tissue with a high absorbtion of light, the high scan speed mode should be selected.
In the second function, the operator may chose between three different modes defining three different scan patterns, which patterns are a line, a circular pattern and a quadratic pattern.
The third function enables the operator to choose between three different sizes of the scan pattern. If the scan pattern is quadratic, the area may be approx. 9*9 mm, approx. 6*6 mm, or approx. 3*3 mm, if the scan pattern is circular, the diameter of the circle may be approx. 9 mm, approx. 6 mm, or approx. 3 mm, and if the scan pattern is a line, the length of the line may be approx. 9 mm, approx. 6 mm, or approx. 3 mm.
In FIG. 6, a
quadratic scan area52 and a
circular scan area51 are shown. The actual laser scan area is indicated by
reference numeral50, but only the
scan areas51, 52 are used for tissue treatment. The
thin lines53 and the
thick lines54 indicate the path which the laser beam follows during a scan. The
thin lines53 indicate parts of the scan where the laser is turned off, while the
thick lines54 indicate parts of the scan where the laser is turned on.
The scan is performed as a slow forward/fast return-scan (a TV-scan, but without interlacing). The scan starts at the lower left corner of the
actual scan area50. The laser beam is moved towards the right, and when the laser beam enters the tissue
treatment scan area51 or 52, the laser is turned on. When the laser beam leaves the tissue
treatment scan area51 or 52, the laser is turned off, and when the laser beam reaches the right edge of the actual scan area 59, the beam is quickly retraced or moved to the left edge of the
actual scan area50, and a new scan line can be initiated.
In stead of turning the laser on and off, the speed of the movement of the laser beam may be increased to a speed sufficiently high for the laser beam not to ablate the tissue surface.
The fast movement (trace and retrace) of the laser beam between the right and left edges of the
actual scan area50, is accomplished by controlling the
galvanometer26. In order to let the
mirror24 settle after the fast movement from the right edge of the
actual scan area50 to the left edge, the first part of the scan line is not used for tissue treatment. The slower movement of the laser beam from the bottom to the top of the
actual scan area50 is accomplished by controlling the
linear actuator29 in a constant movement of the
mirror25.
A quadratic scan area of approx. 9*9 mm comprises 30 scan lines, and the max. scanning speed is app. 300 mm/s.
The operator of the apparatus controls the scanning using a pedal. When the pedal is activated, a scanning starts. After finishing the scanning, the CO2 laser is turned off, and the visible light beam scans around at least a part of the circumference of the
scan area51 or 52 thereby indicating the size, shape and position of the scanned
area51 or 52. The operator may now move the handpiece and select a new scan area, e.g. a scan area abutting the area just scanned, and when the operator releases the pedal and again activates it, a new scanning will take place. In this way, the operator of the apparatus may easily scan larger areas of the tissue by scanning several neighbouring areas.
In FIG. 7, a
quadratic scan area52 and a
circular scan area51 with single-sided fade-out
intensity scan lines60 are shown. The fade-out intensity is accomplished by pulse modulating the laser power in shorter pulses as the intensity is faded out.
In FIG. 8, a
quadratic scan area52 and a
circular scan area51 with four-sided fade-out
intensity scan lines60 are shown.
The effect of using the fade-out
intensity scan lines60 is to create a smooth transition from a non-ablated area of the tissue to an ablated area.
The size and shape of the fade-in and fade-out scan areas may be selected using selectors on the
handpiece38.
It should be understood that a fade-in or a fade-out effect may be accomplished by gradually increasing or decreasing the intensity of the laser light, respectively, or by decreasing or increasing the speed of the movement of the laser beam, respectively.
In FIG. 9a, the beam profile for a standard laser beam transmitted via mirrors and standard lenses is shown. The beam profile is Gaussian with a high light intensity in the center of the beam. Only the high intensity center of the beam can ablate the tissue.
In FIG. 9b, a typical beam profile for a laser beam transmitted through the
optical fiber2 used in the apparatus according to the present invention is shown. The high intensity part of the beam profile is not limited to the center of the profile, but almost the complete beam profile has a sufficiently high intensity for ablating the tissue. When the laser light at 10.6 μm wavelength is transmitted through the 500 μm
optical fiber2, the laser light is changed from a single mode laser beam to a multi mode laser beam. A multi mode laser beam has a more uniform intensity profile compared to the single mode laser beam.
When using a Gaussian shaped beam, there is a risk of overexposing the tissue exposed by the center of the beam, while the parts of the tissue exposed by the edges of the beam are underexposed. This may result in thin lines of scars in the tissue. Using a non-gaussian shaped beam, as the beam provided by the optical fiber used in the apparatus according to the present invention, the risk of making scars in the tissue is minimized.
One of the advantages of using a broadened light beam is, that the risk of drawing lines on the tissue as with the high intensity Gaussian beam is minimized.
The invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
Claims (34)
1. A handpiece for an apparatus for tissue treatment, comprising:
an input adapted to receive a first beam-outlet end of a first optical fiber for alignment of the first optical fiber with an axis of the handpiece so that a first light beam emitted from the first beam-outlet end is transmitted substantially along the axis;
first movable deflection means for variable deflection of the first light beam emitted from the beam-outlet end;
an output for emission of the deflected first light beam towards a target area of tissue to be treated;
first deflection control means for controlling the first movable deflection means in such a way that the first light beam is deflected along a predetermined path across the target area to be treated;
detector means for detecting the type of tissue a the target area; and
first light beam control means for controlling parameters of the first light beam emitted towards the target area in response to the detected type of tissue whereby various types of tissue can automatically be treated differently.
2. The handpiece according to
claim 1, wherein the detector means comprises light detectors for detection of intensity of light emitted from tissue at the target area.
3. The handpiece according to
claim 1, wherein the detector means comprises infrared detectors for detection of temperature of tissue at the target area.
4. The handpiece according to
claim 1, wherein the detector means comprises a detector array for detection of an image formed on the array.
5. The handpiece according to
claim 4, further comprising image processing means for processing the image detected by the detector array.
6. The handpiece according to
claim 5, wherein a size of a spot of light illuminated by the first light beam is calculatable by the imaging means.
7. The handpiece according to
claim 6, further comprising:
output optics for focusing the first light beam onto the surface of tissue to be treated and movably positioned at the output of the handpiece; and
focus control means for adjusting the position of the output optics in response to the value of the calculated spot size.
8. The handpiece according to
claim 1, wherein the first movable deflection means comprises a first mirror that is rotatable around a first axis.
9. The handpiece according to
claim 8, wherein the first movable deflection means further comprises a second mirror that is rotatable around a second axis.
10. The handpiece according to
claim 9, wherein the first axis is substantially perpendicular to the second axis.
11. The handpiece according to
claim 10, wherein the first movable deflection means is controllable by the first deflection control means to deflect the first light beam to scan the target surface area line by line.
12. The handpiece according to
claim 1, further comprising tissue type storage means for storage of coherent data sets of signal values provided by the detector means at predetermined positions along the predetermined path of the first light beam and the corresponding positions of the deflecting means thereby mapping tissue parameters as a function of relative positions along the path in the storage means.
13. The handpiece according to
claim 12, wherein the first light beam control means is adapted to control parameters of the first light beam during a second scan of the light beam along the predetermined path in accordance with the coherent data sets stored in the tissue type storage means.
14. The handpiece according to
claim 1, further comprising a first probing light source for illuminating tissue at the target area and wherein light that is reflected from the illuminated tissue is detectable by the detector means.
15. The handpiece according to
claim 14, further comprising a second probing light source for illuminating tissue at the target area and wherein the first and second probing light sources emit light of different wavelengths.
16. The handpiece according to
claim 15, wherein each of the first and second probing light sources comprises a light emitting diode.
17. The handpiece according to
claim 16, wherein the first probing light source comprises a light emitting diode for emission of light in a red wavelength range.
18. The handpiece according to
claim 16, wherein the second probing light source comprises a light emitting diode for emission of light in a green wavelength range.
19. The handpiece according to
claim 14, wherein the type of tissue is characterized by intensity of the light that is reflected from the illuminated tissue.
20. The handpiece according to
claim 1, further comprising user interface means for selection of parameters of the handpiece.
21. The handpiece according to
claim 20, wherein the parameters comprise a scan velocity.
22. The handpiece according to
claim 20, wherein the parameters comprise a first light beam intensity.
23. The handpiece according to
claim 20, wherein the parameters comprise a size of the target surface area.
24. The handpiece according to
claim 20, wherein the parameters comprise a shape of the target surface area.
25. The handpiece according to
claim 1, wherein the input is further adapted to receive a second beam-outlet end of a second optical fiber for transmission of a visible second light beam to the handpiece and for alignment of the second optical fiber with the axis of the handpiece so that the visible second light beam emitted from the second beam-outlet end is transmitted substantially in parallel with the axis, and further comprising second movable deflection means for variable deflection of the visible second light beam in such a way that the first and the second light beams emitted from the output of the handpiece illuminate substantially the same area of a target surface.
26. The handpiece according to
claim 25, wherein the first and the second movable deflection means are identical.
27. The handpiece according to
claim 25, further comprising second deflection control means for controlling the second movable deflection means and for controlling the second movable deflection means in such a way that the visible second light beam is scanned around at least a part of a circumference of the target surface area thereby indicating the size, shape and position of the target surface area.
28. The handpiece according to
claim 27, wherein the shape of the target surface area is polygonal and the second deflection control means is further adapted to control the second moving means in such a way that the visible second light beam is scanned along one edge of the polygon.
29. The handpiece according to
claim 1, further comprising a distance member connected to the handpiece at the output with fastening means and for indicating the desired distance between a patient and the output.
30. The handpiece according to
claim 29, wherein the fastening means comprises a magnet so that the distance member can readily be disconnected from the handpiece.
31. The handpiece according to
claim 1, wherein the first light control means executes either a fade-in or fade-out scan pattern in response to the tissue type determined by the detector means.
32. The handpiece according to
claim 31, wherein the fade-in and fade-out scan patterns are effected by varying the intensity of the first light beam.
33. The handpiece according to
claim 1, wherein the deflection control means executes either a fade-in or fade-out scan pattern in response to the tissue type determined by the detector means.
34. The handpiece according to
claim 33, wherein the fade-in and fade-out scan patterns are effected by varying the scan speed of the first light beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/973,464 USRE38670E1 (en) | 1997-08-29 | 2001-10-11 | Apparatus for tissue treatment |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK0989/97 | 1997-08-29 | ||
DK98997 | 1997-08-29 | ||
US08/974,429 US6074382A (en) | 1997-08-29 | 1997-11-19 | Apparatus for tissue treatment |
DKPA199900325 | 1999-03-08 | ||
US09/973,464 USRE38670E1 (en) | 1997-08-29 | 2001-10-11 | Apparatus for tissue treatment |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/974,429 Reissue US6074382A (en) | 1997-08-29 | 1997-11-19 | Apparatus for tissue treatment |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE38670E1 true USRE38670E1 (en) | 2004-12-14 |
Family
ID=8092279
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/662,373 Expired - Fee Related US6676654B1 (en) | 1997-08-29 | 2000-09-13 | Apparatus for tissue treatment and having a monitor for display of tissue features |
US09/973,464 Expired - Lifetime USRE38670E1 (en) | 1997-08-29 | 2001-10-11 | Apparatus for tissue treatment |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/662,373 Expired - Fee Related US6676654B1 (en) | 1997-08-29 | 2000-09-13 | Apparatus for tissue treatment and having a monitor for display of tissue features |
Country Status (3)
Country | Link |
---|---|
US (2) | US6676654B1 (en) |
AU (1) | AU3147200A (en) |
WO (1) | WO2000053261A1 (en) |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040143278A1 (en) * | 2003-01-17 | 2004-07-22 | Nova-Tech Engineering, Inc. | Apparatus and method for upper and lower beak treatment |
US20050154380A1 (en) * | 2003-12-23 | 2005-07-14 | Debenedictis Leonard C. | Method and apparatus for monitoring and controlling laser-induced tissue treatment |
US20050171517A1 (en) * | 1996-12-02 | 2005-08-04 | Palomar Medical Technologies, Inc. | System for electromagnetic radiation dermatology and head for use therewith |
US20050285928A1 (en) * | 2003-12-31 | 2005-12-29 | Broome Barry G | Optical pattern generator using a single rotating component |
US20060089687A1 (en) * | 2002-12-12 | 2006-04-27 | Greg Spooner | System for controlled spatially-selective epidermal pigmentation phototherapy with UVA LEDs |
US20060119920A1 (en) * | 2003-12-31 | 2006-06-08 | Debenedictis Leonard C | High speed, high efficiency optical pattern generator using rotating optical elements |
US20060217695A1 (en) * | 2003-12-31 | 2006-09-28 | Debenedictis Leonard C | Optically-induced treatment of internal tissue |
US20070060984A1 (en) * | 2005-09-09 | 2007-03-15 | Webb James S | Apparatus and method for optical stimulation of nerves and other animal tissue |
US20070106284A1 (en) * | 2001-08-23 | 2007-05-10 | Jerry Siegel | Apparatus and method for performing radiation energy treatments |
US20070239142A1 (en) * | 2006-03-10 | 2007-10-11 | Palomar Medical Technologies, Inc. | Photocosmetic device |
US20070244526A1 (en) * | 2006-04-14 | 2007-10-18 | Asa S.R.L. | Laser apparatus for therapeutic applications |
US20080058795A1 (en) * | 2006-04-12 | 2008-03-06 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Systems for autofluorescent imaging and target ablation |
US20080077198A1 (en) * | 2006-09-21 | 2008-03-27 | Aculight Corporation | Miniature apparatus and method for optical stimulation of nerves and other animal tissue |
US20080147053A1 (en) * | 2006-12-15 | 2008-06-19 | Korea Electro Technology Research Institute | Apparatus and method for photodynamic diagnosis and therapy of skin diseases and light source system thereof |
US7722656B1 (en) | 2005-02-25 | 2010-05-25 | Kim Robin Segal | Device and method for stimulating hair growth |
US7758621B2 (en) | 1997-05-15 | 2010-07-20 | Palomar Medical Technologies, Inc. | Method and apparatus for therapeutic EMR treatment on the skin |
US7763016B2 (en) | 1997-05-15 | 2010-07-27 | Palomar Medical Technologies, Inc. | Light energy delivery head |
US7883536B1 (en) | 2007-01-19 | 2011-02-08 | Lockheed Martin Corporation | Hybrid optical-electrical probes |
US20110087310A1 (en) * | 2009-10-12 | 2011-04-14 | Wellmike Enterprise Co., Ltd. | Hair-growth caring apparatus |
US7942916B2 (en) | 2002-05-23 | 2011-05-17 | Palomar Medical Technologies, Inc. | Phototreatment device for use with coolants and topical substances |
US8012189B1 (en) | 2007-01-11 | 2011-09-06 | Lockheed Martin Corporation | Method and vestibular implant using optical stimulation of nerves |
US8160696B2 (en) | 2008-10-03 | 2012-04-17 | Lockheed Martin Corporation | Nerve stimulator and method using simultaneous electrical and optical signals |
US8182473B2 (en) | 1999-01-08 | 2012-05-22 | Palomar Medical Technologies | Cooling system for a photocosmetic device |
US8268332B2 (en) | 2004-04-01 | 2012-09-18 | The General Hospital Corporation | Method for dermatological treatment using chromophores |
US8346347B2 (en) | 2005-09-15 | 2013-01-01 | Palomar Medical Technologies, Inc. | Skin optical characterization device |
US8475506B1 (en) | 2007-08-13 | 2013-07-02 | Lockheed Martin Corporation | VCSEL array stimulator apparatus and method for light stimulation of bodily tissues |
US8498699B2 (en) | 2008-10-03 | 2013-07-30 | Lockheed Martin Company | Method and nerve stimulator using simultaneous electrical and optical signals |
US8652187B2 (en) | 2010-05-28 | 2014-02-18 | Lockheed Martin Corporation | Cuff apparatus and method for optical and/or electrical nerve stimulation of peripheral nerves |
US8709078B1 (en) | 2011-08-03 | 2014-04-29 | Lockheed Martin Corporation | Ocular implant with substantially constant retinal spacing for transmission of nerve-stimulation light |
US8744570B2 (en) | 2009-01-23 | 2014-06-03 | Lockheed Martin Corporation | Optical stimulation of the brainstem and/or midbrain, including auditory areas |
US8747447B2 (en) | 2011-07-22 | 2014-06-10 | Lockheed Martin Corporation | Cochlear implant and method enabling enhanced music perception |
US8915948B2 (en) | 2002-06-19 | 2014-12-23 | Palomar Medical Technologies, Llc | Method and apparatus for photothermal treatment of tissue at depth |
US8929973B1 (en) | 2005-10-24 | 2015-01-06 | Lockheed Martin Corporation | Apparatus and method for characterizing optical sources used with human and animal tissues |
US8945197B1 (en) | 2005-10-24 | 2015-02-03 | Lockheed Martin Corporation | Sight-restoring visual prosthetic and method using infrared nerve-stimulation light |
US8956396B1 (en) | 2005-10-24 | 2015-02-17 | Lockheed Martin Corporation | Eye-tracking visual prosthetic and method |
US8996131B1 (en) | 2006-09-28 | 2015-03-31 | Lockheed Martin Corporation | Apparatus and method for managing chronic pain with infrared light sources and heat |
US9011329B2 (en) | 2004-04-19 | 2015-04-21 | Searete Llc | Lumenally-active device |
US9028536B2 (en) | 2006-08-02 | 2015-05-12 | Cynosure, Inc. | Picosecond laser apparatus and methods for its operation and use |
US9173837B2 (en) | 2004-04-19 | 2015-11-03 | The Invention Science Fund I, Llc | Controllable release nasal system |
US9198563B2 (en) | 2006-04-12 | 2015-12-01 | The Invention Science Fund I, Llc | Temporal control of a lumen traveling device in a body tube tree |
US9780518B2 (en) | 2012-04-18 | 2017-10-03 | Cynosure, Inc. | Picosecond laser apparatus and methods for treating target tissues with same |
US9801527B2 (en) | 2004-04-19 | 2017-10-31 | Gearbox, Llc | Lumen-traveling biological interface device |
US9919168B2 (en) | 2009-07-23 | 2018-03-20 | Palomar Medical Technologies, Inc. | Method for improvement of cellulite appearance |
US10245107B2 (en) | 2013-03-15 | 2019-04-02 | Cynosure, Inc. | Picosecond optical radiation systems and methods of use |
US10434324B2 (en) | 2005-04-22 | 2019-10-08 | Cynosure, Llc | Methods and systems for laser treatment using non-uniform output beam |
WO2019241465A1 (en) * | 2018-06-14 | 2019-12-19 | Lumenis Ltd. | Cosmetic method and apparatus for the treatment of skin tissue using two wavelengths of laser energy |
US11007373B1 (en) * | 2002-12-20 | 2021-05-18 | James Andrew Ohneck | Photobiostimulation device and method of using same |
US11418000B2 (en) | 2018-02-26 | 2022-08-16 | Cynosure, Llc | Q-switched cavity dumped sub-nanosecond laser |
US11439307B2 (en) | 2012-12-05 | 2022-09-13 | Accuvein, Inc. | Method for detecting fluorescence and ablating cancer cells of a target surgical area |
Families Citing this family (136)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060149343A1 (en) * | 1996-12-02 | 2006-07-06 | Palomar Medical Technologies, Inc. | Cooling system for a photocosmetic device |
US6104959A (en) | 1997-07-31 | 2000-08-15 | Microwave Medical Corp. | Method and apparatus for treating subcutaneous histological features |
AU784423B2 (en) * | 2000-01-25 | 2006-03-30 | General Hospital Corporation, The | Method and apparatus for medical treatment utilizing long duration electromagnetic radiation |
US6746444B2 (en) * | 2000-12-18 | 2004-06-08 | Douglas J. Key | Method of amplifying a beneficial selective skin response to light energy |
EP1347711B1 (en) * | 2000-12-28 | 2006-11-15 | Palomar Medical Technologies, Inc. | Apparatus for therapeutic emr treatment of the skin |
FR2818889A1 (en) * | 2000-12-29 | 2002-07-05 | Jean Louis Savoyet | Laser hair removal device, uses micro-camera in laser beam delivery hand piece to provide image of skin region which is magnified and used to control power delivered by laser to reduce skin damage |
ITMO20010008A1 (en) * | 2001-01-29 | 2002-07-29 | Laserwave Srl | DEVICE FOR SKIN TREATMENTS |
WO2002069825A2 (en) * | 2001-03-02 | 2002-09-12 | Palomar Medical Technologies, Inc. | Apparatus and method for photocosmetic and photodermatological treatment |
US6887233B2 (en) * | 2001-03-22 | 2005-05-03 | Lumenis, Inc. | Scanning laser handpiece with shaped output beam |
JP2005500108A (en) * | 2001-08-15 | 2005-01-06 | リライアント テクノロジーズ,インコーポレイティド | Apparatus and method for thermal excision of biological tissue |
US20040147984A1 (en) * | 2001-11-29 | 2004-07-29 | Palomar Medical Technologies, Inc. | Methods and apparatus for delivering low power optical treatments |
US20030216719A1 (en) * | 2001-12-12 | 2003-11-20 | Len Debenedictis | Method and apparatus for treating skin using patterns of optical energy |
US20030109860A1 (en) * | 2001-12-12 | 2003-06-12 | Michael Black | Multiple laser treatment |
US20030109787A1 (en) * | 2001-12-12 | 2003-06-12 | Michael Black | Multiple laser diagnostics |
US20040082940A1 (en) * | 2002-10-22 | 2004-04-29 | Michael Black | Dermatological apparatus and method |
WO2003057059A1 (en) * | 2001-12-27 | 2003-07-17 | Palomar Medical Technologies, Inc. | Method and apparatus for improved vascular related treatment |
JP2004121814A (en) * | 2002-04-08 | 2004-04-22 | Lumenis Inc | System, method and apparatus for providing uniform illumination |
WO2004000150A1 (en) * | 2002-06-19 | 2003-12-31 | Palomar Medical Technologies, Inc. | Method and apparatus for photothermal treatment of tissue at depth |
US7201766B2 (en) * | 2002-07-03 | 2007-04-10 | Life Support Technologies, Inc. | Methods and apparatus for light therapy |
EP1558339A1 (en) * | 2002-10-07 | 2005-08-03 | Palomar Medical Technologies, Inc. | Apparatus for performing photobiostimulation |
US20070213792A1 (en) * | 2002-10-07 | 2007-09-13 | Palomar Medical Technologies, Inc. | Treatment Of Tissue Volume With Radiant Energy |
US20070219605A1 (en) * | 2006-03-20 | 2007-09-20 | Palomar Medical Technologies, Inc. | Treatment of tissue volume with radiant energy |
AU2003301111A1 (en) * | 2002-12-20 | 2004-07-22 | Palomar Medical Technologies, Inc. | Apparatus for light treatment of acne and other disorders of follicles |
US20040230258A1 (en) * | 2003-02-19 | 2004-11-18 | Palomar Medical Technologies, Inc. | Method and apparatus for treating pseudofolliculitis barbae |
DE202004021226U1 (en) * | 2003-03-27 | 2007-07-26 | The General Hospital Corp., Boston | Device for dermatological treatment and fractional surface renewal of the skin |
US8251057B2 (en) | 2003-06-30 | 2012-08-28 | Life Support Technologies, Inc. | Hyperbaric chamber control and/or monitoring system and methods for using the same |
EP1653876A1 (en) * | 2003-07-11 | 2006-05-10 | Reliant Technologies, Inc. | Method and apparatus for fractional photo therapy of skin |
US20050065577A1 (en) * | 2003-09-23 | 2005-03-24 | Mcarthur Frank G. | Low level laser tissue treatment |
US7090670B2 (en) * | 2003-12-31 | 2006-08-15 | Reliant Technologies, Inc. | Multi-spot laser surgical apparatus and method |
US7220254B2 (en) * | 2003-12-31 | 2007-05-22 | Palomar Medical Technologies, Inc. | Dermatological treatment with visualization |
GB0402321D0 (en) * | 2004-02-03 | 2004-03-10 | Cyden Ltd | Hair removal |
CA2561344A1 (en) * | 2004-04-09 | 2005-10-27 | Palomar Medical Technologies, Inc. | Methods and products for producing lattices of emr-treated islets in tissues, and uses therefor |
US20080132886A1 (en) * | 2004-04-09 | 2008-06-05 | Palomar Medical Technologies, Inc. | Use of fractional emr technology on incisions and internal tissues |
AT500141B1 (en) * | 2004-04-28 | 2008-03-15 | W & H Dentalwerk Buermoos Gmbh | DENTAL LASER TREATMENT DEVICE |
US7761945B2 (en) | 2004-05-28 | 2010-07-27 | Life Support Technologies, Inc. | Apparatus and methods for preventing pressure ulcers in bedfast patients |
US7413572B2 (en) | 2004-06-14 | 2008-08-19 | Reliant Technologies, Inc. | Adaptive control of optical pulses for laser medicine |
FR2872405B1 (en) * | 2004-07-02 | 2006-11-10 | Biomedical Electronics | METHOD FOR PARAMETERSING A SKIN TREATMENT DEVICE USING LIGHT SOURCES |
DE102004050143A1 (en) * | 2004-10-14 | 2006-04-27 | EKA Gesellschaft für medizinisch-technische Geräte mbH | Device for the treatment of visible fine surface veins |
US20060253176A1 (en) * | 2005-02-18 | 2006-11-09 | Palomar Medical Technologies, Inc. | Dermatological treatment device with deflector optic |
BRPI0607903A2 (en) * | 2005-02-18 | 2009-10-20 | Palomar Medical Tech Inc | dermatological treatment device |
DE102005010723A1 (en) * | 2005-02-24 | 2006-08-31 | LÜLLAU, Friedrich | UV irradiation device for acting upon biological cellular structures, especially the skin, for medical and therapeutic purposes, has means for matching UV exposure geometries to those areas requiring treatment |
WO2006093384A1 (en) * | 2005-03-02 | 2006-09-08 | Meridian Co., Ltd. | Adipose resolve apparatus for low-power laser |
WO2006111199A1 (en) * | 2005-04-18 | 2006-10-26 | Pantec Biosolutions Ag | Microporator for parating a biological membran and integrated permeant administering system |
WO2007027962A2 (en) | 2005-08-29 | 2007-03-08 | Reliant Technologies, Inc. | Method and apparatus for monitoring and controlling thermally induced tissue treatment |
US8603084B2 (en) | 2005-12-06 | 2013-12-10 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing the formation of a lesion in tissue |
US9492226B2 (en) | 2005-12-06 | 2016-11-15 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Graphical user interface for real-time RF lesion depth display |
US8403925B2 (en) | 2006-12-06 | 2013-03-26 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing lesions in tissue |
US9254163B2 (en) | 2005-12-06 | 2016-02-09 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Assessment of electrode coupling for tissue ablation |
US10362959B2 (en) | 2005-12-06 | 2019-07-30 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for assessing the proximity of an electrode to tissue in a body |
US8033284B2 (en) * | 2006-01-11 | 2011-10-11 | Curaelase, Inc. | Therapeutic laser treatment |
US20070194717A1 (en) * | 2006-02-17 | 2007-08-23 | Palomar Medical Technologies, Inc. | Lamp for use in a tissue treatment device |
WO2007117580A2 (en) * | 2006-04-06 | 2007-10-18 | Palomar Medical Technologies, Inc. | Apparatus and method for skin treatment with compression and decompression |
US20070239145A1 (en) * | 2006-04-11 | 2007-10-11 | Raphael Laderman | System and method to assist in the treatment of skin conditions |
US20070260230A1 (en) * | 2006-05-04 | 2007-11-08 | Reliant Technologies, Inc. | Opto-mechanical Apparatus and Method for Dermatological Treatment |
GB2439286B (en) * | 2006-06-22 | 2010-09-15 | Dezac Group Ltd | Apparatus and methods for skin treatment |
PL2034920T3 (en) * | 2006-06-26 | 2015-06-30 | Koninklijke Philips Nv | Device for laser treatments of skin |
US20080015553A1 (en) * | 2006-07-12 | 2008-01-17 | Jaime Zacharias | Steering laser treatment system and method of use |
WO2008008499A2 (en) | 2006-07-13 | 2008-01-17 | Reliant Technologies, Inc. | Apparatus and method for adjustable fractional optical dermatological treatment |
US7612763B2 (en) * | 2006-08-03 | 2009-11-03 | Schneider Data Technologies | Computer peripheral with integrated infrared therapy and method of making same |
US20100039385A1 (en) * | 2006-08-03 | 2010-02-18 | Schneider Paul P | Computer Peripheral with Integrated Electromagnetic Radiation Therapy |
US8556888B2 (en) | 2006-08-04 | 2013-10-15 | INTIO, Inc. | Methods and apparatuses for performing and monitoring thermal ablation |
US20080033418A1 (en) * | 2006-08-04 | 2008-02-07 | Nields Morgan W | Methods for monitoring thermal ablation |
US20080033419A1 (en) * | 2006-08-04 | 2008-02-07 | Nields Morgan W | Method for planning, performing and monitoring thermal ablation |
US8155416B2 (en) | 2008-02-04 | 2012-04-10 | INTIO, Inc. | Methods and apparatuses for planning, performing, monitoring and assessing thermal ablation |
US7871406B2 (en) | 2006-08-04 | 2011-01-18 | INTIO, Inc. | Methods for planning and performing thermal ablation |
US20080058782A1 (en) * | 2006-08-29 | 2008-03-06 | Reliant Technologies, Inc. | Method and apparatus for monitoring and controlling density of fractional tissue treatments |
US20080161745A1 (en) * | 2006-09-08 | 2008-07-03 | Oliver Stumpp | Bleaching of contrast enhancing agent applied to skin for use with a dermatological treatment system |
US20080091249A1 (en) * | 2006-10-11 | 2008-04-17 | Bwt Property, Inc. | Photobiomodulation Apparatus with Enhanced Performance and Safety Features |
WO2008052189A2 (en) * | 2006-10-26 | 2008-05-02 | Reliant Technologies, Inc. | Micropore delivery of active substances |
EP2077718B2 (en) | 2006-10-27 | 2022-03-09 | Edwards Lifesciences Corporation | Biological tissue for surgical implantation |
EP1920798A1 (en) * | 2006-11-08 | 2008-05-14 | Roewer, Norbert, Univ.-Prof. Dr. med. | Infrared irradiation device for irradiating human skin |
US20080154247A1 (en) * | 2006-12-20 | 2008-06-26 | Reliant Technologies, Inc. | Apparatus and method for hair removal and follicle devitalization |
WO2008083305A2 (en) * | 2006-12-29 | 2008-07-10 | Palomar Medical Technologies, Inc. | Devices for fractional ablation of tissue |
ES2333924B1 (en) * | 2007-01-12 | 2010-12-03 | Nita 54 S.L. | SYSTEM OF OBTAINING THE PARAMETERS OF ADJUSTMENTS FOR LASER DEPILATION. |
WO2009128940A1 (en) * | 2008-04-17 | 2009-10-22 | Miramar Labs, Inc. | Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy |
US20100211059A1 (en) | 2007-04-19 | 2010-08-19 | Deem Mark E | Systems and methods for creating an effect using microwave energy to specified tissue |
JP5543332B2 (en) | 2007-04-19 | 2014-07-09 | ミラマー ラブズ, インコーポレイテッド | Systems and methods for producing effects on specific tissues using microwave energy |
US20100114086A1 (en) | 2007-04-19 | 2010-05-06 | Deem Mark E | Methods, devices, and systems for non-invasive delivery of microwave therapy |
JP2010524591A (en) * | 2007-04-19 | 2010-07-22 | ザ ファウンドリー, インコーポレイテッド | Method and apparatus for reducing sweat production |
US20080262484A1 (en) * | 2007-04-23 | 2008-10-23 | Nlight Photonics Corporation | Motion-controlled laser surface treatment apparatus |
WO2008153999A1 (en) * | 2007-06-08 | 2008-12-18 | Cynosure, Inc. | Thermal surgery safety apparatus and method |
EP2025299A1 (en) * | 2007-08-16 | 2009-02-18 | Optical System & Research for Industry and Science Osyris | Method and system for controlling a treatment by sub-cutaneous or intra-cutaneous irradiation using electromagnetic radiation |
EP2030586B1 (en) * | 2007-09-01 | 2011-05-11 | Fotona d.d. | Laser system for medical and cosmetic applications |
WO2009052866A1 (en) * | 2007-10-25 | 2009-04-30 | Pantec Biosolutions Ag | Laser device and method for ablating biological tissue |
US20090149930A1 (en) * | 2007-12-07 | 2009-06-11 | Thermage, Inc. | Apparatus and methods for cooling a treatment apparatus configured to non-invasively deliver electromagnetic energy to a patient's tissue |
CN101970046B (en) * | 2007-12-12 | 2015-03-25 | 美丽华实验室公司 | Disposable medical equipment and system thereof |
KR101826243B1 (en) | 2007-12-12 | 2018-02-06 | 미라마 랩스 인코포레이티드 | Systems, apparatus, methods and procedures for the noninvasive treatment of tissue using microwave energy |
US8290578B2 (en) | 2007-12-28 | 2012-10-16 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Method and apparatus for complex impedance compensation |
US9204927B2 (en) * | 2009-05-13 | 2015-12-08 | St. Jude Medical, Atrial Fibrillation Division, Inc. | System and method for presenting information representative of lesion formation in tissue during an ablation procedure |
US7896908B2 (en) * | 2008-01-08 | 2011-03-01 | Oregon Aesthetic Technologies | Skin therapy system |
CN101909692B (en) * | 2008-01-14 | 2015-07-22 | 皇家飞利浦电子股份有限公司 | Therapy system with temperature control |
KR101633625B1 (en) | 2008-03-21 | 2016-06-27 | 코닌클리케 필립스 엔.브이. | Hair removal system and method |
US7671327B2 (en) | 2008-04-22 | 2010-03-02 | Candela Corporation | Self calibrating irradiation system |
US20100041998A1 (en) * | 2008-08-18 | 2010-02-18 | Postel Olivier B | Method for Detecting and/or Monitoring a Wound Using Infrared Thermal Imaging |
DE102008045824A1 (en) * | 2008-09-05 | 2010-03-11 | livetec Ingenieurbüro GmbH | Treatment device for external treatment of human or animal body for simulating cells of nerves and muscles, has sensor directly or indirectly arranged at fastening device, and controlling device connected with sensor |
EP2163218A1 (en) * | 2008-09-16 | 2010-03-17 | Osyris Medical | Device for treating part of a human or animal body comprising an instrument for dispensing and/or an instrument for locally sucking up treatment doses and means for controlling dosimetry |
DE102008048409A1 (en) * | 2008-09-23 | 2010-03-25 | Megasun Invest Ag | Method and device for hair removal |
US20120046653A1 (en) * | 2009-03-05 | 2012-02-23 | Cynosure, Inc. | Pulsed therapeutic light system and method |
IT1393933B1 (en) * | 2009-03-31 | 2012-05-17 | Battista | CONTROL AND SUPPORT SYSTEM, PARTICULARLY FOR EQUIPMENT FOR THE TREATMENT OF INESTETISMS. |
US9414889B2 (en) * | 2009-09-04 | 2016-08-16 | Restoration Robotics, Inc. | Follicular unit harvesting tool |
US20110071601A1 (en) * | 2009-09-23 | 2011-03-24 | Resteche Llc | Keyboard with integrated electromagnetic radiation therapy |
EP2485671B1 (en) * | 2009-10-06 | 2019-03-20 | Cardiofocus, Inc. | Cardiac ablation image analysis system |
EP2521587B1 (en) * | 2010-01-08 | 2020-04-08 | Wake Forest University Health Sciences | Delivery system |
US20110172746A1 (en) * | 2010-01-12 | 2011-07-14 | Roger Porter | High Level Laser Therapy Apparatus and Methods |
DE102010009554A1 (en) | 2010-02-26 | 2011-09-01 | Lüllau Engineering Gmbh | Method and irradiation apparatus for irradiating curved surfaces with non-ionizing radiation |
BR122014006918B1 (en) | 2010-03-23 | 2020-09-29 | Edwards Lifesciences Corporation. | METHOD FOR PREPARING BIOPROTETIC TISSUE MEMBRANE MATERIAL |
FR2966740B1 (en) * | 2010-10-27 | 2013-07-12 | Biolux Medical | PHOTO-MODULATION METHOD AND DEVICE |
US8951266B2 (en) | 2011-01-07 | 2015-02-10 | Restoration Robotics, Inc. | Methods and systems for modifying a parameter of an automated procedure |
AU2012225644B2 (en) | 2011-03-07 | 2017-05-04 | Wake Forest University Health Sciences | Delivery system |
TWI450742B (en) * | 2011-03-15 | 2014-09-01 | Crystalvue Medical Corp | Optical apparatus |
US9314301B2 (en) | 2011-08-01 | 2016-04-19 | Miramar Labs, Inc. | Applicator and tissue interface module for dermatological device |
GB2496895A (en) * | 2011-11-25 | 2013-05-29 | Cyden Ltd | Skin treatment apparatus |
KR101219682B1 (en) * | 2012-03-09 | 2013-01-15 | (주)서울오션아쿠아리움 | Laser irradiating system and laser irradiating robot comprising the same |
US9211214B2 (en) * | 2012-03-21 | 2015-12-15 | Valeant Pharmaceuticals International, Inc | Photodynamic therapy laser |
WO2014042771A2 (en) | 2012-07-28 | 2014-03-20 | Harvard Bioscience, Inc. | Analytical methods |
US10238771B2 (en) | 2012-11-08 | 2019-03-26 | Edwards Lifesciences Corporation | Methods for treating bioprosthetic tissue using a nucleophile/electrophile in a catalytic system |
WO2014168832A1 (en) * | 2013-04-08 | 2014-10-16 | Farhan Taghizadeh | System and method for providing treatment feedback for a thermal treatment device |
WO2015013502A2 (en) | 2013-07-24 | 2015-01-29 | Miramar Labs, Inc. | Apparatus and methods for the treatment of tissue using microwave energy |
EP3125837A4 (en) * | 2014-04-04 | 2017-11-08 | Aesthetics Biomedical, Inc. | System and method for providing treatment feedback for a thermal treatment device |
US10420608B2 (en) | 2014-05-20 | 2019-09-24 | Verily Life Sciences Llc | System for laser ablation surgery |
US10643371B2 (en) * | 2014-08-11 | 2020-05-05 | Covidien Lp | Treatment procedure planning system and method |
US9907975B1 (en) | 2014-11-19 | 2018-03-06 | Roger D. Porter | Therapeutic laser treatment and transdermal stimulation of stem cell differentiation |
KR102565796B1 (en) | 2014-11-26 | 2023-08-09 | 컨버전트 덴탈 인크 | Systems and methods to control depth of treatment in dental laser systems |
JP6739431B2 (en) | 2014-12-05 | 2020-08-12 | コンバージェント デンタル, インコーポレイテッド | System and method for laser beam alignment |
TR201902299T4 (en) | 2015-05-07 | 2019-03-21 | Koninklijke Philips Nv | An optical system. |
US11490990B2 (en) * | 2015-11-12 | 2022-11-08 | Millennium Healtcare Technologies, Inc. | Laser-assisted periodontics |
EP3446751A4 (en) * | 2016-04-19 | 2019-05-01 | Oh&Lee Medical Robot, Inc. | Method for controlling moving pattern for laser treatment and laser irradiation device using same |
AU2018288614B2 (en) * | 2017-06-20 | 2020-10-08 | Colgate-Palmolive Company | Skin care implement and system |
CN107890341A (en) * | 2017-12-08 | 2018-04-10 | 北京理工大学珠海学院 | The Intelligent Measurement and therapeutic system of a kind of psoriasis |
WO2019165302A1 (en) * | 2018-02-23 | 2019-08-29 | Globalasereach Llc | Device for delivering precision phototherapy |
PL3905977T3 (en) * | 2018-12-31 | 2023-07-24 | Avava, Inc. | Systems and methods for treating tissue |
WO2021027261A1 (en) * | 2019-08-09 | 2021-02-18 | 深圳市洋沃电子有限公司 | Portable hair removal device |
WO2021094938A1 (en) * | 2019-11-11 | 2021-05-20 | El.En. S.P.A. | Laser device for skin treatments and method |
JP6994793B1 (en) * | 2021-03-02 | 2022-01-14 | 株式会社Eidea | Hair removal device and irradiation position correction method |
EP4186559A1 (en) * | 2021-11-25 | 2023-05-31 | Koninklijke Philips N.V. | Processing unit for an acne-treatment apparatus |
US11963831B2 (en) * | 2022-05-20 | 2024-04-23 | William H. Chen Living Trust | Analgesic device and procedure for use |
Citations (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3307553A (en) | 1963-01-30 | 1967-03-07 | Edwin J Liebner | Apparatus for cooling irradiated skin areas |
US3821510A (en) | 1973-02-22 | 1974-06-28 | H Muncheryan | Hand held laser instrumentation device |
US4140130A (en) | 1977-05-31 | 1979-02-20 | Storm Iii Frederick K | Electrode structure for radio frequency localized heating of tumor bearing tissue |
US4587396A (en) | 1982-12-31 | 1986-05-06 | Laser Industries Ltd. | Control apparatus particularly useful for controlling a laser |
WO1986006527A1 (en) | 1985-04-22 | 1986-11-06 | The Quantum Fund Ltd. | Skin-pattern recognition method and device |
US4849859A (en) * | 1986-04-22 | 1989-07-18 | Kabushiki Kaisha Morita Seisakusho | Laser-type handpiece |
US4854320A (en) | 1983-10-06 | 1989-08-08 | Laser Surgery Software, Inc. | Laser healing method and apparatus |
US4913132A (en) * | 1986-07-25 | 1990-04-03 | Noble Gabriel | Myringotomy instrument |
DE3837248A1 (en) * | 1988-10-28 | 1990-05-03 | Teichmann Heinrich Otto Dr Phy | Device for treating skin lesions |
US4938205A (en) | 1988-05-27 | 1990-07-03 | The University Of Connecticut | Endoscope with traced raster and elemental photodetectors |
US5048904A (en) | 1990-07-06 | 1991-09-17 | General Scanning, Inc. | Two-mirror scanner with pincushion error correction |
US5107516A (en) | 1990-02-15 | 1992-04-21 | Laser-Laboratorium | Apparatus for controlled ablation by laser radiation |
US5106387A (en) | 1985-03-22 | 1992-04-21 | Massachusetts Institute Of Technology | Method for spectroscopic diagnosis of tissue |
WO1993008877A1 (en) | 1991-11-06 | 1993-05-13 | Lai Shui T | Corneal surgery device and method |
WO1993016631A1 (en) | 1992-02-27 | 1993-09-02 | Phoenix Laser Systems, Inc. | Automated laser workstation for high precision surgical and industrial interventions |
WO1994000194A1 (en) * | 1992-06-29 | 1994-01-06 | Raimund Kaufmann | Probe for heating body tissue |
US5330519A (en) | 1990-09-05 | 1994-07-19 | Breg, Inc. | Therapeutic nonambient temperature fluid circulation system |
US5344418A (en) | 1991-12-12 | 1994-09-06 | Shahriar Ghaffari | Optical system for treatment of vascular lesions |
US5382770A (en) | 1993-01-14 | 1995-01-17 | Reliant Laser Corporation | Mirror-based laser-processing system with visual tracking and position control of a moving laser spot |
WO1995003089A1 (en) | 1993-07-21 | 1995-02-02 | Lucid Technologies, Inc. | Laser treatment system with electronic visualization |
US5405368A (en) | 1992-10-20 | 1995-04-11 | Esc Inc. | Method and apparatus for therapeutic electromagnetic treatment |
US5456260A (en) | 1994-04-05 | 1995-10-10 | The General Hospital Corporation | Fluorescence detection of cell proliferation |
US5474549A (en) * | 1991-07-09 | 1995-12-12 | Laserscope | Method and system for scanning a laser beam for controlled distribution of laser dosage |
US5531740A (en) * | 1994-09-06 | 1996-07-02 | Rapistan Demag Corporation | Automatic color-activated scanning treatment of dermatological conditions by laser |
WO1996025979A1 (en) * | 1995-02-24 | 1996-08-29 | Grigory Borisovich Altshuler | Device for use in the laser treatment of biological tissue (variants thereof) |
US5588428A (en) | 1993-04-28 | 1996-12-31 | The University Of Akron | Method and apparatus for non-invasive volume and texture analysis |
EP0763371A2 (en) * | 1995-09-15 | 1997-03-19 | ESC Medical Systems Ltd. | Method and apparatus for skin rejuvenation and wrinkle smoothing |
US5620478A (en) | 1992-10-20 | 1997-04-15 | Esc Medical Systems Ltd. | Method and apparatus for therapeutic electromagnetic treatment |
US5628744A (en) * | 1993-12-21 | 1997-05-13 | Laserscope | Treatment beam handpiece |
US5630811A (en) | 1996-03-25 | 1997-05-20 | Miller; Iain D. | Method and apparatus for hair removal |
EP0783904A2 (en) * | 1995-12-26 | 1997-07-16 | ESC Medical Systems Ltd. | Method and apparatus for controlling the thermal profile of skin |
EP0788765A1 (en) * | 1996-02-09 | 1997-08-13 | ESC Medical Systems Ltd. | Method and apparatus for diagnosis of skin lesions |
US5720772A (en) | 1992-10-20 | 1998-02-24 | Esc Medical Systems Ltd. | Method and apparatus for therapeutic electromagnetic treatment |
EP0827716A2 (en) * | 1996-09-04 | 1998-03-11 | ESC Medical Systems Ltd. | Device for cooling skin during laser treatment |
US5735276A (en) | 1995-03-21 | 1998-04-07 | Lemelson; Jerome | Method and apparatus for scanning and evaluating matter |
US5742392A (en) | 1996-04-16 | 1998-04-21 | Seymour Light, Inc. | Polarized material inspection apparatus |
US5743902A (en) * | 1995-01-23 | 1998-04-28 | Coherent, Inc. | Hand-held laser scanner |
WO1998024514A1 (en) * | 1996-12-02 | 1998-06-11 | Palomar Medical Technologies Inc. | Laser dermatology with feedback control |
WO1998025528A1 (en) * | 1996-12-10 | 1998-06-18 | Asah Medico A/S | An apparatus for cosmetic tissue treatment |
US5779702A (en) * | 1997-04-09 | 1998-07-14 | Microaire Surgical Instruments, Inc. | High speed pulse lavage surgical hand tool attachment |
WO1998033558A1 (en) | 1997-02-05 | 1998-08-06 | Candela Corporation | Method and apparatus for treating wrinkles in skin using radiation |
US5814040A (en) * | 1994-04-05 | 1998-09-29 | The Regents Of The University Of California | Apparatus and method for dynamic cooling of biological tissues for thermal mediated surgery |
US5814041A (en) | 1992-03-20 | 1998-09-29 | The General Hospital Corporation | Laser illuminator |
US5820626A (en) | 1996-07-30 | 1998-10-13 | Laser Aesthetics, Inc. | Cooling laser handpiece with refillable coolant reservoir |
US5830208A (en) | 1997-01-31 | 1998-11-03 | Laserlite, Llc | Peltier cooled apparatus and methods for dermatological treatment |
WO1998049963A1 (en) | 1997-05-08 | 1998-11-12 | Laser Industries Ltd. | Method and apparatus for performing transmyocardial revascularization |
US5836939A (en) * | 1995-10-25 | 1998-11-17 | Plc Medical Systems, Inc. | Surgical laser handpiece |
WO1998051235A1 (en) | 1997-05-15 | 1998-11-19 | Palomar Medical Technologies, Inc. | Method and apparatus for dermatology treatment |
EP0880941A1 (en) | 1997-05-30 | 1998-12-02 | Nidek Co., Ltd. | Laser treatment apparatus |
WO1998055180A1 (en) | 1997-06-06 | 1998-12-10 | The Regents Of The University Of California | Method and apparatus for causing rapid and deep spatially selective coagulation during thermally mediated therapeutic procedures |
US5851181A (en) | 1996-08-30 | 1998-12-22 | Esc Medical Systems Ltd. | Apparatus for simultaneously viewing and spectrally analyzing a portion of skin |
WO1998057588A1 (en) | 1997-06-17 | 1998-12-23 | Cool Laser Optics, Inc. | Method and apparatus for temperature control of biologic tissue with simultaneous irradiation |
US5860968A (en) * | 1995-11-03 | 1999-01-19 | Luxar Corporation | Laser scanning method and apparatus |
US5865828A (en) | 1997-08-08 | 1999-02-02 | Jeng; James C. | Coaxial dual laser |
US5868731A (en) | 1996-03-04 | 1999-02-09 | Innotech Usa, Inc. | Laser surgical device and method of its use |
US5868732A (en) | 1996-05-12 | 1999-02-09 | Esc Medical Systems, Ltd. | Cooling apparatus for cutaneous treatment employing a laser and method for operating same |
EP0898983A1 (en) | 1997-08-29 | 1999-03-03 | Nidek Co., Ltd. | Laser treatment apparatus |
WO1999017668A1 (en) | 1997-10-08 | 1999-04-15 | The General Hospital Corporation | Phototherapy methods and systems |
EP0933096A2 (en) | 1998-01-29 | 1999-08-04 | International Business Machines Corporation | Laser for dermal ablation |
WO1999046005A1 (en) | 1998-03-12 | 1999-09-16 | Palomar Medical Technologies, Inc. | System for electromagnetic radiation of the skin |
US5995867A (en) | 1997-03-19 | 1999-11-30 | Lucid Inc | Cellular surgery utilizing confocal microscopy |
US6110195A (en) | 1998-06-01 | 2000-08-29 | Altralight, Inc. | Method and apparatus for surgical and dermatological treatment by multi-wavelength laser light |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5486172A (en) | 1989-05-30 | 1996-01-23 | Chess; Cyrus | Apparatus for treating cutaneous vascular lesions |
US5057104A (en) | 1989-05-30 | 1991-10-15 | Cyrus Chess | Method and apparatus for treating cutaneous vascular lesions |
DE4238457A1 (en) | 1992-11-13 | 1994-05-19 | Coiffeur Consulting Team Elect | Process for the action on hair for cosmetic purposes |
CA2131750C (en) | 1994-07-26 | 2000-11-21 | Nikolai I. Tankovich | Improved hair removal method |
US5595568A (en) | 1995-02-01 | 1997-01-21 | The General Hospital Corporation | Permanent hair removal using optical pulses |
US6096029A (en) | 1997-02-24 | 2000-08-01 | Laser Skin Toner, Inc. | Laser method for subsurface cutaneous treatment |
US6162211A (en) * | 1996-12-05 | 2000-12-19 | Thermolase Corporation | Skin enhancement using laser light |
US6008889A (en) | 1997-04-16 | 1999-12-28 | Zeng; Haishan | Spectrometer system for diagnosis of skin disease |
US6074382A (en) * | 1997-08-29 | 2000-06-13 | Asah Medico A/S | Apparatus for tissue treatment |
DE19852948C2 (en) | 1998-11-12 | 2002-07-18 | Asclepion Meditec Ag | Dermatological handpiece |
-
2000
- 2000-03-08 AU AU31472/00A patent/AU3147200A/en not_active Abandoned
- 2000-03-08 WO PCT/DK2000/000097 patent/WO2000053261A1/en active Application Filing
- 2000-09-13 US US09/662,373 patent/US6676654B1/en not_active Expired - Fee Related
-
2001
- 2001-10-11 US US09/973,464 patent/USRE38670E1/en not_active Expired - Lifetime
Patent Citations (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3307553A (en) | 1963-01-30 | 1967-03-07 | Edwin J Liebner | Apparatus for cooling irradiated skin areas |
US3821510A (en) | 1973-02-22 | 1974-06-28 | H Muncheryan | Hand held laser instrumentation device |
US4140130A (en) | 1977-05-31 | 1979-02-20 | Storm Iii Frederick K | Electrode structure for radio frequency localized heating of tumor bearing tissue |
US4587396A (en) | 1982-12-31 | 1986-05-06 | Laser Industries Ltd. | Control apparatus particularly useful for controlling a laser |
US4854320A (en) | 1983-10-06 | 1989-08-08 | Laser Surgery Software, Inc. | Laser healing method and apparatus |
US5106387A (en) | 1985-03-22 | 1992-04-21 | Massachusetts Institute Of Technology | Method for spectroscopic diagnosis of tissue |
WO1986006527A1 (en) | 1985-04-22 | 1986-11-06 | The Quantum Fund Ltd. | Skin-pattern recognition method and device |
US4849859A (en) * | 1986-04-22 | 1989-07-18 | Kabushiki Kaisha Morita Seisakusho | Laser-type handpiece |
US4913132A (en) * | 1986-07-25 | 1990-04-03 | Noble Gabriel | Myringotomy instrument |
US4938205A (en) | 1988-05-27 | 1990-07-03 | The University Of Connecticut | Endoscope with traced raster and elemental photodetectors |
DE3837248A1 (en) * | 1988-10-28 | 1990-05-03 | Teichmann Heinrich Otto Dr Phy | Device for treating skin lesions |
US5107516A (en) | 1990-02-15 | 1992-04-21 | Laser-Laboratorium | Apparatus for controlled ablation by laser radiation |
US5048904A (en) | 1990-07-06 | 1991-09-17 | General Scanning, Inc. | Two-mirror scanner with pincushion error correction |
US5330519A (en) | 1990-09-05 | 1994-07-19 | Breg, Inc. | Therapeutic nonambient temperature fluid circulation system |
US5330519B1 (en) | 1990-09-05 | 1998-11-10 | Breg Inc | Therapeutic nonambient temperature fluid circulation system |
US5474549A (en) * | 1991-07-09 | 1995-12-12 | Laserscope | Method and system for scanning a laser beam for controlled distribution of laser dosage |
WO1993008877A1 (en) | 1991-11-06 | 1993-05-13 | Lai Shui T | Corneal surgery device and method |
US5344418A (en) | 1991-12-12 | 1994-09-06 | Shahriar Ghaffari | Optical system for treatment of vascular lesions |
WO1993016631A1 (en) | 1992-02-27 | 1993-09-02 | Phoenix Laser Systems, Inc. | Automated laser workstation for high precision surgical and industrial interventions |
US5814041A (en) | 1992-03-20 | 1998-09-29 | The General Hospital Corporation | Laser illuminator |
WO1994000194A1 (en) * | 1992-06-29 | 1994-01-06 | Raimund Kaufmann | Probe for heating body tissue |
US5620478A (en) | 1992-10-20 | 1997-04-15 | Esc Medical Systems Ltd. | Method and apparatus for therapeutic electromagnetic treatment |
US5405368A (en) | 1992-10-20 | 1995-04-11 | Esc Inc. | Method and apparatus for therapeutic electromagnetic treatment |
US5720772A (en) | 1992-10-20 | 1998-02-24 | Esc Medical Systems Ltd. | Method and apparatus for therapeutic electromagnetic treatment |
US5382770A (en) | 1993-01-14 | 1995-01-17 | Reliant Laser Corporation | Mirror-based laser-processing system with visual tracking and position control of a moving laser spot |
US5588428A (en) | 1993-04-28 | 1996-12-31 | The University Of Akron | Method and apparatus for non-invasive volume and texture analysis |
WO1995003089A1 (en) | 1993-07-21 | 1995-02-02 | Lucid Technologies, Inc. | Laser treatment system with electronic visualization |
US5653706A (en) * | 1993-07-21 | 1997-08-05 | Lucid Technologies Inc. | Dermatological laser treatment system with electronic visualization of the area being treated |
US5628744A (en) * | 1993-12-21 | 1997-05-13 | Laserscope | Treatment beam handpiece |
US5814040A (en) * | 1994-04-05 | 1998-09-29 | The Regents Of The University Of California | Apparatus and method for dynamic cooling of biological tissues for thermal mediated surgery |
US5456260A (en) | 1994-04-05 | 1995-10-10 | The General Hospital Corporation | Fluorescence detection of cell proliferation |
US5531740A (en) * | 1994-09-06 | 1996-07-02 | Rapistan Demag Corporation | Automatic color-activated scanning treatment of dermatological conditions by laser |
US5957915A (en) | 1995-01-23 | 1999-09-28 | Coherent, Inc. | Hand-held laser scanner |
US5743902A (en) * | 1995-01-23 | 1998-04-28 | Coherent, Inc. | Hand-held laser scanner |
WO1996025979A1 (en) * | 1995-02-24 | 1996-08-29 | Grigory Borisovich Altshuler | Device for use in the laser treatment of biological tissue (variants thereof) |
US5735276A (en) | 1995-03-21 | 1998-04-07 | Lemelson; Jerome | Method and apparatus for scanning and evaluating matter |
EP0763371A2 (en) * | 1995-09-15 | 1997-03-19 | ESC Medical Systems Ltd. | Method and apparatus for skin rejuvenation and wrinkle smoothing |
US5836939A (en) * | 1995-10-25 | 1998-11-17 | Plc Medical Systems, Inc. | Surgical laser handpiece |
US5860968A (en) * | 1995-11-03 | 1999-01-19 | Luxar Corporation | Laser scanning method and apparatus |
EP0783904A2 (en) * | 1995-12-26 | 1997-07-16 | ESC Medical Systems Ltd. | Method and apparatus for controlling the thermal profile of skin |
US5833612A (en) | 1996-02-09 | 1998-11-10 | Esc Medical Systems, Ltd. | Method and apparatus for diagnosis skin lesions |
EP0788765A1 (en) * | 1996-02-09 | 1997-08-13 | ESC Medical Systems Ltd. | Method and apparatus for diagnosis of skin lesions |
US5868731A (en) | 1996-03-04 | 1999-02-09 | Innotech Usa, Inc. | Laser surgical device and method of its use |
US5853407A (en) | 1996-03-25 | 1998-12-29 | Luxar Corporation | Method and apparatus for hair removal |
US5630811A (en) | 1996-03-25 | 1997-05-20 | Miller; Iain D. | Method and apparatus for hair removal |
US5742392A (en) | 1996-04-16 | 1998-04-21 | Seymour Light, Inc. | Polarized material inspection apparatus |
US5868732A (en) | 1996-05-12 | 1999-02-09 | Esc Medical Systems, Ltd. | Cooling apparatus for cutaneous treatment employing a laser and method for operating same |
US5820626A (en) | 1996-07-30 | 1998-10-13 | Laser Aesthetics, Inc. | Cooling laser handpiece with refillable coolant reservoir |
US5851181A (en) | 1996-08-30 | 1998-12-22 | Esc Medical Systems Ltd. | Apparatus for simultaneously viewing and spectrally analyzing a portion of skin |
EP0827716A2 (en) * | 1996-09-04 | 1998-03-11 | ESC Medical Systems Ltd. | Device for cooling skin during laser treatment |
WO1998024514A1 (en) * | 1996-12-02 | 1998-06-11 | Palomar Medical Technologies Inc. | Laser dermatology with feedback control |
WO1998025528A1 (en) * | 1996-12-10 | 1998-06-18 | Asah Medico A/S | An apparatus for cosmetic tissue treatment |
US5830208A (en) | 1997-01-31 | 1998-11-03 | Laserlite, Llc | Peltier cooled apparatus and methods for dermatological treatment |
US5810801A (en) | 1997-02-05 | 1998-09-22 | Candela Corporation | Method and apparatus for treating wrinkles in skin using radiation |
WO1998033558A1 (en) | 1997-02-05 | 1998-08-06 | Candela Corporation | Method and apparatus for treating wrinkles in skin using radiation |
US5995867A (en) | 1997-03-19 | 1999-11-30 | Lucid Inc | Cellular surgery utilizing confocal microscopy |
US5779702A (en) * | 1997-04-09 | 1998-07-14 | Microaire Surgical Instruments, Inc. | High speed pulse lavage surgical hand tool attachment |
WO1998049963A1 (en) | 1997-05-08 | 1998-11-12 | Laser Industries Ltd. | Method and apparatus for performing transmyocardial revascularization |
WO1998051235A1 (en) | 1997-05-15 | 1998-11-19 | Palomar Medical Technologies, Inc. | Method and apparatus for dermatology treatment |
EP0880941A1 (en) | 1997-05-30 | 1998-12-02 | Nidek Co., Ltd. | Laser treatment apparatus |
WO1998055180A1 (en) | 1997-06-06 | 1998-12-10 | The Regents Of The University Of California | Method and apparatus for causing rapid and deep spatially selective coagulation during thermally mediated therapeutic procedures |
WO1998057588A1 (en) | 1997-06-17 | 1998-12-23 | Cool Laser Optics, Inc. | Method and apparatus for temperature control of biologic tissue with simultaneous irradiation |
US5865828A (en) | 1997-08-08 | 1999-02-02 | Jeng; James C. | Coaxial dual laser |
EP0898983A1 (en) | 1997-08-29 | 1999-03-03 | Nidek Co., Ltd. | Laser treatment apparatus |
WO1999017668A1 (en) | 1997-10-08 | 1999-04-15 | The General Hospital Corporation | Phototherapy methods and systems |
EP0933096A2 (en) | 1998-01-29 | 1999-08-04 | International Business Machines Corporation | Laser for dermal ablation |
WO1999046005A1 (en) | 1998-03-12 | 1999-09-16 | Palomar Medical Technologies, Inc. | System for electromagnetic radiation of the skin |
US6110195A (en) | 1998-06-01 | 2000-08-29 | Altralight, Inc. | Method and apparatus for surgical and dermatological treatment by multi-wavelength laser light |
Cited By (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050171517A1 (en) * | 1996-12-02 | 2005-08-04 | Palomar Medical Technologies, Inc. | System for electromagnetic radiation dermatology and head for use therewith |
US8328794B2 (en) | 1996-12-02 | 2012-12-11 | Palomar Medical Technologies, Inc. | System for electromagnetic radiation dermatology and head for use therewith |
US7758621B2 (en) | 1997-05-15 | 2010-07-20 | Palomar Medical Technologies, Inc. | Method and apparatus for therapeutic EMR treatment on the skin |
US8328796B2 (en) | 1997-05-15 | 2012-12-11 | Palomar Medical Technologies, Inc. | Light energy delivery head |
US7763016B2 (en) | 1997-05-15 | 2010-07-27 | Palomar Medical Technologies, Inc. | Light energy delivery head |
US8002768B1 (en) | 1997-05-15 | 2011-08-23 | Palomar Medical Technologies, Inc. | Light energy delivery head |
US7935107B2 (en) | 1997-05-15 | 2011-05-03 | Palomar Medical Technologies, Inc. | Heads for dermatology treatment |
US8109924B2 (en) | 1997-05-15 | 2012-02-07 | Palomar Medical Technologies, Inc. | Heads for dermatology treatment |
US8182473B2 (en) | 1999-01-08 | 2012-05-22 | Palomar Medical Technologies | Cooling system for a photocosmetic device |
US8287524B2 (en) * | 2001-08-23 | 2012-10-16 | Jerry Siegel | Apparatus and method for performing radiation energy treatments |
US20070106284A1 (en) * | 2001-08-23 | 2007-05-10 | Jerry Siegel | Apparatus and method for performing radiation energy treatments |
US7942916B2 (en) | 2002-05-23 | 2011-05-17 | Palomar Medical Technologies, Inc. | Phototreatment device for use with coolants and topical substances |
US7942915B2 (en) | 2002-05-23 | 2011-05-17 | Palomar Medical Technologies, Inc. | Phototreatment device for use with coolants |
US8915948B2 (en) | 2002-06-19 | 2014-12-23 | Palomar Medical Technologies, Llc | Method and apparatus for photothermal treatment of tissue at depth |
US10556123B2 (en) | 2002-06-19 | 2020-02-11 | Palomar Medical Technologies, Llc | Method and apparatus for treatment of cutaneous and subcutaneous conditions |
US10500413B2 (en) | 2002-06-19 | 2019-12-10 | Palomar Medical Technologies, Llc | Method and apparatus for treatment of cutaneous and subcutaneous conditions |
US20060089687A1 (en) * | 2002-12-12 | 2006-04-27 | Greg Spooner | System for controlled spatially-selective epidermal pigmentation phototherapy with UVA LEDs |
US11007373B1 (en) * | 2002-12-20 | 2021-05-18 | James Andrew Ohneck | Photobiostimulation device and method of using same |
US20040143278A1 (en) * | 2003-01-17 | 2004-07-22 | Nova-Tech Engineering, Inc. | Apparatus and method for upper and lower beak treatment |
US7232450B2 (en) * | 2003-01-17 | 2007-06-19 | Nova-Tech Engineering, Inc. | Apparatus and method for upper and lower beak treatment |
US7282060B2 (en) * | 2003-12-23 | 2007-10-16 | Reliant Technologies, Inc. | Method and apparatus for monitoring and controlling laser-induced tissue treatment |
US20050154380A1 (en) * | 2003-12-23 | 2005-07-14 | Debenedictis Leonard C. | Method and apparatus for monitoring and controlling laser-induced tissue treatment |
US7265884B2 (en) | 2003-12-31 | 2007-09-04 | Reliant Technologies, Inc. | High speed, high efficiency optical pattern generator using rotating optical elements |
US20050285928A1 (en) * | 2003-12-31 | 2005-12-29 | Broome Barry G | Optical pattern generator using a single rotating component |
US20060119920A1 (en) * | 2003-12-31 | 2006-06-08 | Debenedictis Leonard C | High speed, high efficiency optical pattern generator using rotating optical elements |
US20060217695A1 (en) * | 2003-12-31 | 2006-09-28 | Debenedictis Leonard C | Optically-induced treatment of internal tissue |
US8268332B2 (en) | 2004-04-01 | 2012-09-18 | The General Hospital Corporation | Method for dermatological treatment using chromophores |
US9452013B2 (en) | 2004-04-01 | 2016-09-27 | The General Hospital Corporation | Apparatus for dermatological treatment using chromophores |
US9801527B2 (en) | 2004-04-19 | 2017-10-31 | Gearbox, Llc | Lumen-traveling biological interface device |
US9173837B2 (en) | 2004-04-19 | 2015-11-03 | The Invention Science Fund I, Llc | Controllable release nasal system |
US9011329B2 (en) | 2004-04-19 | 2015-04-21 | Searete Llc | Lumenally-active device |
US7722656B1 (en) | 2005-02-25 | 2010-05-25 | Kim Robin Segal | Device and method for stimulating hair growth |
US10434324B2 (en) | 2005-04-22 | 2019-10-08 | Cynosure, Llc | Methods and systems for laser treatment using non-uniform output beam |
US20070060984A1 (en) * | 2005-09-09 | 2007-03-15 | Webb James S | Apparatus and method for optical stimulation of nerves and other animal tissue |
US8985119B1 (en) | 2005-09-09 | 2015-03-24 | Lockheed Martin Corporation | Method and apparatus for optical stimulation of nerves and other animal tissue |
US7736382B2 (en) * | 2005-09-09 | 2010-06-15 | Lockheed Martin Corporation | Apparatus for optical stimulation of nerves and other animal tissue |
US8346347B2 (en) | 2005-09-15 | 2013-01-01 | Palomar Medical Technologies, Inc. | Skin optical characterization device |
US8956396B1 (en) | 2005-10-24 | 2015-02-17 | Lockheed Martin Corporation | Eye-tracking visual prosthetic and method |
US8945197B1 (en) | 2005-10-24 | 2015-02-03 | Lockheed Martin Corporation | Sight-restoring visual prosthetic and method using infrared nerve-stimulation light |
US8929973B1 (en) | 2005-10-24 | 2015-01-06 | Lockheed Martin Corporation | Apparatus and method for characterizing optical sources used with human and animal tissues |
US20070239142A1 (en) * | 2006-03-10 | 2007-10-11 | Palomar Medical Technologies, Inc. | Photocosmetic device |
US9408530B2 (en) | 2006-04-12 | 2016-08-09 | Gearbox, Llc | Parameter-based navigation by a lumen traveling device |
US20080058795A1 (en) * | 2006-04-12 | 2008-03-06 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Systems for autofluorescent imaging and target ablation |
US9198563B2 (en) | 2006-04-12 | 2015-12-01 | The Invention Science Fund I, Llc | Temporal control of a lumen traveling device in a body tube tree |
US9220917B2 (en) * | 2006-04-12 | 2015-12-29 | The Invention Science Fund I, Llc | Systems for autofluorescent imaging and target ablation |
US20070244526A1 (en) * | 2006-04-14 | 2007-10-18 | Asa S.R.L. | Laser apparatus for therapeutic applications |
US8251982B2 (en) * | 2006-04-14 | 2012-08-28 | Asa S.R.L. | Laser apparatus for therapeutic applications |
US9028536B2 (en) | 2006-08-02 | 2015-05-12 | Cynosure, Inc. | Picosecond laser apparatus and methods for its operation and use |
US10966785B2 (en) | 2006-08-02 | 2021-04-06 | Cynosure, Llc | Picosecond laser apparatus and methods for its operation and use |
US10849687B2 (en) | 2006-08-02 | 2020-12-01 | Cynosure, Llc | Picosecond laser apparatus and methods for its operation and use |
US11712299B2 (en) | 2006-08-02 | 2023-08-01 | Cynosure, LLC. | Picosecond laser apparatus and methods for its operation and use |
US7988688B2 (en) | 2006-09-21 | 2011-08-02 | Lockheed Martin Corporation | Miniature apparatus and method for optical stimulation of nerves and other animal tissue |
US8506613B2 (en) | 2006-09-21 | 2013-08-13 | Lockheed Martin Corporation | Miniature method and apparatus for optical stimulation of nerves and other animal tissue |
US20080077198A1 (en) * | 2006-09-21 | 2008-03-27 | Aculight Corporation | Miniature apparatus and method for optical stimulation of nerves and other animal tissue |
US8996131B1 (en) | 2006-09-28 | 2015-03-31 | Lockheed Martin Corporation | Apparatus and method for managing chronic pain with infrared light sources and heat |
US9061135B1 (en) | 2006-09-28 | 2015-06-23 | Lockheed Martin Corporation | Apparatus and method for managing chronic pain with infrared and low-level light sources |
US8496695B2 (en) * | 2006-12-15 | 2013-07-30 | Korea Electro Technology Research Institute | Apparatus and method for photodynamic diagnosis and therapy of skin diseases and light source system thereof |
US20080147053A1 (en) * | 2006-12-15 | 2008-06-19 | Korea Electro Technology Research Institute | Apparatus and method for photodynamic diagnosis and therapy of skin diseases and light source system thereof |
US8551150B1 (en) | 2007-01-11 | 2013-10-08 | Lockheed Martin Corporation | Method and system for optical stimulation of nerves |
US8012189B1 (en) | 2007-01-11 | 2011-09-06 | Lockheed Martin Corporation | Method and vestibular implant using optical stimulation of nerves |
US8317848B1 (en) | 2007-01-11 | 2012-11-27 | Lockheed Martin Corporation | Vestibular implant and method for optical stimulation of nerves |
US8357187B1 (en) | 2007-01-19 | 2013-01-22 | Lockheed Martin Corporation | Hybrid optical-electrical probes for stimulation of nerve or other animal tissue |
US7883536B1 (en) | 2007-01-19 | 2011-02-08 | Lockheed Martin Corporation | Hybrid optical-electrical probes |
US8632577B1 (en) | 2007-01-19 | 2014-01-21 | Lockheed Martin Corporation | Hybrid optical-electrical probes for stimulation of nerve or other animal tissue |
US8475506B1 (en) | 2007-08-13 | 2013-07-02 | Lockheed Martin Corporation | VCSEL array stimulator apparatus and method for light stimulation of bodily tissues |
US9011508B2 (en) | 2007-11-30 | 2015-04-21 | Lockheed Martin Corporation | Broad wavelength profile to homogenize the absorption profile in optical stimulation of nerves |
US9011509B2 (en) | 2007-11-30 | 2015-04-21 | Lockheed Martin Corporation | Individually optimized performance of optically stimulating cochlear implants |
US8998914B2 (en) | 2007-11-30 | 2015-04-07 | Lockheed Martin Corporation | Optimized stimulation rate of an optically stimulating cochlear implant |
US8498699B2 (en) | 2008-10-03 | 2013-07-30 | Lockheed Martin Company | Method and nerve stimulator using simultaneous electrical and optical signals |
US8160696B2 (en) | 2008-10-03 | 2012-04-17 | Lockheed Martin Corporation | Nerve stimulator and method using simultaneous electrical and optical signals |
US8744570B2 (en) | 2009-01-23 | 2014-06-03 | Lockheed Martin Corporation | Optical stimulation of the brainstem and/or midbrain, including auditory areas |
US9919168B2 (en) | 2009-07-23 | 2018-03-20 | Palomar Medical Technologies, Inc. | Method for improvement of cellulite appearance |
US20110087310A1 (en) * | 2009-10-12 | 2011-04-14 | Wellmike Enterprise Co., Ltd. | Hair-growth caring apparatus |
US8968376B2 (en) | 2010-05-28 | 2015-03-03 | Lockheed Martin Corporation | Nerve-penetrating apparatus and method for optical and/or electrical nerve stimulation of peripheral nerves |
US8792978B2 (en) | 2010-05-28 | 2014-07-29 | Lockheed Martin Corporation | Laser-based nerve stimulators for, E.G., hearing restoration in cochlear prostheses and method |
US8864806B2 (en) | 2010-05-28 | 2014-10-21 | Lockheed Martin Corporation | Optical bundle apparatus and method for optical and/or electrical nerve stimulation of peripheral nerves |
US8652187B2 (en) | 2010-05-28 | 2014-02-18 | Lockheed Martin Corporation | Cuff apparatus and method for optical and/or electrical nerve stimulation of peripheral nerves |
US8840654B2 (en) | 2011-07-22 | 2014-09-23 | Lockheed Martin Corporation | Cochlear implant using optical stimulation with encoded information designed to limit heating effects |
US8747447B2 (en) | 2011-07-22 | 2014-06-10 | Lockheed Martin Corporation | Cochlear implant and method enabling enhanced music perception |
US8834545B2 (en) | 2011-07-22 | 2014-09-16 | Lockheed Martin Corporation | Optical-stimulation cochlear implant with electrode(s) at the apical end for electrical stimulation of apical spiral ganglion cells of the cochlea |
US8894697B2 (en) | 2011-07-22 | 2014-11-25 | Lockheed Martin Corporation | Optical pulse-width modulation used in an optical-stimulation cochlear implant |
US8709078B1 (en) | 2011-08-03 | 2014-04-29 | Lockheed Martin Corporation | Ocular implant with substantially constant retinal spacing for transmission of nerve-stimulation light |
US11095087B2 (en) | 2012-04-18 | 2021-08-17 | Cynosure, Llc | Picosecond laser apparatus and methods for treating target tissues with same |
US12068571B2 (en) | 2012-04-18 | 2024-08-20 | Cynosure, Llc | Picosecond laser apparatus and methods for treating target tissues with same |
US11664637B2 (en) | 2012-04-18 | 2023-05-30 | Cynosure, Llc | Picosecond laser apparatus and methods for treating target tissues with same |
US10581217B2 (en) | 2012-04-18 | 2020-03-03 | Cynosure, Llc | Picosecond laser apparatus and methods for treating target tissues with same |
US9780518B2 (en) | 2012-04-18 | 2017-10-03 | Cynosure, Inc. | Picosecond laser apparatus and methods for treating target tissues with same |
US10305244B2 (en) | 2012-04-18 | 2019-05-28 | Cynosure, Llc | Picosecond laser apparatus and methods for treating target tissues with same |
US11439307B2 (en) | 2012-12-05 | 2022-09-13 | Accuvein, Inc. | Method for detecting fluorescence and ablating cancer cells of a target surgical area |
US11446086B2 (en) | 2013-03-15 | 2022-09-20 | Cynosure, Llc | Picosecond optical radiation systems and methods of use |
US10245107B2 (en) | 2013-03-15 | 2019-04-02 | Cynosure, Inc. | Picosecond optical radiation systems and methods of use |
US10285757B2 (en) | 2013-03-15 | 2019-05-14 | Cynosure, Llc | Picosecond optical radiation systems and methods of use |
US10765478B2 (en) | 2013-03-15 | 2020-09-08 | Cynosurce, Llc | Picosecond optical radiation systems and methods of use |
US12193734B2 (en) | 2013-03-15 | 2025-01-14 | Cynosure, Llc | Picosecond optical radiation systems and methods of use |
US11418000B2 (en) | 2018-02-26 | 2022-08-16 | Cynosure, Llc | Q-switched cavity dumped sub-nanosecond laser |
US11791603B2 (en) | 2018-02-26 | 2023-10-17 | Cynosure, LLC. | Q-switched cavity dumped sub-nanosecond laser |
WO2019241465A1 (en) * | 2018-06-14 | 2019-12-19 | Lumenis Ltd. | Cosmetic method and apparatus for the treatment of skin tissue using two wavelengths of laser energy |
US11612760B2 (en) | 2018-06-14 | 2023-03-28 | Lumenis Be Ltd. | Cosmetic method and apparatus for the treatment of skin tissue using two wavelengths of laser energy |
US11964164B2 (en) | 2018-06-14 | 2024-04-23 | Lumenis Be Ltd. | Cosmetic method and apparatus for the treatment of skin tissue using two wavelengths of laser energy |
Also Published As
Publication number | Publication date |
---|---|
AU3147200A (en) | 2000-09-28 |
US6676654B1 (en) | 2004-01-13 |
WO2000053261A1 (en) | 2000-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE38670E1 (en) | 2004-12-14 | Apparatus for tissue treatment |
US6074382A (en) | 2000-06-13 | Apparatus for tissue treatment |
US6533776B2 (en) | 2003-03-18 | Apparatus for tissue treatment |
US5531740A (en) | 1996-07-02 | Automatic color-activated scanning treatment of dermatological conditions by laser |
US5653706A (en) | 1997-08-05 | Dermatological laser treatment system with electronic visualization of the area being treated |
JP4659761B2 (en) | 2011-03-30 | Device for monitoring and controlling tissue treatment with a laser |
US5546214A (en) | 1996-08-13 | Method and apparatus for treating a surface with a scanning laser beam having an improved intensity cross-section |
US7101365B1 (en) | 2006-09-05 | Laser for skin treatment |
US7083611B2 (en) | 2006-08-01 | Method and apparatus for providing facial rejuvenation treatments |
US20080015553A1 (en) | 2008-01-17 | Steering laser treatment system and method of use |
US6328733B1 (en) | 2001-12-11 | Hand-held laser scanner |
US7824396B2 (en) | 2010-11-02 | Scanner laser handpiece with shaped output beam |
EP1168973B1 (en) | 2005-10-26 | An apparatus for tissue treatment |
US20030220633A1 (en) | 2003-11-27 | Scanning laser handpiece with shaped output beam |
JP2008539934A (en) | 2008-11-20 | Hair growth control device and hair growth control method |
WO1989011260A1 (en) | 1989-11-30 | Handpiece and related apparatus for laser surgery and dentistry |
EP0948290B1 (en) | 2004-07-28 | An apparatus for cosmetic tissue treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
2007-11-22 | FPAY | Fee payment |
Year of fee payment: 8 |
2007-12-04 | FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
2011-12-19 | FPAY | Fee payment |
Year of fee payment: 12 |
2011-12-19 | SULP | Surcharge for late payment |
Year of fee payment: 11 |
2013-01-25 | AS | Assignment |
Owner name: MEDART A/S, DENMARK Free format text: CHANGE OF NAME;ASSIGNOR:ASAH MEDICO A/S;REEL/FRAME:029700/0667 Effective date: 20130107 |