USRE48326E1 - Method of transmitting and receiving radio access information in a wireless mobile communications system - Google Patents
- ️Tue Nov 24 2020
Info
-
Publication number
- USRE48326E1 USRE48326E1 US15/804,824 US201715804824A USRE48326E US RE48326 E1 USRE48326 E1 US RE48326E1 US 201715804824 A US201715804824 A US 201715804824A US RE48326 E USRE48326 E US RE48326E Authority
- US
- United States Prior art keywords
- base station
- terminal
- preamble
- target base
- information Prior art date
- 2005-10-31 Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 61
- 238000010295 mobile communication Methods 0.000 title claims abstract description 18
- 238000005259 measurement Methods 0.000 claims description 10
- 230000004044 response Effects 0.000 claims description 10
- 238000004891 communication Methods 0.000 claims description 8
- 230000008569 process Effects 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 description 22
- 238000010586 diagram Methods 0.000 description 8
- 230000011664 signaling Effects 0.000 description 8
- 238000012546 transfer Methods 0.000 description 8
- 101000741965 Homo sapiens Inactive tyrosine-protein kinase PRAG1 Proteins 0.000 description 6
- 102100038659 Inactive tyrosine-protein kinase PRAG1 Human genes 0.000 description 6
- 238000007726 management method Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000013468 resource allocation Methods 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 101100521334 Mus musculus Prom1 gene Proteins 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000005477 standard model Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
- H04W74/006—Transmission of channel access control information in the downlink, i.e. towards the terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L17/00—Apparatus or local circuits for transmitting or receiving codes wherein each character is represented by the same number of equal-length code elements, e.g. Baudot code
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L7/00—Arrangements for synchronising receiver with transmitter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0055—Transmission or use of information for re-establishing the radio link
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0055—Transmission or use of information for re-establishing the radio link
- H04W36/0058—Transmission of hand-off measurement information, e.g. measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W74/00—Wireless channel access
- H04W74/002—Transmission of channel access control information
Definitions
- the present invention relates to wireless (radio) mobile communications systems, and in particular, relates to a method of transmitting and receiving radio connection information that allows a terminal to access a target base station (i.e., target eNB) in a faster and more efficient manner while performing a handover for the terminal to a cell of the target base station.
- a target base station i.e., target eNB
- the universal mobile telecommunications system is a third-generation mobile communications system evolving from the global system for mobile communications system (GSM), which is the European standard.
- GSM global system for mobile communications system
- the UMTS is aimed at providing enhanced mobile communications services based on the GSM core network and wideband code-division multiple-access (W-CDMA) technologies.
- W-CDMA wideband code-division multiple-access
- FIG. 1 shows an exemplary diagram illustrating an Universal Mobile Telecommunication System (UMTS) network of a conventional mobile communication system.
- the UMTS is comprised of, largely, a user equipment (UE) or terminal, a UMTS Terrestrial Radio Access Network (UTRAN), and a core network (CN).
- the UTRAN comprises at least one Radio Network Sub-system (RNS), and each RNS is comprised of one Radio Network Controller (RNC) and at least one base station (Node B) which is controlled by the RNC.
- RNC Radio Network Controller
- Node B base station
- FIG. 2 is an exemplary diagram illustrating a structure of a Radio interface Protocol (RIP) between a UE and the UTRAN.
- the UE is associated with a 3rd Generation Partnership Project (3GPP) wireless access network standard.
- the structure of the RIP is comprised of a physical layer, a data link layer, and a network layer on the horizontal layers.
- the structure of the RIP is comprised of a user plane, which is used for transmitting data, and a control plane, which is used for transmitting control signals.
- the protocol layers of FIG. 2 can be categorized as L1 (first layer), L2 (second layer), and L3 (third layer) based on an Open System Interconnection (OSI) model. Each layer will be described in more detail as follows.
- OSI Open System Interconnection
- the first layer (L1) namely, the physical layer, provides an upper layer with an information transfer service using a physical channel.
- the physical layer is connected to an upper layer called a medium access control (MAC) layer through a transport channel.
- MAC medium access control
- Data is transferred between the MAC layer and the physical layer through the transport channel.
- Data is also transferred between different physical layers, i.e. between physical layers of a transmitting side and a receiving side, through the physical channel.
- the MAC layer of the second layer provides an upper layer called a radio link control (RLC) layer with a service through a logical channel.
- RLC radio link control
- the RLC layer of the second layer supports reliable data transfer and performs segmentation and concatenation of a service data unit (SDU) received from an upper layer.
- SDU service data unit
- a radio resource control (RRC) layer at a lower portion of the L3 layer is defined in the control plane and controls logical channels, transport channels, and physical channels for configuration, re-configuration and release of radio bearers (RBs).
- RRC radio resource control
- a RB is a service provided by the second layer for data transfer between the terminal and the UTRAN.
- the configuration of the RBs includes defining characteristics of protocol layers and channels required to provide a specific service, and configuring respective specific parameters and operation methods.
- a terminal In order to perform communications, a terminal needs to have a RRC connection with the UTRAN and a signaling connection with the Core Network (CN).
- the terminal transmits and/or receives a terminal's control information with the UTRAN or the CN via the RRC connection and the signaling connection.
- FIG. 3 shows an exemplary diagram for explaining how a RRC connection is established.
- the terminal transmits a RRC Connection Request Message to the RNC, and then the RNC transmits a RRC Connection Setup Message to the terminal in response to the RRC Connection Request Message. After receiving the RRC Connection Setup Message by the terminal, the terminal transmits a RRC Connection Setup Complete Message to the RNC. If the above steps are successfully completed, the terminal establishes the RRC connection with the RNC. After the RRC connection is established, the terminal transmits an Initial Direct Transfer (IDT) message to the RNC for initializing a process of the signaling connection.
- IDT Initial Direct Transfer
- a Random Access Channel of a WCDMA will be described in more detail as follows.
- the Random Access Channel is used to transfer a short length data on an uplink, and some of the RRC message (i.e., RRC Connection Request Message, Cell Update Message, URA Update Message) is transmitted via the RACH.
- the RACH is mapped to a Common Control Channel (CCCH), a Dedicated Control Channel (DCCH) and a Dedicated Traffic Channel (DTCH), and then the RACH is mapped to a Physical Random Access Channel.
- CCCH Common Control Channel
- DCCH Dedicated Control Channel
- DTCH Dedicated Traffic Channel
- FIG. 4 shows how the physical random access channel (PRACH) power ramping and message transmission may be performed.
- PRACH physical random access channel
- the PRACH which is an uplink physical channel, is divided into a preamble part and a message part.
- the preamble part is used to properly control a transmission power for a message transmission (i.e., a power ramping function) and is used to avoid a collision between multiple terminals.
- the message part is used to transmit a MAC PDU that was transferred from the MAC to the Physical channel.
- the physical layer of the terminal When the MAC of the terminal instructs a PRACH transmission to the physical layer of the terminal, the physical layer of the terminal first selects one access slot and one (preamble) signature, and transmits the preamble on the PRACH to an uplink.
- the preamble is transmitted within a particular the length of access slot duration (e.g., 1.33 ms).
- One signature is selected among the 16 different signatures within a first certain length of the access slot, and it is transmitted.
- a base station transmits a response signal via an Acquisition indicator channel (AICH) which is a downlink physical channel.
- AICH Acquisition indicator channel
- the AICH in response to the preamble, transmits a signature that was selected within the first certain length of the access slot.
- the base station transmits an ACK response or a NACK response to the terminal by means of the transmitted signature from the AICH.
- the terminal transmits a 10 ms or 20 ms length of the message part using an OVSF code that correspond with the transmitted signature. If the NACK response is received, the MAC of the terminal instructs the PRACH transmission again to the physical layer of the terminal after a certain time period. Also, if no AICH is received with respect to the transmitted preamble, the terminal transmits a new preamble with a higher power compared to that used for the previous preamble after a predetermined access slot.
- FIG. 5 illustrates an exemplary structure of an Acquisition Indicator Channel (AICH).
- AICH Acquisition Indicator Channel
- the terminal may select any arbitrary signature (Si) from S 0 signature to S 15 signature, and then transmits the selected signature during the first 4096 chips length.
- the remaining 1024 chips length is set as a transmission power off period during which no symbol is transmitted.
- E-UMTS Evolved Universal Mobil Telecommunication System
- FIG. 6 shows an exemplary structure of an Evolved Universal Mobile Telecommunications System (E-UMTS).
- E-UMTS Evolved Universal Mobile Telecommunications System
- the E-UMTS system is a system that has evolved from the UMTS system, and its standardization work is currently being performed by the 3GPP standards organization.
- the E-UMTS network generally comprises at least one mobile terminal (i.e., user equipment: UE), base stations (i.e., Node Bs), a control plane server (CPS) that performs radio (wireless) control functions, a radio resource management (RRM) entity that performs radio resource management functions, a mobility management entity (MME) that performs mobility management functions for a mobile terminal, and an access gateway (AG) that is located at an end of the E-UMTS network and connects with one or more external networks.
- UE user equipment
- base stations i.e., Node Bs
- CPS control plane server
- RRM radio resource management
- MME mobility management entity
- AG access gateway
- the various layers of the radio interface protocol between the mobile terminal and the network may be divided into L1 (Layer 1), L2 (Layer 2), and L3 (Layer 3) based upon the lower three layers of the Open System Interconnection (OSI) standard model that is known the field of communication systems.
- L1 Layer 1
- L2 Layer 2
- L3 Layer 3
- OSI Open System Interconnection
- a physical layer that is part of Layer 1 provides an information transfer service using a physical channel
- a Radio Resource Control (RRC) layer located in Layer 3 performs the function of controlling radio resources between the mobile terminal and the network.
- RRC layer exchanges RRC messages between the mobile terminal and the network.
- the functions of the RRC layer may be distributed among and performed within the Node B, the CPS/RRM and/or the MME.
- FIG. 7 shows an exemplary architecture of the radio interface protocol between the mobile terminal and the UTRAN (UMTS Terrestrial Radio Access Network).
- the radio interface protocol of FIG. 7 is horizontally comprised of a physical layer, a data link layer, and a network layer, and vertically comprised of a user plane for transmitting user data and a control plane for transferring control signaling.
- the radio interface protocol layer of FIG. 2 may be divided into L1 (Layer 1), L2 (Layer 2), and L3 (Layer 3) based upon the lower three layers of the Open System Interconnection (OSI) standards model that is known the field of communication systems.
- OSI Open System Interconnection
- the physical layer (i.e., Layer 1) uses a physical channel to provide an information transfer service to a higher layer.
- the physical layer is connected with a medium access control (MAC) layer located thereabove via a transport channel, and data is transferred between the physical layer and the MAC layer via the transport channel.
- MAC medium access control
- data is transferred via a physical channel.
- the MAC layer of Layer 2 provides services to a radio link control (RLC) layer (which is a higher layer) via a logical channel.
- RLC radio link control
- the RLC layer of Layer 2 supports the transmission of data with reliability. It should be noted that the RLC layer in FIG. 7 is depicted in dotted lines, because if the RLC functions are implemented in and performed by the MAC layer, the RLC layer itself may not need to exist.
- the PDCP layer of Layer 2 performs a header compression function that reduces unnecessary control information such that data being transmitted by employing Internet protocol (IP) packets, such as IPv4 or IPv6, can be efficiently sent over a radio (wireless) interface that has a relatively small bandwidth.
- IP Internet protocol
- the radio resource control (RRC) layer located at the lowermost portion of Layer 3 is only defined in the control plane, and handles the control of logical channels, transport channels, and physical channels with respect to the configuration, re-configuration and release of radio bearers (RB).
- the RB refers to a service that is provided by Layer 2 for data transfer between the mobile terminal and the UTRAN.
- channels used in downlink transmission for transmitting data from the network to the mobile terminal there is a broadcast channel (BCH) used for transmitting system information, and a shared channel (SCH) used for transmitting user traffic or control messages.
- BCH broadcast channel
- SCH shared channel
- SCCH downlink Shared Control Channel
- the downlink SCCH transmission includes information regarding a data variation, a data channel coding technique, and a data size where the data is transmitted to the downlink SCH.
- channels used in uplink transmission for transmitting data from the mobile terminal to the network there is a random access channel (RACH) used for transmitting an initial control message, and a shared channel (SCH) used for transmitting user traffic or control messages.
- RACH random access channel
- SCH shared channel
- SCCH uplink Shared Control Channel
- the uplink SCCH transmission includes information regarding a data variation, a data channel coding technique, and a data size where the data is transmitted to the uplink SCH.
- the mobile terminal when the mobile terminal moves from a source cell to a target cell, the mobile terminal uses a RACH to transmit a cell update message to the target cell. Namely, in order to transmit the cell update message, the terminal uses the RACH for an uplink time synchronization with the target cell and for an uplink resource allocation.
- the message transmission my be delayed, and a handover processing time is increased because of the possibility of RACH collision.
- the present invention has been developed in order to solve the above described problems of the related art. As a result, the present invention provides a method of transmitting and receiving control radio connection information that allows a faster and an efficient way of accessing a terminal to a target base station while performing a handover for the terminal to a cell of the target base station.
- FIG. 1 shows an exemplary diagram illustrating an Universal Mobile Telecommunication System (UMTS) network of a conventional mobile communication system.
- UMTS Universal Mobile Telecommunication System
- FIG. 2 shows an exemplary diagram illustrating a structure of a Radio interface Protocol (RIP) between a UE and the UTRAN.
- RIP Radio interface Protocol
- FIG. 3 shows an exemplary diagram for explaining how a RRC connection is established.
- FIG. 4 shows how the physical random access channel (PRACH) power ramping and message transmission may be performed.
- PRACH physical random access channel
- FIG. 5 illustrates an exemplary structure of an Acquisition Indicator Channel (AICH).
- AICH Acquisition Indicator Channel
- FIG. 6 shows an overview of an E-UMTS network architecture.
- FIGS. 7 and 8 show an exemplary structure (architecture) of a radio interface protocol between a mobile terminal and a UTRAN according to the 3GPP radio access network standard.
- FIG. 9 shows an exemplary diagram for transmitting and receiving radio connection information according to an exemplary embodiment of the present invention.
- One aspect of the present invention is the recognition by the present inventors regarding the problems and drawbacks of the related art described above and explained in more detail hereafter. Based upon such recognition, the features of the present invention have been developed.
- the mobile terminal when the mobile terminal moves from a source cell to a target cell, the mobile terminal uses a RACH to transmit a cell update message to the target cell.
- the processing time for the handover process may be delayed.
- the features of the present invention provide that the terminal receives necessary information from a source cell in advance (i.e., before the terminal transmits a RACH setup request to a network) in order to utilize the RACH in a later step.
- the terminal can connect with the target cell with minimal delays.
- a source enhanced Node B may manage the source cell described above and a target enhanced Node B (eNB) may manage the target cell.
- FIG. 9 shows an exemplary diagram for transmitting and receiving radio connection information according to an exemplary embodiment of the present invention.
- the UE (or terminal) ( 10 ) may transmit a measurement report to the source eNB ( 12 ) by measuring a condition of a downlink physical channel for other cells periodically or upon the occurrence of event (i.e., user command, setting information, etc) (S 10 ).
- the eNB may determine which cell, that the UE will be moved to, has a better channel condition compared to the current cell.
- the source eNB ( 12 ) may determine whether to perform a handover for the UE ( 10 ) from a current cell to the other cell, or whether to keep the UE in current cell (S 11 ).
- the source eNB ( 12 ) may transmit a handover request message to the target eNB ( 14 ) in order to request a handover for the UE to the target eNB.
- the handover request message may include a UE identification (ID) and/or a buffer state of the UE.
- the target eNB ( 14 ) may transmit a handover confirm message to the source eNB ( 12 ) (S 13 ).
- the handover confirm message may include information that may be necessary in the course of connecting the UE ( 10 ) to the target cell. Namely, the necessary information may include information used in the RACH which is used for performing a radio access procedure from the UE to the target eNB. For example, when the RACH is being used while the UE accesses to the target eNB, the UE may utilize a preamble which is selected from signatures contained in the UE.
- System information transmitted from the eNB may include signatures related information. So, the UE may transmit the preamble to the eNB after selecting one of the signatures. However, in some cases, one or more UEs could select a same signature because there are a limited number of signatures. Therefore, if two or more UEs transmit the preamble of the same signature to the eNB at the same time, the eNB can not possibly determine which UE transmitted such preamble. To avoid this from happening, the UE should not transmit a preamble that is selected from the signatures used in the RACH during the handover, but rather, the UE may transmit a preamble of a previously defined signature through the handover confirm message from the target eNB.
- the target eNB may acknowledge the mapping relationship between an UE's ID and the signature, where the UE's ID is transmitted from the Handover Request Message. Therefore, when the UE transmits the preamble to the target eNB for establishing a radio connection to the target cell, the target eNB may determine an ID of the UE using the preamble. Also, the Handover Confirm message may include a transmission characteristic of the preamble that is transmitted from the UE ( 10 ) to the target eNB ( 14 ). The transmission characteristic may relate to frequency and time used in transmitting the preamble information.
- the source eNB ( 12 ) may transmit a Handover Command message to the UE ( 10 ).
- the Handover Command message may include necessary information which comes from the target eNB, for establishing the radio connection to the target eNB. Also, the Handover Command message may include information of the signature and the preamble which is to be used in the access procedure to the target eNB.
- the preamble transmission of the UE is based upon information in the handover command message received from the source eNB ( 12 ). Also, if the information includes system information of the target eNB ( 14 ), the UE ( 10 ) may perform a radio accessing procedure without reading broadcast system information from the target eNB ( 14 ).
- the UE when the UE performs to establish the radio connection with a new cell, the UE usually reads system information of the corresponding eNB after time synchronization of the downlink Since the system information includes information related to a radio access request message from the UE to an uplink, the radio accessing is performed after reading the system information.
- the UE ( 10 ) may perform the radio access procedure without reading the system information in the target cell, as the system information of the target eNB is previously transmitted to the source eNB in advance and the system information was included in the handover command message.
- the target eNB ( 14 ) may receive the preamble of the UE. Since the target eNB ( 14 ) already allocates a signature used in the preamble to the UE in the use of handover, the UE can be identified by the preamble. The target eNB ( 14 ) may allocate the uplink radio resource to the UE ( 10 ) for the UE to access the target eNB and to transmit the handover complete message to the target eNB. (S 16 ) Also, the allocated radio resources information may be transmitted to the UE ( 10 ) via a downlink SCH. Alternatively, the allocated radio resources information may be transmitted via a downlink SCCH. Further, the allocated radio resources may be transmitted within an ACK/NACK signaling.
- the UE ( 10 ) may transmit the handover complete message to the target eNB ( 14 ) based on a scheduling grant of the target eNB.
- the scheduling grant includes information of allocated radio resources upon an allocation request of the uplink radio resources of the UE, the scheduling grant may be transmitted with the ACK/NACK signaling of the preamble transmitted from the UE ( 10 ).
- the Handover complete message from the UE may include a buffer state of the UE or its related information. If the allocated uplink radio resources, which is transmitted from the target eNB ( 14 ) to the UE ( 10 ), is sufficient, the handover complete message may be transmitted with additional traffic data when there is additional uplink traffic data.
- the present invention provides a method of transmitting access information in a mobile communications system, the method comprising: deciding to perform a handover for a terminal to a cell of a target base station; transmitting, to the target base station, a handover request for performing a handover from a source base station to the target base station; receiving access information from the target base station that received the handover request, wherein the access information is then transmitted to the terminal to access the target base station; receiving a measurement report from the terminal; determining whether to perform a handover based upon the received measurement report; and transmitting a handover command that contains the access information to the terminal upon receiving the response by the source base station, wherein the measurement report includes a downlink physical channel condition for multiple cells including the cell of the target base station, the handover request includes at least one of terminal identification (ID) information and/or buffer state information of the terminal, the access information is random access information, the access information is for a random access channel (RACH), the access information includes at least one of signature information and/or pre
- the present invention may provide a method of transmitting access information in a mobile communications system, the method comprising: receiving, from a source base station, a handover request for performing a handover from the source base station to a target base station; transmitting access information to the source base station upon receiving the handover request, wherein the access information is used to allow a terminal to access the target base station; allocating a radio resource for an uplink and transmitting radio resource allocation information to the terminal; receiving, from the terminal, preamble information of the terminal; and receiving a handover complete message from the terminal, wherein the radio resource allocation information is transmitted to the terminal through at least one of a downlink shared channel (SCH) and a downlink shared control channel (SCCH), an ACK/NACK signal includes the allocated resource information, the preamble information is used to identify the terminal, the handover complete message includes at least one of buffer state information of the terminal and uplink traffic data, and the handover complete message includes uplink traffic data if the radio resource allocation for the uplink is sufficient to transmit the uplink traffic
- the present invention also may provide a mobile terminal for establishing a radio connection to a target base station in a mobile communications system, the mobile terminal comprising: a radio protocol adapted to receive access information from a source base station after a handover is accepted by the target base station and to perform a random access procedure with the target base station using the received access information, wherein the source base station is a source enhanced Node B (source eNB) and the target base station is a target enhanced Node B (target eNB) respectively in an Evolved Universal Mobile Telecommunication System (E-UMTS).
- source eNB source enhanced Node B
- target eNB target enhanced Node B
- E-UMTS Evolved Universal Mobile Telecommunication System
- the present invention is described in the context of mobile communications, the present invention may also be used in any wireless communication systems using mobile devices, such as PDAs and laptop computers equipped with wireless communication capabilities (i.e. interface). Moreover, the use of certain terms to describe the present invention should not limit the scope of the present invention to a certain type of wireless communication system. the present invention is also applicable to other wireless communication systems using different air interfaces and/or physical layers, for example, TDMA, CDMA, FDMA, WCDMA, OFDM, EVDO, Mobile Wi-Max, Wi-Bro, etc.
- the preferred embodiments may be implemented as a method, apparatus or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof.
- article of manufacture refers to code or logic implemented in hardware logic (e.g., an integrated circuit chip, Field Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), etc.) or a computer readable medium (e.g., magnetic storage medium (e.g., hard disk drives, floppy disks, tape, etc.), optical storage (CDROMs, optical disks, etc.), volatile and non-volatile memory devices (e.g., EEPROMs, ROMs, PROMs, RAMs, DRAMs, SRAMs, firmware, programmable logic, etc).
- FPGA Field Programmable Gate Array
- ASIC Application Specific Integrated Circuit
- Code in the computer readable medium is accessed and executed by a processor.
- the code in which preferred embodiments are implemented may further be accessible through a transmission media or from a file server over a network.
- the article of manufacture in which the code is implemented may comprise a transmission media, such as a network transmission line, wireless transmission media, signals propagating through space, radio waves, infrared signals, etc.
- a transmission media such as a network transmission line, wireless transmission media, signals propagating through space, radio waves, infrared signals, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
In a wireless mobile communications system, a method of transmitting and receiving radio access information that allows a faster and an efficient way of establishing a radio connection between a terminal and a target base station while performing a handover for the terminal to a cell of the target base station. The network transmits in advance, the radio access information and the like, to the terminal so that the terminal can be connected with the target cell in a faster manner which minimizes the total time for the handover process.
Description
This application is a continuation of U.S. application Ser. No. 14/676,490, filed Apr. 1, 2015, now U.S. Pat. No. RE46,602 and is a broadening reissue of U.S. application Ser. No. 13/487,081, filed Jun. 1, 2012, now U.S. Pat. No. 8,412,201. Said U.S. application Ser. No. 14/676,490 is a broadening riessue of U.S. application Ser. No. 13/487,081, filed Jun. 1, 2012, now U.S. Pat. No. 8,412,201, which is a continuation of U.S. Application Ser. No. 12/870,747, filed Aug. 27, 2010, now U.S. Pat. No. 8,219,097, which is a continuation of U.S. application Ser. No. 11/553,939, filed Oct. 27, 2006, now U.S. Pat. No. 7,809,373, which claims the benefit of earlier filing date and right of priority to U.S. Provisional Application No. 60/732,080, filed Oct. 31, 2005, and Korean Patent Application No. 10-2006-0063135, filed Jul. 5, 2006, the contents of which are all hereby incorporated by reference herein in their entirety.
FIELD OF THE INVENTIONThe present invention relates to wireless (radio) mobile communications systems, and in particular, relates to a method of transmitting and receiving radio connection information that allows a terminal to access a target base station (i.e., target eNB) in a faster and more efficient manner while performing a handover for the terminal to a cell of the target base station.
BACKGROUND ARTThe universal mobile telecommunications system (UMTS) is a third-generation mobile communications system evolving from the global system for mobile communications system (GSM), which is the European standard. The UMTS is aimed at providing enhanced mobile communications services based on the GSM core network and wideband code-division multiple-access (W-CDMA) technologies.
shows an exemplary diagram illustrating an Universal Mobile Telecommunication System (UMTS) network of a conventional mobile communication system. The UMTS is comprised of, largely, a user equipment (UE) or terminal, a UMTS Terrestrial Radio Access Network (UTRAN), and a core network (CN). The UTRAN comprises at least one Radio Network Sub-system (RNS), and each RNS is comprised of one Radio Network Controller (RNC) and at least one base station (Node B) which is controlled by the RNC. For each Node B, there is at least one cell.
is an exemplary diagram illustrating a structure of a Radio interface Protocol (RIP) between a UE and the UTRAN. Here, the UE is associated with a 3rd Generation Partnership Project (3GPP) wireless access network standard. The structure of the RIP is comprised of a physical layer, a data link layer, and a network layer on the horizontal layers. On the vertical plane, the structure of the RIP is comprised of a user plane, which is used for transmitting data, and a control plane, which is used for transmitting control signals. The protocol layers of
FIG. 2can be categorized as L1 (first layer), L2 (second layer), and L3 (third layer) based on an Open System Interconnection (OSI) model. Each layer will be described in more detail as follows.
The first layer (L1), namely, the physical layer, provides an upper layer with an information transfer service using a physical channel. The physical layer is connected to an upper layer called a medium access control (MAC) layer through a transport channel. Data is transferred between the MAC layer and the physical layer through the transport channel. Data is also transferred between different physical layers, i.e. between physical layers of a transmitting side and a receiving side, through the physical channel.
The MAC layer of the second layer (L2) provides an upper layer called a radio link control (RLC) layer with a service through a logical channel. The RLC layer of the second layer supports reliable data transfer and performs segmentation and concatenation of a service data unit (SDU) received from an upper layer.
A radio resource control (RRC) layer at a lower portion of the L3 layer is defined in the control plane and controls logical channels, transport channels, and physical channels for configuration, re-configuration and release of radio bearers (RBs). A RB is a service provided by the second layer for data transfer between the terminal and the UTRAN. The configuration of the RBs includes defining characteristics of protocol layers and channels required to provide a specific service, and configuring respective specific parameters and operation methods.
A RRC connection and a signaling connection will be described in more detail as follows.
In order to perform communications, a terminal needs to have a RRC connection with the UTRAN and a signaling connection with the Core Network (CN). The terminal transmits and/or receives a terminal's control information with the UTRAN or the CN via the RRC connection and the signaling connection.
shows an exemplary diagram for explaining how a RRC connection is established.
In
FIG. 3, to establish the RRC connection, the terminal transmits a RRC Connection Request Message to the RNC, and then the RNC transmits a RRC Connection Setup Message to the terminal in response to the RRC Connection Request Message. After receiving the RRC Connection Setup Message by the terminal, the terminal transmits a RRC Connection Setup Complete Message to the RNC. If the above steps are successfully completed, the terminal establishes the RRC connection with the RNC. After the RRC connection is established, the terminal transmits an Initial Direct Transfer (IDT) message to the RNC for initializing a process of the signaling connection.
A Random Access Channel of a WCDMA will be described in more detail as follows.
The Random Access Channel (RACH) is used to transfer a short length data on an uplink, and some of the RRC message (i.e., RRC Connection Request Message, Cell Update Message, URA Update Message) is transmitted via the RACH. The RACH is mapped to a Common Control Channel (CCCH), a Dedicated Control Channel (DCCH) and a Dedicated Traffic Channel (DTCH), and then the RACH is mapped to a Physical Random Access Channel.
shows how the physical random access channel (PRACH) power ramping and message transmission may be performed.
Referring to
FIG. 4, the PRACH, which is an uplink physical channel, is divided into a preamble part and a message part. The preamble part is used to properly control a transmission power for a message transmission (i.e., a power ramping function) and is used to avoid a collision between multiple terminals. The message part is used to transmit a MAC PDU that was transferred from the MAC to the Physical channel.
When the MAC of the terminal instructs a PRACH transmission to the physical layer of the terminal, the physical layer of the terminal first selects one access slot and one (preamble) signature, and transmits the preamble on the PRACH to an uplink. Here, the preamble is transmitted within a particular the length of access slot duration (e.g., 1.33 ms). One signature is selected among the 16 different signatures within a first certain length of the access slot, and it is transmitted.
If the preamble is transmitted from the terminal, a base station transmits a response signal via an Acquisition indicator channel (AICH) which is a downlink physical channel. The AICH, in response to the preamble, transmits a signature that was selected within the first certain length of the access slot. Here, the base station transmits an ACK response or a NACK response to the terminal by means of the transmitted signature from the AICH.
If the ACK response is received, the terminal transmits a 10 ms or 20 ms length of the message part using an OVSF code that correspond with the transmitted signature. If the NACK response is received, the MAC of the terminal instructs the PRACH transmission again to the physical layer of the terminal after a certain time period. Also, if no AICH is received with respect to the transmitted preamble, the terminal transmits a new preamble with a higher power compared to that used for the previous preamble after a predetermined access slot.
illustrates an exemplary structure of an Acquisition Indicator Channel (AICH).
As shown in
FIG. 5, the AICH, which is a downlink physical channel, transmits 16 symbol signatures (Si, i=0, . . . , 15) for the access slot having a length of 5120 chips. The terminal may select any arbitrary signature (Si) from S0 signature to S15 signature, and then transmits the selected signature during the first 4096 chips length. The remaining 1024 chips length is set as a transmission power off period during which no symbol is transmitted. Also, as similar to
FIG. 5, the preamble part of the uplink PRACH transmits 16 symbol signatures (Si, i=0, . . . , 15) during the first 4096 chips length.
An Evolved Universal Mobil Telecommunication System (E-UMTS) will be described in more detail as follows.
shows an exemplary structure of an Evolved Universal Mobile Telecommunications System (E-UMTS). The E-UMTS system is a system that has evolved from the UMTS system, and its standardization work is currently being performed by the 3GPP standards organization.
The E-UMTS network generally comprises at least one mobile terminal (i.e., user equipment: UE), base stations (i.e., Node Bs), a control plane server (CPS) that performs radio (wireless) control functions, a radio resource management (RRM) entity that performs radio resource management functions, a mobility management entity (MME) that performs mobility management functions for a mobile terminal, and an access gateway (AG) that is located at an end of the E-UMTS network and connects with one or more external networks. Here, it can be understood that the particular names of the various network entities are not limited to those mentioned above.
The various layers of the radio interface protocol between the mobile terminal and the network may be divided into L1 (Layer 1), L2 (Layer 2), and L3 (Layer 3) based upon the lower three layers of the Open System Interconnection (OSI) standard model that is known the field of communication systems. Among these layers, a physical layer that is part of
Layer1 provides an information transfer service using a physical channel, while a Radio Resource Control (RRC) layer located in Layer 3 performs the function of controlling radio resources between the mobile terminal and the network. To do so, the RRC layer exchanges RRC messages between the mobile terminal and the network. The functions of the RRC layer may be distributed among and performed within the Node B, the CPS/RRM and/or the MME.
shows an exemplary architecture of the radio interface protocol between the mobile terminal and the UTRAN (UMTS Terrestrial Radio Access Network). The radio interface protocol of
FIG. 7is horizontally comprised of a physical layer, a data link layer, and a network layer, and vertically comprised of a user plane for transmitting user data and a control plane for transferring control signaling. The radio interface protocol layer of
FIG. 2may be divided into L1 (Layer 1), L2 (Layer 2), and L3 (Layer 3) based upon the lower three layers of the Open System Interconnection (OSI) standards model that is known the field of communication systems.
Particular layers of the radio protocol control plane of
FIG. 7and of the radio protocol user plane of
FIG. 8will be described below. The physical layer (i.e., Layer 1) uses a physical channel to provide an information transfer service to a higher layer. The physical layer is connected with a medium access control (MAC) layer located thereabove via a transport channel, and data is transferred between the physical layer and the MAC layer via the transport channel. Also, between respectively different physical layers, namely, between the respective physical layers of the transmitting side (transmitter) and the receiving side (receiver), data is transferred via a physical channel.
The MAC layer of Layer 2 provides services to a radio link control (RLC) layer (which is a higher layer) via a logical channel. The RLC layer of Layer 2 supports the transmission of data with reliability. It should be noted that the RLC layer in
FIG. 7is depicted in dotted lines, because if the RLC functions are implemented in and performed by the MAC layer, the RLC layer itself may not need to exist. The PDCP layer of Layer 2 performs a header compression function that reduces unnecessary control information such that data being transmitted by employing Internet protocol (IP) packets, such as IPv4 or IPv6, can be efficiently sent over a radio (wireless) interface that has a relatively small bandwidth.
The radio resource control (RRC) layer located at the lowermost portion of Layer 3 is only defined in the control plane, and handles the control of logical channels, transport channels, and physical channels with respect to the configuration, re-configuration and release of radio bearers (RB). Here, the RB refers to a service that is provided by Layer 2 for data transfer between the mobile terminal and the UTRAN.
As for channels used in downlink transmission for transmitting data from the network to the mobile terminal, there is a broadcast channel (BCH) used for transmitting system information, and a shared channel (SCH) used for transmitting user traffic or control messages. Also, as a downlink transport channel, there is a downlink Shared Control Channel (SCCH) that transmits necessary control information for the terminal to receive the downlink SCH. The downlink SCCH transmission includes information regarding a data variation, a data channel coding technique, and a data size where the data is transmitted to the downlink SCH.
As for channels used in uplink transmission for transmitting data from the mobile terminal to the network, there is a random access channel (RACH) used for transmitting an initial control message, and a shared channel (SCH) used for transmitting user traffic or control messages. Also, in an uplink transport channel, there is an uplink Shared Control Channel (SCCH) that transmits necessary control information for the terminal to receive the uplink SCH. The uplink SCCH transmission includes information regarding a data variation, a data channel coding technique, and a data size where the data is transmitted to the uplink SCH.
In the related art, when the mobile terminal moves from a source cell to a target cell, the mobile terminal uses a RACH to transmit a cell update message to the target cell. Namely, in order to transmit the cell update message, the terminal uses the RACH for an uplink time synchronization with the target cell and for an uplink resource allocation. However, due to a collision possibility of the RACH, the message transmission my be delayed, and a handover processing time is increased because of the possibility of RACH collision.
SUMMARYThe present invention has been developed in order to solve the above described problems of the related art. As a result, the present invention provides a method of transmitting and receiving control radio connection information that allows a faster and an efficient way of accessing a terminal to a target base station while performing a handover for the terminal to a cell of the target base station.
BRIEF DESCRIPTION OF THE DRAWINGSshows an exemplary diagram illustrating an Universal Mobile Telecommunication System (UMTS) network of a conventional mobile communication system.
shows an exemplary diagram illustrating a structure of a Radio interface Protocol (RIP) between a UE and the UTRAN.
shows an exemplary diagram for explaining how a RRC connection is established.
shows how the physical random access channel (PRACH) power ramping and message transmission may be performed.
illustrates an exemplary structure of an Acquisition Indicator Channel (AICH).
shows an overview of an E-UMTS network architecture.
show an exemplary structure (architecture) of a radio interface protocol between a mobile terminal and a UTRAN according to the 3GPP radio access network standard.
shows an exemplary diagram for transmitting and receiving radio connection information according to an exemplary embodiment of the present invention.
One aspect of the present invention is the recognition by the present inventors regarding the problems and drawbacks of the related art described above and explained in more detail hereafter. Based upon such recognition, the features of the present invention have been developed.
In the related art, when the mobile terminal moves from a source cell to a target cell, the mobile terminal uses a RACH to transmit a cell update message to the target cell. However, because of a possibility for a RACH collision (i.e. the same signature is being selected from multiple terminals that use of the RACH), the processing time for the handover process may be delayed.
In contrast, the features of the present invention provide that the terminal receives necessary information from a source cell in advance (i.e., before the terminal transmits a RACH setup request to a network) in order to utilize the RACH in a later step. As a result, the terminal can connect with the target cell with minimal delays.
It should be noted that the features of the present invention may be related to issues regarding the long-term evolution (LTE) of the 3GPP standard. As such, the 3GPP standard and its related sections or portions thereof, as well as various developing enhancements thereof pertain to the present invention. For example, in present invention, a source enhanced Node B (eNB) may manage the source cell described above and a target enhanced Node B (eNB) may manage the target cell.
shows an exemplary diagram for transmitting and receiving radio connection information according to an exemplary embodiment of the present invention.
As illustrated in
FIG. 9, the UE (or terminal) (10) may transmit a measurement report to the source eNB (12) by measuring a condition of a downlink physical channel for other cells periodically or upon the occurrence of event (i.e., user command, setting information, etc) (S10). As the measurement report is transmitted to the source eNB with a result for the measured condition of the downlink physical channel for other cells, the eNB may determine which cell, that the UE will be moved to, has a better channel condition compared to the current cell.
Using the measurement report which contains information about the condition of the downlink physical channel for other cells, the source eNB (12) may determine whether to perform a handover for the UE (10) from a current cell to the other cell, or whether to keep the UE in current cell (S11).
If the UE (10) needs to perform handover from the source eNB to an other particular cell, the source eNB (12) may transmit a handover request message to the target eNB (14) in order to request a handover for the UE to the target eNB. (S12) Here, the handover request message may include a UE identification (ID) and/or a buffer state of the UE.
If the target eNB (14) allows the handover to be performed for the UE upon receiving the handover request from the source eNB (12), the target eNB (14) may transmit a handover confirm message to the source eNB (12) (S13). The handover confirm message may include information that may be necessary in the course of connecting the UE (10) to the target cell. Namely, the necessary information may include information used in the RACH which is used for performing a radio access procedure from the UE to the target eNB. For example, when the RACH is being used while the UE accesses to the target eNB, the UE may utilize a preamble which is selected from signatures contained in the UE. System information transmitted from the eNB may include signatures related information. So, the UE may transmit the preamble to the eNB after selecting one of the signatures. However, in some cases, one or more UEs could select a same signature because there are a limited number of signatures. Therefore, if two or more UEs transmit the preamble of the same signature to the eNB at the same time, the eNB can not possibly determine which UE transmitted such preamble. To avoid this from happening, the UE should not transmit a preamble that is selected from the signatures used in the RACH during the handover, but rather, the UE may transmit a preamble of a previously defined signature through the handover confirm message from the target eNB. Here, the target eNB may acknowledge the mapping relationship between an UE's ID and the signature, where the UE's ID is transmitted from the Handover Request Message. Therefore, when the UE transmits the preamble to the target eNB for establishing a radio connection to the target cell, the target eNB may determine an ID of the UE using the preamble. Also, the Handover Confirm message may include a transmission characteristic of the preamble that is transmitted from the UE (10) to the target eNB (14). The transmission characteristic may relate to frequency and time used in transmitting the preamble information.
If the source eNB (12) receives the Handover confirm message of the LIE from the target eNB (14), the source eNB (12) may transmit a Handover Command message to the UE (10). (S14) The Handover Command message may include necessary information which comes from the target eNB, for establishing the radio connection to the target eNB. Also, the Handover Command message may include information of the signature and the preamble which is to be used in the access procedure to the target eNB.
The UE (10), which received the handover command message from the source eNB (12), may utilize the RACH for establishing the radio connection between the UE and the target eNB. (S15) Here, the preamble transmission of the UE is based upon information in the handover command message received from the source eNB (12). Also, if the information includes system information of the target eNB (14), the UE (10) may perform a radio accessing procedure without reading broadcast system information from the target eNB (14). For example, when the UE performs to establish the radio connection with a new cell, the UE usually reads system information of the corresponding eNB after time synchronization of the downlink Since the system information includes information related to a radio access request message from the UE to an uplink, the radio accessing is performed after reading the system information. However, according to the present invention, the UE (10) may perform the radio access procedure without reading the system information in the target cell, as the system information of the target eNB is previously transmitted to the source eNB in advance and the system information was included in the handover command message.
The target eNB (14) may receive the preamble of the UE. Since the target eNB (14) already allocates a signature used in the preamble to the UE in the use of handover, the UE can be identified by the preamble. The target eNB (14) may allocate the uplink radio resource to the UE (10) for the UE to access the target eNB and to transmit the handover complete message to the target eNB. (S16) Also, the allocated radio resources information may be transmitted to the UE (10) via a downlink SCH. Alternatively, the allocated radio resources information may be transmitted via a downlink SCCH. Further, the allocated radio resources may be transmitted within an ACK/NACK signaling.
The UE (10) may transmit the handover complete message to the target eNB (14) based on a scheduling grant of the target eNB. (S17) If the scheduling grant includes information of allocated radio resources upon an allocation request of the uplink radio resources of the UE, the scheduling grant may be transmitted with the ACK/NACK signaling of the preamble transmitted from the UE (10). In this case, the Handover complete message from the UE may include a buffer state of the UE or its related information. If the allocated uplink radio resources, which is transmitted from the target eNB (14) to the UE (10), is sufficient, the handover complete message may be transmitted with additional traffic data when there is additional uplink traffic data.
It can be said that the present invention provides a method of transmitting access information in a mobile communications system, the method comprising: deciding to perform a handover for a terminal to a cell of a target base station; transmitting, to the target base station, a handover request for performing a handover from a source base station to the target base station; receiving access information from the target base station that received the handover request, wherein the access information is then transmitted to the terminal to access the target base station; receiving a measurement report from the terminal; determining whether to perform a handover based upon the received measurement report; and transmitting a handover command that contains the access information to the terminal upon receiving the response by the source base station, wherein the measurement report includes a downlink physical channel condition for multiple cells including the cell of the target base station, the handover request includes at least one of terminal identification (ID) information and/or buffer state information of the terminal, the access information is random access information, the access information is for a random access channel (RACH), the access information includes at least one of signature information and/or preamble information, the signature information is determined by the target base station based upon terminal identification information, the preamble information includes frequency information and time information, and the handover command includes access information which contains at least one of signature information and/or preamble information to allow the terminal to access the target base station.
Also, the present invention may provide a method of transmitting access information in a mobile communications system, the method comprising: receiving, from a source base station, a handover request for performing a handover from the source base station to a target base station; transmitting access information to the source base station upon receiving the handover request, wherein the access information is used to allow a terminal to access the target base station; allocating a radio resource for an uplink and transmitting radio resource allocation information to the terminal; receiving, from the terminal, preamble information of the terminal; and receiving a handover complete message from the terminal, wherein the radio resource allocation information is transmitted to the terminal through at least one of a downlink shared channel (SCH) and a downlink shared control channel (SCCH), an ACK/NACK signal includes the allocated resource information, the preamble information is used to identify the terminal, the handover complete message includes at least one of buffer state information of the terminal and uplink traffic data, and the handover complete message includes uplink traffic data if the radio resource allocation for the uplink is sufficient to transmit the uplink traffic data.
It can be said that the present invention provides a method of receiving access information in mobile communications system, the method comprising: receiving access information from a source base station after a handover is accepted by a target base station; performing a random access procedure with the target base station using the received access information; transmitting a measurement report to the source base station by measuring a condition of a downlink physical channel for other cells, the measuring performed periodically or upon an occurrence of an event; transmitting the preamble information to the target base station for performing a radio access procedure with the target cell; receiving, from a network, radio resource information through a downlink shared channel (SCCH); receiving, from a network, radio resource information within an ACK/NACK signaling; and transmitting a handover complete message to the target base station, wherein the measurement report is used to determine whether to perform a handover from a current cell to an other cell, the access information is random access information for a random access channel (RACH) which includes preamble information within signature information, the access information includes a transmission characteristic of the preamble information, the transmission characteristic relates to frequency and time used in transmitting the preamble information, the access information includes system information transmitted from the target base station, and the handover complete message includes at least one of buffer state information of the terminal and uplink traffic data.
The present invention also may provide a mobile terminal for establishing a radio connection to a target base station in a mobile communications system, the mobile terminal comprising: a radio protocol adapted to receive access information from a source base station after a handover is accepted by the target base station and to perform a random access procedure with the target base station using the received access information, wherein the source base station is a source enhanced Node B (source eNB) and the target base station is a target enhanced Node B (target eNB) respectively in an Evolved Universal Mobile Telecommunication System (E-UMTS).
Although the present invention is described in the context of mobile communications, the present invention may also be used in any wireless communication systems using mobile devices, such as PDAs and laptop computers equipped with wireless communication capabilities (i.e. interface). Moreover, the use of certain terms to describe the present invention should not limit the scope of the present invention to a certain type of wireless communication system. the present invention is also applicable to other wireless communication systems using different air interfaces and/or physical layers, for example, TDMA, CDMA, FDMA, WCDMA, OFDM, EVDO, Mobile Wi-Max, Wi-Bro, etc.
The preferred embodiments may be implemented as a method, apparatus or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof. The term “article of manufacture” as used herein refers to code or logic implemented in hardware logic (e.g., an integrated circuit chip, Field Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), etc.) or a computer readable medium (e.g., magnetic storage medium (e.g., hard disk drives, floppy disks, tape, etc.), optical storage (CDROMs, optical disks, etc.), volatile and non-volatile memory devices (e.g., EEPROMs, ROMs, PROMs, RAMs, DRAMs, SRAMs, firmware, programmable logic, etc).
Code in the computer readable medium is accessed and executed by a processor. The code in which preferred embodiments are implemented may further be accessible through a transmission media or from a file server over a network. In such cases, the article of manufacture in which the code is implemented may comprise a transmission media, such as a network transmission line, wireless transmission media, signals propagating through space, radio waves, infrared signals, etc. Of course, those skilled in the art will recognize that many modifications may be made to this configuration without departing from the scope of the present invention, and that the article of manufacture may comprise any information bearing medium known in the art.
This specification describes various illustrative embodiments of the present invention. The scope of the claims is intended to cover various modifications and equivalent arrangements of the illustrative embodiments disclosed in the specification. Therefore, the following claims should be accorded the reasonably broadest interpretation to cover modifications, equivalent structures, and features that are consistent with the spirit and scope of the invention disclosed herein.
Claims (21)
1. A method of performing a random access procedure in a mobile communications system, the method comprising:
receiving, by a terminal, a handover command message from a source base station,
wherein the handover command message includes preamble information for the random access procedure,
wherein the preamble information is a specific preamble used only for a specific terminal, and
wherein the specific preamble is determined by a target base station; and
performing, by the terminal, the random access procedure with the target base station using the specific preamble.
2. The method of
claim 1, wherein the handover command message is generated by the target base station.
3. The method of
claim 1, wherein the handover command message is transferred by the source base station to the specific terminal.
4. The method of
claim 1, further comprising: transmitting, by the terminal, a measurement report to the source base station by measuring a condition of a downlink physical channel for other cells periodically or upon an occurrence of an event.
5. The method of
claim 4, wherein the measurement report is used to determine whether to perform a handover from a current cell to the other cell.
6. The method of
claim 1, wherein the preamble information includes frequency information and time information.
7. A method of performing a random access procedure in a mobile communications system, the method comprising:
receiving, by a source base station, a handover command message from a target base station,
wherein the handover command message includes preamble information for the random access procedure,
wherein the preamble information is a specific preamble used only for a specific terminal, and
wherein the specific preamble is determined by a target base station; and
transferring, by the source base station, the received handover command message to the specific terminal, wherein the specific preamble is used to perform the random access procedure.
8. The method of
claim 7, wherein the handover command message is generated by the target base station.
9. The method of
claim 7, wherein the preamble information includes frequency information and time information.
10. A method of performing a random access procedure in a mobile communications system, the method comprising:
generating, by a target base station, a handover command message,
wherein the handover command message includes preamble information for the random access procedure,
wherein the preamble information is a specific preamble used only for a specific terminal; and
transmitting, by the target base station, the handover command message to a source base station,
wherein the handover command message is transferred by a source base station to the specific terminal, wherein the specific preamble is used to perform the random access procedure.
11. The method of
claim 10, wherein the preamble information includes frequency information and time information.
12. A mobile terminal that performs a random access procedure in a mobile communications system, the mobile terminal comprising:
a radio protocol adapted to receive the handover command message from a source base station, and to perform the random access procedure with a target base station, wherein the handover command message includes preamble information for the random access procedure, wherein the preamble information is a specific preamble used only for a specific terminal, wherein the specific preamble is determined by a target base station, wherein the specific preamble is used to perform the random access procedure.
13. The terminal of
claim 12, wherein the source base station and the target base station are a source enhanced Node B (source eNB) and a target enhanced Node B (target eNB) respectively in an Evolved Universal Mobile Telecommunication System (E-UMTS).
14. A method to perform a random access procedure in a mobile communications system comprising:
receiving, by a terminal, a handover command message from a source base station which has determined that a handover should occur to a target base station, wherein the handover command message includes information related to a preamble for the terminal previously defined in a handover confirm message sent from the target base station to the source base station;
in response to the handover command message, performing, by the terminal, a random access procedure with the target base station to connect with the target base station using the information related to the preamble; and
transmitting, by the terminal, a handover complete message to the target base station.
15. The method of claim 14, wherein the handover command message includes time and frequency information to connect the target base station and the terminal.
16. The method of claim 14, further comprising receiving, in the terminal, time and frequency information from the source base station for use in connecting to the target base station.
17. The method of claim 14, wherein performing the random access procedure with the target base station using the information related to the preamble comprises transmitting, by the terminal to the target base station, a preamble sequence in accordance with the information related to the preamble.
18. A mobile terminal to transmit uplink data in a wireless communication system, the mobile terminal comprising:
a transceiver configured to transmit the uplink data;
a memory configured to store the uplink data; and
a processor cooperating with the transceiver and the memory, the processor configured to:
receive a handover command message from a source base station which has determined that a handover should occur to a target base station;
wherein the handover command message includes information related to a preamble for the terminal previously defined in a handover confirm message sent from the target base station to the source base station;
in response to the handover command message, perform, by the terminal, a random access procedure with the target base station to connect with the target base station using the information related to the preamble; and
transmit a handover complete message to the target base station.
19. The mobile terminal of claim 18, wherein the handover command message includes time and frequency information to connect the target base station and the terminal.
20. The mobile terminal of claim 18, wherein the processor is further configured to receive, in the terminal, time and frequency information from the source base station for use in connecting to the target base station.
21. The mobile terminal of claim 18, wherein the processor is further configured to perform the random access procedure with the target base station using the information related to the preamble comprises transmitting, by the terminal to the target base station, a preamble sequence in accordance with the information related to the preamble.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/804,824 USRE48326E1 (en) | 2005-10-31 | 2017-11-06 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US73208005P | 2005-10-31 | 2005-10-31 | |
KR10-2006-0063135 | 2006-07-05 | ||
KR1020060063135A KR100981811B1 (en) | 2005-10-31 | 2006-07-05 | Wireless access information delivery method in mobile communication system |
US11/553,939 US7809373B2 (en) | 2005-10-31 | 2006-10-27 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
US12/870,747 US8219097B2 (en) | 2005-10-31 | 2010-08-27 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
US13/487,081 US8412201B2 (en) | 2005-10-31 | 2012-06-01 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
US14/676,490 USRE46602E1 (en) | 2005-10-31 | 2015-04-01 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
US15/804,824 USRE48326E1 (en) | 2005-10-31 | 2017-11-06 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/487,081 Reissue US8412201B2 (en) | 2005-10-31 | 2012-06-01 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE48326E1 true USRE48326E1 (en) | 2020-11-24 |
Family
ID=40035681
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/553,939 Active 2027-09-16 US7809373B2 (en) | 2005-10-31 | 2006-10-27 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
US12/870,747 Ceased US8219097B2 (en) | 2005-10-31 | 2010-08-27 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
US13/487,081 Ceased US8412201B2 (en) | 2005-10-31 | 2012-06-01 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
US14/326,637 Active USRE46679E1 (en) | 2005-10-31 | 2014-07-09 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
US14/676,490 Active USRE46602E1 (en) | 2005-10-31 | 2015-04-01 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
US14/723,093 Active USRE46714E1 (en) | 2005-10-31 | 2015-05-27 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
US15/804,824 Active USRE48326E1 (en) | 2005-10-31 | 2017-11-06 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
US15/824,609 Active USRE48478E1 (en) | 2005-10-31 | 2017-11-28 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
Family Applications Before (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/553,939 Active 2027-09-16 US7809373B2 (en) | 2005-10-31 | 2006-10-27 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
US12/870,747 Ceased US8219097B2 (en) | 2005-10-31 | 2010-08-27 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
US13/487,081 Ceased US8412201B2 (en) | 2005-10-31 | 2012-06-01 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
US14/326,637 Active USRE46679E1 (en) | 2005-10-31 | 2014-07-09 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
US14/676,490 Active USRE46602E1 (en) | 2005-10-31 | 2015-04-01 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
US14/723,093 Active USRE46714E1 (en) | 2005-10-31 | 2015-05-27 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/824,609 Active USRE48478E1 (en) | 2005-10-31 | 2017-11-28 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
Country Status (9)
Country | Link |
---|---|
US (8) | US7809373B2 (en) |
JP (2) | JP4677490B2 (en) |
CN (6) | CN101300754B (en) |
BR (2) | BRPI0617783A2 (en) |
ES (1) | ES2799299T3 (en) |
HK (1) | HK1250869A1 (en) |
RU (2) | RU2411660C2 (en) |
TW (4) | TWI354505B (en) |
ZA (3) | ZA200802859B (en) |
Families Citing this family (200)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6925068B1 (en) | 1999-05-21 | 2005-08-02 | Wi-Lan, Inc. | Method and apparatus for allocating bandwidth in a wireless communication system |
US7006530B2 (en) | 2000-12-22 | 2006-02-28 | Wi-Lan, Inc. | Method and system for adaptively obtaining bandwidth allocation requests |
US8462810B2 (en) | 1999-05-21 | 2013-06-11 | Wi-Lan, Inc. | Method and system for adaptively obtaining bandwidth allocation requests |
US20090219879A1 (en) | 1999-05-21 | 2009-09-03 | Wi-Lan, Inc. | Method and apparatus for bandwidth request/grant protocols in a wireless communication system |
CA2393373A1 (en) | 2002-07-15 | 2004-01-15 | Anthony Gerkis | Apparatus, system and method for the transmission of data with different qos attributes. |
SE529376C3 (en) * | 2004-12-30 | 2007-08-21 | Teliasonera Ab | Method and system for controlling service access in shared networks |
JP4567628B2 (en) * | 2005-06-14 | 2010-10-20 | 株式会社エヌ・ティ・ティ・ドコモ | Mobile station, transmission method and communication system |
JP4818371B2 (en) * | 2005-10-31 | 2011-11-16 | エルジー エレクトロニクス インコーポレイティド | Method for processing control information in wireless mobile communication system |
CN101300754B (en) * | 2005-10-31 | 2012-02-22 | Lg电子株式会社 | Method for sending and receiving radio access information in a wireless mobile communication system |
US8305970B2 (en) * | 2005-10-31 | 2012-11-06 | Lg Electronics Inc. | Method of transmitting a measurement report in a wireless mobile communications system |
EP1943777B1 (en) | 2005-10-31 | 2016-07-20 | LG Electronics Inc. | Method for processing control information in a wireless mobile communication system |
EP1949547B1 (en) * | 2005-10-31 | 2019-08-07 | LG Electronics, Inc. | Data receiving method for mobile communication terminal |
CN101300886B (en) * | 2005-11-04 | 2012-06-13 | 株式会社Ntt都科摩 | Transmission control method, mobile platform and wireless base station |
ES2836180T3 (en) | 2005-11-07 | 2021-06-24 | Alcatel Lucent | Method and apparatus for setting up a mobile communication network with monitoring areas |
WO2007075559A2 (en) * | 2005-12-22 | 2007-07-05 | Interdigital Technology Corporation | Method and system for adjusting uplink transmission timing for long term evolution handover |
TW201608907A (en) | 2006-01-31 | 2016-03-01 | 內數位科技公司 | Method and device for providing and utilizing non-competitive basic channels in Wuxian communication system |
US9232537B2 (en) * | 2006-02-07 | 2016-01-05 | Qualcomm Incorporated | Apparatus and method for fast access in a wireless communication system |
US8920343B2 (en) | 2006-03-23 | 2014-12-30 | Michael Edward Sabatino | Apparatus for acquiring and processing of physiological auditory signals |
WO2007120019A1 (en) * | 2006-04-19 | 2007-10-25 | Electronics And Telecommunications Research Institute | Transmission method of mobile station for random access channel diversity |
KR101151817B1 (en) | 2006-05-03 | 2012-06-01 | 한국전자통신연구원 | Method for transmitting up link contorl signal in mobile communication system |
EP2030394B1 (en) * | 2006-06-09 | 2014-07-30 | TQ Lambda LLC | Method of transmitting data in a mobile communicaiton system |
US7962139B2 (en) * | 2006-06-20 | 2011-06-14 | Texas Instruments Incorporated | Reduction of handover latencies in a wireless communication system |
DK2667660T3 (en) | 2006-06-20 | 2017-08-07 | Interdigital Tech Corp | Recovery from a failed handover in an LTE system |
KR101133746B1 (en) * | 2006-06-21 | 2012-04-09 | 한국전자통신연구원 | A method to transmit downlink signaling message on cellular systems for packet transmission and method for receiving the message |
KR101265643B1 (en) | 2006-08-22 | 2013-05-22 | 엘지전자 주식회사 | A mothod of executing handover and controlling thereof in mobile communication system |
US8259688B2 (en) | 2006-09-01 | 2012-09-04 | Wi-Lan Inc. | Pre-allocated random access identifiers |
DE102006044529B4 (en) * | 2006-09-21 | 2009-08-27 | Infineon Technologies Ag | A method for generating and transmitting system information, network device, method for checking whether a mobile subscriber unit, the access is made possible in a mobile radio cell, mobile subscriber unit and method for determining valid system information |
MX2009003018A (en) | 2006-09-21 | 2009-04-02 | Infineon Technologies Ag | Grouping of user terminal cell access information in a system information frame. |
HUE030306T2 (en) * | 2006-09-27 | 2017-04-28 | Nokia Technologies Oy | Apparatus, method and computer program product providing non-synchronized random access handover |
CN101155415B (en) * | 2006-09-29 | 2011-02-23 | 中兴通讯股份有限公司 | Switching access method and apparatus based on random access channel |
KR101430449B1 (en) * | 2006-10-02 | 2014-08-14 | 엘지전자 주식회사 | Method for transmitting and receiving paging message in wireless communication system |
EP1909523A1 (en) * | 2006-10-02 | 2008-04-09 | Matsushita Electric Industrial Co., Ltd. | Improved acquisition of system information of another cell |
KR20110135425A (en) * | 2006-10-03 | 2011-12-16 | 콸콤 인코포레이티드 | Methods and apparatuses for re-synchronization of temporary GE IDs in a wireless communication system |
US9161212B2 (en) | 2006-10-03 | 2015-10-13 | Qualcomm Incorporated | Method and apparatus for re-synchronizing of temporary UE IDs in a wireless communication system |
US8644247B2 (en) * | 2006-10-12 | 2014-02-04 | Telefonaktiebolaget L M Ericsson (Publ) | Inter-system handoffs in multi-access environments |
KR100938090B1 (en) * | 2006-10-19 | 2010-01-21 | 삼성전자주식회사 | Method and apparatus for performing handover in mobile communication system |
PL2090135T3 (en) * | 2006-10-31 | 2016-05-31 | Qualcomm Inc | Inter-eNode B handover procedure |
JP5055291B2 (en) | 2006-10-31 | 2012-10-24 | シャープ株式会社 | Mobile communication system, base station apparatus and mobile station apparatus |
US10484946B2 (en) * | 2007-01-12 | 2019-11-19 | Electronics And Telecommunications Research Institute | Method of reporting measurement information in packet based on cellular system |
CA2675141C (en) * | 2007-01-12 | 2014-07-29 | Nokia Corporation | Apparatus, method and computer program product providing synchronized handover |
US8169957B2 (en) * | 2007-02-05 | 2012-05-01 | Qualcomm Incorporated | Flexible DTX and DRX in a wireless communication system |
GB0702169D0 (en) * | 2007-02-05 | 2007-03-14 | Nec Corp | Resource Allocation |
TWM343979U (en) * | 2007-02-12 | 2008-11-01 | Interdigital Tech Corp | Dual mode wireless transmit-receive unit |
US8805369B2 (en) * | 2007-03-12 | 2014-08-12 | Nokia Corporation | Techniques for reporting and simultaneous transmission mechanism to improve reliability of signaling |
WO2008111821A1 (en) * | 2007-03-15 | 2008-09-18 | Electronics And Telecommunications Research Institute | Preamble allocation method and random access method in mobile communication system |
CN101636986B (en) | 2007-03-16 | 2013-06-19 | 交互数字技术公司 | Method and apparatus for high speed downlink packet access link adaptation |
US20080225796A1 (en) | 2007-03-17 | 2008-09-18 | Qualcomm Incorporated | Handover in wireless communications |
US20080232326A1 (en) * | 2007-03-19 | 2008-09-25 | Bengt Lindoff | Method and Apparatus for Reducing Interference in Wireless Communication Networks by Enabling More Opportune Handover |
EP2123085B1 (en) * | 2007-03-21 | 2018-08-01 | Telefonaktiebolaget LM Ericsson (publ) | Selective packet forwarding for lte mobility |
TW200840380A (en) * | 2007-03-21 | 2008-10-01 | Asustek Comp Inc | Method and apparatus for handling random access procedure in a wireless communications system |
ES2471888T3 (en) | 2007-03-22 | 2014-06-27 | Fujitsu Limited | Base station, mobile station, communications system, and method of reordering them |
US20100040022A1 (en) * | 2007-03-22 | 2010-02-18 | Telefonaktiebolaget Lm Ericsson (Publ) | Random Access Aligned Handover |
KR101467802B1 (en) * | 2007-04-12 | 2014-12-04 | 엘지전자 주식회사 | Handover and support method in broadband wireless access system |
US9596009B2 (en) | 2007-04-20 | 2017-03-14 | Blackberry Limited | Multicast control channel design |
WO2008137354A1 (en) * | 2007-04-30 | 2008-11-13 | Interdigital Technology Corporation | Cell reselection and handover with multimedia broadcast/multicast service |
US9380503B2 (en) * | 2007-04-30 | 2016-06-28 | Google Technology Holdings LLC | Method and apparatus for handover in a wireless communication system |
US8081662B2 (en) | 2007-04-30 | 2011-12-20 | Lg Electronics Inc. | Methods of transmitting data blocks in wireless communication system |
KR100917205B1 (en) | 2007-05-02 | 2009-09-15 | 엘지전자 주식회사 | Method of configuring a data block in wireless communication system |
US20080273503A1 (en) * | 2007-05-02 | 2008-11-06 | Lg Electronics Inc. | Method and terminal for performing handover in mobile communications system of point-to-multipoint service |
CN101431797B (en) * | 2007-05-11 | 2012-02-01 | 华为技术有限公司 | Registration handling method, system and apparatus |
EP2648451B1 (en) | 2007-05-24 | 2017-11-22 | Huawei Technologies Co., Ltd. | Processing unit, mobile station device and method for random access without necessity of contention resolution |
CN101895989B (en) * | 2007-06-08 | 2013-05-22 | 夏普株式会社 | Mobile communication system, base station device and mobile station device |
KR101486352B1 (en) | 2007-06-18 | 2015-01-26 | 엘지전자 주식회사 | Method of controlling uplink synchronization state at a user equipment in a mobile communication system |
CA2692032C (en) | 2007-06-18 | 2017-10-10 | Telefonaktiebolaget Lm Ericsson (Publ) | Transmission of system information on a downlink shared channel |
KR101470638B1 (en) * | 2007-06-18 | 2014-12-08 | 엘지전자 주식회사 | Radio resource enhancement method, status information reporting method, and receiving apparatus in a mobile communication system |
KR101341515B1 (en) | 2007-06-18 | 2013-12-16 | 엘지전자 주식회사 | Method of updating repeatedly-transmitted information in wireless communicaiton system |
EP2015478B1 (en) | 2007-06-18 | 2013-07-31 | LG Electronics Inc. | Method of performing uplink synchronization in wireless communication system |
KR101470637B1 (en) * | 2007-06-18 | 2014-12-08 | 엘지전자 주식회사 | Radio resource enhancement method, status information reporting method, and receiving apparatus in a mobile communication system |
WO2008154802A1 (en) * | 2007-06-19 | 2008-12-24 | Telefonaktiebolaget L M Ericsson (Publ) | Improved resource reservation during handover in a wireless communication system |
US9392504B2 (en) | 2007-06-19 | 2016-07-12 | Qualcomm Incorporated | Delivery of handover command |
KR101448644B1 (en) * | 2007-06-20 | 2014-10-13 | 엘지전자 주식회사 | Data transmission method in mobile communication system |
WO2008156314A2 (en) * | 2007-06-20 | 2008-12-24 | Lg Electronics Inc. | Effective system information reception method |
KR101458643B1 (en) * | 2007-06-20 | 2014-11-12 | 엘지전자 주식회사 | Effective system information reception method |
US9307464B2 (en) | 2007-06-21 | 2016-04-05 | Sony Corporation | Cellular communication system, apparatus and method for handover |
US20090005042A1 (en) * | 2007-06-29 | 2009-01-01 | Motorola, Inc. | Method of broadcasting system information in communication cells for handoff |
KR101128217B1 (en) * | 2007-07-27 | 2012-03-22 | 후지쯔 가부시끼가이샤 | Mobile communication system, wireless base station and superior apparatus |
KR101614957B1 (en) | 2007-08-03 | 2016-04-22 | 인터디지탈 패튼 홀딩스, 인크 | System level information for discontinuous reception, cell reselection and rach |
US8451795B2 (en) * | 2007-08-08 | 2013-05-28 | Qualcomm Incorporated | Handover in a wireless data packet communication system that avoid user data loss |
WO2009022805A1 (en) * | 2007-08-10 | 2009-02-19 | Lg Electronics Inc. | Method of reporting measurement result in wireless communication system |
KR101514841B1 (en) | 2007-08-10 | 2015-04-23 | 엘지전자 주식회사 | Method for re-attempting a random access effectively |
CN101690380B (en) * | 2007-08-10 | 2013-07-24 | 富士通株式会社 | Radio base station and mobile station |
KR20090016412A (en) * | 2007-08-10 | 2009-02-13 | 엘지전자 주식회사 | Data communication method in wireless communication system |
KR101490253B1 (en) * | 2007-08-10 | 2015-02-05 | 엘지전자 주식회사 | Method of transmitting and receiving control information in a wireless communication system |
EP2186247A4 (en) | 2007-08-10 | 2014-01-29 | Lg Electronics Inc | Method for controlling harq operation in dynamic radio resource allocation |
KR101467789B1 (en) * | 2007-08-10 | 2014-12-03 | 엘지전자 주식회사 | Uplink Connection Control Method of Dormant Terminal |
EP2176969B1 (en) * | 2007-08-10 | 2012-11-28 | LG Electronics Inc. | Methods of setting up channel in wireless communication system |
US9008006B2 (en) | 2007-08-10 | 2015-04-14 | Lg Electronics Inc. | Random access method for multimedia broadcast multicast service(MBMS) |
KR101479341B1 (en) | 2007-08-10 | 2015-01-05 | 엘지전자 주식회사 | An efficient receiving method in a wireless communication system providing an MBMS service |
KR20090016431A (en) * | 2007-08-10 | 2009-02-13 | 엘지전자 주식회사 | How to Perform Channel Quality Reporting in Wireless Communication Systems |
US8391311B2 (en) * | 2007-08-13 | 2013-03-05 | Lg Electronics Inc. | Method for transmitting VoIP packet |
WO2009022860A1 (en) * | 2007-08-13 | 2009-02-19 | Lg Electronics Inc. | Method for performing handover in wireless communication system |
US8488523B2 (en) | 2007-08-14 | 2013-07-16 | Lg Electronics Inc. | Method of transmitting and processing data block of specific protocol layer in wireless communication system |
US8649795B2 (en) | 2007-09-05 | 2014-02-11 | Blackberry Limited | Multicast/broadcast single frequency network control information transmission |
EP2124363B1 (en) * | 2007-09-06 | 2013-01-23 | Sharp Kabushiki Kaisha | Communication apparatus and communication method |
KR101461970B1 (en) | 2007-09-13 | 2014-11-14 | 엘지전자 주식회사 | A method of performing a polling process in a wireless communication system |
KR100937432B1 (en) * | 2007-09-13 | 2010-01-18 | 엘지전자 주식회사 | Radio Resource Allocation Method in Wireless Communication System |
CN103327536B (en) * | 2007-09-13 | 2016-07-06 | Lg电子株式会社 | The method of transmission buffer state report in a wireless communication system |
US8077649B2 (en) | 2007-09-13 | 2011-12-13 | Research In Motion Limited | Indication of multicast control information |
KR101396062B1 (en) | 2007-09-18 | 2014-05-26 | 엘지전자 주식회사 | Effective data block transmission method using a header indicator |
KR101435844B1 (en) | 2007-09-18 | 2014-08-29 | 엘지전자 주식회사 | Method for transmitting data blocks in a wireless communication system |
EP2192798B1 (en) * | 2007-09-18 | 2019-03-06 | Sharp Kabushiki Kaisha | Radio communication system, base station device, mobile station device, and random access method |
KR101591824B1 (en) | 2007-09-18 | 2016-02-04 | 엘지전자 주식회사 | Method of performing polling procedure in a wireless communication system |
KR101513033B1 (en) | 2007-09-18 | 2015-04-17 | 엘지전자 주식회사 | A method for qos guarantees in a multilayer structure |
US8687565B2 (en) | 2007-09-20 | 2014-04-01 | Lg Electronics Inc. | Method of effectively transmitting radio resource allocation request in mobile communication system |
KR102107629B1 (en) | 2007-09-28 | 2020-05-29 | 시그널 트러스트 포 와이어리스 이노베이션 | Method and apparatus for terminating transmission of a message in an enhanced random access channel |
MX2010003422A (en) * | 2007-10-01 | 2010-08-04 | Motorola Inc | A method for allocating a temporary resource request indentifier for accessing a target base station. |
KR101391382B1 (en) | 2007-10-01 | 2014-05-07 | 인터디지탈 패튼 홀딩스, 인크 | Method and apparatus for pdcp discard |
JP5278642B2 (en) * | 2007-10-02 | 2013-09-04 | 日本電気株式会社 | Common channel resource allocation method and apparatus |
KR101487557B1 (en) * | 2007-10-23 | 2015-01-29 | 엘지전자 주식회사 | Method of transmitting data of common control channel |
KR20090041323A (en) | 2007-10-23 | 2009-04-28 | 엘지전자 주식회사 | Method for effectively transmitting identification information of terminal in data block configuration |
JP4664435B2 (en) * | 2007-10-24 | 2011-04-06 | シャープ株式会社 | Mobile communication system, base station apparatus, mobile station apparatus, and mobile communication method |
GB2454650A (en) * | 2007-10-29 | 2009-05-20 | Nec Corp | Resource Allocation for persistently allocated resources |
US8416678B2 (en) * | 2007-10-29 | 2013-04-09 | Lg Electronics Inc. | Method for repairing an error depending on a radio bearer type |
EP3780736B1 (en) | 2007-11-20 | 2023-05-17 | InterDigital Patent Holdings, Inc. | Method and apparatus for sequence hopping pattern change during handover |
KR20140019849A (en) | 2008-01-02 | 2014-02-17 | 인터디지탈 패튼 홀딩스, 인크 | Method and apparatus for cell reselection |
KR101594359B1 (en) | 2008-01-31 | 2016-02-16 | 엘지전자 주식회사 | Method of signaling back-off information in random access |
EP2086276B1 (en) * | 2008-01-31 | 2016-11-02 | LG Electronics Inc. | Method for signaling back-off information in random access |
CN101521869A (en) * | 2008-02-25 | 2009-09-02 | 三星电子株式会社 | Method for updating position information of user equipment |
WO2009111233A1 (en) | 2008-03-04 | 2009-09-11 | Interdigital Patent Holdings, Inc. | Method and apparatus for accessing a random access channel by selectively using dedicated or contention-based preambles during handover |
EP2266224B1 (en) * | 2008-03-17 | 2017-06-14 | LG Electronics Inc. | Method of transmitting rlc data |
KR101163275B1 (en) | 2008-03-17 | 2012-07-05 | 엘지전자 주식회사 | Method for transmitting pdcp status report |
US8712415B2 (en) * | 2008-03-20 | 2014-04-29 | Interdigital Patent Holdings, Inc. | Timing and cell specific system information handling for handover in evolved UTRA |
JP5203780B2 (en) * | 2008-04-07 | 2013-06-05 | 株式会社日立製作所 | Mobile radio communication system and access gateway |
JP5174520B2 (en) * | 2008-04-18 | 2013-04-03 | 京セラ株式会社 | Mobile communication system and channel allocation method |
US8509180B2 (en) * | 2008-05-02 | 2013-08-13 | Qualcomm Incorporated | Method and apparatus for efficient handover in LTE |
US8711786B2 (en) * | 2008-05-13 | 2014-04-29 | Qualcomm Incorporated | Autonomous downlink code selection for femto cells |
US8718696B2 (en) * | 2008-05-13 | 2014-05-06 | Qualcomm Incorporated | Transmit power selection for user equipment communicating with femto cells |
US8725083B2 (en) * | 2008-05-13 | 2014-05-13 | Qualcomm Incorporated | Self calibration of downlink transmit power |
US8737317B2 (en) * | 2008-05-13 | 2014-05-27 | Qualcomm Incorporated | Autonomous carrier selection for femtocells |
CN102047601A (en) * | 2008-05-30 | 2011-05-04 | 交互数字专利控股公司 | Method and apparatus for delivery notification of non-access stratum retransmission |
US9049581B2 (en) * | 2008-06-23 | 2015-06-02 | Qualcomm Incorporated | Utilizing system access sequences to request resources for GCI reporting in wireless networks |
EP2308258B1 (en) | 2008-06-30 | 2017-12-06 | InterDigital Patent Holdings, Inc. | Method and apparatus for performing a handover in an evolved universal terrestrial radio access network |
EP2311282B1 (en) * | 2008-08-08 | 2014-03-12 | InterDigital Patent Holdings, Inc. | Method and apparatus for performing serving high speed downlink shared channel cell change |
EP2315486A4 (en) * | 2008-08-11 | 2016-05-25 | Ntt Docomo Inc | BASE STATION DEVICE AND COMMUNICATION CONTROL METHOD |
EP2330785A4 (en) * | 2008-08-28 | 2014-01-29 | Zte Corp | A control information transmission method and a receiving terminal |
EP2214436B1 (en) * | 2009-01-29 | 2013-03-20 | Alcatel Lucent | Telecommunication method and apparatus thereof |
JP5338896B2 (en) * | 2009-02-27 | 2013-11-13 | 富士通株式会社 | Communication control device, communication control device identifier assignment method, and mobile communication system |
CN101841891B (en) * | 2009-03-19 | 2013-10-02 | 华为技术有限公司 | Information sending and receiving method, device and system |
CN101860929B (en) * | 2009-04-13 | 2013-06-12 | 中兴通讯股份有限公司 | Inter-base station switching method |
DK2425661T3 (en) | 2009-04-27 | 2014-04-22 | Ericsson Telefon Ab L M | Resource allocation methods and devices for direct access in carrier telecommunication systems with carrier aggregation |
US9392621B2 (en) * | 2009-06-26 | 2016-07-12 | Qualcomm Incorporated | Initiating a random access procedure for determining communication parameters |
CN101945485B (en) * | 2009-07-10 | 2014-09-10 | 中兴通讯股份有限公司 | Method, device and system for performing access control judgment by core network |
KR101549020B1 (en) | 2009-07-28 | 2015-09-01 | 엘지전자 주식회사 | A method for measuring channel quality information for a downlink multicarrier in a wireless communication system using a carrier set |
JP5322832B2 (en) * | 2009-08-06 | 2013-10-23 | シャープ株式会社 | Mobile station apparatus, base station apparatus, radio communication system, and random access method |
GB2472789A (en) | 2009-08-17 | 2011-02-23 | Nec Corp | In a lte-advanced network a target enb sends a source enb information to indicate to the ue which of multiple component carriers is to be used for initail acc |
CN102006639B (en) * | 2009-09-03 | 2014-01-01 | 华为技术有限公司 | Switching processing method and system, relay device and base station |
US9510247B2 (en) | 2009-10-26 | 2016-11-29 | Nec Corporation | Mobile communication system, gateway device, base station, communication method, and program |
US9113385B2 (en) | 2009-11-25 | 2015-08-18 | Telefonaktiebolaget L M Ericsson (Publ) | Method and arrangements for reducing the number of failed handover procedures |
WO2011082537A1 (en) * | 2010-01-08 | 2011-07-14 | 华为技术有限公司 | System information update method and device |
US8848643B2 (en) | 2010-01-08 | 2014-09-30 | Lg Electronics Inc. | Method and apparatus for transmitting uplink control information in wireless communication system for supporting multi-carriers |
CN102123457B (en) * | 2010-01-11 | 2016-04-13 | 中兴通讯股份有限公司 | Changing method and terminal |
US9154260B2 (en) * | 2010-03-26 | 2015-10-06 | Qualcomm Incorporated | Method and apparatus for reliable transmission of control information in a wireless communication network |
GB2479534B (en) * | 2010-04-12 | 2014-11-12 | Samsung Electronics Co Ltd | Handover with carrier aggregation |
US9414269B2 (en) * | 2010-05-14 | 2016-08-09 | Blackberry Limited | Systems and methods of transmitting measurement reports |
CN102271361B (en) * | 2010-06-01 | 2014-03-12 | 中兴通讯股份有限公司 | Correct issuing method and apparatus for measurement configuration during processes of switching between pilot frequencies and reconstruction of RRC connection of pilot frequencies |
CN102291752A (en) * | 2010-06-21 | 2011-12-21 | 电信科学技术研究院 | Channel state information feedback method and equipment |
CN102300272B (en) * | 2010-06-22 | 2015-09-16 | 中兴通讯股份有限公司 | The data forwarding method that S1 switches and mobile communication system |
US8750207B2 (en) * | 2010-10-15 | 2014-06-10 | Apple Inc. | Adapting transmission to improve QoS in a mobile wireless device |
DE112011103680B4 (en) * | 2010-11-05 | 2018-05-17 | Lg Electronics Inc. | Methods and apparatus for performing a handover in a wireless communication system |
WO2012154325A1 (en) * | 2011-04-01 | 2012-11-15 | Interdigital Patent Holdings, Inc. | Method and apparatus for controlling connectivity to a network |
US20140024357A1 (en) * | 2011-04-11 | 2014-01-23 | Nokia Corporation | Method and apparatus for cell type specific measurement configuration |
US20120314652A1 (en) * | 2011-06-09 | 2012-12-13 | Pantech Co., Ltd. | Apparatus and method for performing random access in wireless communication system |
US8867392B2 (en) * | 2011-06-16 | 2014-10-21 | Empire Technology Development Llc | Handoff of a mobile device moving at a high relative velocity to base stations for a wireless network |
TWI453516B (en) * | 2011-07-13 | 2014-09-21 | Au Optronics Corp | Pixel structure and its making method |
MX347118B (en) * | 2011-08-10 | 2017-04-11 | Fujitsu Ltd | Method for reporting channel state information, user equipment and base station. |
KR101565424B1 (en) * | 2011-08-19 | 2015-11-03 | 엘지전자 주식회사 | Method and apparatus for performing handover in wireless communication system |
GB2494108A (en) * | 2011-08-22 | 2013-03-06 | Samsung Electronics Co Ltd | Determining trigger events for sending measurement reports in a cellular wireless communication network |
CN103167624B (en) | 2011-12-14 | 2015-09-30 | 电信科学技术研究院 | Accidental access method in a kind of cognitive radio system and equipment |
GB2498781B (en) | 2012-01-26 | 2014-12-17 | Samsung Electronics Co Ltd | Processing state information |
US8982693B2 (en) * | 2012-05-14 | 2015-03-17 | Google Technology Holdings LLC | Radio link monitoring in a wireless communication device |
US11469914B2 (en) * | 2012-08-10 | 2022-10-11 | Viasat, Inc. | System, method and apparatus for subscriber user interfaces |
CN103731920B (en) * | 2012-10-10 | 2019-04-23 | 中兴通讯股份有限公司 | Un subframe configuration method and device |
WO2014106322A1 (en) * | 2013-01-04 | 2014-07-10 | 华为技术有限公司 | Data transmission method, device, network equipment and user equipment |
KR20150139825A (en) | 2013-01-10 | 2015-12-14 | 엘지전자 주식회사 | Method for updating base station information in converged network supporting multiple communication systems, and device therefor |
EP2966631B1 (en) * | 2013-03-07 | 2020-02-12 | Fujitsu Limited | Data collection method, system and data collection program |
US10165455B2 (en) * | 2013-08-22 | 2018-12-25 | Telefonaktiebolaget Lm Ericsson (Publ) | Coordination for PBCH |
CN105101335B (en) * | 2014-04-24 | 2019-07-23 | 华为技术有限公司 | Wireless assistance method, apparatus and system |
CN111432420A (en) | 2014-06-23 | 2020-07-17 | 索尼公司 | Electronic device in wireless communication system and method of performing mobility measurements |
CN113411893B (en) * | 2014-09-12 | 2024-06-07 | 日本电气株式会社 | Radio station, radio terminal, and method thereof |
CN113873573B (en) * | 2015-05-22 | 2024-11-12 | 三星电子株式会社 | Terminal, base station and communication method thereof |
WO2016201646A1 (en) * | 2015-06-17 | 2016-12-22 | 华为技术有限公司 | Method, device and system for acquiring uplink data transmission resource |
EP3360383B1 (en) * | 2015-10-05 | 2020-12-02 | Telefonaktiebolaget LM Ericsson (PUBL) | Apparatuses and methods providing mobility support for enhanced coverage of wireless devices |
CN113613296A (en) * | 2015-11-04 | 2021-11-05 | 三菱电机株式会社 | Communication system |
RU2628322C1 (en) * | 2016-04-28 | 2017-08-15 | Фудзицу Лимитед | Method of report providing with information on the channel status, user equipment and base station |
JP6683849B2 (en) | 2016-06-24 | 2020-04-22 | 華為技術有限公司Huawei Technologies Co.,Ltd. | Scheduling method and base station |
CN109479238B (en) * | 2016-07-22 | 2022-08-19 | 索尼公司 | Mobile telecommunication system method, user equipment and base station for on-demand transmission of system information |
US20180049079A1 (en) * | 2016-08-12 | 2018-02-15 | Qualcomm Incorporated | Handover in wireless communications |
US11419016B2 (en) | 2016-09-30 | 2022-08-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and arrangements for measurement based mobility |
WO2018058513A1 (en) | 2016-09-30 | 2018-04-05 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and arrangements for radio link measurement configuration |
US10728808B2 (en) * | 2016-09-30 | 2020-07-28 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and arrangements for measurement based mobility |
KR102146696B1 (en) * | 2016-10-07 | 2020-08-21 | 에스케이 텔레콤주식회사 | Method And Apparatus for Scheduling Wireless Resource of Mobile Terminal |
CN112929894B (en) * | 2016-11-04 | 2022-12-02 | Oppo广东移动通信有限公司 | Method and network device for beam measurement |
CN110213834B (en) * | 2017-01-06 | 2020-09-29 | 华为技术有限公司 | Random access method, user equipment and network equipment |
CN109246770B (en) | 2017-05-05 | 2021-06-22 | 华为技术有限公司 | Switching method, terminal equipment and network equipment |
KR102105511B1 (en) * | 2018-05-17 | 2020-04-28 | 엘지전자 주식회사 | Method of determining a transmission configuration indicator of a user equipment in a wireless communication system and an apparatus using the same |
CN112567867A (en) * | 2018-08-10 | 2021-03-26 | 索尼公司 | Early measurement reporting |
US11595862B2 (en) | 2018-09-28 | 2023-02-28 | Lg Electronics Inc. | Signaling delay handling for handover |
EP3878202B1 (en) | 2018-11-09 | 2024-09-18 | Nokia Technologies Oy | A method and apparatus for transmitting positioning measurement report |
US11924696B2 (en) * | 2020-10-01 | 2024-03-05 | Nokia Technologies Oy | Reducing traffic interruption during handover |
CN115209490B (en) * | 2021-04-09 | 2024-06-04 | 北京小米移动软件有限公司 | Cell switching method and device, communication equipment and storage medium |
Citations (189)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1994008432A1 (en) | 1992-10-05 | 1994-04-14 | Ericsson Ge Mobile Communications, Inc. | Digital control channel |
US5311176A (en) | 1992-03-31 | 1994-05-10 | Motorola, Inc. | Method and apparatus for generating Walsh codes |
US5345448A (en) | 1992-04-27 | 1994-09-06 | Nokia Mobile Phones Ltd. | Procedure for the handover of a radio connection |
US5553153A (en) | 1993-02-10 | 1996-09-03 | Noise Cancellation Technologies, Inc. | Method and system for on-line system identification |
JPH09186704A (en) | 1995-12-01 | 1997-07-15 | Nokia Mobile Phones Ltd | Data transmission system, method for executing hand-over in the system and base station for the system |
US5677908A (en) | 1994-04-08 | 1997-10-14 | Oki Electric Industry Co., Ltd. | Hand-over method for mobile communication |
US5697055A (en) | 1994-10-16 | 1997-12-09 | Qualcomm Incorporated | Method and apparatus for handoff between different cellular communications systems |
US5722072A (en) | 1994-03-21 | 1998-02-24 | Motorola, Inc. | Handover based on measured time of signals received from neighboring cells |
JPH10136426A (en) | 1996-10-30 | 1998-05-22 | Y R P Ido Tsushin Kiban Gijutsu Kenkyusho:Kk | Mobile communication system |
JPH11146462A (en) | 1997-11-04 | 1999-05-28 | Nec Shizuoka Ltd | Mobile station equipment, base station equipment, mobile communication system and mobile communication method |
GB2332340A (en) | 1997-12-12 | 1999-06-16 | Orange Personal Comm Serv Ltd | Transmission of measurement reports from a mobile station to a base station and a service node in a cellular communication system |
JPH11196477A (en) | 1997-10-02 | 1999-07-21 | Samsung Electron Co Ltd | Method for integrating charging information for iwws |
WO1999059253A2 (en) | 1998-05-08 | 1999-11-18 | Samsung Electronics Co., Ltd. | System and method for determining a handoff target base station in a mobile communication system |
JPH11341541A (en) | 1998-05-22 | 1999-12-10 | Hitachi Ltd | Mobile communication system, packet transfer method for mobile communication system and terminal base station used for mobile communication system |
JP2000069531A (en) | 1998-08-26 | 2000-03-03 | Nippon Telegr & Teleph Corp <Ntt> | Error compensation method and base station device using the method |
WO2000072609A1 (en) | 1999-05-20 | 2000-11-30 | Telefonaktiebolaget L M Ericsson (Publ) | Method and apparatus for broadcasting system information in a cellular communications network |
WO2000074420A1 (en) | 1999-06-01 | 2000-12-07 | Nokia Corporation | Method and arrangement for switching cells |
US6161160A (en) | 1998-09-03 | 2000-12-12 | Advanced Micro Devices, Inc. | Network interface device architecture for storing transmit and receive data in a random access buffer memory across independent clock domains |
US6161014A (en) | 1998-05-04 | 2000-12-12 | Alcatel | Method of handling over a call between two relay stations of a cell of a digital cellular mobile radio system |
JP2001078246A (en) | 1999-07-19 | 2001-03-23 | Lucent Technol Inc | Method and device for distributing base station address used in radio network |
EP1097602A2 (en) | 1998-07-20 | 2001-05-09 | QUALCOMM Incorporated | Soft handover in a hybrid gsm/cdma network |
WO2001041471A1 (en) | 1999-12-02 | 2001-06-07 | Orange Personal Communications Services Limited | Subscriber equipment and method for a mobile communications system |
US20010016496A1 (en) | 2000-01-15 | 2001-08-23 | Lee Sung-Won | Apparatus and method for assigning a supplemental channel in mobile communication system |
EP1134992A1 (en) | 2000-03-14 | 2001-09-19 | Lucent Technologies Inc. | Method and mobile network to minimise the RACH transmit power |
US20010026543A1 (en) | 2000-02-16 | 2001-10-04 | Samsung Electronics Co.,Ltd. | Apparatus and method for assigning a common packet channel in a CDMA communication system |
WO2001076110A2 (en) | 2000-03-30 | 2001-10-11 | Qualcomm Incorporated | Method and apparatus for measuring channel state information |
US20010036113A1 (en) | 2000-04-04 | 2001-11-01 | Jens-Uwe Jurgensen | Prioritisation method for users randomly accessing a common communication channel |
WO2002009825A1 (en) | 2000-08-02 | 2002-02-07 | Professional Golf Solutions Pty Ltd | A synthetic grass surface |
US6359876B1 (en) | 1997-10-01 | 2002-03-19 | Nec Corporation | CDMA cellular communication system using frame offset distribution of all base stations to avoid traffic peak |
US20020041578A1 (en) | 2000-06-02 | 2002-04-11 | Samsung Electronics Co., Ltd. | Method for selecting RACH in a CDMA mobile communication system |
US6374080B2 (en) | 1999-06-17 | 2002-04-16 | Mitsubishi Denki Kabushiki Kaisha | Mobile communication system |
US20020045448A1 (en) | 2000-08-09 | 2002-04-18 | Seong-Soo Park | Handover method in wireless telecommunication system supporting USTS |
US20020048266A1 (en) * | 2000-10-24 | 2002-04-25 | Choi Young Su | Handoff method in CDMA communication system |
US20020051431A1 (en) | 2000-07-18 | 2002-05-02 | Samsung Electronics Co., Ltd. | Method for performing USTS handover and USTS mode switching in a mobile communication system |
US20020071480A1 (en) | 1999-03-08 | 2002-06-13 | Pekka Marjelund | Method for establishing a communication between a user equipment and a radio network |
US20020085516A1 (en) | 2000-12-28 | 2002-07-04 | Symbol Technologies, Inc. | Automatic and seamless vertical roaming between wireless local area network (WLAN) and wireless wide area network (WWAN) while maintaining an active voice or streaming data connection: systems, methods and program products |
US20020089957A1 (en) | 1999-05-26 | 2002-07-11 | Timo Viero | Random access control method and system |
US20020122393A1 (en) | 2001-03-01 | 2002-09-05 | Koninklijke Philips Electronics N.V. | Antenna diversity in a wireless local area network |
WO2002080401A2 (en) | 2001-03-28 | 2002-10-10 | Qualcomm Incorporated | Power control for point-to-multipoint services provided in communication systems |
WO2002082666A2 (en) | 2001-03-28 | 2002-10-17 | Nokia Corporation | Transmissions in a communication system |
US20020159412A1 (en) * | 2001-04-26 | 2002-10-31 | Odenwalder Joseph P. | Preamble channel decoding |
US20020181436A1 (en) | 2001-04-02 | 2002-12-05 | Jens Mueckenheim | Method and system for UMTS packet transmission scheduling on uplink channels |
US20030002472A1 (en) | 2001-06-29 | 2003-01-02 | Samsung Electronics Co., Ltd. | Method for transmitting HSDPA service information in a CDMA mobile communication system |
US20030008653A1 (en) | 2001-07-09 | 2003-01-09 | Jiang Sam Shiaw-Shiang | Lossless SRNS relocation procedure in a wireless communications system |
US20030026324A1 (en) * | 2001-02-28 | 2003-02-06 | Don Li | Power-controlled random access |
WO2003017544A1 (en) | 2001-08-16 | 2003-02-27 | Interdigital Technology Corporation | Time division duplex method for determining whether to initiate handover |
US6532225B1 (en) | 1999-07-27 | 2003-03-11 | At&T Corp | Medium access control layer for packetized wireless systems |
US20030048763A1 (en) | 2001-09-13 | 2003-03-13 | Nec Corporation | Handover method in code division multiple access communication system and system thereof |
US20030054829A1 (en) | 1999-12-15 | 2003-03-20 | Martti Moisio | Channel allocation method in a cellular radio network |
US20030076812A1 (en) | 2000-02-24 | 2003-04-24 | Benedittis Rosella De | Method for optimizing the random access procedures in the cdma cellular networks |
US6563807B1 (en) * | 1997-12-30 | 2003-05-13 | Lg Information & Communications, Ltd. | Inter-frequency handoff execution method and apparatus in mobile communication system |
US20030091108A1 (en) | 2001-11-15 | 2003-05-15 | Nec Corporation | Fixed pattern detection apparatus and fixed pattern detection method |
WO2003055105A1 (en) | 2001-12-12 | 2003-07-03 | Samsung Electronics Co., Ltd. | Method for performing a handoff in a mobile communication system |
KR20030056143A (en) | 2001-12-27 | 2003-07-04 | 에스케이 텔레콤주식회사 | Method for controlling hand-off in service boundary area |
EP1326460A1 (en) | 2001-12-21 | 2003-07-09 | Siemens Aktiengesellschaft | Method and system of handover in a cellular packet network |
US20030131300A1 (en) | 2002-01-10 | 2003-07-10 | Samsung Electronics Co., Ltd | Data transmitting/receiving system and method thereof |
CN1437416A (en) | 2002-02-08 | 2003-08-20 | 华为技术有限公司 | Method of raising successive mobile station accessing rate in mobile communication system |
WO2003088691A1 (en) | 2002-04-17 | 2003-10-23 | Nec Corporation | Handover control method |
US20030207696A1 (en) | 2002-05-06 | 2003-11-06 | Serge Willenegger | Multi-media broadcast and multicast service (MBMS) in a wireless communications system |
RU2216100C2 (en) | 1998-02-13 | 2003-11-10 | Телефонактиеболагет Лм Эрикссон (Пабл) | Method for planning readings of variable blocks with aid of status flag of ascending communication line in burst data transmission system |
JP2003324761A (en) | 2001-04-26 | 2003-11-14 | Ntt Docomo Inc | Data link transmission control method, mobile communication system, data link transmission control apparatus, base station, mobile station, mobile station control program, and computer-readable recording medium |
WO2003096731A1 (en) | 2002-05-10 | 2003-11-20 | Mitsubishi Denki Kabushiki Kaisha | Mobile communication system, base station and mobile station |
WO2003103320A1 (en) | 2002-05-31 | 2003-12-11 | 富士通株式会社 | Mobile communication system using downlink shared channel |
US20040009767A1 (en) | 2002-04-06 | 2004-01-15 | Lee Young-Dae | Radio link parameter updating method in mobile communication system |
US20040022217A1 (en) | 2002-04-29 | 2004-02-05 | Sari Korpela | Method and apparatus for soft handover area detection using inter-band measurements |
EP1388964A1 (en) | 2002-08-06 | 2004-02-11 | Mitsubishi Electric Information Technology Centre Europe B.V. | Transmission quality reporting method |
US20040029532A1 (en) | 2002-04-29 | 2004-02-12 | Uwe Schwarz | Method and apparatus for soft handover area detection for uplink interference avoidance |
WO2004016016A1 (en) | 2002-08-07 | 2004-02-19 | Qualcomm, Incorporated | Registration in a broadcast communications system |
WO2004017541A1 (en) | 2002-08-14 | 2004-02-26 | Lg Electronics Inc. | Method for transmitting control signal for mbms data in wireless mobile communication system |
US20040047284A1 (en) | 2002-03-13 | 2004-03-11 | Eidson Donald Brian | Transmit diversity framing structure for multipath channels |
US20040053614A1 (en) | 2001-01-10 | 2004-03-18 | Kim Il-Gyu | Method for seamless inter-frequency hard handover in radio communication system |
EP1404079A2 (en) | 2002-09-30 | 2004-03-31 | Samsung Electronics Co., Ltd. | Generation of preamble sequences in an multicarrier communication system |
WO2004030392A1 (en) | 2002-09-27 | 2004-04-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Requesting and controlling access in a wireless communications network |
US20040085926A1 (en) | 2002-08-17 | 2004-05-06 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting/receiving data during a handover in a mobile communication system providing MBMS service |
WO2004042954A1 (en) | 2002-10-30 | 2004-05-21 | Motorola, Inc., A Corporation Of The State Of Delaware | Method and apparatus for providing a distributed architecture digital wireless communication system |
US20040114574A1 (en) | 2002-05-29 | 2004-06-17 | Interdigital Technology Corporation | Packet switched connections using dedicated channels |
US20040127244A1 (en) | 2002-11-08 | 2004-07-01 | Mariko Matsumoto | Mobile radio communication system and base station, and mobile radio communication method used therefor |
JP2004208177A (en) | 2002-12-26 | 2004-07-22 | Matsushita Electric Ind Co Ltd | Handover method and radio communication apparatus |
US20040152478A1 (en) | 2003-01-31 | 2004-08-05 | Ruohonen Jari J. | System and method for extending neighboring cell search window |
US20040152473A1 (en) | 2003-01-10 | 2004-08-05 | Nec Corporation | Mobile communication system, radio network controller, radio terminal, data delivering method, and program for the method |
US6778509B1 (en) | 1999-11-19 | 2004-08-17 | Hughes Electronics Corporation | MAC layer protocol for a satellite based packet switched services |
US20040162072A1 (en) | 2003-02-15 | 2004-08-19 | Alcatel | Method of performing a handover or reselection procedure |
US20040171401A1 (en) | 2003-02-28 | 2004-09-02 | Krishna Balachandran | Methods and systems for assigning channels in a power controlled time slotted wireless communications system |
US20040185852A1 (en) | 2003-03-08 | 2004-09-23 | Samsung Electronics Co., Ltd. | System and method for implementing a handoff in a traffic state in a broadband wireless access communication system |
JP2004289234A (en) | 2003-03-19 | 2004-10-14 | Mitsubishi Electric Corp | Radio communication system, mobile station, base station and base station control apparatus |
EP1469697A2 (en) | 2003-03-08 | 2004-10-20 | Samsung Electronics Co., Ltd. | Handover requested and controlled by the mobile station in a broadband wireless access communication system |
US6845238B1 (en) | 1999-09-15 | 2005-01-18 | Telefonaktiebolaget Lm Ericsson (Publ) | Inter-frequency measurement and handover for wireless communications |
WO2005011134A2 (en) | 2003-07-17 | 2005-02-03 | Interdigital Technology Corporation | Method and system for delivery of assistance data |
US20050041573A1 (en) | 2003-07-30 | 2005-02-24 | Samsung Electronics Co., Ltd. | Ranging method in a broadband wireless access communication system |
WO2005018255A1 (en) | 2003-08-14 | 2005-02-24 | Matsushita Electric Industrial Co., Ltd. | Base station synchronization during soft handover |
CN1596020A (en) | 2003-09-11 | 2005-03-16 | 华为技术有限公司 | Method of accessing target base station for mobile terminal switching between base stations |
US20050059437A1 (en) | 2003-09-04 | 2005-03-17 | Samsung Electronics Co., Ltd. | Mode transition method considering handover in a broadband wireless access communication system |
EP1519519A1 (en) | 2003-09-23 | 2005-03-30 | Matsushita Electric Industrial Co., Ltd. | Protocol context transfer in a mobile communication system |
US20050075108A1 (en) * | 2003-10-01 | 2005-04-07 | Samsung Electronics Co., Ltd. | Method of providing a fast downlink service in a hard handover in a cellular communication system |
US20050084030A1 (en) | 2003-10-16 | 2005-04-21 | Samsung Electronics Co., Ltd. | Method of transmitting preamble for synchronization in a MIMO-OFDM communication system |
JP2005124215A (en) | 2003-10-16 | 2005-05-12 | Samsung Electronics Co Ltd | A fast handoff method without data loss in mobile communication systems based on frequency jump orthogonal frequency division multiplexing |
WO2005043791A2 (en) | 2003-10-30 | 2005-05-12 | Electronics And Telecommunications Research Institute | Method for constructing downlink frame in wireless communication system using orthogonal frequency division multiple access |
US20050105488A1 (en) | 2002-07-05 | 2005-05-19 | Faiba Raji | Method for the transmission of data packets in a mobile radio system and corresponding mobile radio system |
US20050105505A1 (en) | 2003-11-07 | 2005-05-19 | Eran Fishler | Transceiver for a wireless local area network having a sparse preamble data sequence |
US20050119004A1 (en) | 2002-03-05 | 2005-06-02 | Huawei Technologies Co., Ltd. Huawei Service Center Building, Kefa Road | Method of optimizing soft handover between radio network controllers |
US20050138528A1 (en) | 2003-12-05 | 2005-06-23 | Nokia Corporation | Method, system and transmitting side protocol entity for sending packet data units for unacknowledged mode services |
WO2005060132A1 (en) | 2003-12-18 | 2005-06-30 | Electronics And Telecommunications Research Institute | Method and apparatus for requesting and reporting channel quality information in mobile communication system |
US6920155B2 (en) | 2000-03-03 | 2005-07-19 | Zarlink Semiconductor, Inc. | Embedded loop delay compensation circuit for multi-channel transceiver |
KR20050078635A (en) | 2004-02-02 | 2005-08-05 | 한국전자통신연구원 | A method for requesting and reporting channel quality information in wireless system and apparatus thereof |
WO2005072073A2 (en) | 2004-02-02 | 2005-08-11 | Electronics And Telecommunications Research Institute | A method for requesting and reporting channel quality information in wireless system and apparatus thereof |
US20050177623A1 (en) | 2004-02-09 | 2005-08-11 | M-Stack Limited | Apparatus and method for implementing system information acquisition in universal mobile telecommunications system user equipment |
US20050181801A1 (en) | 2004-02-12 | 2005-08-18 | M-Stack Limited | Apparatus and method for handling system information in mobile telecommunications system user equipment |
WO2005078966A1 (en) | 2004-02-13 | 2005-08-25 | Samsung Electronics Co., Ltd. | Method and apparatus for performing fast handover through fast ranging in a broadband wireless communication system |
JP2005237031A (en) | 2003-02-12 | 2005-09-02 | Matsushita Electric Ind Co Ltd | Radio communication method |
US20050197132A1 (en) | 2004-03-05 | 2005-09-08 | Samsung Electronics Co., Ltd. | Method and apparatus for allocating channels in an orthogonal frequency division multiple access system |
WO2005083912A1 (en) | 2004-03-02 | 2005-09-09 | Samsung Electronics Co., Ltd. | Method for handover between different type mmmb systems |
US6944453B2 (en) | 2000-03-06 | 2005-09-13 | Siemens Aktiengesellschaft | Method for controlling an intersystem link transfer |
JP2005260337A (en) | 2004-03-09 | 2005-09-22 | Renesas Technology Corp | Demodulation circuit and radio communication system |
WO2005088882A1 (en) | 2004-03-15 | 2005-09-22 | Nortel Netowrks Limited | Pilot design for ofdm systems with four transmit antennas |
WO2005089002A1 (en) | 2004-03-11 | 2005-09-22 | Siemens Aktiengesellschaft | A method of packet switched handover |
US20050213543A1 (en) | 2004-03-23 | 2005-09-29 | Fujitsu Limited | Transmitting apparatus, receiving apparatus, and re-transmission control method |
US20050227691A1 (en) | 2004-03-19 | 2005-10-13 | Pecen Mark E | Apparatus and method for handover between two networks during an ongoing communication |
US6968192B2 (en) | 1998-12-07 | 2005-11-22 | Nokia Corporation | Cell load control method and system |
US20050259567A1 (en) | 2004-05-20 | 2005-11-24 | Conexant Systems, Inc. | Cyclic diversity systems and methods |
US20050271025A1 (en) | 2004-06-07 | 2005-12-08 | Roland Guethaus | Methods of avoiding multiple detections of random access channel preamble in wireless communication systems |
US20050272426A1 (en) | 2002-12-13 | 2005-12-08 | Da Tang Mobile Communications Equipment Co., Ltd. | Handover method in mobile communication system |
US20050282547A1 (en) | 2004-06-07 | 2005-12-22 | Samsung Electronics Co., Ltd. | System for handover in BWA communication system and method thereof |
US20060018336A1 (en) | 2004-07-21 | 2006-01-26 | Arak Sutivong | Efficient signaling over access channel |
US20060039327A1 (en) | 2004-08-23 | 2006-02-23 | Samuel Louis G | Soft vertical handovers in wireless networks |
WO2006023536A2 (en) | 2004-08-16 | 2006-03-02 | Zte San Diego, Inc. | Fast cell search and accurate sznchronization in wireless communications |
JP2006507753A (en) | 2002-11-26 | 2006-03-02 | 韓國電子通信研究院 | Downlink signal configuration method and synchronization method and apparatus for mobile communication system, and cell search method using the same |
US20060056355A1 (en) | 2004-09-16 | 2006-03-16 | Love Robert T | System and method for downlink signaling for high speed uplink packet access |
US7047009B2 (en) | 2003-12-05 | 2006-05-16 | Flarion Technologies, Inc. | Base station based methods and apparatus for supporting break before make handoffs in a multi-carrier system |
US20060126570A1 (en) | 2004-12-13 | 2006-06-15 | Jung-Im Kim | Random access apparatus and method |
KR20060066595A (en) | 2004-12-13 | 2006-06-16 | 한국전자통신연구원 | Random access device and method supporting various access service levels |
US7068625B1 (en) | 1999-01-13 | 2006-06-27 | Siemens Aktiengesellschaft | Method for switching a communications link to another channel (handover) |
US7106814B2 (en) | 2003-04-30 | 2006-09-12 | Motorola, Inc. | Method and wireless device employing a preamble to initiate communications |
US20060274843A1 (en) | 2005-06-01 | 2006-12-07 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting/receiving preamble signal in a wireless communication system |
US20070010268A1 (en) | 2003-07-18 | 2007-01-11 | Jae-Heung Kim | Method and device for allocating radio resources in wireless portable network system |
US20070032255A1 (en) | 2003-05-09 | 2007-02-08 | Chang-Hoi Koo | Method for providing multi-level access services in common access channel |
US20070058595A1 (en) | 2005-03-30 | 2007-03-15 | Motorola, Inc. | Method and apparatus for reducing round trip latency and overhead within a communication system |
US20070110172A1 (en) | 2003-12-03 | 2007-05-17 | Australian Telecommunications Cooperative Research | Channel estimation for ofdm systems |
US20070117563A1 (en) | 2005-10-28 | 2007-05-24 | Interdigital Technology Corporation | Call setup procedure in an evolved third generation radio access network |
KR20070055845A (en) | 2005-11-28 | 2007-05-31 | 엘지전자 주식회사 | Code sequence generation method, signal transmission method, transmitter, code sequence and code sequence set in communication system |
US20070133458A1 (en) | 2005-10-07 | 2007-06-14 | Interdigital Technology Corporation | Method and system for providing control information for supporting high speed downlink and uplink |
US20070147315A1 (en) | 2003-10-16 | 2007-06-28 | Telefonaktiebolaget L M Ericsson (Publ) | Access to cdma/umts services over a wlan acccess point using a gateway node |
US20070155388A1 (en) * | 2003-08-14 | 2007-07-05 | Dragan Petrovic | Serving base station selection during soft handover |
WO2007082409A1 (en) | 2006-01-18 | 2007-07-26 | Huawei Technologies Co., Ltd. | Method and system for synchronization in a communication system |
US20070253465A1 (en) | 2006-04-27 | 2007-11-01 | Tarik Muharemovic | Methods and apparatus to allocate reference signals in wireless communication systems |
US7292641B2 (en) | 2003-07-15 | 2007-11-06 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting/receiving preamble sequence in orthogonal frequency division multiplexing communication system using plurality of transmission antennas |
US20070270273A1 (en) | 2006-05-18 | 2007-11-22 | Motorola, Inc. | Method and apparatus for fast cell search |
WO2007138453A2 (en) | 2006-05-31 | 2007-12-06 | Nokia Corporation | Method product providing synchronization for ofdma downlink signal |
US20070291708A1 (en) | 2006-06-19 | 2007-12-20 | Rao Anil M | Method for reverse link resource assignment |
US20070291696A1 (en) | 2006-06-19 | 2007-12-20 | Interdigital Technology Corporation | Method and apparatus for performing random access in a wireless communication system |
KR20080004025A (en) | 2006-07-04 | 2008-01-09 | 엘지전자 주식회사 | Code Sequences in Communication Systems and Methods and Devices for Transmitting, Generating, and Analyzing Them |
US7321645B2 (en) | 2003-08-29 | 2008-01-22 | Lucent Technologies Inc. | Method and arrangement for detecting a random access channel preamble using multiple antenna reception in a communication system |
US20080062905A1 (en) | 2002-05-06 | 2008-03-13 | Interdigital Technology Corporation | Method and system for reducing message instances |
US20080095119A1 (en) | 2004-10-06 | 2008-04-24 | Matsushita Electric Industrial Co., Ltd. | Wlan to Umts Handover with Network Requested Pdp Context Activation |
US20080123585A1 (en) | 2003-05-12 | 2008-05-29 | Telefonaktiebolaget Lm Ericsson (Publ) | Fast Setup Of Physical Communication Channels |
US7400573B2 (en) | 2003-04-29 | 2008-07-15 | Intel Corporation | Dynamic allocation of cyclic extension in orthogonal frequency division multiplexing systems |
US7417970B2 (en) | 2004-06-02 | 2008-08-26 | Interdigital Technology Corporation | Configuring an interworking wireless local area network user equipment to access a 3GPP system |
US7424067B2 (en) | 2002-10-21 | 2008-09-09 | Stmicroelectronics N.V. | Methods and apparatus for synchronization of training sequences |
US7426175B2 (en) | 2004-03-30 | 2008-09-16 | Motorola, Inc. | Method and apparatus for pilot signal transmission |
US7433418B1 (en) | 2001-09-28 | 2008-10-07 | Arraycomm, Llc | Method and apparatus for efficient storage of training sequences for peak to average power constrained modulation formats |
US20080254800A1 (en) | 2005-10-31 | 2008-10-16 | Sung-Duck Chun | Data Transfer Management in a Radio Communications Network |
US7447504B2 (en) | 2005-07-25 | 2008-11-04 | Matsushita Electric Industrial Co., Ltd. | HARQ process restriction and transmission of non-scheduled control data via uplink channels |
US7471948B2 (en) | 2003-09-29 | 2008-12-30 | M-Stack Limited | Wireless telecommunication system |
US20090163211A1 (en) | 2007-12-19 | 2009-06-25 | Qualcomm Incorporated | Method and apparatus for transfer of a message on a common control channel for random access in a wireless communication network |
US7570618B2 (en) | 2003-11-07 | 2009-08-04 | Samsung Electronics Co., Ltd. | System and method for performing handover in a broadband wireless access communication system |
US7580400B2 (en) | 2003-11-21 | 2009-08-25 | Samsung Electronics Co., Ltd | Apparatus and method for generating preamble signal for cell identification in an orthogonal frequency division multiplexing system |
US7590183B2 (en) | 2005-05-12 | 2009-09-15 | Intellon Corporation | Generating signals for transmission of information |
US7593732B2 (en) | 2004-06-15 | 2009-09-22 | Samsung Electronics Co., Ltd | System and method for supporting soft handover in a broadband wireless access communication system |
US7599327B2 (en) | 2004-06-24 | 2009-10-06 | Motorola, Inc. | Method and apparatus for accessing a wireless communication system |
US7675841B2 (en) | 2003-11-19 | 2010-03-09 | Samsung Electronics Co., Ltd | Apparatus and method for generating a preamble sequence in an orthogonal frequency division multiplexing communication system |
EP1794971B1 (en) | 2004-09-29 | 2010-03-17 | Intel Corporation | Multicarrier receivers and methods for detecting cyclic prefixes having unknown lengths |
US7693924B2 (en) | 2004-11-03 | 2010-04-06 | Electronics And Telecommunications Research Institute | 2N-point and N-point FFT/IFFT dual mode processor |
US7693517B2 (en) | 2004-08-10 | 2010-04-06 | Nextel Communications Inc. | System and method for handoff between base stations |
US7701919B2 (en) | 2006-05-01 | 2010-04-20 | Alcatel-Lucent Usa Inc. | Method of assigning uplink reference signals, and transmitter and receiver thereof |
US7809373B2 (en) * | 2005-10-31 | 2010-10-05 | Lg Electronics Inc. | Method of transmitting and receiving radio access information in a wireless mobile communications system |
US7961696B2 (en) | 2004-06-24 | 2011-06-14 | Nortel Networks Limited | Preambles in OFDMA system |
US7983676B2 (en) * | 2004-03-10 | 2011-07-19 | Sk Telecom Co., Ltd. | Inter-system handover |
US7995967B2 (en) | 2004-03-09 | 2011-08-09 | Neocific, Inc | Methods and apparatus for random access in multi-carrier communication systems |
US8000305B2 (en) | 2006-01-17 | 2011-08-16 | Motorola Mobility, Inc. | Preamble sequencing for random access channel in a communication system |
US8098745B2 (en) | 2006-03-27 | 2012-01-17 | Texas Instruments Incorporated | Random access structure for wireless networks |
US8116195B2 (en) | 2004-07-27 | 2012-02-14 | Zte (Usa) Inc. | Transmission and reception of reference preamble signals in OFDMA or OFDM communication systems |
US8121045B2 (en) | 2008-03-21 | 2012-02-21 | Research In Motion Limited | Channel quality indicator transmission timing with discontinuous reception |
US8131295B2 (en) | 2006-06-20 | 2012-03-06 | Interdigital Technology Corporation | Methods and system for performing handover in a wireless communication system |
US8180058B2 (en) | 2007-06-21 | 2012-05-15 | Qualcomm Incorporated | Encryption of the scheduled uplink message in random access procedure |
US8199730B2 (en) | 2008-08-07 | 2012-06-12 | Innovative Sonic Limited | Method and apparatus for handling uplink grant |
US8340232B2 (en) | 2005-12-09 | 2012-12-25 | Samsung Electronics Co., Ltd. | Apparatus and method for channel estimation using training signals with reduced signal overhead |
US8448037B2 (en) | 2007-12-20 | 2013-05-21 | Telefonaktiebolaget L M Ericsson (Publ) | Prescheduled retransmission for initial establishment |
US8977258B2 (en) | 2005-09-09 | 2015-03-10 | Intel Corporation | System and method for communicating with fixed and mobile subscriber stations in broadband wireless access networks |
US9094202B2 (en) | 2008-08-08 | 2015-07-28 | Qualcomm Incorporated | Utilizing HARQ for uplink grants received in wireless communications |
US9204468B2 (en) | 2007-11-05 | 2015-12-01 | Telefonaktiebolaget L M Ericsson (Publ) | Timing alignment in an LTE system |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI940093A0 (en) * | 1994-01-10 | 1994-01-10 | Nokia Mobile Phones Ltd | Foerfarande Foer oeverfoering av data and datagraenssnittenhet |
US5762853A (en) * | 1996-04-01 | 1998-06-09 | Morton International, Inc. | Method of encapsulating a sensor into a panel body |
FI103856B (en) * | 1996-11-15 | 1999-09-30 | Nokia Telecommunications Oy | Dynamic channel allocation |
BR0015505A (en) | 1999-11-12 | 2002-07-02 | Motorola Inc | Method and apparatus for network-controlled transfers on a packet-switched telecommunication network |
AU2756201A (en) * | 2000-01-07 | 2001-07-16 | Mdiversity, Inc. | Dynamic channel allocation in multiple-access communication systems |
EP1220490A1 (en) * | 2000-11-22 | 2002-07-03 | Lucent Technologies Inc. | Method and system for enhanced packet transmission in cellular networks |
US6831906B2 (en) * | 2001-10-26 | 2004-12-14 | Qualcomm, Incorporated | Method and apparatus for efficient use of communication resources in a CDMA communication system |
US7317697B2 (en) * | 2001-11-16 | 2008-01-08 | At&T Mobility Ii Llc | System for handling file attachments |
AU2002365829A1 (en) * | 2001-12-03 | 2003-06-17 | Ram Gopal Lakshmi Narayanan | Context filter in a mobile node |
US6798761B2 (en) | 2002-01-10 | 2004-09-28 | Harris Corporation | Method and device for establishing communication links and handling SP slot connection collisions in a communication system |
KR20030080946A (en) | 2002-04-09 | 2003-10-17 | 삼성전자주식회사 | Apparatus for transmitting control information for multimedia broadcast/multicast service in mobile communication system and method thereof |
SE0301027D0 (en) * | 2003-04-03 | 2003-04-03 | Ericsson Telefon Ab L M | Method and apparatus in a telecommunication system |
KR100880999B1 (en) | 2003-08-07 | 2009-02-03 | 삼성전자주식회사 | How to send and receive multimedia broadcast / multicast services |
KR100975745B1 (en) | 2003-10-02 | 2010-08-12 | 삼성전자주식회사 | Apparatus and method for assigning identifier to mobile communication system supporting multicast / broadcast service |
US8102788B2 (en) * | 2003-11-05 | 2012-01-24 | Interdigital Technology Corporation | Method and wireless transmit/receive unit for supporting an enhanced uplink dedicated channel inter-node-B serving cell change |
ATE323389T1 (en) * | 2004-01-09 | 2006-04-15 | Stack Ltd | REPEAT NOTIFICATION OF SYSTEM INFORMATION CHANGES IN UNIVERSAL MOBILE TELECOMMUNICATIONS SYSTEMS |
US7107054B2 (en) * | 2004-01-20 | 2006-09-12 | Lucent Technologies Inc. | Reconnection of wireless calls to mobile units in border cells |
EP1565026B1 (en) | 2004-02-12 | 2019-04-03 | Samsung Electronics Co., Ltd. | Methods of efficiently transmitting control information for multimedia broadcast/multicast service |
KR101062668B1 (en) | 2009-02-27 | 2011-09-06 | 성균관대학교산학협력단 | Doping method using laser and absorption layer |
-
2006
- 2006-09-15 CN CN2006800405181A patent/CN101300754B/en active Active
- 2006-09-15 JP JP2008533234A patent/JP4677490B2/en not_active Expired - Fee Related
- 2006-09-15 RU RU2008113180/09A patent/RU2411660C2/en active
- 2006-09-15 CN CNA2006800390472A patent/CN101292446A/en active Pending
- 2006-09-15 ES ES19164548T patent/ES2799299T3/en active Active
- 2006-09-15 BR BRPI0617783-2A patent/BRPI0617783A2/en not_active IP Right Cessation
- 2006-10-16 TW TW095138124A patent/TWI354505B/en active
- 2006-10-16 TW TW095138125A patent/TWI326546B/en not_active IP Right Cessation
- 2006-10-25 CN CN200680040353.8A patent/CN101297521B/en active Active
- 2006-10-27 TW TW095139781A patent/TWI325711B/en not_active IP Right Cessation
- 2006-10-27 US US11/553,939 patent/US7809373B2/en active Active
- 2006-10-27 BR BRPI0617469-8A patent/BRPI0617469A2/en not_active IP Right Cessation
- 2006-10-27 TW TW095139782A patent/TWI342139B/en active
- 2006-10-27 RU RU2008113177/09A patent/RU2416160C2/en not_active IP Right Cessation
- 2006-10-27 JP JP2008536525A patent/JP4991038B2/en not_active Expired - Fee Related
- 2006-10-27 CN CN2006800404032A patent/CN101300744B/en not_active Expired - Fee Related
- 2006-10-27 CN CN2006800404598A patent/CN101300753B/en active Active
- 2006-10-27 CN CN201110189556.6A patent/CN102256302B/en not_active Expired - Fee Related
-
2008
- 2008-04-01 ZA ZA200802859A patent/ZA200802859B/en unknown
- 2008-04-01 ZA ZA200802861A patent/ZA200802861B/en unknown
- 2008-04-14 ZA ZA200803291A patent/ZA200803291B/en unknown
-
2010
- 2010-08-27 US US12/870,747 patent/US8219097B2/en not_active Ceased
-
2012
- 2012-06-01 US US13/487,081 patent/US8412201B2/en not_active Ceased
-
2014
- 2014-07-09 US US14/326,637 patent/USRE46679E1/en active Active
-
2015
- 2015-04-01 US US14/676,490 patent/USRE46602E1/en active Active
- 2015-05-27 US US14/723,093 patent/USRE46714E1/en active Active
-
2017
- 2017-11-06 US US15/804,824 patent/USRE48326E1/en active Active
- 2017-11-28 US US15/824,609 patent/USRE48478E1/en active Active
-
2018
- 2018-08-09 HK HK18110242.5A patent/HK1250869A1/en unknown
Patent Citations (234)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5311176A (en) | 1992-03-31 | 1994-05-10 | Motorola, Inc. | Method and apparatus for generating Walsh codes |
US5345448A (en) | 1992-04-27 | 1994-09-06 | Nokia Mobile Phones Ltd. | Procedure for the handover of a radio connection |
WO1994008432A1 (en) | 1992-10-05 | 1994-04-14 | Ericsson Ge Mobile Communications, Inc. | Digital control channel |
RU2149518C1 (en) | 1992-10-05 | 2000-05-20 | Эрикссон Инк | Process of transmission of broadcast information |
US5553153A (en) | 1993-02-10 | 1996-09-03 | Noise Cancellation Technologies, Inc. | Method and system for on-line system identification |
RU2145774C1 (en) | 1994-03-21 | 2000-02-20 | Моторола Лимитед | Method determining transfer of call from one service zone to another in cellular communication system |
US5722072A (en) | 1994-03-21 | 1998-02-24 | Motorola, Inc. | Handover based on measured time of signals received from neighboring cells |
US5677908A (en) | 1994-04-08 | 1997-10-14 | Oki Electric Industry Co., Ltd. | Hand-over method for mobile communication |
US5697055A (en) | 1994-10-16 | 1997-12-09 | Qualcomm Incorporated | Method and apparatus for handoff between different cellular communications systems |
JPH09186704A (en) | 1995-12-01 | 1997-07-15 | Nokia Mobile Phones Ltd | Data transmission system, method for executing hand-over in the system and base station for the system |
JPH10136426A (en) | 1996-10-30 | 1998-05-22 | Y R P Ido Tsushin Kiban Gijutsu Kenkyusho:Kk | Mobile communication system |
US6359876B1 (en) | 1997-10-01 | 2002-03-19 | Nec Corporation | CDMA cellular communication system using frame offset distribution of all base stations to avoid traffic peak |
JPH11196477A (en) | 1997-10-02 | 1999-07-21 | Samsung Electron Co Ltd | Method for integrating charging information for iwws |
JPH11146462A (en) | 1997-11-04 | 1999-05-28 | Nec Shizuoka Ltd | Mobile station equipment, base station equipment, mobile communication system and mobile communication method |
GB2332340A (en) | 1997-12-12 | 1999-06-16 | Orange Personal Comm Serv Ltd | Transmission of measurement reports from a mobile station to a base station and a service node in a cellular communication system |
US6563807B1 (en) * | 1997-12-30 | 2003-05-13 | Lg Information & Communications, Ltd. | Inter-frequency handoff execution method and apparatus in mobile communication system |
RU2216100C2 (en) | 1998-02-13 | 2003-11-10 | Телефонактиеболагет Лм Эрикссон (Пабл) | Method for planning readings of variable blocks with aid of status flag of ascending communication line in burst data transmission system |
US6161014A (en) | 1998-05-04 | 2000-12-12 | Alcatel | Method of handling over a call between two relay stations of a cell of a digital cellular mobile radio system |
RU2193281C2 (en) | 1998-05-08 | 2002-11-20 | Самсунг Электроникс Ко., Лтд. | System and method for finding target base station for relocating communication channel in mobile communication system |
WO1999059253A2 (en) | 1998-05-08 | 1999-11-18 | Samsung Electronics Co., Ltd. | System and method for determining a handoff target base station in a mobile communication system |
JPH11341541A (en) | 1998-05-22 | 1999-12-10 | Hitachi Ltd | Mobile communication system, packet transfer method for mobile communication system and terminal base station used for mobile communication system |
EP1097602A2 (en) | 1998-07-20 | 2001-05-09 | QUALCOMM Incorporated | Soft handover in a hybrid gsm/cdma network |
JP2000069531A (en) | 1998-08-26 | 2000-03-03 | Nippon Telegr & Teleph Corp <Ntt> | Error compensation method and base station device using the method |
US6161160A (en) | 1998-09-03 | 2000-12-12 | Advanced Micro Devices, Inc. | Network interface device architecture for storing transmit and receive data in a random access buffer memory across independent clock domains |
US6968192B2 (en) | 1998-12-07 | 2005-11-22 | Nokia Corporation | Cell load control method and system |
US7068625B1 (en) | 1999-01-13 | 2006-06-27 | Siemens Aktiengesellschaft | Method for switching a communications link to another channel (handover) |
US20020071480A1 (en) | 1999-03-08 | 2002-06-13 | Pekka Marjelund | Method for establishing a communication between a user equipment and a radio network |
WO2000072609A1 (en) | 1999-05-20 | 2000-11-30 | Telefonaktiebolaget L M Ericsson (Publ) | Method and apparatus for broadcasting system information in a cellular communications network |
US6628946B1 (en) | 1999-05-20 | 2003-09-30 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for broadcasting system information in a cellular communications network |
JP2003500950A (en) | 1999-05-20 | 2003-01-07 | テレフオンアクチーボラゲット エル エム エリクソン(パブル) | Method and apparatus for broadcasting system information in a cellular communication network |
US20020089957A1 (en) | 1999-05-26 | 2002-07-11 | Timo Viero | Random access control method and system |
WO2000074420A1 (en) | 1999-06-01 | 2000-12-07 | Nokia Corporation | Method and arrangement for switching cells |
US6374080B2 (en) | 1999-06-17 | 2002-04-16 | Mitsubishi Denki Kabushiki Kaisha | Mobile communication system |
JP2001078246A (en) | 1999-07-19 | 2001-03-23 | Lucent Technol Inc | Method and device for distributing base station address used in radio network |
US6628632B1 (en) | 1999-07-19 | 2003-09-30 | Lucent Technologies Inc. | Method and apparatus for permitting direct handoff between base stations in a wireless network |
US6532225B1 (en) | 1999-07-27 | 2003-03-11 | At&T Corp | Medium access control layer for packetized wireless systems |
US6845238B1 (en) | 1999-09-15 | 2005-01-18 | Telefonaktiebolaget Lm Ericsson (Publ) | Inter-frequency measurement and handover for wireless communications |
US6778509B1 (en) | 1999-11-19 | 2004-08-17 | Hughes Electronics Corporation | MAC layer protocol for a satellite based packet switched services |
WO2001041471A1 (en) | 1999-12-02 | 2001-06-07 | Orange Personal Communications Services Limited | Subscriber equipment and method for a mobile communications system |
US20030054829A1 (en) | 1999-12-15 | 2003-03-20 | Martti Moisio | Channel allocation method in a cellular radio network |
US20010016496A1 (en) | 2000-01-15 | 2001-08-23 | Lee Sung-Won | Apparatus and method for assigning a supplemental channel in mobile communication system |
US20010026543A1 (en) | 2000-02-16 | 2001-10-04 | Samsung Electronics Co.,Ltd. | Apparatus and method for assigning a common packet channel in a CDMA communication system |
US20030076812A1 (en) | 2000-02-24 | 2003-04-24 | Benedittis Rosella De | Method for optimizing the random access procedures in the cdma cellular networks |
US6920155B2 (en) | 2000-03-03 | 2005-07-19 | Zarlink Semiconductor, Inc. | Embedded loop delay compensation circuit for multi-channel transceiver |
US6944453B2 (en) | 2000-03-06 | 2005-09-13 | Siemens Aktiengesellschaft | Method for controlling an intersystem link transfer |
EP1134992A1 (en) | 2000-03-14 | 2001-09-19 | Lucent Technologies Inc. | Method and mobile network to minimise the RACH transmit power |
JP2001313968A (en) | 2000-03-14 | 2001-11-09 | Lucent Technol Inc | Cellular mobile radiotelephone network, and method for operating the same |
KR20030007481A (en) | 2000-03-30 | 2003-01-23 | 콸콤 인코포레이티드 | Method and apparatus for measuring channel state information |
WO2001076110A2 (en) | 2000-03-30 | 2001-10-11 | Qualcomm Incorporated | Method and apparatus for measuring channel state information |
US20010036113A1 (en) | 2000-04-04 | 2001-11-01 | Jens-Uwe Jurgensen | Prioritisation method for users randomly accessing a common communication channel |
US20020041578A1 (en) | 2000-06-02 | 2002-04-11 | Samsung Electronics Co., Ltd. | Method for selecting RACH in a CDMA mobile communication system |
US20020051431A1 (en) | 2000-07-18 | 2002-05-02 | Samsung Electronics Co., Ltd. | Method for performing USTS handover and USTS mode switching in a mobile communication system |
WO2002009825A1 (en) | 2000-08-02 | 2002-02-07 | Professional Golf Solutions Pty Ltd | A synthetic grass surface |
US20020045448A1 (en) | 2000-08-09 | 2002-04-18 | Seong-Soo Park | Handover method in wireless telecommunication system supporting USTS |
US20020048266A1 (en) * | 2000-10-24 | 2002-04-25 | Choi Young Su | Handoff method in CDMA communication system |
US20020085516A1 (en) | 2000-12-28 | 2002-07-04 | Symbol Technologies, Inc. | Automatic and seamless vertical roaming between wireless local area network (WLAN) and wireless wide area network (WWAN) while maintaining an active voice or streaming data connection: systems, methods and program products |
US20040053614A1 (en) | 2001-01-10 | 2004-03-18 | Kim Il-Gyu | Method for seamless inter-frequency hard handover in radio communication system |
US20030026324A1 (en) * | 2001-02-28 | 2003-02-06 | Don Li | Power-controlled random access |
US20020122393A1 (en) | 2001-03-01 | 2002-09-05 | Koninklijke Philips Electronics N.V. | Antenna diversity in a wireless local area network |
WO2002082666A2 (en) | 2001-03-28 | 2002-10-17 | Nokia Corporation | Transmissions in a communication system |
WO2002080401A2 (en) | 2001-03-28 | 2002-10-10 | Qualcomm Incorporated | Power control for point-to-multipoint services provided in communication systems |
JP2005509313A (en) | 2001-03-28 | 2005-04-07 | クゥアルコム・インコーポレイテッド | Power control for point-to-multipoint services provided in communication systems |
CN1505912A (en) | 2001-03-28 | 2004-06-16 | ��˹��ŵ�� | transmission in communication systems |
US20020181436A1 (en) | 2001-04-02 | 2002-12-05 | Jens Mueckenheim | Method and system for UMTS packet transmission scheduling on uplink channels |
US20020159412A1 (en) * | 2001-04-26 | 2002-10-31 | Odenwalder Joseph P. | Preamble channel decoding |
JP2003324761A (en) | 2001-04-26 | 2003-11-14 | Ntt Docomo Inc | Data link transmission control method, mobile communication system, data link transmission control apparatus, base station, mobile station, mobile station control program, and computer-readable recording medium |
US20030002472A1 (en) | 2001-06-29 | 2003-01-02 | Samsung Electronics Co., Ltd. | Method for transmitting HSDPA service information in a CDMA mobile communication system |
US20030008653A1 (en) | 2001-07-09 | 2003-01-09 | Jiang Sam Shiaw-Shiang | Lossless SRNS relocation procedure in a wireless communications system |
JP2003102055A (en) | 2001-07-09 | 2003-04-04 | Asustek Computer Inc | Lossless srns relocation procedure in a wireless communications system |
WO2003017544A1 (en) | 2001-08-16 | 2003-02-27 | Interdigital Technology Corporation | Time division duplex method for determining whether to initiate handover |
JP2003087842A (en) | 2001-09-13 | 2003-03-20 | Nec Corp | Hand-over system in code division multiple access communication system and its system |
US20030048763A1 (en) | 2001-09-13 | 2003-03-13 | Nec Corporation | Handover method in code division multiple access communication system and system thereof |
US7433418B1 (en) | 2001-09-28 | 2008-10-07 | Arraycomm, Llc | Method and apparatus for efficient storage of training sequences for peak to average power constrained modulation formats |
JP2003152600A (en) | 2001-11-15 | 2003-05-23 | Nec Corp | Apparatus and method for detecting fixed pattern, and radio base station and radio mobile station |
US20030091108A1 (en) | 2001-11-15 | 2003-05-15 | Nec Corporation | Fixed pattern detection apparatus and fixed pattern detection method |
WO2003055105A1 (en) | 2001-12-12 | 2003-07-03 | Samsung Electronics Co., Ltd. | Method for performing a handoff in a mobile communication system |
JP2005513907A (en) | 2001-12-12 | 2005-05-12 | サムスン エレクトロニクス カンパニー リミテッド | Handoff execution method in a mobile communication system |
US20050073988A1 (en) | 2001-12-21 | 2005-04-07 | Siemens Aktiengesellschaft | Method for transmitting packet switched data in a cellular radio communication system during cell change |
EP1326460A1 (en) | 2001-12-21 | 2003-07-09 | Siemens Aktiengesellschaft | Method and system of handover in a cellular packet network |
KR20030056143A (en) | 2001-12-27 | 2003-07-04 | 에스케이 텔레콤주식회사 | Method for controlling hand-off in service boundary area |
US20030131300A1 (en) | 2002-01-10 | 2003-07-10 | Samsung Electronics Co., Ltd | Data transmitting/receiving system and method thereof |
CN1437416A (en) | 2002-02-08 | 2003-08-20 | 华为技术有限公司 | Method of raising successive mobile station accessing rate in mobile communication system |
US20050119004A1 (en) | 2002-03-05 | 2005-06-02 | Huawei Technologies Co., Ltd. Huawei Service Center Building, Kefa Road | Method of optimizing soft handover between radio network controllers |
US20040047284A1 (en) | 2002-03-13 | 2004-03-11 | Eidson Donald Brian | Transmit diversity framing structure for multipath channels |
US20040009767A1 (en) | 2002-04-06 | 2004-01-15 | Lee Young-Dae | Radio link parameter updating method in mobile communication system |
WO2003088691A1 (en) | 2002-04-17 | 2003-10-23 | Nec Corporation | Handover control method |
US20040029532A1 (en) | 2002-04-29 | 2004-02-12 | Uwe Schwarz | Method and apparatus for soft handover area detection for uplink interference avoidance |
US20040022217A1 (en) | 2002-04-29 | 2004-02-05 | Sari Korpela | Method and apparatus for soft handover area detection using inter-band measurements |
US20080062905A1 (en) | 2002-05-06 | 2008-03-13 | Interdigital Technology Corporation | Method and system for reducing message instances |
WO2003096149A2 (en) | 2002-05-06 | 2003-11-20 | Qualcomm, Inc. | Frame formatting, coding and transmit power control method for a multicast/broadcast system |
US20030207696A1 (en) | 2002-05-06 | 2003-11-06 | Serge Willenegger | Multi-media broadcast and multicast service (MBMS) in a wireless communications system |
US20050107105A1 (en) | 2002-05-10 | 2005-05-19 | Hideji Wakabayashi | Mobile communication system, base station and mobile station |
WO2003096731A1 (en) | 2002-05-10 | 2003-11-20 | Mitsubishi Denki Kabushiki Kaisha | Mobile communication system, base station and mobile station |
US20040114574A1 (en) | 2002-05-29 | 2004-06-17 | Interdigital Technology Corporation | Packet switched connections using dedicated channels |
US20050122950A1 (en) | 2002-05-31 | 2005-06-09 | Eiji Ikeda | Mobile communication system using a downlink shared channel |
WO2003103320A1 (en) | 2002-05-31 | 2003-12-11 | 富士通株式会社 | Mobile communication system using downlink shared channel |
US20050105488A1 (en) | 2002-07-05 | 2005-05-19 | Faiba Raji | Method for the transmission of data packets in a mobile radio system and corresponding mobile radio system |
JP2004135287A (en) | 2002-08-06 | 2004-04-30 | Mitsubishi Electric Information Technology Centre Europa Bv | Method of reporting the quality of a transmission channel between a transmitter and a receiver |
EP1388964A1 (en) | 2002-08-06 | 2004-02-11 | Mitsubishi Electric Information Technology Centre Europe B.V. | Transmission quality reporting method |
WO2004016016A1 (en) | 2002-08-07 | 2004-02-19 | Qualcomm, Incorporated | Registration in a broadcast communications system |
JP2005525065A (en) | 2002-08-14 | 2005-08-18 | エルジー エレクトロニクス インコーポレイティド | Control signal transmission method for MBMS data in a wireless mobile communication system |
WO2004017541A1 (en) | 2002-08-14 | 2004-02-26 | Lg Electronics Inc. | Method for transmitting control signal for mbms data in wireless mobile communication system |
US20040103435A1 (en) | 2002-08-14 | 2004-05-27 | Seung-June Yi | Method for transmitting control signal for MBMS data in wireless mobile communication system |
US20040085926A1 (en) | 2002-08-17 | 2004-05-06 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting/receiving data during a handover in a mobile communication system providing MBMS service |
WO2004030392A1 (en) | 2002-09-27 | 2004-04-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Requesting and controlling access in a wireless communications network |
EP1404079A2 (en) | 2002-09-30 | 2004-03-31 | Samsung Electronics Co., Ltd. | Generation of preamble sequences in an multicarrier communication system |
US7424067B2 (en) | 2002-10-21 | 2008-09-09 | Stmicroelectronics N.V. | Methods and apparatus for synchronization of training sequences |
WO2004042954A1 (en) | 2002-10-30 | 2004-05-21 | Motorola, Inc., A Corporation Of The State Of Delaware | Method and apparatus for providing a distributed architecture digital wireless communication system |
KR20050084908A (en) | 2002-10-30 | 2005-08-29 | 모토로라 인코포레이티드 | Method and apparatus for providing a distributed architecture digital wireless communication system |
US20040127244A1 (en) | 2002-11-08 | 2004-07-01 | Mariko Matsumoto | Mobile radio communication system and base station, and mobile radio communication method used therefor |
JP2006507753A (en) | 2002-11-26 | 2006-03-02 | 韓國電子通信研究院 | Downlink signal configuration method and synchronization method and apparatus for mobile communication system, and cell search method using the same |
US20060114812A1 (en) | 2002-11-26 | 2006-06-01 | Kwang-Soon Kim | Method and apparatus for embodying and synchronizing downlink signal in mobile communication system and method for searching cell using the same |
US20050272426A1 (en) | 2002-12-13 | 2005-12-08 | Da Tang Mobile Communications Equipment Co., Ltd. | Handover method in mobile communication system |
KR100688303B1 (en) | 2002-12-13 | 2007-03-02 | 다 탕 모바일 커뮤니케이션즈 이큅먼트 코포레이션 리미티드 | Handover Method of Mobile Communication System |
JP2004208177A (en) | 2002-12-26 | 2004-07-22 | Matsushita Electric Ind Co Ltd | Handover method and radio communication apparatus |
US20040152473A1 (en) | 2003-01-10 | 2004-08-05 | Nec Corporation | Mobile communication system, radio network controller, radio terminal, data delivering method, and program for the method |
JP2004221760A (en) | 2003-01-10 | 2004-08-05 | Nec Corp | Mobile communication system, radio controller, wireless terminal and data distribution method, and program thereof |
US20040152478A1 (en) | 2003-01-31 | 2004-08-05 | Ruohonen Jari J. | System and method for extending neighboring cell search window |
US7200788B2 (en) | 2003-02-12 | 2007-04-03 | Matsushita Electric Industrial Co., Ltd. | Radio reception system that inhibits transmission of acknowledgment or negative acknowledgment signal for a data channel when control information of a control channel exceeds a reception capability of a receiver |
JP2005237031A (en) | 2003-02-12 | 2005-09-02 | Matsushita Electric Ind Co Ltd | Radio communication method |
US20040162072A1 (en) | 2003-02-15 | 2004-08-19 | Alcatel | Method of performing a handover or reselection procedure |
US20040171401A1 (en) | 2003-02-28 | 2004-09-02 | Krishna Balachandran | Methods and systems for assigning channels in a power controlled time slotted wireless communications system |
US20040185852A1 (en) | 2003-03-08 | 2004-09-23 | Samsung Electronics Co., Ltd. | System and method for implementing a handoff in a traffic state in a broadband wireless access communication system |
EP1469697A2 (en) | 2003-03-08 | 2004-10-20 | Samsung Electronics Co., Ltd. | Handover requested and controlled by the mobile station in a broadband wireless access communication system |
JP2004289234A (en) | 2003-03-19 | 2004-10-14 | Mitsubishi Electric Corp | Radio communication system, mobile station, base station and base station control apparatus |
US7400573B2 (en) | 2003-04-29 | 2008-07-15 | Intel Corporation | Dynamic allocation of cyclic extension in orthogonal frequency division multiplexing systems |
US7106814B2 (en) | 2003-04-30 | 2006-09-12 | Motorola, Inc. | Method and wireless device employing a preamble to initiate communications |
US20070032255A1 (en) | 2003-05-09 | 2007-02-08 | Chang-Hoi Koo | Method for providing multi-level access services in common access channel |
US20080123585A1 (en) | 2003-05-12 | 2008-05-29 | Telefonaktiebolaget Lm Ericsson (Publ) | Fast Setup Of Physical Communication Channels |
US7292641B2 (en) | 2003-07-15 | 2007-11-06 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting/receiving preamble sequence in orthogonal frequency division multiplexing communication system using plurality of transmission antennas |
WO2005011134A2 (en) | 2003-07-17 | 2005-02-03 | Interdigital Technology Corporation | Method and system for delivery of assistance data |
US20070010268A1 (en) | 2003-07-18 | 2007-01-11 | Jae-Heung Kim | Method and device for allocating radio resources in wireless portable network system |
US20050041573A1 (en) | 2003-07-30 | 2005-02-24 | Samsung Electronics Co., Ltd. | Ranging method in a broadband wireless access communication system |
US20070155388A1 (en) * | 2003-08-14 | 2007-07-05 | Dragan Petrovic | Serving base station selection during soft handover |
WO2005018255A1 (en) | 2003-08-14 | 2005-02-24 | Matsushita Electric Industrial Co., Ltd. | Base station synchronization during soft handover |
US7321645B2 (en) | 2003-08-29 | 2008-01-22 | Lucent Technologies Inc. | Method and arrangement for detecting a random access channel preamble using multiple antenna reception in a communication system |
US20050059437A1 (en) | 2003-09-04 | 2005-03-17 | Samsung Electronics Co., Ltd. | Mode transition method considering handover in a broadband wireless access communication system |
CN1596020A (en) | 2003-09-11 | 2005-03-16 | 华为技术有限公司 | Method of accessing target base station for mobile terminal switching between base stations |
US7508792B2 (en) | 2003-09-23 | 2009-03-24 | Panasonic Corporation | Protocol context transfer in a mobile communication system |
US20090207810A1 (en) | 2003-09-23 | 2009-08-20 | Panasonic Corporation | Method and base station for forwarding retransmission protocol related data |
EP1519519A1 (en) | 2003-09-23 | 2005-03-30 | Matsushita Electric Industrial Co., Ltd. | Protocol context transfer in a mobile communication system |
US7471948B2 (en) | 2003-09-29 | 2008-12-30 | M-Stack Limited | Wireless telecommunication system |
KR20050032285A (en) | 2003-10-01 | 2005-04-07 | 삼성전자주식회사 | Fast downlink handover method when hard handover in cellular communication systems |
US20050075108A1 (en) * | 2003-10-01 | 2005-04-07 | Samsung Electronics Co., Ltd. | Method of providing a fast downlink service in a hard handover in a cellular communication system |
US20070147315A1 (en) | 2003-10-16 | 2007-06-28 | Telefonaktiebolaget L M Ericsson (Publ) | Access to cdma/umts services over a wlan acccess point using a gateway node |
US20050143072A1 (en) | 2003-10-16 | 2005-06-30 | Samsung Electronics Co., Ltd. | Seamless handover method in an FH-OFDM based mobile communication system |
US20050084030A1 (en) | 2003-10-16 | 2005-04-21 | Samsung Electronics Co., Ltd. | Method of transmitting preamble for synchronization in a MIMO-OFDM communication system |
JP2005124215A (en) | 2003-10-16 | 2005-05-12 | Samsung Electronics Co Ltd | A fast handoff method without data loss in mobile communication systems based on frequency jump orthogonal frequency division multiplexing |
US7702028B2 (en) | 2003-10-16 | 2010-04-20 | Samsung Electronics Co., Ltd. | Method of transmitting preamble for synchronization in a MIMO-OFDM communication system |
WO2005043791A2 (en) | 2003-10-30 | 2005-05-12 | Electronics And Telecommunications Research Institute | Method for constructing downlink frame in wireless communication system using orthogonal frequency division multiple access |
US7570618B2 (en) | 2003-11-07 | 2009-08-04 | Samsung Electronics Co., Ltd. | System and method for performing handover in a broadband wireless access communication system |
US20050105505A1 (en) | 2003-11-07 | 2005-05-19 | Eran Fishler | Transceiver for a wireless local area network having a sparse preamble data sequence |
US7675841B2 (en) | 2003-11-19 | 2010-03-09 | Samsung Electronics Co., Ltd | Apparatus and method for generating a preamble sequence in an orthogonal frequency division multiplexing communication system |
US7580400B2 (en) | 2003-11-21 | 2009-08-25 | Samsung Electronics Co., Ltd | Apparatus and method for generating preamble signal for cell identification in an orthogonal frequency division multiplexing system |
US20070110172A1 (en) | 2003-12-03 | 2007-05-17 | Australian Telecommunications Cooperative Research | Channel estimation for ofdm systems |
US20050138528A1 (en) | 2003-12-05 | 2005-06-23 | Nokia Corporation | Method, system and transmitting side protocol entity for sending packet data units for unacknowledged mode services |
US7047009B2 (en) | 2003-12-05 | 2006-05-16 | Flarion Technologies, Inc. | Base station based methods and apparatus for supporting break before make handoffs in a multi-carrier system |
WO2005060132A1 (en) | 2003-12-18 | 2005-06-30 | Electronics And Telecommunications Research Institute | Method and apparatus for requesting and reporting channel quality information in mobile communication system |
KR20050078636A (en) | 2004-02-02 | 2005-08-05 | 삼성전자주식회사 | A method for requesting and reporting channel quality information in wireless system and apparatus thereof |
WO2005072073A2 (en) | 2004-02-02 | 2005-08-11 | Electronics And Telecommunications Research Institute | A method for requesting and reporting channel quality information in wireless system and apparatus thereof |
US20080287138A1 (en) | 2004-02-02 | 2008-11-20 | Chul-Sik Yoon | Method for Requesting and Reporting Channel Quality Information in Wireless System and Apparatus Thereof |
KR20050078635A (en) | 2004-02-02 | 2005-08-05 | 한국전자통신연구원 | A method for requesting and reporting channel quality information in wireless system and apparatus thereof |
US20050177623A1 (en) | 2004-02-09 | 2005-08-11 | M-Stack Limited | Apparatus and method for implementing system information acquisition in universal mobile telecommunications system user equipment |
US20050181801A1 (en) | 2004-02-12 | 2005-08-18 | M-Stack Limited | Apparatus and method for handling system information in mobile telecommunications system user equipment |
WO2005078966A1 (en) | 2004-02-13 | 2005-08-25 | Samsung Electronics Co., Ltd. | Method and apparatus for performing fast handover through fast ranging in a broadband wireless communication system |
WO2005083912A1 (en) | 2004-03-02 | 2005-09-09 | Samsung Electronics Co., Ltd. | Method for handover between different type mmmb systems |
US20050197132A1 (en) | 2004-03-05 | 2005-09-08 | Samsung Electronics Co., Ltd. | Method and apparatus for allocating channels in an orthogonal frequency division multiple access system |
US20050213689A1 (en) | 2004-03-09 | 2005-09-29 | Renesas Technology Corporation | Demodulator circuit, radio communication system and communication semiconductor integrated circuit |
US7995967B2 (en) | 2004-03-09 | 2011-08-09 | Neocific, Inc | Methods and apparatus for random access in multi-carrier communication systems |
JP2005260337A (en) | 2004-03-09 | 2005-09-22 | Renesas Technology Corp | Demodulation circuit and radio communication system |
US7983676B2 (en) * | 2004-03-10 | 2011-07-19 | Sk Telecom Co., Ltd. | Inter-system handover |
WO2005089002A1 (en) | 2004-03-11 | 2005-09-22 | Siemens Aktiengesellschaft | A method of packet switched handover |
WO2005088882A1 (en) | 2004-03-15 | 2005-09-22 | Nortel Netowrks Limited | Pilot design for ofdm systems with four transmit antennas |
US20050227691A1 (en) | 2004-03-19 | 2005-10-13 | Pecen Mark E | Apparatus and method for handover between two networks during an ongoing communication |
US20050213543A1 (en) | 2004-03-23 | 2005-09-29 | Fujitsu Limited | Transmitting apparatus, receiving apparatus, and re-transmission control method |
JP2005277570A (en) | 2004-03-23 | 2005-10-06 | Fujitsu Ltd | Transmitting apparatus, receiving apparatus, and retransmission control method |
US7426175B2 (en) | 2004-03-30 | 2008-09-16 | Motorola, Inc. | Method and apparatus for pilot signal transmission |
US7623439B2 (en) | 2004-05-20 | 2009-11-24 | Webster Mark A | Cyclic diversity systems and methods |
US20050259567A1 (en) | 2004-05-20 | 2005-11-24 | Conexant Systems, Inc. | Cyclic diversity systems and methods |
US7417970B2 (en) | 2004-06-02 | 2008-08-26 | Interdigital Technology Corporation | Configuring an interworking wireless local area network user equipment to access a 3GPP system |
US20050282547A1 (en) | 2004-06-07 | 2005-12-22 | Samsung Electronics Co., Ltd. | System for handover in BWA communication system and method thereof |
US20050271025A1 (en) | 2004-06-07 | 2005-12-08 | Roland Guethaus | Methods of avoiding multiple detections of random access channel preamble in wireless communication systems |
US7593732B2 (en) | 2004-06-15 | 2009-09-22 | Samsung Electronics Co., Ltd | System and method for supporting soft handover in a broadband wireless access communication system |
US7599327B2 (en) | 2004-06-24 | 2009-10-06 | Motorola, Inc. | Method and apparatus for accessing a wireless communication system |
US7961696B2 (en) | 2004-06-24 | 2011-06-14 | Nortel Networks Limited | Preambles in OFDMA system |
EP1787414B1 (en) | 2004-06-24 | 2012-01-11 | Nortel Networks Limited | Preambles in ofdma system |
US20060018336A1 (en) | 2004-07-21 | 2006-01-26 | Arak Sutivong | Efficient signaling over access channel |
US8116195B2 (en) | 2004-07-27 | 2012-02-14 | Zte (Usa) Inc. | Transmission and reception of reference preamble signals in OFDMA or OFDM communication systems |
US7693517B2 (en) | 2004-08-10 | 2010-04-06 | Nextel Communications Inc. | System and method for handoff between base stations |
US7496113B2 (en) | 2004-08-16 | 2009-02-24 | Zte (Usa) Inc. | Fast cell search and accurate synchronization in wireless communications |
WO2006023536A2 (en) | 2004-08-16 | 2006-03-02 | Zte San Diego, Inc. | Fast cell search and accurate sznchronization in wireless communications |
US20060039327A1 (en) | 2004-08-23 | 2006-02-23 | Samuel Louis G | Soft vertical handovers in wireless networks |
US20060056355A1 (en) | 2004-09-16 | 2006-03-16 | Love Robert T | System and method for downlink signaling for high speed uplink packet access |
EP1794971B1 (en) | 2004-09-29 | 2010-03-17 | Intel Corporation | Multicarrier receivers and methods for detecting cyclic prefixes having unknown lengths |
US20080095119A1 (en) | 2004-10-06 | 2008-04-24 | Matsushita Electric Industrial Co., Ltd. | Wlan to Umts Handover with Network Requested Pdp Context Activation |
EP1968256A1 (en) | 2004-10-06 | 2008-09-10 | Matsushita Electric Industrial Co., Ltd. | WLAN to UMTS handover with network requested PDP context activation |
US7693924B2 (en) | 2004-11-03 | 2010-04-06 | Electronics And Telecommunications Research Institute | 2N-point and N-point FFT/IFFT dual mode processor |
KR20060066595A (en) | 2004-12-13 | 2006-06-16 | 한국전자통신연구원 | Random access device and method supporting various access service levels |
US20060126570A1 (en) | 2004-12-13 | 2006-06-15 | Jung-Im Kim | Random access apparatus and method |
US7664076B2 (en) | 2004-12-13 | 2010-02-16 | Electronics And Telecommunications Research Institute | Random access apparatus and method |
US20070058595A1 (en) | 2005-03-30 | 2007-03-15 | Motorola, Inc. | Method and apparatus for reducing round trip latency and overhead within a communication system |
US7590183B2 (en) | 2005-05-12 | 2009-09-15 | Intellon Corporation | Generating signals for transmission of information |
US20060274843A1 (en) | 2005-06-01 | 2006-12-07 | Samsung Electronics Co., Ltd. | Apparatus and method for transmitting/receiving preamble signal in a wireless communication system |
US7447504B2 (en) | 2005-07-25 | 2008-11-04 | Matsushita Electric Industrial Co., Ltd. | HARQ process restriction and transmission of non-scheduled control data via uplink channels |
US8977258B2 (en) | 2005-09-09 | 2015-03-10 | Intel Corporation | System and method for communicating with fixed and mobile subscriber stations in broadband wireless access networks |
US20070133458A1 (en) | 2005-10-07 | 2007-06-14 | Interdigital Technology Corporation | Method and system for providing control information for supporting high speed downlink and uplink |
US20070117563A1 (en) | 2005-10-28 | 2007-05-24 | Interdigital Technology Corporation | Call setup procedure in an evolved third generation radio access network |
US8412201B2 (en) | 2005-10-31 | 2013-04-02 | Lg Electronics Inc. | Method of transmitting and receiving radio access information in a wireless mobile communications system |
USRE46602E1 (en) * | 2005-10-31 | 2017-11-07 | Evolved Wireless Llc | Method of transmitting and receiving radio access information in a wireless mobile communications system |
USRE46679E1 (en) | 2005-10-31 | 2018-01-16 | Evolved Wireless Llc | Method of transmitting and receiving radio access information in a wireless mobile communications system |
USRE46714E1 (en) * | 2005-10-31 | 2018-02-13 | Evolved Wireless Llc | Method of transmitting and receiving radio access information in a wireless mobile communications system |
US7809373B2 (en) * | 2005-10-31 | 2010-10-05 | Lg Electronics Inc. | Method of transmitting and receiving radio access information in a wireless mobile communications system |
US8219097B2 (en) | 2005-10-31 | 2012-07-10 | Lg Electronics Inc. | Method of transmitting and receiving radio access information in a wireless mobile communications system |
US20080254800A1 (en) | 2005-10-31 | 2008-10-16 | Sung-Duck Chun | Data Transfer Management in a Radio Communications Network |
KR20070055845A (en) | 2005-11-28 | 2007-05-31 | 엘지전자 주식회사 | Code sequence generation method, signal transmission method, transmitter, code sequence and code sequence set in communication system |
US8340232B2 (en) | 2005-12-09 | 2012-12-25 | Samsung Electronics Co., Ltd. | Apparatus and method for channel estimation using training signals with reduced signal overhead |
US8000305B2 (en) | 2006-01-17 | 2011-08-16 | Motorola Mobility, Inc. | Preamble sequencing for random access channel in a communication system |
WO2007082409A1 (en) | 2006-01-18 | 2007-07-26 | Huawei Technologies Co., Ltd. | Method and system for synchronization in a communication system |
US8098745B2 (en) | 2006-03-27 | 2012-01-17 | Texas Instruments Incorporated | Random access structure for wireless networks |
US20070253465A1 (en) | 2006-04-27 | 2007-11-01 | Tarik Muharemovic | Methods and apparatus to allocate reference signals in wireless communication systems |
US7701919B2 (en) | 2006-05-01 | 2010-04-20 | Alcatel-Lucent Usa Inc. | Method of assigning uplink reference signals, and transmitter and receiver thereof |
US20070270273A1 (en) | 2006-05-18 | 2007-11-22 | Motorola, Inc. | Method and apparatus for fast cell search |
WO2007138453A2 (en) | 2006-05-31 | 2007-12-06 | Nokia Corporation | Method product providing synchronization for ofdma downlink signal |
US20070291708A1 (en) | 2006-06-19 | 2007-12-20 | Rao Anil M | Method for reverse link resource assignment |
US20070291696A1 (en) | 2006-06-19 | 2007-12-20 | Interdigital Technology Corporation | Method and apparatus for performing random access in a wireless communication system |
US8131295B2 (en) | 2006-06-20 | 2012-03-06 | Interdigital Technology Corporation | Methods and system for performing handover in a wireless communication system |
KR20080004025A (en) | 2006-07-04 | 2008-01-09 | 엘지전자 주식회사 | Code Sequences in Communication Systems and Methods and Devices for Transmitting, Generating, and Analyzing Them |
US8180058B2 (en) | 2007-06-21 | 2012-05-15 | Qualcomm Incorporated | Encryption of the scheduled uplink message in random access procedure |
US9204468B2 (en) | 2007-11-05 | 2015-12-01 | Telefonaktiebolaget L M Ericsson (Publ) | Timing alignment in an LTE system |
US20090163211A1 (en) | 2007-12-19 | 2009-06-25 | Qualcomm Incorporated | Method and apparatus for transfer of a message on a common control channel for random access in a wireless communication network |
US8448037B2 (en) | 2007-12-20 | 2013-05-21 | Telefonaktiebolaget L M Ericsson (Publ) | Prescheduled retransmission for initial establishment |
US8121045B2 (en) | 2008-03-21 | 2012-02-21 | Research In Motion Limited | Channel quality indicator transmission timing with discontinuous reception |
US8199730B2 (en) | 2008-08-07 | 2012-06-12 | Innovative Sonic Limited | Method and apparatus for handling uplink grant |
US9094202B2 (en) | 2008-08-08 | 2015-07-28 | Qualcomm Incorporated | Utilizing HARQ for uplink grants received in wireless communications |
Non-Patent Citations (373)
Title |
---|
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; 3GPP System Architecture Evolution: Report on Technical Options and Conclusions (Release 7)", 3GPP STANDARD; 3GPP TR 23.882, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, no. V1.4.0, 3GPP TR 23.882, 12 September 2005 (2005-09-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 159, XP050364109 |
3GPP Meeting Registration; Meeting: 3GPPRAN1#44; Mar. 10, 2016 (7 pages). |
3GPP Meeting Registration; Meeting: 3GPPRAN1#44-bis; Mar. 12, 2016 (6 pages). |
3GPP Meeting Registration; Meeting: 3GPPRAN2#62-bis; Mar. 12, 2016 (6 pages). |
3GPP Meeting Registration; Meeting: RAN2#62; Kansas City; May 5, 2008 (6 pages). |
3GPP RAN 1 Meeting #44-bis "On the Performances of LTE RACH" Athens, Greece; Mar. 27-31, 2006; R1-060908; 6 pages. |
3GPP TR 21.900 V8.2.0 (Mar. 2008) "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Technical Specification Group Working Methods (Release 8)" Mar. 2008; 34 pages. |
3GPP TR 23.882 V1.4.0 "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; 3GPP System Architecture Evolution: Report on Technical Options and Conclusions (Release 7)"; XP50364109; Sep. 2006 (159 pages). |
3GPP TR 25.813 V0.0.2 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (UTRA) and Universal Terrestrial Radio Access Network (UTRAN); Radio Interface Protocol Aspects (Release 7)" Marked-Up; Oct. 2005 (18 pages). |
3GPP TR 25.813 V0.0.2 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (UTRA) and Universal Terrestrial Radio Access Network (UTRAN); Radio Interface Protocol Aspects (Release 7)"; Oct. 2005 (17 pages). |
3GPP TR 25.813 V7.0.0 "3rd Generation Partnership Project" Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Radio Interface Protocol Aspects (Release 7) (Jun. 2006); 39 pages. |
3GPP TR 25.814 V0.3.1 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Physical Layer Aspects for Evolved UTRA (Release 7)" Oct. 2005 (51 pages). |
3GPP TR 25.814 V1.0.2 (Jan. 2006) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Physical Layer Aspects for Evolved UTRA (Release 7)" Marked-Up; Jan. 2006; 79 pages. |
3GPP TR 25.905 V7.0.0 (Dec. 2006) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Improvement of the Multimedia Broadcast Multicast Service (MBMS) in UTRAN (Release 7)" Dec. 2006; 41 pages. |
3GPP TR 25.912 V7.0.0 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Feasibility Study for Evolved Universal Terrestrial Radio Access (UTRA) and Universal Terrestrial Radio Access Network (E-UTRAN) (Release 7)" Jun. 2006 (55 pages). |
3GPP TS 25.201 V3.0.0 (Oct. 1999) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Physical Layer—General Description (3G TS 25.201 Version 3.0.0)" Oct. 1999; 13 pages. |
3GPP TS 25.211 V6.6.0 (Sep. 2005) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Physical Channels and Mapping of Transport Channels onto Physical Channels (FDD) (Release 6)" Sep. 2005; 50 pages. |
3GPP TS 25.211 V6.7.0 (Dec. 2005) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Physical Channels and Mapping of Transport Channels onto Physical Channels (FDD) (Release 6)" Dec. 2005; 50 pages. |
3GPP TS 25.213 V6.4.0 (Sep. 2005) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Spreading and Modulation (FDD) (Release 6)" Sep. 2005; 32 pages. |
3GPP TS 25.214 V5.11.0 (Jun. 2005); Release 5; Jun. 2005 (50 pages). |
3GPP TS 25.301 V6.4.0 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Radio Interface Protocol Architecture (Release 6)" XP50129425 Sep. 2005 (48 pages). |
3GPP TS 25.302 V6.5.0 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Services Provided by the Physical Layer (Release 6)" Sep. 2005 (75 pages). |
3GPP TS 36.101 V8.2.0 (May 2008) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) Radio Transmission and Reception (Release 8)" May 2008; 66 pages. |
3GPP TS 36.211 V8.0.0 (Sep. 2007) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8)" Sep. 2007; 50 pages. |
3GPP TS 36.213 V8.3.0 (May 2008) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Layer Procedures (Release 8)" May 2008; 45 pages. |
3GPP TS 36.300 V0.9.0 (Marked-Up) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2" Mar. 2007 (87 pages). |
3GPP TS 36.300 V0.9.0 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2" Mar. 2007 (81 pages). |
3GPP TS 36.300 V8.0.0 (Mar. 2007) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2 (Release 8)" Mar. 2007; 82 pages. |
3GPP TS 36.300 V8.1.0 (Jun. 2007) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2 (Release 8)" Jun. 2007 (106 pages). |
3GPP TS 36.300 V8.2.0 (Sep. 2007) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evoled Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2 (Release 8)" Sep. 2007; 109 pages. |
3GPP TS 36.300 V8.3.0 (Dec. 2007) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evoled Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2 (Release 8)" Dec. 2007; 121 pages. |
3GPP TS 36.300 V8.4.0 (Mar. 2008) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2 (Release 8)" Mar. 2008; 126 pages. |
3GPP TS 36.300 V8.5.0 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2 (Release 8)" May 2008 (134 pages). |
3GPP TS 36.300 V8.6.0 (Sep. 2008) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2 (Release 8)" Sep. 2008 (137 pages). |
3GPP TS 36.300 V8.7.0 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2 (Release 8)" Dec. 2008 (144 pages). |
3GPP TS 36.300 V8.8.0 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2 (Release 8)" Mar. 2009 (156 pages). |
3GPP TS 36.300 V8.9.0 (Jun. 2009) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall Description; Stage 2 (Release 8)" Jun. 2009 (159 pages). |
3GPP TS 36.321 V8.1.0. "3rd Generation Partnership Project; Technical Specification Group Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) Medium Access Control (MAC) protocol specification" (Release 8) 30 pages, Mar. 2008. |
3GPP TS 36.321 V8.2.0 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) Medium Access Control (MAC) Protocol Specification (Release 8)" May 2008 (32 pages). |
3GPP TS 36.321 V8.2.0 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) Medium Access Control (MAC) Protocol Specification (Release 8)" May 2008 (33 pages). |
3GPP TS 36.321 V8.3.0 "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) Medium Access Control (MAC) Protocol Specification (Release 8)" Sep. 2008 (36 pages). |
3GPP TS 36.331 V8.0.0 (Dec. 2007) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Resource Control (RRC); Protocol Specification (Release 8)" Dec. 2007 (56 pages). |
3GPP TS 36.331 V8.1.0 (Mar. 2008) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Resource Control (RRC); Protocol Specification (Release 8)" Mar. 2008 (122 pages). |
3GPP TS 36.331 V8.2.0 (May 2008) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Resource Control (RRC); Protocol Specification (Release 8)" May 2008 (151 pages). |
3GPP TS 36.331 V8.3.0 (Sep. 2008) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Resource Control (RRC); Protocol Specification (Release 8)" Sep. 2008 (178 pages). |
3GPP TS 36.331 V8.4.0 (Dec. 2008) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Resource Control (RRC); Protocol Specification (Release 8)" Dec. 2008 (198 pages). |
3GPP TS 36.331 V8.5.0 (Mar. 2009) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Resource Control (RRC); Protocol Specification (Release 8)" Mar. 2009 (204 pages). |
3GPP TS 36.331 V8.6.0 (Jun. 2009) "3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Resource Control (RRC); Protocol Specification (Release 8)" Jun. 2009 (207 pages). |
3GPP TSG RAN WG1 #42 on LTE "Orthogonal Pilot Channel in the Same Node B in Evolved UTRA Uplink" London, UK; R1-050851; Aug. 29-Sep. 2, 2005; (9 pages). |
3GPP TSG RAN WG1 #44 "Some Consideration for LTE Rach 13.2.3.1" Denver, USA; R1-060531; Feb. 13-17, 2006 (4 pages). |
3GPP TSG RAN WG1 #44-bis "A New Preamble Shape for the Random Access Preamble in E-UTRA" Athens, Greece, Mar. 27-31, 2006; R1-060867; 5 pages. |
3GPP TSG RAN WG1 Ad Hoc on LTE "On Allocation of Uplink Pilot Sub-Channels in EUTRA SC-FDMA" London, UK; R1-050822; Aug. 29-Sep. 2, 2005; (7 pages). |
3GPP TSG RAN WG1 Ad Hoc on LTE "On Uplink Pilot in EUTRA SC-FDMA" San Diego, USA; R1-051062; Oct. 10-14, 2005 (7 pages). |
3GPP TSG RAN WG2 #52 "Mobility in LTE Active" Athens, Greece; Tdoc R2-060915; Mar. 27-31, 2006 (4 pages). |
3GPP TSG RAN WG2 #57 "Uplink Synchronization" R2-070781; St. Louis, USA; Feb. 12-16, 2007 (3 pages). |
3GPP TSG RAN1 #44 "RACH Design for EUTRA" Denver, USA; R1-060387; Feb. 13-17, 2006 (11 pages). |
3GPP TSG RAN1 #44 "RACH Design for EUTRA" Denver, USA; R1-060387; Marked-Up; Feb. 13-17, 2006 (11 pages). |
3GPP TSG RAN1 #44-bis "Random Access Sequence Design" R1-060884; Athens, Greece, Mar. 24-26, 2006 (7 pages). |
3GPP TSG RAN1 43 "RACH Design for EUTRA" Helsinki, Finland; Jan. 23-25, 2006; R1-060025; 11 pages. |
3GPP TSG RAN2 Meeting #63 "Handling of Received UL Grant in RA Procedure" Jeju, South Korea; Aug. 18-22, 2008; Marked-Up; R2-084388; 4 pages. |
3GPP TSG WG1 Meeting #44bis "RACH Design for E-UTRA" R1-060797; Athens, Greece, Mar. 27-31, 2006 (9 pages). |
3GPP TSG-RAN WG1 Meeting #44bis "Investigations on Random Access Channel Structure for E-UTRA Uplink" Athens, Greece; Mar. 27-31, 2006; R1-060992; 7 pages. |
3GPP TSG-RAN WG1 Meeting #53 "UL Grant for Random Access Message 3" R1-082078; Kansas City, USA; May 5-9, 2008 (4 pages). |
3GPP TSG-RAN WG2 #50 "Handover Procedure for LTE-ACTIVE UEs" Sophia-Antipolis, France; R2-060078; Jan. 9-13, 2006 (6 pages). |
3GPP TSG-RAN WG2 #50 "Intra-System Mobility" Sophia-Antipolis, France; R2-060013; Jan. 9-13, 2006 (7 pages). |
3GPP TSG-RAN WG2 #61 bis "Control of HARQ for RACH message 3" R2-081764; Shenzhen, China; Mar. 31-Apr. 4, 2008 (5 pages). |
3GPP TSG-RAN WG2 #62 "Update of MAC Random Access Procedure" Tdoc R2-082731; Kansas City, USA; May 5-9, 2008 (7 pages). |
3GPP TSG-RAN WG2 #63 "Handling of Received UL Grant in RA Procedure" Jeju, South Korea; Aug. 18-22, 2008; R2-084387; 3 pages. |
3GPP TSG-RAN WG2 #63 "NDI and Message 3" Jeju Island, Korea; Aug. 18-22, 2008; R2-084156; 5 pages. |
3GPP TSG-RAN WG2 #63 "PCCH Configuration in SIB1" Jeju, Korea; R2-083882; Aug. 18-22, 2008; (4 pages). |
3GPP TSG-RAN WG2 "Access Procedure" Shanghai, China; R2-061201; May 8-12, 2006 (3 pages). |
3GPP TSG-RAN WG2 Meeting #53 "Cell Switching in LTE_Active State" Shanghai, China; R2-061196; May 8-12, 2006 (5 pages). |
3GPP TSG-RAN WG2 Meeting #53 "Intra-LTE Handover Operation" Shanghai, PRC; R2-061135; May 8-13, 20016 (3 pages). |
3GPP TSG-RAN WG2 Meeting #64bis "Clarification on RA Preambles" Athens, Greece; R2-091523; Jan. 9-13, 2009 (3 pages). |
3GPP TSG-RAN WG2 Meeting #64bis "Clarification on RA Preambles" Athens, Greece; R-2091523; Marked-Up; Jan. 9-13, 2009 (3 pages). |
3GPP TSG-RAN WG3 #48 bis meeting "On Intra-Access Mobility for LTE_ACTIVE UEs" Cannes, France; R3-051108; Oct. 11-14, 2005 (4 pages). |
3GPP TSG-RAN WG3 #53bis "Intral-LTE Mobility Procedure" Seoul, Korea; R3-061489; Oct. 10-13, 2006 (4 pages). |
3GPP TSG-RAN WG3 #54 "Updates of Intra-LTE Handover in 36.300" Riga, Latvia Nov. 6-10, 2006; R3-061788; 6 pages. |
3GPP TSG-RAN WG3 #54 "Updates of Intra-LTE Handover in 36.300" Riga, Latvia Nov. 6-10, 2006; R3-061945; 10 pages. |
3GPP TSG-RAN Working Group 2 Meeting #52 "Intra-RAT Handover Access Procedure" Shanghai, China; May 8-12, 2006; R2-061229 (4 pages). |
3GPP TSG-RAN2 Meeting #59bis "E-UTRA RRC TP Capturing Current Status on Mobility" Shanghai, P.R. China; Oct. 8-12, 2007; R2-074014 (11 pages). |
3GPP TSG-RAN2 Meeting #62bis "Clarification of DL- and UL-SCH Data Transfer" Warsaw, Poland, R2-083400; Marked-Up; Jun. 30-Jul. 4, 2008 (7 pages). |
3GPP TSG-RAN2 Meeting #62bis "Clarification of DL- and UL-SCH Data Transfer" Warsaw, Poland, R2-083701 (revision of R2-083400); Marked-Up; Jun. 30-Jul. 4, 2008 (8 pages). |
3GPP TSG-RAN2 Meeting #62bis "NDI and Msg3" Warsaw; Poland; R2-083703; Marked-Up; Jun. 30-Jul. 4, 2008 (3 pages). |
3GPP TSG-RAN2 Meeting #63 "Corrections Relating to RACH Partitioning" Jeju, Korea; R2-084788; Aug. 18-22, 2008; (4 pages). |
3rd Generation Partnership Project "Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Radio Interface Protocol Aspects (Release 7)" 3GPP TR 25.813; V7.0.0 (Jun. 2006). |
Abramson, Norman "The Aloha System—Another Alternative for Computer Communications" University of Hawaii; Honolulu, Hawaii; Fall Joint Computer Conference, 1970; 6 pages. |
Chu, David C. "Polyphase Codes with Good Periodic Correlation Properties" Information Theory IEEE Transaction on, vol. 18, Issue 4, pp. 531-532, Jul. 1972). |
Communication Pursuant to Rules 70(2) and 70a(2) EPC for European Patent Application No. 06847353.7, dated Jan. 10, 2012. |
Dahlman, Erik "3G Evolution HSPA and LTE for Mobile Broadband" Academic Press; 2007; 18 pages. |
Decision Denying Institution of Inter Partes Review 37 C.F.R, 42.108 for Samsung Electronics Co., Ltd. et al., v. Evolved Wireless, LLC, United States Patent and Trademark Office—Before the Patent Trial and Appeal Board, Case No. IPR 2016-01347, submitted Dec. 19, 2016 (19 pages). |
Decision Denying Institution of Inter Partes Review 37 C.F.R. 42.108 for Apple Inc. v. Evolved Wireless, LLC, United States Patent and Trademark Office—Before the Patent Trial and Appeal Board, Case No. IPR 2016-01185, filed Dec. 19, 2016 (18 pages). |
Decision to Grant (Including Translation) for Korean Application No. 10-2006-0063135, dated Aug. 25, 2010. |
Decision—Denying Request for Rehearing for Apple Inc. v. Evolved Wireless, LLC, United States Patent and Trademark Office—Before the Patent Trial and Appeal Board, Case No. IPR 2016-01185, filed Apr. 17, 2017 (8 pages). |
Decision—Denying Request for Rehearing—37 C.F.R. § 42.71(d) for Samsung Electronics Co., Ltd. et al., v. Evolved Wireless, LLC, United States Patent and Trademark Office—Before the Patent Trial and Appeal Board, Case No. IPR 2016-01347, submitted Apr. 17, 2017 (8 pages). |
Defendants' Initial Invalidity Contentions; In the United States District Court for the District of Delaware; Civil Action Nos. 1:15-cv-00542-SLR-SRF; 1:15-cv-00543-SLR-SRF; 1:15-cv-00544-SLR-SRF; 1:15-cv-00545-SLR-SRF; 1:15-cv-00546-SLR-SRF; 1:15-cv-00547-SLR-SRF;filed Mar. 14, 2016 (1244 pages). |
Defendants' Invalidity Contentions; In the United States District Court for the District of Delaware; Civil Action Nos. 1:15-cv-00542-SLR-SRF; 1:15-cv-00543-SLR-SRF; 1:15-cv-00544-SLR-SRF; 1:15-cv-00545-SLR-SRF; 1:15-cv-00546-SLR-SRF; 1:15-cv-00547-SLR-SRF; filed Feb. 28, 2017 (3,140 pages). |
Documents filed with U.S. Court of Appeals for the Federal Circuit for Evolved Wireless, LLC v. Apple Inc.; Appeal Docket No. 18-2010; Includes documents filed from May 25, 2018-Oct. 4, 2019; Docket Nos. 1-24; (216 pages). |
Documents filed with U.S. Court of Appeals for the Federal Circuit for Evolved Wireless, LLC v. Apple Inc.; Appeal Docket No. 18-2010; Includes documents filed on Nov. 25, 2019; Docket No. 25; (2 pages). |
Documents filed with U.S. Court of Appeals for the Federal Circuit for Evolved Wireless, LLC v. Apple Inc.; Appeal Docket No. 18-2011; Includes documents filed from May 25, 2018-Oct. 4, 2019; Docket Nos. 1-5; (162 pages). |
Documents filed with U.S. Court of Appeals for the Federal Circuit for Evolved Wireless, LLC v. Apple Inc.; Appeal Docket No. 18-2011; Includes documents filed on Nov. 25, 2019; Docket No. 6; (2 pages). |
Documents filed with U.S. Court of Appeals for the Federal Circuit for Evolved Wireless, LLC v. Apple Inc.; Appeal Docket No. 19-2362; Includes documents filed from Dec. 4, 2019-Jan. 27, 2020; Docket Nos. 16-21; (224 pages). |
Documents filed with U.S. Court of Appeals for the Federal Circuit for Evolved Wireless, LLC v. Apple Inc.; Appeal Docket No. 19-2362; Includes documents filed from Feb. 12, 2020-Feb. 28, 2020; Docket Nos. 22-24; (73 pages). |
Documents filed with U.S. Court of Appeals for the Federal Circuit for Evolved Wireless, LLC v. Apple Inc.; Appeal Docket No. 19-2362; Includes documents filed from Sep. 5, 2019-Oct. 21, 2019; Docket Nos. 1-15; (102 pages). |
Documents filed with U.S. Court of Appeals for the Federal Circuit for Evolved Wireless, LLC v. HTC Corporation; Appeal Docket No. 2020-1335; Includes documents filed from Jan. 27, 2020-Jan. 31, 2020; Docket Nos. 37-40; (9 pages). |
Documents filed with U.S. Court of Appeals for the Federal Circuit for Evolved Wireless, LLC v. HTC Corporation; Appeal Docket No. 2020-1335; Includes documents filed from Jan. 8, 2020-Jan. 27, 2020; Docket Nos. 1-36; (158 pages). |
Documents filed with U.S. Court of Appeals for the Federal Circuit for Evolved Wireless, LLC v. Microsoft Corporation; Appeal Docket No. 2020-1340; Includes documents filed from Jan. 8, 2020-Jan. 21, 2020; Docket Nos. 1-3; (52 pages). |
Documents filed with U.S. Court of Appeals for the Federal Circuit for Evolved Wireless, LLC v. Motorola Mobility, LLC; Appeal Docket No. 2020-1337; Includes documents filed from Jan. 8, 2020-Jan. 24, 2020; Docket Nos. 1-9; (95 pages). |
Documents filed with U.S. Court of Appeals for the Federal Circuit for Evolved Wireless, LLC v. Samsung Electronics Co., Ltd.; Appeal Docket No. 18-2009; Includes documents filed from May 25, 2018-Oct. 4, 2019; Docket Nos. 1-6; (110 pages). |
Documents filed with U.S. Court of Appeals for the Federal Circuit for Evolved Wireless, LLC v. Samsung Electronics Co., Ltd.; Appeal Docket No. 18-2009; Includes documents filed on Nov. 25, 2019; Docket No. 7; (2 pages). |
Documents filed with U.S. Court of Appeals for the Federal Circuit for Evolved Wireless, LLC v. Samsung Electronics Co., Ltd.; Appeal Docket No. 2020-1363; Includes documents filed from Jan. 17, 2020-Jan. 21, 2020; Docket Nos. 1-3; (59 pages). |
Documents filed with U.S. Court of Appeals for the Federal Circuit for Evolved Wireless, LLC v. ZTE (USA) Inc.; Appeal Docket No. 18-2008; Includes documents filed from May 25, 2018-Oct. 4, 2019; Docket Nos. 1-130; (4386 pages). |
Documents filed with U.S. Court of Appeals for the Federal Circuit for Evolved Wireless, LLC v. ZTE (USA) Inc.; Appeal Docket No. 18-2008; Includes documents filed on Nov. 15, 2019; Docket No. 131; (2 pages). |
Documents filed with U.S. Court of Appeals for the Federal Circuit for Evolved Wireless, LLC v. ZTE(USA) Inc.; Appeal Docket No. 2020-1339; Includes documents filed from Jan. 8, 2020-Jan. 23, 2020; Docket Nos. 1-9; (63 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Apple Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No, 1:15-cv-00542-SLR-SRF; Includes documents filed from Mar. 20, 2017-May 30, 2017; Docket Nos. 146-157; (175 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Apple Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00542-SLR-SRF; Includes documents filed from Apr. 2, 2019-Jun. 7, 2019; Docket Nos. 511-537; (233 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Apple Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00542-SLR-SRF; Includes documents filed from Apr. 23, 2018-Jun. 28, 2018; Docket Nos. 380-392; (205 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Apple Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00542-SLR-SRF; Includes documents filed from Aug. 23, 2016-Nov. 8, 2016 Docket Nos. 77-108; (785 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Apple Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00542-SLR-SRF; Includes documents filed from Aug. 30, 2019-Sep. 5, 2019; Docket Nos. 546-548; (6 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Apple Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00542-SLR-SRF; Includes documents filed from Aug. 31, 2017-Oct. 5, 2017; Docket Nos. 190-219; (307 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Apple Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00542-SLR-SRF; Includes documents filed from Dec. 27, 2016-Jan. 17, 2017; Docket Nos. 120-122; (9 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Apple Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00542-SLR-SRF; Includes documents filed from Dec. 31, 2018-Mar. 28, 2019; Docket Nos. 433-510; (2342 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Apple Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00542-SLR-SRF; Includes documents filed from Jan. 25, 2017-Mar. 17, 2017; Docket Nos. 123-145; (176 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Apple Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00542-SLR-SRF; Includes documents filed from Jan. 5, 2018-Apr. 16, 2018; Docket Nos. 309-379; (1198 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Apple Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00542-SLR-SRF; Includes documents filed from Jul. 10, 2018-Aug. 24, 2018; Docket Nos. 393-408; (91 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Apple Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00542-SLR-SRF; Includes documents filed from Jul. 15, 2016-Aug. 19, 2016—Docket Nos. 68-76; (308 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Apple Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00542-SLR-SRF; Includes documents filed from Jun. 13, 2019-Aug. 9, 2019; Docket Nos. 538-545; (105 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Apple Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00542-SLR-SRF; Includes documents filed from Jun. 14, 2017-Aug. 25, 2017; Docket Nos. 158-189; (257 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Apple Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00542-SLR-SRF; Includes documents filed from Jun. 25, 2015-May 13, 2016 Docket Nos. 1-53; (1259 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Apple Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00542-SLR-SRF; Includes documents filed from May 17, 2016-Jul. 11, 2016—Docket Nos. 54-67; (4,028 pages). |
Documents filed with U.S. District Court Proceedings for' Evolved Wireless, LLC v. Apple Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00542-SLR-SRF; Includes documents filed from Nov. 15, 2019-Dec. 17. 2019; Docket Nos. 549-552; (31 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Apple Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00542-SLR-SRF; Includes documents filed from Nov. 9, 2016-Dec. 12, 2016; Docket Nos. 109-119; (212 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Apple Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00542-SLR-SRF; Includes documents filed from Oct. 6, 2017-Jan. 3, 2018; Docket Nos. 220-308; (5,058 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Apple Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00542-SLR-SRF; Includes documents filed from Sep. 21, 2018-Oct. 3, 2018; Docket Nos. 409-432; (349 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Apple Inc.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00542-SLR-SRF; Includes documents filed on Jun. 23, 2020; (2 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1 :15-cv-00543-SLR-SRF; Includes documents filed from Nov. 9, 2016-Dec. 7, 2016; Docket Nos. 115-125; (212 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00543-SLR-SRF, Includes documents filed from Mar. 22, 2017-May 30, 2017; Docket Nos. 152-163; (172 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00543-SLR-SRF: Includes documents filed from May 17, 2016-Jul. 11, 2016 Docket Nos. 55-69; (4,029 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00543-SLR-SRF; Includes documents filed from Apr. 23, 2018-Jun. 28, 2018; Docket Nos. 373-383; (156 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00543-SLR-SRF; Includes documents filed from Aug. 23, 2016-Nov. 8, 2016; Docket Nos. 82-114; (702 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00543-SLR-SRF; Includes documents filed from Aug. 29, 2019-Oct. 11, 2019; Docket Nos. 432-435; (17 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00543-SLR-SRF; Includes documents filed from Aug. 31, 2017-Oct. 5, 2017; Docket Nos. 203-232; (352 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00543-SLR-SRF; Includes documents filed from Dec. 27, 2016-Jan. 17, 2017; Docket Nos. 126-129; (11 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00543-SLR-SRF; Includes documents filed from Dec. 31, 2018-Mar. 28, 2019; Docket Nos. 409-428; (154 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00543-SLR-SRF; Includes documents filed from Jan. 25, 2017-Mar. 17, 2017; Docket Nos. 130-151; (161 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00543-SLR-SRF; Includes documents filed from Jan. 5, 2018-Apr. 16, 2018; Docket Nos. 309-372; (3,169 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00543-SLR-SRF; Includes documents filed from Jan. 5, 2018-Apr. 16m 2018; Docket Nos. 309-372; (3,169 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00543-SLR-SRF; Includes documents filed from Jul. 15, 2016-Aug. 19, 2016—Docket Nos. 70-81; (336 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00543-SLR-SRF; Includes documents filed from Jul. 24, 2018-Aug. 24, 2018; Docket Nos. 384-402; (139 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00543-SLR-SRF; Includes documents filed from Jun. 13, 2019-Aug. 14, 2019; Docket Nos. 430-431; (10 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00543-SLR-SRF; Includes documents filed from Jun. 25, 2015-May 13, 2016 Docket Nos. 1-54; (1369 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00543-SLR-SRF; Includes documents filed from Jun. 5, 2017-Aug. 29, 2017; Docket Nos. 164-202; (281 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00543-SLR-SRF; Includes documents filed from Nov. 1, 2019-Jan. 8, 2020; Docket Nos. 436-448; (63 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00543-SLR-SRF; Includes documents filed from Oct. 16, 2017-Jan. 3, 2018; Docket Nos. 233-308; (3,907 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00543-SLR-SRF; Includes documents filed from Sep. 4, 2018-Oct. 3, 2018; Docket Nos. 403-408; (60 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00543-SLR-SRF; Includes documents filed on May 1, 2019; Docket No. 429; (3 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Lenovo Group Ltd., et al..; U.S, District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00544-SLR-SRF; Includes documents filed from Oct. 6, 2017-Jan 3, 2018; Docket Nos. 208-273; (3,364 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Lenovo Group Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00544-SLR-SRF, Includes documents filed from Nov. 9, 2016-Dec. 7, 2016; Docket Nos. 103-113; (212 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Lenovo Group Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00544-SLR-SRF: Includes documents filed from Aug. 31, 2017-Oct. 3, 2017; Docket Nos. 180-207; (255 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Lenovo Group Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00544-SLR-SRF; Includes documents filed from Apr. 23, 2018-Jun. 28, 2018; Docket Nos. 338-346; (114 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Lenovo Group Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00544-SLR-SRF; Includes documents filed from Aug. 23, 2016-Nov. 8, 2016; Docket Nos. 72-102; (740 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Lenovo Group Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00544-SLR-SRF; Includes documents filed from Dec. 27, 2016-Jan. 23, 2017; Docket Nos. 114-117; (11 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Lenovo Group Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00544-SLR-SRF; Includes documents filed from Jan. 5, 2018-Apr. 16, 2018; Docket Nos. 274-337; (1,456 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Lenovo Group Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00544-SLR-SRF; Includes documents filed from Jul. 15, 2016-Aug. 19, 2016; Docket Nos. 62-71; (310 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Lenovo Group Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00544-SLR-SRF; Includes documents filed from Jun. 14, 2017-Aug. 25, 2017; Docket Nos. 148-179; (264 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Lenovo Group Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00544-SLR-SRF; Includes documents filed from Jun. 25, 2015-May 13, 2016 Docket Nos., 1-48; (993 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Lenovo Group Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00544-SLR-SRF; Includes documents filed from May 17, 2016-Jul. 11, 2016; Docket Nos. 49-61; (4,026 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Lenovo Group Ltd., et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00544-SLR-SRF; Includes documents filed from Jan. 25, 2017-Mar. 17, 2017; Docket Nos. 118-135; (103 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Lenovo Group Ltd., et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00544-SLR-SRF; Includes documents filed from Mar. 20, 2017-May 30, 2017; Docket Nos. 136-147; (179 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Microsoft Corporation, et al.; U.S, District Court, for the District of Delaware (Wilmington); Civil Action No, 1:15-cv-00547-SLR-SRF; Includes documents filed Sep. 3, 2020;(1286 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Microsoft Corporation, et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00547-SLR-SRF; Includes documents filed from Apr. 23, 2018-Jun. 28, 2018; Docket Nos. 359-364; (58 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Microsoft Corporation, et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00547-SLR-SRF; Includes documents filed from Aug. 24, 2016-Nov. 8, 2016—Docket Nos. 79-113; (796 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Microsoft Corporation, et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00547-SLR-SRF; includes documents filed from Aug. 28, 2018-Oct. 3, 2018; Docket Nos. 386-393; (61 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Microsoft Corporation, et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00547-SLR-SRF; Includes documents filed from Aug. 29, 2019-Oct. 11, 2019; Docket Nos. 415-418; (17 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Microsoft Corporation, et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00547-SLR-SRF; Includes documents filed from Aug. 31, 2017-Sep. 28, 2017; Docket Nos. 193-218; (232 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Microsoft Corporation, et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00547-SLR-SRF; Includes documents filed from Dec. 19, 2016-Jan. 17, 2017; Docket Nos. 130-133; (11 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Microsoft Corporation, et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00547-SLR-SRF; Includes documents filed from Dec. 31, 2018-Mar. 28, 2019; Docket Nos. 394-412; (134 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Microsoft Corporation, et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00547-SLR-SRF; Includes documents filed from Jan. 25, 2017-Mar. 17, 2017; Docket Nos. 134-151; (98 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Microsoft Corporation, et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00547-SLR-SRF; Includes documents filed from Jan. 5, 2018-Apr. 16, 2018; Docket Nos. 290-358; (1,476 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Microsoft Corporation, et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00547-SLR-SRF; Includes documents filed from Jul. 15, 2016-Aug. 19, 2016—Docket Nos. 70-78; (305 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Microsoft Corporation, et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00547-SLR-SRF; Includes documents filed from Jul. 5, 2018-Aug. 24, 2018; Docket Nos. 365-385; (136 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Microsoft Corporation, et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00547-SLR-SRF; Includes documents filed from Jun. 25, 2015-May 17, 2016 Docket Nos. 1-57; (1273 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Microsoft Corporation, et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00547-SLR-SRF; Includes documents filed from Jun. 5, 2017-Aug. 25, 2017; Docket Nos. 166-192; (155 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Microsoft Corporation, et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00547-SLR-SRF; Includes documents filed from Mar. 21, 2017-May 30, 2017; Docket Nos. 151-165; (176 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Microsoft Corporation, et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00547-SLR-SRF; Includes documents filed from May 18, 2016-Jul. 11, 2016—Docket Nos. 58-69; (3,996 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Microsoft Corporation, et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00547-SLR-SRF; Includes documents filed from Nov. 15, 2019-Jan. 8, 2020; Docket Nos. 419-431; (62 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Microsoft Corporation, et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00547-SLR-SRF; Includes documents filed from Nov. 9, 2016-Dec. 14, 2016—Docket Nos. 114-129; (129 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Microsoft Corporation, et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00547-SLR-SRF; Includes documents filed from Oct. 6, 2017-Jan. 3, 2018; Docket Nos. 219-289; (3,748 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Microsoft Corporation, et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00547-SLR-SRF; Includes documents filed on Jun. 13, 2019; Docket No. 414; (7 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Microsoft Corporation, et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00547-SLR-SRF; Includes documents filed on May 1, 2019; Docket No. 413; (2 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Motorola Mobility, et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No, 1:15-cv-00544-SLR-SRF; Includes documents filed on May 1, 2019; Docket No. 392; (3 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Motorola Mobility, et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00544-SLR-SRF; Includes documents filed from Aug. 29, 2019-Oct. 11, 2019; Docket Nos. 394-397; (17 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Motorola Mobility, et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00544-SLR-SRF; Includes documents filed from Dec. 31, 2018-Mar. 28, 2019; Docket Nos. 372-391; (140 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Motorola Mobility, et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00544-SLR-SRF; Includes documents filed from Jul. 24, 2018-Aug. 24, 2018; Docket Nos. 347-365; (139 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Motorola Mobility, et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00544-SLR-SRF; Includes documents filed from Nov. 15, 2019-Jan. 13, 2020; Docket Nos. 398-414; (70 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Motorola Mobility, et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00544-SLR-SRF; Includes documents filed from Sep. 4, 2018-Oct. 3, 2018; Docket Nos. 363-371; (60 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Motorola Mobility, et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00544-SLR-SRF; Includes documents filed on Jun. 13, 2019; Docket No. 393; (7 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Motorola Mobility, et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00544-SLR-SRF; Includes documents on Sep. 3, 2020; (643 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd., et al..; U.S, District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed Sep. 3, 2020; Docket No. 495; (643 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed Feb. 13, 2020; Docket No. 494; (2 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed from Apr. 23, 2018-Jun. 28, 2018; Docket Nos. 378-389; (114 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed from Aug. 30, 2018-Oct. 3, 2018; Docket Nos. 402-428; (389 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed from Aug. 31, 2017-Sep. 28, 2017; Docket Nos. 222-244; (241 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed from Dec. 27, 2016-Jan. 23, 2017; Docket Nos. 140-146; (17 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed from Dec. 31, 2018-Mar. 28, 2019; Docket Nos. 429-474; (774 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed from Jan. 24, 2017-Mar. 17, 2017; Docket Nos. 147-168; (107 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed from Jan. 5, 2018-Apr. 16, 2018; Docket Nos. 313-377; (1,508 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed from Jul. 15, 2016-Aug. 19, 2016; Docket Nos. 78-91; (354 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed from Jul. 24, 2018-Aug. 24, 2018; Docket Nos. 387-401; (89 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed from Jun. 14, 2017-Aug. 25, 2017; Docket Nos. 184-221; (281 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed from Jun. 25, 2015-May 17, 2016 Docket Nos. 1-56; (1202 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed from Mar. 21, 2017-May 30, 2017; Docket Nos. 169-183; (185 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed from May 26, 2016-Jul. 11, 2016 Docket Nos. 57-77; (4,713 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed from Nov. 15, 2019-Jan. 17, 2020; Docket Nos. 481-493; (65 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed from Nov. 9, 2016-Dec. 7, 2016; Docket Nos. 127-139; (220 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed from Oct. 6, 2017-Jan. 3, 2018; Docket Nos. 245-312; (3,694 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed on Jun. 13, 2019; Docket No. 476; (7 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd., et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed on May 1, 2019; Docket No. 475; (3 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd., et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed from Aug. 29, 2019-Oct. 11, 2019; Docket Nos. 477-480; (17 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. Samsung Electronics Co. Ltd.. et al..; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00545-SLR-SRF; Includes documents filed from Aug. 23, 2016-Nov. 8, 2016; Docket Nos. 92-126; (775 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. ZTE Corporation; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00546-SLR-SRF; Includes documents filed from Apr. 23, 2018-Jun. 28, 2018; Docket Nos. 340-348; (114 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. ZTE Corporation; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00546-SLR-SRF; Includes documents filed from Aug. 23, 2016-Nov. 8, 2016; Docket Nos. 80-113; (733 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. ZTE Corporation; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00546-SLR-SRF; Includes documents filed from Aug. 29, 2019-Oct. 11, 2019; Docket Nos. 397-400; (17 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. ZTE Corporation; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00546-SLR-SRF; Includes documents filed from Aug. 31, 2017-Sep. 28, 2017; Docket Nos. 194-218; (244 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. ZTE Corporation; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00546-SLR-SRF; Includes documents filed from Dec. 27, 2016-Jan. 17, 2017; Docket Nos. 125-127; (9 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. ZTE Corporation; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00546-SLR-SRF; Includes documents filed from Dec. 31, 2018-Mar. 28, 2019; Docket Nos. 376-394; (138 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. ZTE Corporation; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00546-SLR-SRF; Includes documents filed from Jan. 25, 2017-Mar. 17, 2017; Docket Nos. 128-153; (135 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. ZTE Corporation; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00546-SLR-SRF; Includes documents filed from Jan. 5, 2018-Apr. 16, 2018; Docket Nos. 277-339; (1,196 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. ZTE Corporation; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00546-SLR-SRF; Includes documents filed from Jul. 15, 2016-Aug. 19, 2016; Docket Nos. 71-79; (308 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. ZTE Corporation; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00546-SLR-SRF; Includes documents filed from Jul. 24, 2018-Aug. 24, 2018; Docket Nos. 349-369; (141 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. ZTE Corporation; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00546-SLR-SRF; Includes documents filed from Jun. 1, 2016-Jul. 11, 2016; Docket Nos. 58-70; (4,001 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. ZTE Corporation; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00546-SLR-SRF; Includes documents filed from Jun. 14, 2017-Aug. 25, 2017; Docket Nos. 166-193; (254 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. ZTE Corporation; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00546-SLR-SRF; Includes documents filed from Jun. 25, 2015-May 17, 2016 Docket Nos. 1-57; (1203 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. ZTE Corporation; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00546-SLR-SRF; Includes documents filed from Mar. 20, 2017-May 30, 2017; Docket Nos. 154-165; (178 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. ZTE Corporation; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00546-SLR-SRF; Includes documents filed from Nov. 15, 2019-Jan. 8, 2020; Docket Nos. 401-411; (61 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. ZTE Corporation; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00546-SLR-SRF; Includes documents filed from Nov. 9, 2016-Dec. 7, 2016; Docket Nos. 114-124; (212 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. ZTE Corporation; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00546-SLR-SRF; Includes documents filed from Oct. 6, 2017-Jan. 3, 2018; Docket Nos. 219-276; (3,378 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. ZTE Corporation; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00546-SLR-SRF; Includes documents filed from Sep. 4, 2018-Oct. 3, 2018; Docket Nos. 370-375; (60 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. ZTE Corporation; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00546-SLR-SRF; Includes documents filed on Jun. 13, 2019; Docket No. 396; (7 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. ZTE Corporation; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00546-SLR-SRF; Includes documents filed on May 1, 2019; Docket No. 395; (3 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLC v. ZTE Corporation; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00546-SLR-SRF; Includes documents filed Sep. 3, 2020; (643 pages). |
Documents filed with U.S. District Court Proceedings for Evolved Wireless, LLCv. HTC Corporation et al.; U.S. District Court, for the District of Delaware (Wilmington); Civil Action No. 1:15-cv-00543-SLR-SRF; Includes documents on Sep. 3, 2020; (643 pages). |
Ericsson "Clarification of DL- and UL-SCH Data Transfer" 3GPP TSG-RAN2 Meeting #62bis; R2-0837271 Warsaw, Poland; Jun. 30-Jul. 4 2008 (7 pages). |
ETSI TS 101 475 V1.3.1 "Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Physical (PHY) Layer" Dec. 2001 (43 pages). |
ETSI TS 101 761-1 V1.3.1 "Broadband Radio Access Networks (BRAN); HIPERLAN Type 2; Data Link Control (DLC) Layer; Part 1: Basic Data Transport Functions" Dec. 2001 (88 pages). |
ETSI TS 136 321 V8.2.0 "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Medium Access Control (MAC) Protocol Specification (3GPP TS 36.321 Version 8.2.0 Release 8)" Nov. 2008 (35 pages). |
European Search Report for European Application No. 19164548.0, dated Jul. 18, 2019. |
European Search Report for European Application No. 20164685.8, dated Jul. 7, 2020. |
European Search Report for European Patent Application No. 06847353.7, dated Dec. 21, 2011. |
European Search Report for European Patent Application No. 16002537, dated Mar. 27, 2017. |
European Search Report for European Patent Application No. 17020418.4, dated Jan. 25, 2018. |
European Search Report for European Patent Application No. 17020418.4, dated Mar. 9, 2018. |
Ex Parte Quayle Action for U.S. Appl. No. 14/326,637 dated Mar. 25, 2015. |
Examination Report for Indian Application No. 1093/KOLNP/2015, dated May 30, 2019. |
Examiner's Report for Australian Patent Application No. 2006323560, dated Jun. 3, 2009. |
Final Office Action for U.S. Appl. No. 14/676,490 dated Jul. 10, 2017. |
Final Office Action for U.S. Appl. No. 14/723,093 dated Aug. 22, 2017. |
Hearing Notice for Indian Patent Application No. 1324/KOLNP/2008, dated May 27, 2015. |
Holma, Harri et al. "WCDMA for UMTS: Radio Access for Third Generation Mobile Communications" 3rd Edition; Wiley; 2004; 481 pages. |
IEEE "Draft IEEE Standard for Local and Metropolitan Area Networks: Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems" IEEE P802.16e/D12, Oct. 14, 2005 (684 Pages). |
IEEE "Draft IEEE Standard for Local and Metropolitan Area Networks: Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems" XP-002670655; IEEE P802.16e/D12, Oct. 14, 2005; pp. 1; 194; 200-205. |
IEEE "IEEE 802.16 Standard for Local and Metropolitan Area Networks: Part 16: Air Interface for Fixed Broadband Wireless Access Systems" Oct. 1, 2004 (895 pages). |
IEEE "IEEE 802.16e Handoff Draft" IEEE C802.16e-03/20rl; Mar. 13, 2003 (22 pages). |
IEEE "IEEE Standard for Local and Metropolitan Area Networks: Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems; Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands" IEEE P802.16e-2005; Feb. 28, 2006 (864 Pages). |
IEEE "Minutes of IEEE 802.16 Session #38" IEEE 802.16 Broadband Wireless Access Working Group; Aug. 25, 2005 (44 pages). |
IEEE "Signaling Methodologies to Support Closed-Loop Transmit Processing in TDD-OFDMA"{IEEE C802.16e-04/103r2; Jul. 7, 2004 (35 pages). |
IEEE Computer Society et al. "IEEE Standard for Local and Metropolitan Area Networks: Part 16: Air Interface for Fixed Broadband wireless Access Systems 802.16" Oct. 2004. |
Intent to Grant for European Patent Application No. 16002537, dated Oct. 30, 2018. |
Intent to Grant or European Application No. 19164548.0, dated Nov. 4, 2019. |
Intention to Grant for European Patent Application No. 06847353.7, dated Jun. 9, 2016. |
International Preliminary Report on Patentability for corresponding International Patent Application No. PCT/KR2006/003697, dated May 6, 2008. |
International Search Report for corresponding International Patent Application No. PCT/KR2006/003697, dated Dec. 20, 2006. |
Joint RAN2-RAN3 #48bis LTE "EUTRAN Handover Procedure for LTE_ACTIVE" Cannes, France; TSGR3(05)1106; Oct. 11-14, 2005 (3 pages). |
LG Electronics "Functions of E-RRC and E-MAC" TSG-RAN Working Group 2 #48bis, R2-052768, Cannes, France, Oct. 10-14, 2005. |
Natarajan, Balasubramaniarn et al, "High-Performance MC-CDMA Via Carrier Interferometry Codes" IEEE Transactions on Vehicular Technology, vol. 60, No. 6, Nov. 2001; 10 pages. |
Nokia "Intra-Radio Access Mobility, Handover in LTE_ACTIVE" 3GPP TSG-RAN WG2#50, R2-060053; Sophia Antipolis, France, Jan. 8-13, 2006. |
Nokia, NTT DoCoMo "E-UTRA Transport Channels" 3GPP TSG-RAN WG2 Meeting #48bis; R2-052438, Cannes, France; Oct. 10-14, 2005. |
Nokia, NTT DoCoMo "Intra-LTE Handover Operation" 3GPP TSG-RAN WG2 Meeting #53, R2-061135, Shanghai, PRC, May 8-13, 2006. |
Non-Final Office Action for U.S. Appl. No. 14/326,637 dated Aug. 25, 2016. |
Non-Final Office Action for U.S. Appl. No. 14/326,637 dated May 12, 2017. |
Non-Final Office Action for U.S. Appl. No. 14/676,490 dated Sep. 21, 2016. |
Non-Final Office Action for U.S. Appl. No. 14/723,093 dated Aug. 25, 2016. |
Notice of Acceptance for Australian Patent Application No. 2006323560, dated Aug. 28, 2009. |
Notice of Allowance (Including Translation) for Japanese Patent Application No. 2008-533234, dated Jan. 13, 2011. |
Notice of Allowance (Including Translation) for Mexican Patent Application No. MX/a/2008/004924, dated Jul. 1, 2010. |
Notice of Allowance (including translation) for Russian Patent Application No. 2008113180, dated Jun. 4, 2010. |
Notice of Allowance (including translation) for Taiwan Patent Application No, 95138124, dated Sep. 23, 2011. |
Notice of Allowance for U.S. Appl. No. 11/553,939, dated May 28, 2010. |
Notice of Allowance for U.S. Appl. No. 12/870,747 dated Apr. 12, 2012. |
Notice of Allowance for U.S. Appl. No. 13/487,081 dated Jan. 4, 2013. |
Notice of Allowance for U.S. Appl. No. 14/326,637 dated Sep. 26, 2017. |
Notice of Allowance for U.S. Appl. No. 14/676,490 dated Aug. 21, 2017. |
Notice of Allowance for U.S. Appl. No. 14/723,093 dated Sep. 26, 2017. |
Notice of Decision of Granting Patent Right for Invention (including translation) for Chinese Patent Application No. 200680040518.1, dated Oct. 28, 2011. |
Notice of Filing Date Accorded to Petition and Time for Filing Patent Owner Preliminary Response for Apple Inc. v. Evolved Wireless, LLC, United States Patent and Trademark Office—Before the Patent Trial and Appeal Board, Case No. IPR 2016-01185, filed Jun. 28, 2016 (5 pages). |
Notice of Filing Date Accorded to Petition and Time for Filing Patent Owner Preliminary Response for Samsung Electronics Co., Ltd. et al., v. Evolved Wireless, LLC, United States Patent and Trademark Office—Before the Patent Trial and Appeal Board, Case No. IPR 2016-01347, filed Jul. 13, 2016 (5 pages). |
Notice of Refund for Apple Inc. v. Evolved Wireless, LLC, United States Patent and Trademark Office—Before the Patent Trial and Appeal Board, Case No. IPR 2016-01185, filed May 1, 2017 (2 pages). |
Notification of First Office Action (including translation) for Chinese Patent Application No. 200680040518.1, dated Mar. 3, 2011. |
Notification of Reason for Final Refusal (Including Translation) for Korean Application No. 10-2006-0063135, dated May 18, 2010. |
Notification of Reason for Refusal (Including Translation) for Korean Application No. 10-2006-0063135, dated Nov. 20, 2009. |
Notification of Second Office Action (including translation) for Chinese Patent Application No. 200680040518.1, dated May 5, 2011. |
NTT DoCoMo "Physical Channel Structures for Evolved UTRA" 3GPP TSG RAN WG1 Meeting #41; R1-050464; Athens, Greece, May 9-13, 2005. |
NTT DoCoMo, NEC, Sharp Physical Channels and Multiplexing in Evolved UTRA Downlink: 3GPP TSG RAN WG1 #42 on LTE; R1-050707 (Original R1-050590); London, UK, Aug. 29-Sep. 2, 2005. |
Nuaymi, Loutfi "WiMAX: Technology for Broadband Wireless Access" John Wiley & Sons, Ltd., 2007 (286 pages). |
Office Action for European Patent Application No. 06847353.7, dated Apr. 13, 2015. |
Office Action for European Patent Application No. 06847353.7, dated Feb. 26, 2016. |
Office Action for European Patent Application No. 16002537, dated Apr. 10, 2017. |
Office Action for European Patent Application No. 16002537, dated Jan. 24, 2018. |
Office Action for European Patent Application No. 17020418.4, dated Oct. 8, 2018. |
Office Action for European Patent Application No. 17020418.4, dated Oct. 8, 2019. |
Office Action for U.S. Appl. No. 15/824,609, dated Apr. 27, 2020. |
Official Action (Including Translation) for Japanese Patent Application No. 2008-533234, dated Dec. 13, 2010. |
Official Action (Including Translation) for Japanese Patent Application No. 2008-533234, dated Oct. 7, 2010. |
Official Action (Including Translation) for Mexican Patent Application No. MX/a/2008/004924, dated May 21, 2010. |
Official Action (including translation) for Russian Patent Application No. 2008113180, dated Dec. 1, 2009. |
Official Action for Indian Patent Application No. 1324/KOLNP/2008, dated Apr. 23, 2014. |
Official Action for U.S. Appl. No. 11/553,939, dated Dec. 28, 2009. |
Official Action for U.S. Appl. No. 11/553,939, dated Jun. 15, 2009. |
Official Action for U.S. Appl. No. 11/553,939, dated Mar. 5, 2009. |
Official Action for U.S. Appl. No. 12/870,747 dated Apr. 19, 2011. |
Official Action for U.S. Appl. No. 12/870,747 dated Jan. 25, 2011. |
Official Action for U.S. Appl. No. 12/870,747 dated Nov. 10, 2011. |
Official Action for U.S. Appl. No. 13/487,081 dated Aug. 28, 2012. |
Official Letter and Search Report (including translation) for Taiwan Patent Application No. 95138124, dated Feb. 1, 2011. |
Official Letter for Taiwan Patent Application No. 95138124, dated Jan. 28, 2011. |
Onoe, Seizo et al. "Control Channel Structure for TDMA Mobile Radio Systems" NTT Radio Communication Systems Laboratories; 40th IEEE Vehicular Technology Conference, May 6-9, 1990, Orlando (US), pp. 270-275. |
Patent Owner's Mandatory Disclosures for Apple Inc. v. Evolved Wireless, LLC, United States Patent and Trademark Office—Before the Patent Trial and Appeal Board, Case No. IPR 2016-01185, filed Jul. 11, 2016 (9 pages). |
Patent Owner's Mandatory Disclosures for Samsung Electronics Co., Ltd. et al., v. Evolved Wireless, LLC, United States Patent and Trademark Office—Before the Patent Trial and Appeal Board, Case No. IPR 2016-01347, submitted Aug. 4, 2016 (9 pages). |
Patent Owner's Preliminary Response for Apple Inc. v. Evolved Wireless, LLC, United States Patent and Trademark Office—Before the Patent Trial and Appeal Board, Case No. IPR 2016-01185, filed Sep. 28, 2016 (149 pages). |
Patent Owner's Preliminary Response for Samsung Electronics Co., Ltd. et al., v. Evolved Wireless, LLC, United States Patent and Trademark Office—Before the Patent Trial and Appeal Board, Case No. IPR 2016-01347, submitted Oct. 13, 2016 (156 pages). |
Petition for Inter Partes Review of U.S. Pat. No. 7,809,373, including Exhibits 1001-1019, Case No. IPR2016-01185, filed Jun. 20, 2016 (3,522 pages). |
Petition for Inter Partes Review of U.S. Pat. No. 7,809,373, including Exhibits 1001-1019, Case No. IPR2016-01347, filed Jul. 5, 2016 (3,520 pages). |
Petitioner's Request for Refund of Post-Institution Fees for Apple Inc. v. Evolved Wireless, LLC, United States Patent and Trademark Office—Before the Patent Trial and Appeal Board, Case No. IPR 2016-01185, filed Apr. 21, 2017 (3 pages). |
Petitioner's Request for Rehearing Pursuant to 37 C.F.R. 42.71 for Apple Inc. v. Evolved Wireless, LLC, United States Patent and Trademark Office—Before the Patent Trial and Appeal Board, Case No. IPR 2016-01185, filed Jan. 18, 2017 (17 pages). |
Petitioner's Request for Rehearing Pursuant to 37 C.F.R. 42.71 for Samsung Electronics Co., Ltd. et al., v. Evolved Wireless, LLC, United States Patent and Trademark Office—Before the Patent Trial and Appeal Board, Case No. IPR 2016-01347, submitted Jan. 18, 2017 (17 pages). |
Petitioner's Updated Mandatory Notice Under 37 C.F.R. § 42.8(b)(3) for Samsung Electronics Co., Ltd. et al., v. Evolved Wireless, LLC, United States Patent and Trademark Office—Before the Patent Trial and Appeal Board, Case No. IPR 2016-01347, submitted Apr. 7, 2017 (4 pages). |
Popovic, Branislav M. "Generalized Chirp-Like Polyphase Sequences with Optimum Correlation Properties" IEEE Transactions on Information Theory, vol. 38, No. 4. Jul. 1992 (4 pages). |
Rejection Decision (including translation) for Chinese Patent Application No. 200680040518.1, dated Jul. 28, 2011. |
Sesia, Stefania "LTE: The UMTS Long Term Evolution: From Theory to Practice" Second Edition; Wiley; 2011 (794 pages). |
Supplemental Notice of Allowance for U.S. Appl. No. 12/870,747 dated Jun. 4, 2012. |
Tsai, Shang Ho et al. "MAI-Free MC-CDMA Systems Based on Hadamard-Walsh Codes" IEEE Transactions on Signal Processing, vol. 54, No. 8, Aug. 2006 (14 pages). |
TSG-RAN Meeting # 43 "RAN2 REL-8 CRs for LTE to TS 36.300" Biarritz, France; RP-090123; Mar. 3-6, 2009 (1 page). |
TSG-RAN Meeting #41 "REL-8 CRs for LTE to TS 36.321 MAC" Kobe, Japan; RP-080690; Sep. 9-12, 2008; (3 pages). |
TSG-RAN WG1 #42bis "Multiplexing Method of Shared Control Channel in Uplink Single-Carrier FDMA Radio Access" NTT DoCoMo, Fujitsu, Mitsubishi Electric Corporation, NEC, Panasonic, Sharp, Toshiba Corporation, R1-051143 (Original R1-050591), San Diego, USA, Oct. 10-14, 2005. |
TSG-RAN WG1 #43 E-UTRA Random Access: Seoul, Korea; Nov. 7-11, 2005; R1-051445; 4 pages. |
TSG-RAN WG1 #46 "E-UTRA Scalability of Random Access Preamble with Cyclic Prefix" Tallinn, Estonia; R1-062274; Aug. 28-Sep. 1, 2006 (8 pages). |
TSG-RAN WG1 Meeting #44 "RACH Preamble Evaluation in E-UTRA Uplink" Denver, USA; R1-060700; Feb. 13-17, 2006 (5 pages). |
TSG-RAN WG1 Meeting #44bis "Random Access Burst Evaluation in E-UTRA Uplink" Athens, Greece; R1-060792I Mar. 27-31, 2006 (8 pages). |
TSG-RAN WG1 Meeting #45 "Random Access Design for E-UTRA Uplink" Shanghai, China; R1-061114; Marked-Up; May 8-12, 2006 (6 pages). |
TSG-RAN WG1 Meeting #45 "Random Access Design for E-UTRA Uplink" Shanghai, China; R1-061114; May 8-12, 2006 (5 pages). |
TSG-RAN Working Group 1 Meeting #6 "Proposal for RACH Preambles" Espoo, Finland; Jul. 13-16, 1999; 3GPP/TSGR1#6(99)893; 26 pages. |
TSG-RAN Working Group 1 Meeting #63bis "Report of 3GPP TSG RAN WG2 Meeting #63" Prague, Czech Republic; Oct. 18-22, 2008; R2-085971; 156 pages. |
TSG-RAN Working Group 2 Adhoc on LTE "Random Access Procedures" Cannes, France; R2-061881; Jun. 27-30, 2006; 4 pages. |
U.S. Appl. No. 11/553,939, filed Oct. 27, 2006 U.S. Pat. No. 7,809,373. |
U.S. Appl. No. 12/870,747, filed Aug. 27, 2010 U.S. Pat. No. 8,219,097. |
U.S. Appl. No. 13/487,081, filed Jun. 1, 2012 U.S. Pat. No. 8,412,201. |
U.S. Appl. No. 14/326,637, filed Jul. 9, 2014 U.S. Pat. No. Re. 46,679. |
U.S. Appl. No. 14/676,490, filed Apr. 1, 2015 U.S. Pat. No. Re. 46,602. |
U.S. Appl. No. 14/723,093, filed May 27, 2015 U.S. Pat. No. Re. 46,714. |
U.S. Appl. No. 15/824,609, filed Nov. 28, 2017, Park et al. |
U.S. Appl. No. 15/824,609, filed Nov. 28, 2017. |
U.S. Appl. No. 60/599,916, filed Aug. 10, 2004, Olfat et al. |
U.S. Appl. No. 60/666,494, filed Mar. 30, 2005, Classon et al. |
U.S. Appl. No. 60/732,080, filed Oct. 31, 2005, Lee et al. |
U.S. Appl. No. 60/759,697, filed Jan. 17, 2006, Tan et al. |
U.S. Appl. No. 60/815,023, filed Jun. 20, 2006, Chandra et al. |
U.S. Appl. No. 60/815,246, filed Jun. 19, 2006, Zhang et al. |
U.S. Appl. No. 61/015,159, filed Dec. 19, 2007, Kitazoe et al. |
U.S. Appl. No. 61/087,307, filed Aug. 8, 2008, Meylan et al. |
U.S. Appl. No. 61/087,988, filed Aug. 11, 2008, Yi et al. |
U.S. Appl. No. 61/088,257, filed Aug. 12, 2008, Meylan et al. |
Written Opinion for corresponding International Patent Application No. PCT/KR2006/003697, dated Dec. 20, 2006. |
Wu, Yik-Chung et al. "Maximum-Likelihood Symbol Synchronization for IEEE 802.11a WLANs in Unknown Frequency-Selective Fading Channels" IEEE Transactions on Wireless Communications, vol. 4, No. 6, Nov. 2005 (13 pages). |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE48326E1 (en) | 2020-11-24 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
AU2006323560B2 (en) | 2009-09-10 | Method of transmitting and receiving radio access information in a wireless mobile communications system |
US8305970B2 (en) | 2012-11-06 | Method of transmitting a measurement report in a wireless mobile communications system |
DK1943754T3 (en) | 2017-03-06 | PROCEDURE FOR TRANSMITTING AND RECEIVING RADIO ACCESS INFORMATION IN A WIRELESS MOBILE COMMUNICATION SYSTEM |
US8570956B2 (en) | 2013-10-29 | Method of communicating data in a wireless mobile communications system using message separation and mobile terminal for use with the same |
US8442017B2 (en) | 2013-05-14 | Method for transmitting random access channel message and response message, and mobile communication terminal |
US8228851B2 (en) | 2012-07-24 | Method for handling random access response reception and an E-UTRAN and user equipment thereof |
US20100227617A1 (en) | 2010-09-09 | Method for performing handover |
US20100020712A1 (en) | 2010-01-28 | Method for reporting channel quality through uplink common channel in wireless communication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
2017-11-06 | FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
2021-06-29 | IPR | Aia trial proceeding filed before the patent and appeal board: inter partes review |
Free format text: TRIAL NO: IPR2021-00950 Opponent name: SAMSUNG ELECTRONICS CO., LTD. AND SAMSUNG ELECTRONICS AMERICA, INC. Effective date: 20210516 |
2021-10-19 | IPR | Aia trial proceeding filed before the patent and appeal board: inter partes review |
Free format text: TRIAL NO: IPR2021-01424 Opponent name: MOTOROLA MOBILITY LLC Effective date: 20210913 |
2022-07-19 | RR | Request for reexamination filed |
Effective date: 20220525 |
2022-10-18 | RR | Request for reexamination filed |
Effective date: 20220815 |
2024-10-02 | MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |