patents.google.com

WO2011145592A1 - Antibacterial glass and method for producing same - Google Patents

  • ️Thu Nov 24 2011

WO2011145592A1 - Antibacterial glass and method for producing same - Google Patents

Antibacterial glass and method for producing same Download PDF

Info

Publication number
WO2011145592A1
WO2011145592A1 PCT/JP2011/061262 JP2011061262W WO2011145592A1 WO 2011145592 A1 WO2011145592 A1 WO 2011145592A1 JP 2011061262 W JP2011061262 W JP 2011061262W WO 2011145592 A1 WO2011145592 A1 WO 2011145592A1 Authority
WO
WIPO (PCT)
Prior art keywords
glass
antibacterial
ray intensity
substance
antibacterial substance
Prior art date
2010-05-17
Application number
PCT/JP2011/061262
Other languages
French (fr)
Japanese (ja)
Inventor
達也 都築
直樹 三田村
正 村本
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
2010-05-17
Filing date
2011-05-17
Publication date
2011-11-24
2011-05-17 Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
2011-11-24 Publication of WO2011145592A1 publication Critical patent/WO2011145592A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/005Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to introduce in the glass such metals or metallic ions as Ag, Cu
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • C03C2204/02Antibacterial glass, glaze or enamel

Definitions

  • the present invention relates to an antibacterial glass having strength and antibacterial properties and having good transparency and color tone and a method for producing the same, and particularly to an antibacterial glass suitable for a cover glass such as a touch panel and a method for producing the same. is there.
  • a glass containing sodium ions as an alkali component is brought into contact with a molten salt containing potassium ions, and ion exchange is performed between sodium ions in the glass and potassium ions in the molten salt, and the ion radius thereof.
  • This is a method for improving the strength by generating a reinforcing layer (compressive stress layer) on the surface layer due to the difference in the above.
  • this tempered glass also has a problem in durability, and after forming a compression layer on the glass plate surface by ion exchange between sodium ions in the glass and potassium ions in the molten salt, Contact with an aqueous lithium salt solution has been proposed (see, for example, Patent Document 1).
  • touch panels have become widespread due to their convenience, and their use opportunities have increased remarkably in medical facilities and daily life.
  • this touch panel is used by an unspecified number of people, and the panel is directly operated with hands and fingers.
  • the bacteria propagate on the panel, or Next, there is a possibility that the user of the panel may be infected with bacteria through the panel, and there is a demand for an antibacterial surface on the touch panel surface.
  • Antibacterial agents include organic synthetic antibacterial agents such as imidar derivatives, natural antibacterial agents such as wasabi, metal antibacterial agents such as silver and copper, and oxide antibacterial agents such as titanium oxide. Are known. Most of daily necessities for daily use use metallic antibacterial agents, especially silver.
  • Silver, copper, zinc, and their metal ions are known to have antibacterial activity, and products containing these metals and metal ions, especially silver and silver ions, have a proven record in the history of the global environment. It is said to be gentle and safe.
  • the first method is a method in which silver is mixed with a glass raw material and melt-molded. Since antibacterial properties are manifested by the silver present on the glass surface, the silver inside the glass has no effect on the antibacterial properties, and as a result, the glass needs to contain a relatively large amount of silver. This is uneconomical (see, for example, Patent Document 2).
  • the second method is a method in which a coating layer containing silver is applied to the glass article surface.
  • This method can reduce the amount of silver used relative to the first method and is more economical than the first method. However, it is consumed or peeled off due to wear of the coating layer, and the like. There is a problem that the surface property of the article is remarkably changed by the formation of the coating layer (see, for example, Patent Document 3).
  • the third method is a method of diffusing silver from the surface of the glass article to the inside of the surface layer portion by applying a liquid containing silver on the surface of the glass article and performing a heat treatment.
  • This is a method in which the problems of the first and second methods are improved, but the process is complicated, and there are problems in cost, productivity, and the like (for example, see Patent Document 4).
  • the fourth method is a method of immersing in a solution or molten salt containing silver and diffusing silver from the surface of the glass article into the surface layer portion by ion exchange or the like.
  • This method improves the problems of the first to third methods and is excellent in cost and productivity.
  • a bactericidal glass in which glass is immersed in an aqueous silver nitrate solution and subjected to heat treatment to replace sodium ions contained in the glass with silver ions exhibiting a bactericidal action has been proposed (see Patent Document 5).
  • the glass is immersed in a molten salt containing silver, the sodium ions contained in the glass are replaced with silver ions that exhibit antibacterial action, and further reduced and stabilized to support the metallic silver on the glass. Glass has been proposed (see Patent Document 6).
  • JP-A-7-223845 Japanese Patent Application Laid-Open No. 6-100369 JP-A-8-27404 JP 11-319042 A JP-A-4-338138 JP-A-11-228186
  • JP-A-7-223845 discloses a glass in which sodium ions contained in glass are replaced with potassium ions. Although this glass is excellent in strength as glass used for a touch panel, it has no antibacterial properties.
  • the glasses described in JP-A-6-1000032, JP-A-8-27404, and JP-A-4-338138 have excellent antibacterial properties due to silver ions, but have a problem in strength.
  • JP-A-11-319042 a liquid containing silver is applied to a glass subjected to physical strengthening (air cooling strengthening) processing to impart strength and antibacterial properties.
  • air cooling strengthening physical strengthening
  • the object of the present invention is to have the strength and antibacterial property by clearly defining the concentration of the antibacterial material in the surface layer against the antibacterial property, and can carry the antibacterial material almost in an ionic state, and has transparency.
  • Another object is to provide an antibacterial glass suitable for a cover glass such as a touch panel such as an antibacterial glass having a good color tone and a manufacturing method thereof.
  • the glass surface in contact with the molten tin of the soda lime glass is 0.0050 or less, and a strengthened salt of a mixed molten salt containing potassium and an antibacterial substance Production of antibacterial glass characterized in that the antibacterial glass having a visible light transmittance of 80% or more at a thickness of 4 mm is obtained by immersing it in a bath and supporting an antibacterial substance on the glass simultaneously with chemical strengthening.
  • a method (first method) is provided.
  • the ratio (K / Na) of K X-ray intensity and Na X-ray intensity (K / Na) measured by X-ray fluorescence analysis is 100 or more, and X-ray of an antibacterial substance
  • the method for producing antibacterial glass may be characterized in that the ratio of the strength and the X-ray intensity of K (antibacterial substance / K) is 0.0005 or more.
  • the strengthened salt bath of the mixed molten salt that is immersed to carry the chemical strengthening and antibacterial substance contains 0.0001 to 0.5 wt% of the compound of the antibacterial substance relative to the compound of potassium. It may be a manufacturing method (third method) of antibacterial glass, characterized in that it is a strengthened salt bath added and mixed in%.
  • the temperature is 350 to 550 ° C. and the time is 15 in the case of immersing in a strengthened salt bath of mixed molten salt to carry chemical strengthening and antibacterial substances. It may be a method for producing antibacterial glass (fourth method) characterized in that it takes ⁇ 150 minutes.
  • Any one of the first to fourth methods is a method for producing antibacterial glass (fifth method), wherein the antibacterial substance is one or more selected from silver, copper and zinc ).
  • Any one of the first to fifth methods may be a method for producing antibacterial glass (sixth method), wherein the obtained antibacterial glass has a three-point bending strength of 150 MPa or more. .
  • an antibacterial glass produced by any one of the first to sixth methods is provided.
  • a touch panel (first panel) characterized by using this antibacterial glass is provided.
  • the first panel may be a touch panel (second panel) in which a film containing an antibacterial substance of the fifth method is further pasted on glass.
  • the antibacterial substance can be supported almost in an ionic state, and the concentration of the antibacterial substance in the surface layer against the antibacterial property is clearly defined, so that it has strength and antibacterial properties, and has transparency and color tone.
  • the present invention is a soda lime glass manufactured by a float method in which molten glass is floated and conveyed on molten tin and formed into a plate shape, and the surface of the glass in contact with the molten tin is subjected to fluorescent X-ray analysis.
  • a glass having a ratio of Sn X-ray intensity to Si X-ray intensity (Sn / Si) of 0.0050 or less, as measured by is immersed in a reinforced salt bath of mixed molten salt containing potassium and an antibacterial substance.
  • an antibacterial glass having an antibacterial substance supported on glass simultaneously with chemical strengthening and having a visible light transmittance of 80% or more, and a method for producing the same.
  • the glass used in the present invention is a soda lime glass manufactured by a float method in which a molten glass is floated and conveyed on molten tin and formed into a plate shape.
  • the ratio (Sn / Si) of the X-ray intensity of Sn and the X-ray intensity of Si measured by the line analysis method is 0.0050 or less.
  • the ratio (Sn / Si) of Sn X-ray intensity and Sn X-ray intensity on the glass surface in contact with molten tin measured by X-ray fluorescence analysis was set to 0.0050 or less. If it exceeds 0.0050, the colloid color development becomes strong, the color tone changes, or the transmittance is remarkably lowered, which is not desirable.
  • the ratio (Sn / Si) of Sn X-ray intensity to Si X-ray intensity on the glass surface in contact with molten tin is 0.0050 or less, preferably 0.0030 or less, more preferably 0.0015 or less.
  • the visible light transmittance In the glass after immersion in the reinforced salt bath of the mixed molten salt, the visible light transmittance is 80% or more. If the visible light transmittance is less than 80%, it is insufficient for the transmittance necessary for a cover glass such as a touch panel, and this is not desirable because it causes a decrease in luminance of the panel. Therefore, the visible light transmittance is 80% or more, preferably 85% or more, more preferably 90% or more.
  • the color tone change with visible light transmittance is as small as possible
  • CIE L * a * b * color coordinate a * change ⁇ a * (enhancement) A * after immersion in salt bath a * ) before immersion in reinforced salt bath is 15.0 or less
  • change in chromaticity coordinate b * ⁇ b * (b * after immersion in reinforced salt bath) b * ) is preferably 15.0 or less. If it exceeds 15.0, it means that the color development due to colloidalization of the antibacterial substance is strong, and it is not desirable for lowering the quality of the panel or the like.
  • the chromaticity changes ⁇ a * and ⁇ b * are both 15.0 or less, preferably 10.0 or less, and more preferably 5.0 or less.
  • the ratio (K / Na) of K X-ray intensity and Na X-ray intensity measured by fluorescent X-ray analysis is 100 or more, and the X-ray intensity and K of the antibacterial substance are The X-ray intensity ratio (antibacterial substance / K) is 0.0005 or more.
  • the ratio of the X-ray intensity of K to the X-ray intensity of Na (K / Na) is 100 or more, preferably 125 or more, more preferably 150 or more.
  • the ratio of the X-ray intensity of the antibacterial substance to the X-ray intensity of K (antibacterial substance / K) is less than 0.0005, the amount of the antibacterial substance on the glass surface is insufficient and the desired antibacterial property is obtained. Not desirable. Therefore, the ratio of the X-ray intensity of the antibacterial substance to the X-ray intensity of K (antibacterial substance / K) is 0.0005 or more, preferably 0.0008 or more, more preferably 0.0010 or more.
  • the three-point bending strength is 150 MPa or more. If it is less than 150 MPa, the strength required for a cover glass such as a touch panel is insufficient, and this is not desirable because it causes breakage of the glass when the touch panel is operated. Therefore, the three-point bending strength is 150 MPa or more, preferably 200 MPa or more, more preferably 250 MPa or more.
  • the immersion strengthening salt bath supporting chemical strengthening and antibacterial substance is a mixture of 0.0001 to 0.5% by weight of an antibacterial substance compound to a potassium compound. is there. If it is less than 0.0001% by weight, the antibacterial property is insufficient, and if it is 0.5% by weight or more, colloid color development tends to occur after immersion, which is undesirable. Accordingly, the antibacterial substance compound is 0.0001 to 0.5% by weight, preferably 0.0001 to 0.1% by weight, more preferably 0.0001 to 0.05% by weight, based on the potassium compound. .
  • examples of the potassium compound include potassium nitrate, potassium chloride, potassium sulfate, potassium hydroxide, and the like. Of these, potassium nitrate is most preferable.
  • other alkali (lithium, sodium, rubidium, cesium) compounds may be added in an amount of 10% by weight or less as long as chemical strengthening by ion exchange is not inhibited.
  • the antibacterial substance is one or more selected from, for example, silver, copper, and zinc, and silver is particularly preferable.
  • the antibacterial compound added to and mixed with the potassium compound include silver nitrate, silver chloride, copper nitrate, copper chloride, copper sulfate, zinc nitrate, zinc chloride, and zinc sulfate. Is preferred.
  • the conditions for immersing the mixed molten salt in the reinforced salt bath are a temperature of 350 to 550 ° C. and an immersion time of 15 to 150 minutes. If the immersion temperature is less than 350 ° C., the ion exchange with potassium ions is insufficient and the strength is not improved so much. Not desirable. Accordingly, the immersion temperature is 350 to 550 ° C., preferably 350 to 500 ° C., more preferably 400 to 500 ° C.
  • the immersion time is 15 to 150 minutes, preferably 30 to 100 minutes, more preferably 50 to 100 minutes.
  • strengthening to facilitate ion exchange between sodium ions in glass and potassium ions or antibacterial substances in mixed nitrate strengthening solution bath or to prevent thermal cracking in strengthening solution bath It is desirable to preheat the glass with an electric furnace or the like before immersing in the salt bath, and further slowly cool with a slow cooling furnace or the like in order to prevent thermal cracking or the like due to rapid cooling during removal after immersion in the tempered salt bath.
  • the thickness of the glass is preferably 0.3 to 3.5 mm, and if it is less than 0.3 mm, there is a problem in the strength as the cover glass, while the other 3.5 mm If it exceeds, it cannot be used for the touch panel due to its thickness.
  • the antibacterial substance can be supported in an ionic state, and the concentration of the antibacterial substance in the surface layer against the antibacterial property is clearly defined to have strength and antibacterial properties,
  • Antibacterial glass having a good color tone, in particular, antibacterial glass suitable for a cover glass such as a touch panel can be obtained.
  • the plate glass is composed of 71.5% by mass of SiO 2 , 2.0% by mass of Al 2 O 3 , 3.5% by mass of MgO, 8.5% by mass of CaO, 13.0% by mass of Na 2 O, K 2 Soda lime glass containing 1.5% by mass of O, having a thickness of 1.0 mm and a size of 50 mm ⁇ 50 mm was used. Before immersion in the tempered salt bath, the Si concentration and the Sn concentration on the surface of the glass in contact with the molten tin were examined.
  • This glass was immersed in a mixed nitrate strengthened salt bath in which a predetermined amount of silver nitrate was added to potassium nitrate, as shown in Table 1 or Table 2, after being immersed for a predetermined time at a predetermined temperature, taken out, washed with running water, and dried at room temperature. I let you. For dried glass, surface Na concentration, K concentration and Ag concentration, visible light transmittance, color tone change ⁇ b * (b * after immersion in reinforced salt bath-b * before immersion in reinforced salt bath), three-point bending strength, Each antibacterial activity value was examined.
  • the surface concentration of each component is 50 kV-60 mA using a fluorescent X-ray analyzer ZSX-Primux II (manufactured by RIGAKU), Si (measurement line KA, target Rh, slit S4), Sn (measurement line LA, target Rh, slit S4) , Na (measuring line KA, target Rh, slit S4), K (measuring line KA, target Rh, slit S4) and Ag (measuring line LA, target Rh, slit S2) are measured for each X-ray intensity, The X-ray intensity ratio (Sn / Si, K / Na, Ag / K) was determined.
  • Visible light transmittance and color tone change [Delta] b * (after immersion b * - before immersion b *) was measured according to JIS R 3106 and JIS Z 8729 using a self-recording spectrophotometer U4000 (manufactured by Hitachi, Ltd.) .
  • the three-point bending strength was measured at a load speed of 0.008 mm / s according to JIS R 1601 using a thermal shock tester (manufactured by Shinto V ceramics).
  • the antibacterial activity value was evaluated in accordance with JIS Z-2801 using E. coli.
  • the glass of the present invention is very excellent in transparency and excellent in strength and antibacterial properties. That is, in the case of Comparative Example 1 that is not immersed in a nitrate-strengthened salt bath, the visible light transmittance is high, but the three-point bending strength is less than 100 MPa, and of course, there is no antibacterial property.
  • Comparative Example 2 immersed in a mixed strengthening salt bath of potassium nitrate and a very small amount of silver nitrate, the visible light transmittance and the three-point bending strength are excellent, but the antibacterial property is hardly exhibited because the Ag concentration on the surface is low. Absent.
  • the glass of the present invention can carry almost silver in an ionic state, the visible light transmittance is 80% or more, and the chromaticity changes ⁇ a * and ⁇ b * are as small as 15 or less, further excellent. In addition, it has an excellent antibacterial activity value.
  • Example 1 has almost the same transmittance and strength as those immersed in a strengthened salt bath containing only a molten salt of potassium nitrate, and also has extremely excellent antibacterial properties.
  • the present invention can be applied in a wide range of fields such as devices that are used by an unspecified number of humans such as touch panels, as well as substrates that are naturally contaminated by organic substances.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

In a soda-lime glass produced by the floating method whereby molten glass is shaped into a plate while floating and conveying the molten glass over a molten tin bath, the glass surface of the soda-lime glass being in contact with the molten tin shows a ratio (Sn/Si) of Sn X-ray intensity to Si X-ray intensity of 0.0050 or smaller, said X-ray intensities being measured by fluorescent X-ray spectroscopy, and the glass is immersed in a strengthening salt bath of mixed molten salts containing potassium and an antibacterial substance, thereby chemically strengthening the glass and, at the same time, loading the antibacterial substance on the glass. Thus, an antibacterial glass having a visible light transmittance of 80% or greater at a thickness of 4 mm can be obtained.

Description

抗菌性ガラスとその製造方法Antibacterial glass and manufacturing method thereof

 本発明は、強度と抗菌性を有し、且つ透視性及び色調が良好な抗菌性ガラス及びその製造方法に関するもので、特にタッチパネルなどのカバーガラスに好適な抗菌性ガラス及びその製造方法に関するものである。 The present invention relates to an antibacterial glass having strength and antibacterial properties and having good transparency and color tone and a method for producing the same, and particularly to an antibacterial glass suitable for a cover glass such as a touch panel and a method for producing the same. is there.

発明の背景Background of the Invention

 タッチパネルなどのカバーガラスには、一般的に化学強化処理したガラスが使用されている。化学強化処理は、アルカリ成分としてナトリウムイオンを含有するガラスを、カリウムイオンを含有する溶融塩に接触させ、ガラス中のナトリウムイオンと溶融塩中のカリウムイオンとの間でイオン交換させ、そのイオン半径の差により表面層に強化層(圧縮応力層)を生成させることで強度を向上させる方法である。しかし、この強化ガラスでも耐久性に問題があるとされ、ガラス中のナトリウムイオンと溶融塩中のカリウムイオンとの間でのイオン交換によりガラス板表面に圧縮層を形成した後、ガラス板表面をリチウム塩水溶液に接触させることが提案されている(例えば、特許文献1参照)。 For cover glass such as touch panels, generally chemically strengthened glass is used. In the chemical strengthening treatment, a glass containing sodium ions as an alkali component is brought into contact with a molten salt containing potassium ions, and ion exchange is performed between sodium ions in the glass and potassium ions in the molten salt, and the ion radius thereof. This is a method for improving the strength by generating a reinforcing layer (compressive stress layer) on the surface layer due to the difference in the above. However, this tempered glass also has a problem in durability, and after forming a compression layer on the glass plate surface by ion exchange between sodium ions in the glass and potassium ions in the molten salt, Contact with an aqueous lithium salt solution has been proposed (see, for example, Patent Document 1).

 現在、我々が生活している環境中には様々な菌が生息している。菌の存在は、健康な人にとって余り問題とならないものの、病人、子供、高齢者のような抵抗力の低い人にとって問題になる場合がある。特に、医療施設における院内感染や、また感染力の強い菌の存在が問題となっており、この対策として抗菌剤による抗菌作用(殺菌作用や細菌の増殖抑制作用など)が注目されている。 Currently, various fungi live in the environment where we live. Although the presence of fungi is not a problem for healthy people, it can be a problem for people with low resistance, such as sick people, children, and the elderly. In particular, nosocomial infections in medical facilities and the presence of highly infectious bacteria have become a problem, and antibacterial effects (such as bactericidal action and bacterial growth inhibitory action) with antibacterial agents have attracted attention as countermeasures.

 このような状況において、その利便性などからタッチパネルが普及し、医療施設内をはじめ日常生活においてその使用機会が著しく増加している。しかし、このタッチパネルは不特定多数の人が使う上に、パネルを手や指で直接操作するため、例えば菌を保有している人がパネルを使用した場合、パネル上での菌の繁殖、あるいは次にパネルの使用者がパネルを介して菌に感染する恐れがあり、タッチパネル表面に抗菌性を有するものが求められている。 Under such circumstances, touch panels have become widespread due to their convenience, and their use opportunities have increased remarkably in medical facilities and daily life. However, this touch panel is used by an unspecified number of people, and the panel is directly operated with hands and fingers. For example, when a person holding bacteria uses the panel, the bacteria propagate on the panel, or Next, there is a possibility that the user of the panel may be infected with bacteria through the panel, and there is a demand for an antibacterial surface on the touch panel surface.

 抗菌剤を付与させた物品及びその製造方法に関する技術は多数開示されており、例えば衣料品、台所用品、家電製品などあらゆるものが実用化されている。抗菌剤には、イミダール誘導体をはじめとする有機合成抗菌剤、わさびをはじめとする天然抗菌剤、銀や銅をはじめとする金属系抗菌剤、及び酸化チタンをはじめとする酸化物系抗菌剤が知られている。生活関連日用品では大部分で金属系抗菌剤、特に銀が使用されている。 Many technologies related to articles and methods for producing the articles provided with antibacterial agents have been disclosed. For example, clothing, kitchen utensils, and home appliances have been put into practical use. Antibacterial agents include organic synthetic antibacterial agents such as imidar derivatives, natural antibacterial agents such as wasabi, metal antibacterial agents such as silver and copper, and oxide antibacterial agents such as titanium oxide. Are known. Most of daily necessities for daily use use metallic antibacterial agents, especially silver.

 銀、銅、亜鉛、及びこれらの金属イオンは抗菌作用を持つことが知られており、これらの金属や金属イオンを含む商品、特に銀や銀イオンは歴史的にも実績があり、かつ地球環境に優しく、安全性が高いと言われている。一般に、抗菌剤である銀をガラス物品に担持させる方法には大別すると4種類ある。第一の方法は、銀をガラス原料に混合させて溶融成形させる方法である。抗菌性はガラス表面に存在する銀によって発現するのであるから、ガラス内部の銀は抗菌性に何ら効果を及ばさず、その結果として相対的にガラスに銀を多く含有させる必要があるため、非常に不経済である(例えば、特許文献2参照)。 Silver, copper, zinc, and their metal ions are known to have antibacterial activity, and products containing these metals and metal ions, especially silver and silver ions, have a proven record in the history of the global environment. It is said to be gentle and safe. Generally, there are four types of methods for supporting silver as an antibacterial agent on a glass article. The first method is a method in which silver is mixed with a glass raw material and melt-molded. Since antibacterial properties are manifested by the silver present on the glass surface, the silver inside the glass has no effect on the antibacterial properties, and as a result, the glass needs to contain a relatively large amount of silver. This is uneconomical (see, for example, Patent Document 2).

 第二の方法は、銀を含むコーティング層をガラス物品表面に付与させる方法である。この方法は、第一の方法に比較して相対的に使用する銀の量を少なくすることができ、第一の方法よりは経済的であるが、コーティング層の磨耗等による消耗あるいは剥離、及びコーティング層の形成により物品の表面性質を著しく変えてしまうこと等の問題がある(例えば、特許文献3参照)。 The second method is a method in which a coating layer containing silver is applied to the glass article surface. This method can reduce the amount of silver used relative to the first method and is more economical than the first method. However, it is consumed or peeled off due to wear of the coating layer, and the like. There is a problem that the surface property of the article is remarkably changed by the formation of the coating layer (see, for example, Patent Document 3).

 第三の方法は、銀を含む液体をガラス物品の表面に塗布し、加熱処理することにより銀をガラス物品表面から表層部の内部に拡散させる方法である。これは、第一及び第二の方法の問題点を改善した方法であるが、工程が煩雑であり、コスト及び生産性などに問題点がある(例えば、特許文献4参照)。 The third method is a method of diffusing silver from the surface of the glass article to the inside of the surface layer portion by applying a liquid containing silver on the surface of the glass article and performing a heat treatment. This is a method in which the problems of the first and second methods are improved, but the process is complicated, and there are problems in cost, productivity, and the like (for example, see Patent Document 4).

 第四の方法は、銀を含んだ溶液あるいは溶融塩中に浸漬し、イオン交換などにより銀をガラス物品表面から表層部の内部に拡散させる方法である。この方法は、第一~第三の方法の問題点を改善し、かつコストや生産性に優れている方法である。例えば、ガラスを硝酸銀水溶液に浸漬し、熱処理を加え、ガラスに含まれるナトリウムイオンを、殺菌作用を呈する銀イオンと置換した殺菌性ガラスが提案されている(特許文献5参照)。また例えば、銀などを含む溶融塩中にガラスを浸漬し、ガラスに含まれるナトリウムイオンを、抗菌作用を呈する銀イオンなどと置換し、さらに還元・安定化してガラスに金属銀を担持させた抗菌性ガラスがそれぞれ提案されている(特許文献6参照)。 The fourth method is a method of immersing in a solution or molten salt containing silver and diffusing silver from the surface of the glass article into the surface layer portion by ion exchange or the like. This method improves the problems of the first to third methods and is excellent in cost and productivity. For example, a bactericidal glass in which glass is immersed in an aqueous silver nitrate solution and subjected to heat treatment to replace sodium ions contained in the glass with silver ions exhibiting a bactericidal action has been proposed (see Patent Document 5). In addition, for example, the glass is immersed in a molten salt containing silver, the sodium ions contained in the glass are replaced with silver ions that exhibit antibacterial action, and further reduced and stabilized to support the metallic silver on the glass. Glass has been proposed (see Patent Document 6).

特開平7-223845号公報JP-A-7-223845 特開平6-100329号公報Japanese Patent Application Laid-Open No. 6-100369 特開平8-27404号公報JP-A-8-27404 特開平11-319042号公報JP 11-319042 A 特開平4-338138号公報JP-A-4-338138 特開平11-228186号公報JP-A-11-228186

 上記特開平7-223845号公報はガラスに含まれるナトリウムイオンをカリウムイオンで置換したガラスを開示している。このガラスはタッチパネルに使用するガラスとしては強度的に優れているものの、抗菌性が無い。 JP-A-7-223845 discloses a glass in which sodium ions contained in glass are replaced with potassium ions. Although this glass is excellent in strength as glass used for a touch panel, it has no antibacterial properties.

 また上記特開平6-100329号公報、特開平8-27404号公報、特開平4-338138号公報のガラスは銀イオンなどに起因して抗菌性が優れているものの、強度的に問題がある。 In addition, the glasses described in JP-A-6-1000032, JP-A-8-27404, and JP-A-4-338138 have excellent antibacterial properties due to silver ions, but have a problem in strength.

 更に、上記特開平11-319042号公報では強度と抗菌性を付与するために物理強化(風冷強化)加工を施したガラスに銀を含有させた液体を塗布・加熱処理しているが、工程が煩雑な上、銀含有の液体の塗布・加熱処理においてその風冷強化によって形成された圧縮応力層が緩和されるため強度的に問題がある。 Further, in JP-A-11-319042, a liquid containing silver is applied to a glass subjected to physical strengthening (air cooling strengthening) processing to impart strength and antibacterial properties. In addition, there is a problem in strength because the compressive stress layer formed by air-cooling strengthening is relaxed in the application and heat treatment of the silver-containing liquid.

 そして更に、上記特開平11-228186号公報では化学強化時に銀を担持させるため、強度と抗菌性を両立できているように思われるが、抗菌性物質は還元された安定な金属状態で存在させており、また実施例においても可視光線透過率は30%以上となっているため、還元された抗菌性物質の金属コロイドが生成していると考えられる。このような金属コロイドは可視光線透過率を低下させる上に、色調が著しく変化(黄変)するため、タッチパネルのカバーガラスなどの透視性や色調を重視する分野では性能的に不十分であり、可視光線透過率は少なくとも80%以上は必要である。またガラス表面層に抗菌性物質を設けるだけしか明記されておらず、抗菌性に対する表面層の抗菌性物質濃度の具体的な数値も記載されていないため、その抗菌性の効果を十分に証明しているとは言い難い。 Further, in the above Japanese Patent Application Laid-Open No. 11-228186, it seems that both strength and antibacterial properties can be achieved because silver is supported at the time of chemical strengthening. Moreover, since the visible light transmittance is 30% or more in the examples, it is considered that a reduced metal colloid of the antibacterial substance is generated. Such metal colloids reduce visible light transmittance, and the color tone changes significantly (yellowing), so performance is insufficient in fields that emphasize transparency and color tone such as the cover glass of touch panels, The visible light transmittance should be at least 80%. In addition, only the antibacterial substance is provided on the glass surface layer, and the specific value of the antibacterial substance concentration of the surface layer against the antibacterial property is not described. It's hard to say.

 本発明の目的は、抗菌性物質をほとんどイオンの状態のまま担持でき、かつ抗菌性に対する表面層の抗菌性物質の濃度を明確に定義することで、強度と抗菌性を有し、かつ透視性や色調が良好な抗菌性ガラス、特にタッチパネルなどのカバーガラスに好適な抗菌性ガラス及びその製造方法を提供することにある。 The object of the present invention is to have the strength and antibacterial property by clearly defining the concentration of the antibacterial material in the surface layer against the antibacterial property, and can carry the antibacterial material almost in an ionic state, and has transparency. Another object is to provide an antibacterial glass suitable for a cover glass such as a touch panel such as an antibacterial glass having a good color tone and a manufacturing method thereof.

 本発明に依れば、溶融スズの上に溶融ガラスを浮上搬送しながら板状に成形されるフロート法によって製造させたソーダライムガラスに於いて、上記ソーダライムガラスの溶融スズと接触したガラス表面が、蛍光X線分析法によって測定されたSnのX線強度とSiのX線強度の比(Sn/Si)が0.0050以下であり、カリウムと抗菌性物質を含む混合溶融塩の強化塩浴に浸漬することで、化学強化と同時に抗菌性物質をガラスに担持させ、4mmの厚みにおける可視光透過率が80%以上であるような抗菌ガラスを得ることを特徴とする抗菌性ガラスの製造方法(第1方法)が提供される。 According to the present invention, in a soda lime glass manufactured by a float method in which molten glass is floated and conveyed on molten tin and formed into a plate shape, the glass surface in contact with the molten tin of the soda lime glass However, the ratio of Sn X-ray intensity to Si X-ray intensity (Sn / Si) measured by X-ray fluorescence analysis is 0.0050 or less, and a strengthened salt of a mixed molten salt containing potassium and an antibacterial substance Production of antibacterial glass characterized in that the antibacterial glass having a visible light transmittance of 80% or more at a thickness of 4 mm is obtained by immersing it in a bath and supporting an antibacterial substance on the glass simultaneously with chemical strengthening. A method (first method) is provided.

 第1方法は、上記ガラスの表面において、蛍光X線分析法によって測定されたKのX線強度とNaのX線強度の比(K/Na)が100以上で、かつ抗菌性物質のX線強度とKのX線強度の比(抗菌性物質/K)が0.0005以上であることを特徴とする、抗菌性ガラスの製造方法(第2方法)であってもよい。 In the first method, on the surface of the glass, the ratio (K / Na) of K X-ray intensity and Na X-ray intensity (K / Na) measured by X-ray fluorescence analysis is 100 or more, and X-ray of an antibacterial substance The method for producing antibacterial glass (second method) may be characterized in that the ratio of the strength and the X-ray intensity of K (antibacterial substance / K) is 0.0005 or more.

 第1又は第2方法は、化学強化と抗菌性物質を担持させるために浸漬する混合溶融塩の強化塩浴が、カリウムの化合物に対して抗菌性物質の化合物を0.0001~0.5重量%で添加混合した強化塩浴であることを特徴とする、抗菌性ガラスの製造方法(第3方法)であってもよい。 In the first or second method, the strengthened salt bath of the mixed molten salt that is immersed to carry the chemical strengthening and antibacterial substance contains 0.0001 to 0.5 wt% of the compound of the antibacterial substance relative to the compound of potassium. It may be a manufacturing method (third method) of antibacterial glass, characterized in that it is a strengthened salt bath added and mixed in%.

 第1~第3方法のいずれか1つは、化学強化と抗菌性物質を担持させるために混合溶融塩の強化塩浴に浸漬する場合に於いて、温度が350~550℃で、時間が15~150分であることを特徴とする、抗菌性ガラスの製造方法(第4方法)であってもよい。 In any one of the first to third methods, the temperature is 350 to 550 ° C. and the time is 15 in the case of immersing in a strengthened salt bath of mixed molten salt to carry chemical strengthening and antibacterial substances. It may be a method for producing antibacterial glass (fourth method) characterized in that it takes ~ 150 minutes.

 第1~第4方法のいずれか1つは、抗菌性物質が銀、銅、亜鉛の中から選ばれる1種類以上のものであることを特徴とする、抗菌性ガラスの製造方法(第5方法)であってもよい。 Any one of the first to fourth methods is a method for producing antibacterial glass (fifth method), wherein the antibacterial substance is one or more selected from silver, copper and zinc ).

 第1~第5方法のいずれか1つは、得られる抗菌性ガラスの3点曲げ強度が150MPa以上であることを特徴とする、抗菌性ガラスの製造方法(第6方法)であってもよい。 Any one of the first to fifth methods may be a method for producing antibacterial glass (sixth method), wherein the obtained antibacterial glass has a three-point bending strength of 150 MPa or more. .

 また、本発明に依れば、第1~第6方法のいずれか1つにより製造された抗菌性ガラスが提供される。 In addition, according to the present invention, an antibacterial glass produced by any one of the first to sixth methods is provided.

 さらに、本発明に依れば、この抗菌性ガラスを用いることを特徴とするタッチパネル(第1パネル)が提供される。 Furthermore, according to the present invention, a touch panel (first panel) characterized by using this antibacterial glass is provided.

 第1パネルは、第5方法の抗菌性物質を含むフィルムを、ガラスの上にさらに貼付することを特徴とする、タッチパネル(第2パネル)であってもよい。 The first panel may be a touch panel (second panel) in which a film containing an antibacterial substance of the fifth method is further pasted on glass.

本発明により、抗菌性物質をほとんどイオンの状態のまま担持でき、かつ抗菌性に対する表面層の抗菌性物質の濃度を明確に定義することで、強度と抗菌性を有し、かつ透視性や色調が良好な抗菌性ガラス、特にタッチパネルなどのカバーガラスに好適な抗菌性ガラスを得ることができる。 According to the present invention, the antibacterial substance can be supported almost in an ionic state, and the concentration of the antibacterial substance in the surface layer against the antibacterial property is clearly defined, so that it has strength and antibacterial properties, and has transparency and color tone. Can provide an antibacterial glass suitable for a cover glass such as a touch panel.

詳細な説明Detailed description

 本発明は、溶融スズの上に溶融ガラスを浮上搬送しながら板状に成形されるフロート法によって製造させたソーダライムガラスであって、前記溶融スズと接触したガラス表面において、蛍光X線分析法によって測定されたSnのX線強度とSiのX線強度の比(Sn/Si)が0.0050以下のガラスを用いて、カリウムと抗菌性物質を含む混合溶融塩の強化塩浴に浸漬することで化学強化と同時に抗菌性物質をガラスに担持させ、かつ該ガラスの可視光線透過率が80%以上の抗菌性ガラス及びその製造方法である。 The present invention is a soda lime glass manufactured by a float method in which molten glass is floated and conveyed on molten tin and formed into a plate shape, and the surface of the glass in contact with the molten tin is subjected to fluorescent X-ray analysis. Using a glass having a ratio of Sn X-ray intensity to Si X-ray intensity (Sn / Si) of 0.0050 or less, as measured by, is immersed in a reinforced salt bath of mixed molten salt containing potassium and an antibacterial substance. Thus, an antibacterial glass having an antibacterial substance supported on glass simultaneously with chemical strengthening and having a visible light transmittance of 80% or more, and a method for producing the same.

 本発明で用いるガラスは、溶融スズの上に溶融ガラスを浮上搬送しながら板状に成形されるフロート法によって製造させたソーダライムガラスであって、前記溶融スズと接触したガラス表面において、蛍光X線分析法によって測定されたSnのX線強度とSiのX線強度の比(Sn/Si)が0.0050以下である。  The glass used in the present invention is a soda lime glass manufactured by a float method in which a molten glass is floated and conveyed on molten tin and formed into a plate shape. The ratio (Sn / Si) of the X-ray intensity of Sn and the X-ray intensity of Si measured by the line analysis method is 0.0050 or less. *

 フロート法によって製造されたガラスにおいては、通常、溶融スズと接した面ではスズがガラス中へ拡散することが知られており、ガラスへのスズの拡散は溶融スズ中に不純物として存在する酸素によってイオン化されたSn2+とガラス中のNa+とのイオン交換反応によるものである。しかし、Sn2+は強化塩浴浸漬時にNa+とイオン交換反応によって拡散してきた抗菌性物質、例えばAg+やCu+などを還元するため、Ag+はAg0に、Cu+はCu0になり、これが凝集してコロイドとなってコロイド発色を呈して色調変化あるいは透過率低下を起こす。 In the glass produced by the float process, it is generally known that tin diffuses into the glass on the surface in contact with the molten tin, and the diffusion of tin into the glass is caused by oxygen present as an impurity in the molten tin. This is due to an ion exchange reaction between ionized Sn 2+ and Na + in the glass. However, Sn 2+ reduces antibacterial substances that have diffused due to ion exchange reaction with Na + during immersion in a reinforced salt bath, such as Ag + and Cu +, so Ag + becomes Ag 0 and Cu + becomes Cu 0 . This agglomerates to form a colloid, producing a colloid color and causing a change in color tone or a decrease in transmittance.

 ガラスの品質などを考慮した場合、溶融スズと接触したガラス表面におけるスズが少ない方が望ましく、スズが少ないと拡散してきた抗菌性物質がイオンの状態のままで存在できるため、コロイド発色が抑制されて色調変化あるいは透過率低下が起こらずに透明なガラスを得ることが可能となる。従って、蛍光X線分析法によって測定された溶融スズと接触したガラス表面のSnのX線強度とSiのX線強度の比(Sn/Si)を0.0050以下とした。0.0050を超えると、前記コロイド発色が強くなり、色調が変化し、あるいは透過率が著しく低下するため望ましくない。溶融スズと接触したガラス表面のSnのX線強度とSiのX線強度の比(Sn/Si)は0.0050以下、好ましくは0.0030以下、より好ましくは0.0015以下とする。 When considering the quality of the glass, it is desirable that there is less tin on the glass surface in contact with the molten tin. Thus, transparent glass can be obtained without causing a change in color tone or a decrease in transmittance. Therefore, the ratio (Sn / Si) of Sn X-ray intensity and Sn X-ray intensity on the glass surface in contact with molten tin measured by X-ray fluorescence analysis was set to 0.0050 or less. If it exceeds 0.0050, the colloid color development becomes strong, the color tone changes, or the transmittance is remarkably lowered, which is not desirable. The ratio (Sn / Si) of Sn X-ray intensity to Si X-ray intensity on the glass surface in contact with molten tin is 0.0050 or less, preferably 0.0030 or less, more preferably 0.0015 or less.

 なお、溶融スズと接触したガラス表面におけるスズを少なくするために、研削・研磨などの物理的な手法により、あるいは弗酸エッチングなどの化学的な手法により、あるいはさらに物理的と化学的な手法の両方により、スズの多い表面層を除去させれば良い。特に、物理的な研磨がその量産性及び作業性などの観点から望ましいが、さらに防眩性などの機能性を付与するために弗酸エッチングなどを用いても構わない。 In order to reduce tin on the glass surface in contact with molten tin, physical methods such as grinding and polishing, or chemical methods such as hydrofluoric acid etching, or physical and chemical methods By both, the surface layer rich in tin may be removed. In particular, physical polishing is desirable from the viewpoints of mass productivity and workability, but hydrofluoric acid etching or the like may be used in order to further provide functionality such as anti-glare properties.

 混合溶融塩の強化塩浴浸漬後のガラスにおいて、可視光線透過率は80%以上とする。可視光線透過率が80%未満ではタッチパネルなどのカバーガラスとして必要な透過率には不十分であり、パネルの輝度低下などを引き起こすため望ましくない。従って、可視光線透過率は80%以上、好ましくは85%以上、より好ましくは90%以上とする。 In the glass after immersion in the reinforced salt bath of the mixed molten salt, the visible light transmittance is 80% or more. If the visible light transmittance is less than 80%, it is insufficient for the transmittance necessary for a cover glass such as a touch panel, and this is not desirable because it causes a decrease in luminance of the panel. Therefore, the visible light transmittance is 80% or more, preferably 85% or more, more preferably 90% or more.

 なお、可視光線透過率と共に色調変化、特に抗菌性物質のコロイド化によるコロイド発色も極力少ない方が望ましく、CIEのL***表色系における色度座標a*の変化Δa*(強化塩浴浸漬後のa*-強化塩浴浸漬前のa*)が15.0以下で、かつ色度座標b*の変化Δb*(強化塩浴浸漬後のb*-強化塩浴浸漬前のb*)が15.0以下であることが望ましい。15.0を超えると抗菌性物質のコロイド化による発色が強いことを意味し、パネルなどの品位を低下させるために望ましくない。従って、色度変化Δa*とΔb*はいずれも15.0以下、好ましくは10.0以下、さらに好ましくは5.0以下とする。 In addition, it is desirable that the color tone change with visible light transmittance, particularly colloidal coloration due to colloidation of an antibacterial substance, is as small as possible, and CIE L * a * b * color coordinate a * change Δa * (enhancement) A * after immersion in salt bath a * ) before immersion in reinforced salt bath is 15.0 or less, and change in chromaticity coordinate b * Δb * (b * after immersion in reinforced salt bath) b * ) is preferably 15.0 or less. If it exceeds 15.0, it means that the color development due to colloidalization of the antibacterial substance is strong, and it is not desirable for lowering the quality of the panel or the like. Accordingly, the chromaticity changes Δa * and Δb * are both 15.0 or less, preferably 10.0 or less, and more preferably 5.0 or less.

 また前記ガラスの表面において、蛍光X線分析法によって測定されたKのX線強度とNaのX線強度の比(K/Na)が100以上で、かつ抗菌性物質のX線強度とKのX線強度の比(抗菌性物質/K)が0.0005以上とする。 Further, on the surface of the glass, the ratio (K / Na) of K X-ray intensity and Na X-ray intensity measured by fluorescent X-ray analysis is 100 or more, and the X-ray intensity and K of the antibacterial substance are The X-ray intensity ratio (antibacterial substance / K) is 0.0005 or more.

 KのX線強度とNaのX線強度の比(K/Na)が100未満では、ガラス中のNa+イオンと溶融塩中のK+イオンとのイオン交換が不十分であり、所望の強度を得ることが困難である。従って、KのX線強度とNaのX線強度の比(K/Na)は100以上、好ましくは125以上、さらに好ましくは150以上とする。また抗菌性物質のX線強度とKのX線強度の比(抗菌性物質/K)が0.0005未満ではガラス表面における抗菌性物質の量が不十分であるため所望の抗菌性が得られず、望ましくない。従って、抗菌性物質のX線強度とKのX線強度の比(抗菌性物質/K)は0.0005以上、好ましくは0.0008以上、さらに好ましくは0.0010以上とする。 When the ratio of K X-ray intensity to Na X-ray intensity (K / Na) is less than 100, ion exchange between Na + ions in glass and K + ions in molten salt is insufficient, and the desired intensity Is difficult to get. Therefore, the ratio of the X-ray intensity of K to the X-ray intensity of Na (K / Na) is 100 or more, preferably 125 or more, more preferably 150 or more. In addition, when the ratio of the X-ray intensity of the antibacterial substance to the X-ray intensity of K (antibacterial substance / K) is less than 0.0005, the amount of the antibacterial substance on the glass surface is insufficient and the desired antibacterial property is obtained. Not desirable. Therefore, the ratio of the X-ray intensity of the antibacterial substance to the X-ray intensity of K (antibacterial substance / K) is 0.0005 or more, preferably 0.0008 or more, more preferably 0.0010 or more.

 さらに前記ガラスにおいて、3点曲げ強度が150MPa以上とする。150MPa未満ではタッチパネルなどのカバーガラスとして必要な強度には不十分であり、タッチパネル操作時にガラスの破損などを引き起こすため望ましくない。従って、3点曲げ強度は150MPa以上、好ましくは200MPa以上、さらに好ましくは250MPa以上とする。 Further, in the glass, the three-point bending strength is 150 MPa or more. If it is less than 150 MPa, the strength required for a cover glass such as a touch panel is insufficient, and this is not desirable because it causes breakage of the glass when the touch panel is operated. Therefore, the three-point bending strength is 150 MPa or more, preferably 200 MPa or more, more preferably 250 MPa or more.

 前記所望の特性を得るために、化学強化と抗菌性物質を担持させる浸漬強化塩浴は、カリウムの化合物に対して抗菌性物質の化合物を0.0001~0.5重量%で混合したものである。0.0001重量%未満ではその抗菌性が不十分となり、他方0.5重量%以上では浸漬後にコロイド発色しやすくなるため望ましくない。従って、カリウムの化合物に対して抗菌性物資の化合物を0.0001~0.5重量%、好ましくは0.0001~0.1重量%、より好ましくは0.0001~0.05重量%とする。 In order to obtain the desired characteristics, the immersion strengthening salt bath supporting chemical strengthening and antibacterial substance is a mixture of 0.0001 to 0.5% by weight of an antibacterial substance compound to a potassium compound. is there. If it is less than 0.0001% by weight, the antibacterial property is insufficient, and if it is 0.5% by weight or more, colloid color development tends to occur after immersion, which is undesirable. Accordingly, the antibacterial substance compound is 0.0001 to 0.5% by weight, preferably 0.0001 to 0.1% by weight, more preferably 0.0001 to 0.05% by weight, based on the potassium compound. .

 なお、カリウムの化合物として、例えば硝酸カリウム、塩化カリウム、硫酸カリウム、水酸化カリウム等が挙げられるが、この中でも最も硝酸カリウムが好ましい。またカリウム以外にもそのイオン交換による化学強化等を阻害しない範囲で、その他アルカリ(リチウム、ナトリウム、ルビジウム、セシウム)の化合物を10重量%以下の範囲で添加しても構わない。 In addition, examples of the potassium compound include potassium nitrate, potassium chloride, potassium sulfate, potassium hydroxide, and the like. Of these, potassium nitrate is most preferable. In addition to potassium, other alkali (lithium, sodium, rubidium, cesium) compounds may be added in an amount of 10% by weight or less as long as chemical strengthening by ion exchange is not inhibited.

 また抗菌性物質は、例えば銀、銅、亜鉛の中から選ばれる1種類以上のもので、特に銀が好ましい。カリウムの化合物に対して添加・混合する抗菌性物質の化合物は、例えば硝酸銀、塩化銀、硝酸銅、塩化銅、硫酸銅、硝酸亜鉛、塩化亜鉛、硫酸亜鉛等が挙げられるが、この中でも最も硝酸銀が好ましい。 The antibacterial substance is one or more selected from, for example, silver, copper, and zinc, and silver is particularly preferable. Examples of the antibacterial compound added to and mixed with the potassium compound include silver nitrate, silver chloride, copper nitrate, copper chloride, copper sulfate, zinc nitrate, zinc chloride, and zinc sulfate. Is preferred.

 その混合溶融塩の強化塩浴に浸漬する条件は、温度が350~550℃、浸漬時間が15~150分とする。浸漬温度は350℃未満ではカリウムイオンとのイオン交換が不十分となり強度があまり向上せず、他方550℃を越えるとイオン交換した抗菌性物質のイオンが還元・凝集してコロイド発色しやすくなるため望ましくない。従って、浸漬温度は350~550℃、好ましくは350~500℃、より好ましくは400~500℃とする。 The conditions for immersing the mixed molten salt in the reinforced salt bath are a temperature of 350 to 550 ° C. and an immersion time of 15 to 150 minutes. If the immersion temperature is less than 350 ° C., the ion exchange with potassium ions is insufficient and the strength is not improved so much. Not desirable. Accordingly, the immersion temperature is 350 to 550 ° C., preferably 350 to 500 ° C., more preferably 400 to 500 ° C.

 また浸漬時間は15分未満ではイオン交換が不十分となるため強度の向上及び抗菌性の付与があまり得られず、他方150分を超えるとイオン交換した抗菌性物質のイオンが還元・凝集してコロイド発色しやすくなるため望ましくない。従って、浸漬時間は15~150分、好ましくは30~100分、より好ましくは50~100分とする。 Also, if the immersion time is less than 15 minutes, ion exchange becomes insufficient, so that improvement in strength and antibacterial properties are not obtained so much, and if it exceeds 150 minutes, ions of the antibacterial substance ion exchanged are reduced and aggregated. This is not desirable because it facilitates colloid color development. Accordingly, the immersion time is 15 to 150 minutes, preferably 30 to 100 minutes, more preferably 50 to 100 minutes.

 さらに、ガラス中のナトリウムイオンと混合硝酸塩の強化液浴中のカリウムイオン又は抗菌性物質のイオンとのイオン交換をしやすくするため、あるいは強化液浴中での熱割れ等を防止するために強化塩浴に浸漬する前にガラスを電気炉などによって予熱すること、またさらに強化塩浴浸漬後の取出において急冷による熱割れ等を防止するために徐冷炉などによって徐冷することが望ましい。 Furthermore, strengthening to facilitate ion exchange between sodium ions in glass and potassium ions or antibacterial substances in mixed nitrate strengthening solution bath or to prevent thermal cracking in strengthening solution bath It is desirable to preheat the glass with an electric furnace or the like before immersing in the salt bath, and further slowly cool with a slow cooling furnace or the like in order to prevent thermal cracking or the like due to rapid cooling during removal after immersion in the tempered salt bath.

 また前記ガラスをタッチパネルなどのカバーガラスとして使用するには、ガラスの板厚は0.3~3.5mmが好ましく、0.3mm未満ではカバーガラスとしての強度に問題があり、他方3.5mmを超えるとその厚さによりタッチパネルには使用できない。 In order to use the glass as a cover glass for a touch panel or the like, the thickness of the glass is preferably 0.3 to 3.5 mm, and if it is less than 0.3 mm, there is a problem in the strength as the cover glass, while the other 3.5 mm If it exceeds, it cannot be used for the touch panel due to its thickness.

 従って、本発明では、抗菌性物質をイオンの状態のまま担持でき、かつ抗菌性に対する表面層の抗菌性物質の濃度を明確に定義することで、強度と抗菌性を有し、かつ透視性や色調が良好な抗菌性ガラス、特にタッチパネルなどのカバーガラスに好適な抗菌性ガラスを得ることができる。 Therefore, in the present invention, the antibacterial substance can be supported in an ionic state, and the concentration of the antibacterial substance in the surface layer against the antibacterial property is clearly defined to have strength and antibacterial properties, Antibacterial glass having a good color tone, in particular, antibacterial glass suitable for a cover glass such as a touch panel can be obtained.

 以下、実施例に基づき、本発明を説明する。 Hereinafter, the present invention will be described based on examples.

 板ガラスはSiO2を71.5質量%、Al23を2.0質量%、MgOを3.5質量%、CaOを8.5質量%、Na2Oを13.0質量%、K2Oを1.5質量%含み、板厚1.0mmで50mm×50mmサイズのソーダ石灰ガラスを用いた。なお強化塩浴浸漬前に、このガラスの溶融スズと接触した側の表面のSi濃度とSn濃度を調べた。 The plate glass is composed of 71.5% by mass of SiO 2 , 2.0% by mass of Al 2 O 3 , 3.5% by mass of MgO, 8.5% by mass of CaO, 13.0% by mass of Na 2 O, K 2 Soda lime glass containing 1.5% by mass of O, having a thickness of 1.0 mm and a size of 50 mm × 50 mm was used. Before immersion in the tempered salt bath, the Si concentration and the Sn concentration on the surface of the glass in contact with the molten tin were examined.

 このガラスを、硝酸カリウムに所定量の硝酸銀を外割添加した混合硝酸塩の強化塩浴に、表1又は表2のとおり、所定温度で所定時間浸漬した後、取り出して流水により水洗し、室温で乾燥させた。乾燥後のガラスについて、表面Na濃度、K濃度とAg濃度、可視光線透過率、色調変化Δb*(強化塩浴浸漬後のb*-強化塩浴浸漬前のb*)、3点曲げ強度、抗菌活性値をそれぞれ調べた。 This glass was immersed in a mixed nitrate strengthened salt bath in which a predetermined amount of silver nitrate was added to potassium nitrate, as shown in Table 1 or Table 2, after being immersed for a predetermined time at a predetermined temperature, taken out, washed with running water, and dried at room temperature. I let you. For dried glass, surface Na concentration, K concentration and Ag concentration, visible light transmittance, color tone change Δb * (b * after immersion in reinforced salt bath-b * before immersion in reinforced salt bath), three-point bending strength, Each antibacterial activity value was examined.

 各成分の表面濃度は蛍光X線分析装置ZSX PrimuxII(RIGAKU製)を用いて50kV-60mAで、Si(測定線KA、ターゲットRh、スリットS4)、Sn(測定線LA、ターゲットRh、スリットS4)、Na(測定線KA、ターゲットRh、スリットS4)、K(測定線KA、ターゲットRh、スリットS4)とAg(測定線LA、ターゲットRh、スリットS2)でそれぞれのX線強度を測定し、各X線強度比(Sn/Si、K/Na、Ag/K)を求めた。 The surface concentration of each component is 50 kV-60 mA using a fluorescent X-ray analyzer ZSX-Primux II (manufactured by RIGAKU), Si (measurement line KA, target Rh, slit S4), Sn (measurement line LA, target Rh, slit S4) , Na (measuring line KA, target Rh, slit S4), K (measuring line KA, target Rh, slit S4) and Ag (measuring line LA, target Rh, slit S2) are measured for each X-ray intensity, The X-ray intensity ratio (Sn / Si, K / Na, Ag / K) was determined.

 可視光線透過率及び色調変化Δb*(浸漬後のb*-浸漬前のb*)は自記分光光度計U4000型(日立製作所製)を用いてJIS R 3106とJIS Z 8729に準拠して測定した。 Visible light transmittance and color tone change [Delta] b * (after immersion b * - before immersion b *) was measured according to JIS R 3106 and JIS Z 8729 using a self-recording spectrophotometer U4000 (manufactured by Hitachi, Ltd.) .

 3点曲げ強度は熱衝撃試験機(新東Vセラミックス製)を用いてJIS R 1601に準拠して負荷速度0.008mm/sで測定した。 The three-point bending strength was measured at a load speed of 0.008 mm / s according to JIS R 1601 using a thermal shock tester (manufactured by Shinto V ceramics).

 抗菌活性値は大腸菌を用いてJIS Z 2801に準拠して評価した。 The antibacterial activity value was evaluated in accordance with JIS Z-2801 using E. coli.

 実施例を表1、比較例を表2に示す。 Examples are shown in Table 1 and Comparative Examples are shown in Table 2.

Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000002

これによれば、本発明のガラスは透明性が非常に優れており、かつ強度及び抗菌性に優れていることが判る。すなわち、硝酸塩強化塩浴に浸漬しない比較例1の場合には、可視光線透過率は高いものの3点曲げ強度が100MPa未満であり、もちろん抗菌性もない。 According to this, it can be seen that the glass of the present invention is very excellent in transparency and excellent in strength and antibacterial properties. That is, in the case of Comparative Example 1 that is not immersed in a nitrate-strengthened salt bath, the visible light transmittance is high, but the three-point bending strength is less than 100 MPa, and of course, there is no antibacterial property.

 また硝酸カリウムと極微量の硝酸銀の混合強化塩浴に浸漬した比較例2の場合には、可視光線透過率や3点曲げ強度は優れているものの、表面のAg濃度が低いために抗菌性はほとんどない。 In the case of Comparative Example 2 immersed in a mixed strengthening salt bath of potassium nitrate and a very small amount of silver nitrate, the visible light transmittance and the three-point bending strength are excellent, but the antibacterial property is hardly exhibited because the Ag concentration on the surface is low. Absent.

さらには、表面のスズ濃度が高いガラスを硝酸カリウムと硝酸銀の混合強化塩浴に浸漬した比較例3の場合には、3点曲げ強度がやや高く、抗菌活性値が優れているものの可視光線透過率が30%程度と低く、また色度変化Δa*とΔb*が著しく大きい。 Furthermore, in the case of Comparative Example 3 in which a glass having a high tin concentration on the surface is immersed in a mixed strengthening salt bath of potassium nitrate and silver nitrate, the three-point bending strength is slightly high and the antibacterial activity value is excellent, but the visible light transmittance Is as low as about 30%, and the chromaticity changes Δa * and Δb * are remarkably large.

 それに対して、本発明のガラスは銀をイオンの状態のままでほとんど担持できているため可視光線透過率が80%以上で、かつ色度変化Δa*とΔb*が15以下と小さく、さらに優れた3点曲げ強度を有すると共に、さらに抗菌活性値にも優れている。特に、実施例1は硝酸カリウムの溶融塩のみの強化塩浴に浸漬したものとほぼ同等の透過率及び強度を有していると共に、非常に優れた抗菌性を兼ね備えている。 On the other hand, since the glass of the present invention can carry almost silver in an ionic state, the visible light transmittance is 80% or more, and the chromaticity changes Δa * and Δb * are as small as 15 or less, further excellent. In addition, it has an excellent antibacterial activity value. In particular, Example 1 has almost the same transmittance and strength as those immersed in a strengthened salt bath containing only a molten salt of potassium nitrate, and also has extremely excellent antibacterial properties.

 本発明は、タッチパネルなど不特定多数の人間が使用するデバイスはもとより、自然界で有機物による汚染が考えられるような基材など、広い分野で応用可能なものである。 The present invention can be applied in a wide range of fields such as devices that are used by an unspecified number of humans such as touch panels, as well as substrates that are naturally contaminated by organic substances.

Claims (9)

  1. 溶融スズの上に溶融ガラスを浮上搬送しながら板状に成形されるフロート法によって製造させたソーダライムガラスに於いて、上記ソーダライムガラスの溶融スズと接触したガラス表面が、蛍光X線分析法によって測定されたSnのX線強度とSiのX線強度の比(Sn/Si)が0.0050以下であり、カリウムと抗菌性物質を含む混合溶融塩の強化塩浴に浸漬することで、化学強化と同時に抗菌性物質をガラスに担持させ、4mmの厚みにおける可視光透過率が80%以上であるような抗菌ガラスを得ることを特徴とする抗菌性ガラスの製造方法。 In a soda lime glass manufactured by a float method in which molten glass is floated and conveyed on molten tin, the glass surface in contact with the molten tin of the soda lime glass is a fluorescent X-ray analysis method. The ratio of the X-ray intensity of Sn and the X-ray intensity of Si (Sn / Si) measured by the following is 0.0050 or less, and immersed in a reinforced salt bath of a mixed molten salt containing potassium and an antibacterial substance, A method for producing antibacterial glass, characterized in that an antibacterial substance having a visible light transmittance of 80% or more at a thickness of 4 mm is obtained by supporting an antibacterial substance on glass simultaneously with chemical strengthening.

  2. 上記ガラスの表面において、蛍光X線分析法によって測定されたKのX線強度とNaのX線強度の比(K/Na)が100以上で、かつ抗菌性物質のX線強度とKのX線強度の比(抗菌性物質/K)が0.0005以上であることを特徴とする、請求項1に記載の抗菌性ガラスの製造方法。 On the surface of the glass, the ratio (K / Na) of K X-ray intensity to Na X-ray intensity (K / Na) measured by fluorescent X-ray analysis is 100 or more, and the X-ray intensity of the antibacterial substance and K X The method for producing antibacterial glass according to claim 1, wherein the ratio of line strength (antibacterial substance / K) is 0.0005 or more.

  3. 化学強化と抗菌性物質を担持させるために浸漬する混合溶融塩の強化塩浴が、カリウムの化合物に対して抗菌性物質の化合物を0.0001~0.5重量%で添加混合した強化塩浴であることを特徴とする、請求項1または2に記載の抗菌性ガラスの製造方法。 A reinforced salt bath in which a mixed molten salt reinforced salt bath immersed to carry chemical strengthening and an antibacterial substance is added with 0.0001 to 0.5 wt% of an antibacterial substance compound with respect to a potassium compound. The method for producing antibacterial glass according to claim 1 or 2, characterized in that

  4. 化学強化と抗菌性物質を担持させるために混合溶融塩の強化塩浴に浸漬する場合に於いて、温度が350~550℃で、時間が15~150分であることを特徴とする、請求項1
    乃至3のいずれか1項に記載の抗菌性ガラスの製造方法。
    A temperature of 350 to 550 ° C and a time of 15 to 150 minutes when immersed in a strengthened salt bath of mixed molten salt for supporting chemical strengthening and antibacterial substances, 1
    4. The method for producing antibacterial glass according to any one of items 1 to 3.

  5. 抗菌性物質が銀、銅、亜鉛の中から選ばれる1種類以上のものであることを特徴とする、請求項1乃至4のいずれか1項に記載の抗菌性ガラスの製造方法。 The method for producing antibacterial glass according to any one of claims 1 to 4, wherein the antibacterial substance is at least one selected from silver, copper, and zinc.

  6. 得られる抗菌性ガラスの3点曲げ強度が150MPa以上であることを特徴とする、請求項1乃至5のいずれか1項に記載の抗菌性ガラスの製造方法。 The method for producing antibacterial glass according to any one of claims 1 to 5, wherein the antibacterial glass to be obtained has a three-point bending strength of 150 MPa or more.

  7. 請求項1乃至6のいずれか1項に記載の抗菌性ガラスの製造方法により製造された抗菌性ガラス。 The antibacterial glass manufactured by the manufacturing method of the antibacterial glass of any one of Claims 1 thru | or 6.

  8. 請求項7に記載の抗菌性ガラスを用いることを特徴とするタッチパネル。 The antibacterial glass of Claim 7 is used, The touchscreen characterized by the above-mentioned.

  9. 請求項5に記載の抗菌性物質を含むフィルムを、ガラスの上にさらに貼付することを特徴とする、請求項8に記載のタッチパネル。 The touch panel according to claim 8, wherein a film containing the antibacterial substance according to claim 5 is further pasted on glass.

PCT/JP2011/061262 2010-05-17 2011-05-17 Antibacterial glass and method for producing same WO2011145592A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-112838 2010-05-17
JP2010112838A JP5663947B2 (en) 2010-05-17 2010-05-17 Antibacterial glass and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2011145592A1 true WO2011145592A1 (en) 2011-11-24

Family

ID=44991694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061262 WO2011145592A1 (en) 2010-05-17 2011-05-17 Antibacterial glass and method for producing same

Country Status (2)

Country Link
JP (1) JP5663947B2 (en)
WO (1) WO2011145592A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9622483B2 (en) 2014-02-19 2017-04-18 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US9840438B2 (en) 2014-04-25 2017-12-12 Corning Incorporated Antimicrobial article with functional coating and methods for making the antimicrobial article
US9919963B2 (en) 2014-02-13 2018-03-20 Corning Incorporated Glass with enhanced strength and antimicrobial properties, and method of making same
US10131574B2 (en) 2013-06-17 2018-11-20 Corning Incorporated Antimicrobial glass articles and methods of making and using same
US10723652B2 (en) 2014-07-07 2020-07-28 Corning Incorporated Tempered and colorless antimicrobial soda lime glass and methods of making and using same
US11039620B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039621B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013163238A1 (en) * 2012-04-24 2013-10-31 Ferro Corporation Heavy-metal-free, ion exchangeable glass enamels
JP2016513055A (en) * 2013-02-11 2016-05-12 コーニング インコーポレイテッド Antibacterial glass article and method for making and using the same
CN106061914A (en) * 2015-02-12 2016-10-26 科立视材料科技有限公司 Antimicrobial chemically strengthened glass and method for making antimicrobial glass article
US10918110B2 (en) 2015-07-08 2021-02-16 Corning Incorporated Antimicrobial phase-separating glass and glass ceramic articles and laminates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228186A (en) * 1998-02-09 1999-08-24 Nippon Parkerizing Co Ltd Glass, method for producing glass, and composition for tempered antibacterial glass
JP2007507407A (en) * 2003-09-30 2007-03-29 ショット アクチエンゲゼルシャフト Antibacterial glass, glass ceramic surface and method for producing the same
WO2011065293A1 (en) * 2009-11-25 2011-06-03 旭硝子株式会社 Glass base plate for display cover glass, and process for production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228186A (en) * 1998-02-09 1999-08-24 Nippon Parkerizing Co Ltd Glass, method for producing glass, and composition for tempered antibacterial glass
JP2007507407A (en) * 2003-09-30 2007-03-29 ショット アクチエンゲゼルシャフト Antibacterial glass, glass ceramic surface and method for producing the same
WO2011065293A1 (en) * 2009-11-25 2011-06-03 旭硝子株式会社 Glass base plate for display cover glass, and process for production thereof

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10676394B2 (en) 2013-06-17 2020-06-09 Corning Incorporated Antimicrobial glass articles and methods of making and using same
US10131574B2 (en) 2013-06-17 2018-11-20 Corning Incorporated Antimicrobial glass articles and methods of making and using same
US10710928B2 (en) 2014-02-13 2020-07-14 Corning Incorporated Glass with enhanced strength and antimicrobial properties, and method of making same
US9919963B2 (en) 2014-02-13 2018-03-20 Corning Incorporated Glass with enhanced strength and antimicrobial properties, and method of making same
US11039621B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039619B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039620B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US9622483B2 (en) 2014-02-19 2017-04-18 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11464232B2 (en) 2014-02-19 2022-10-11 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11470847B2 (en) 2014-02-19 2022-10-18 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11751570B2 (en) 2014-02-19 2023-09-12 Corning Incorporated Aluminosilicate glass with phosphorus and potassium
US12121030B2 (en) 2014-02-19 2024-10-22 Corning Incorporated Aluminosilicate glass with phosphorus and potassium
US9840438B2 (en) 2014-04-25 2017-12-12 Corning Incorporated Antimicrobial article with functional coating and methods for making the antimicrobial article
US10723652B2 (en) 2014-07-07 2020-07-28 Corning Incorporated Tempered and colorless antimicrobial soda lime glass and methods of making and using same

Also Published As

Publication number Publication date
JP5663947B2 (en) 2015-02-04
JP2011241107A (en) 2011-12-01

Similar Documents

Publication Publication Date Title
JP5663947B2 (en) 2015-02-04 Antibacterial glass and manufacturing method thereof
US10676394B2 (en) 2020-06-09 Antimicrobial glass articles and methods of making and using same
US20160229743A1 (en) 2016-08-11 Antimicrobial articles and methods of making and using same
US10155691B2 (en) 2018-12-18 Antimicrobial glass articles and methods of making and using same
JP2013071878A (en) 2013-04-22 Antibacterial glass, and method for manufacturing the same
WO2016028554A1 (en) 2016-02-25 Antimicrobial articles with copper nanoparticles and methods of making and using same
US20140356406A1 (en) 2014-12-04 Antimicrobial Articles and Methods of Making and Using Same
US10723652B2 (en) 2020-07-28 Tempered and colorless antimicrobial soda lime glass and methods of making and using same
WO2011065293A1 (en) 2011-06-03 Glass base plate for display cover glass, and process for production thereof
JP2017511785A (en) 2017-04-27 Glass with enhanced strength and antibacterial properties and method for producing the same
TW201619089A (en) 2016-06-01 UV blocking for improved transmission glasses
KR102248453B1 (en) 2021-05-06 Antimicrobial chemically strengthened glass and its manufacturing method
TW201446688A (en) 2014-12-16 Antimicrobial glass articles and methods for making and using same
JPH11228186A (en) 1999-08-24 Glass, method for producing glass, and composition for tempered antibacterial glass
US10981825B2 (en) 2021-04-20 Antimicrobial articles with silver-containing alkali silicate coating and methods of making thereof
CN114195404A (en) 2022-03-18 Preparation method of antibacterial glass
JP2020532484A (en) 2020-11-12 Antibacterial articles and their manufacture and use
CN113480195A (en) 2021-10-08 Preparation method of antibacterial glass
TW202313503A (en) 2023-04-01 Gold containing silicate glass
CN118420243A (en) 2024-08-02 Antibacterial glass and preparation method thereof

Legal Events

Date Code Title Description
2012-01-11 121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783526

Country of ref document: EP

Kind code of ref document: A1

2012-11-19 NENP Non-entry into the national phase

Ref country code: DE

2013-06-05 122 Ep: pct application non-entry in european phase

Ref document number: 11783526

Country of ref document: EP

Kind code of ref document: A1