WO2016072341A1 - Immunostaining method, and immunostaining reagent kit for use in said method - Google Patents
- ️Thu May 12 2016
WO2016072341A1 - Immunostaining method, and immunostaining reagent kit for use in said method - Google Patents
Immunostaining method, and immunostaining reagent kit for use in said method Download PDFInfo
-
Publication number
- WO2016072341A1 WO2016072341A1 PCT/JP2015/080512 JP2015080512W WO2016072341A1 WO 2016072341 A1 WO2016072341 A1 WO 2016072341A1 JP 2015080512 W JP2015080512 W JP 2015080512W WO 2016072341 A1 WO2016072341 A1 WO 2016072341A1 Authority
- WO
- WIPO (PCT) Prior art keywords
- antibody
- phosphor
- antigen
- immunostaining
- carbon Prior art date
- 2014-11-06
Links
- 0 *CCOCCOCCC(ON(C(CC1)=O)C1=O)=O Chemical compound *CCOCCOCCC(ON(C(CC1)=O)C1=O)=O 0.000 description 1
- DZDIYDQHKDDCSL-UHFFFAOYSA-P Cc(cc(cc1)N=[NH2+])c1NCCCCCC(ON(C(CC1S([OH2+])(=O)=O)=O)C1=O)=O Chemical compound Cc(cc(cc1)N=[NH2+])c1NCCCCCC(ON(C(CC1S([OH2+])(=O)=O)=O)C1=O)=O DZDIYDQHKDDCSL-UHFFFAOYSA-P 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/531—Production of immunochemical test materials
- G01N33/532—Production of labelled immunochemicals
- G01N33/533—Production of labelled immunochemicals with fluorescent label
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/536—Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
Definitions
- the present invention relates to an immunostaining method and an immunostaining reagent kit used therefor.
- pathological diagnosis is performed as one of medical diagnosis.
- a pathologist diagnoses a disease from data indicating the result of a biopsy performed on a tissue piece collected from a human body, and informs a clinician whether treatment or surgery is necessary.
- the medical doctor decides the drug treatment policy, and the surgical doctor decides whether or not to perform the operation.
- tissue specimen In order to provide data for the diagnosis, a tissue specimen (tissue specimen) is prepared by slicing a tissue specimen obtained by organ excision or needle biopsy to a thickness of several microns, In order to obtain various findings after dyeing treatment, observation using an optical microscope or a fluorescence microscope is widely performed. In many cases, tissue sections are prepared by dehydrating and fixing paraffin blocks to fix the collected tissues, then slicing them to a thickness of several ⁇ m and removing the paraffin.
- tissue section hardly absorbs and scatters light and is almost colorless and transparent
- morphological observation staining for observing the cell morphology of the tissue section hematoxylin using two dyes, hematoxylin and eosin
- HE staining morphological observation staining for observing the cell morphology of the tissue section
- other morphological observation staining include Papanicolaou staining (Pap staining) used for cytodiagnosis.
- immunostaining is performed on the tissue sections and the like of the subject.
- a fluorescently labeled antibody is specifically bound to an in vivo molecule (antigen) whose expression level increases or decreases depending on the presence or absence of the disease, and the amount of fluorescent signal derived from the fluorescently labeled antibody is related to the disease.
- the amount of antigen to be quantified is performed.
- Conventionally known immunostaining methods include methods using fluorescent labels (fluorescent dyes and fluorescent nanoparticles, particles in which fluorescent dyes and fluorescent nanoparticles are integrated with resin, etc.), and share fluorescent integrated nanoparticles.
- Method of fluorescently staining the antigen by binding the bound primary antibody to the antigen on the tissue section (primary antibody method), phosphor accumulation in a state where the primary antibody is bound to the antigen on the tissue section
- a method in which a secondary antibody linked to a nanoparticle via a covalent bond is bound to the primary antibody to fluorescently stain an antigen (secondary antibody method), a fluorescent aggregate nanoparticle to which biotin (or avidin) is added; And a secondary antibody added with avidin (or biotin), and after binding the primary antibody to the antigen on the tissue section, the secondary antibody is bound to the primary antibody
- the secondary antibody Streptavidin - how through specific binding of biotin to bind the fluorescent integrated nanoparticles fluorescently labeling the antigen (biotin - avid
- the following immunostaining method can be considered as a method related to the primary antibody method or the secondary antibody method described above.
- a monoclonal antibody (anti-hapten antibody, eg, anti-FITC antibody) against a hapten (low molecular compound, eg, FITC) to be linked to the primary antibody or secondary antibody is prepared.
- the phosphor-aggregated nanoparticles are linked to the anti-hapten antibody by a covalent bond or the like.
- the anti-hapten antibody is specifically bound to a hapten linked to a primary antibody bound to an antigen on a tissue section or to a hapten linked to a secondary antibody bound to the primary antibody.
- a method of fluorescently labeling the antigen is specifically bound to a hapten linked to a primary antibody bound to an antigen on a tissue section or to a hapten linked to a secondary antibody bound to the primary antibody.
- hapten-anti-hapten antibody method if a hapten that does not exist in the living body is used as the hapten to be used, non-specific binding occurs without reacting with molecules in the living body as in the biotin-avidin method described above. There is no. Therefore, the problem that the signal noise described above increases does not occur. However, since the binding of hapten-anti-hapten is inferior to the binding between biotin and avidin (binding force), phosphor-aggregated nanoparticles can be converted into primary and secondary antibodies via hapten-anti-hapten binding.
- the above-mentioned immunostaining method is preferred in which the non-specific adsorption described above is performed and the phosphor-aggregated nanoparticles are bound to the primary antibody, the secondary antibody or the like with high binding ability.
- the present invention has been made in view of the above problems, and can suppress non-specific adsorption of fluorescent dye nanoparticles that cause noise of fluorescent signals in immunostaining, and can be combined with antibodies and fluorescent integrated nanoparticles.
- the purpose of the present invention is to provide an immunostaining method that can suppress the decrease in the fluorescence signal by increasing the binding force of the protein, and to provide an immunostaining reagent kit that can be used in the immunostaining method and has excellent long-term storage stability. To do.
- the inventors of the present invention (1) The Husgen cycloaddition reaction occurring between an azide and an alkyne has very high reaction selectivity, and the azide or alkyne hardly reacts with other compounds to form a bond.
- (2) the presence of a copper catalyst or the structure of the alkyne eg, using an alkyne having an 8-membered ring structure makes it possible to use Husgen even under mild conditions in water, neutrality, and room temperature.
- the cyclization reaction occurs rapidly, and further, (3) the Husgen cycloaddition reaction can be used to covalently bond molecules such as monomers, and (4) the auside and alkyne Huisgen cyclization reaction Focusing on the fact that covalent bonds can be formed in the same way as the carboxylic acid active ester-amine coupling reaction and the maleimide-thiol coupling reaction, Coupled to azido - and found that the above problems can be solved by utilizing Hyusugen cycloaddition reaction between an alkyne leading to the present invention.
- an immunostaining method reflecting one aspect of the present invention is an immunostaining in which an antigen of the tissue section is fluorescently labeled with phosphor-integrated nanoparticles on the tissue section.
- the phosphor-aggregated nanoparticles may have an azide group (—N 3 ) is introduced, and the carbon-carbon triple bond moiety (C ⁇ C) is introduced on the other side, Immobilizing the antibody to the antigen;
- a bond via a triazole ring is formed between both molecules of the antibody and the phosphor-aggregated nanoparticle, and the antigen is formed by the formation.
- fluorescent labeling is performed with the phosphor-integrated nanoparticles.
- an immunostaining reagent kit reflecting one aspect of the present invention is to fluorescently label the antigen of the tissue section with phosphor-integrated nanoparticles on the tissue section.
- An immunostaining reagent kit comprising: A labeling reagent comprising phosphor-integrated nanoparticles and an antibody reagent comprising an antibody directly immobilized on the antigen by an antigen-antibody reaction, or another antibody indirectly immobilized via the antibody Has An azide group (—N 3 ) is introduced into one of the phosphor-integrated nanoparticles and the antibody, and a carbon-carbon triple bond moiety (C ⁇ C) is introduced into the other; By the Husgen cycloaddition reaction between the azide group and the carbon-carbon triple bond moiety, a bond via a triazole ring is formed between the antibody and the phosphor-aggregated nanoparticle, and the two molecules are formed by the formation. It is an immunostaining reagent kit that
- an immunostaining method capable of suppressing the above. Furthermore, there is provided an immunostaining reagent kit that is used in the immunostaining method and has excellent long-term storage stability.
- FIG. 1 is a diagram illustrating an immunostaining method according to the present invention.
- a primary antibody binds to an antigen presented on a tissue section
- a secondary antibody binds to the primary antibody
- the antigen is fluorescently labeled by specifically causing the Huisgen cycloaddition reaction by the azide group derived from the azide linked to the phosphor-integrated nanoparticles.
- endogenous biotin and other antigens are present in the tissue section.
- the azide group portion of the phosphor-aggregated nanoparticles does not react with endogenous biotin or other antigens.
- FIG. 2 is a diagram showing another example of the immunostaining method according to the present invention in which the azide and the alkyne compound shown in FIG. 1 are replaced. Since the carbon-carbon triple bond part of the phosphor-integrated nanoparticles does not react with endogenous biotin or other antigens, non-specific adsorption of the phosphor-accumulated nanoparticles does not occur due to this reaction. Generation of signal noise is suppressed.
- FIG. 3 is a diagram for explaining an immunostaining method (hapten-anti-hapten antibody method) according to the prior art.
- the primary antibody binds to the antigen presented on the tissue section
- the secondary antibody (linked to the hapten) binds to the primary antibody
- the secondary antibody binds to the secondary antibody.
- the antigen is fluorescently labeled by specifically binding to the anti-hapten antibody to which the phosphor-integrated nanoparticles are added.
- the hapten-anti-hapten binding is weaker than the biotin-avidin binding and is likely to decouple.
- the phosphor-aggregated nanoparticles bind to unintended sites by non-specific adsorption and cause noise in the fluorescence signal.
- FIG. 4 is a diagram for explaining a conventional immunostaining method (biotin-avidin method).
- biotin-avidin method as shown in FIG. 4, the primary antibody binds to the antigen presented on the tissue section, the secondary antibody binds to the primary antibody, and is linked to the secondary antibody.
- Antigen is fluorescently labeled by specifically reacting avidin linked to the phosphor-integrated nanoparticles with biotin.
- the endogenous biotin present in the tissue section reacts with the streptavidin portion added to the phosphor-integrated nanoparticles, and the phosphor-integrated nanoparticles are non-specifically adsorbed and are not intended. To cause noise in the fluorescence signal.
- the immunostaining method according to the present invention is an immunostaining method in which an antigen on a tissue section is fluorescently labeled with phosphor-integrated nanoparticles on the tissue section, and is directly fixed to the antigen by an antigen-antibody reaction.
- An azide group (—N 3 ) is introduced into one of the antibody or another antibody immobilized indirectly through the antibody and the phosphor-integrated nanoparticles, and the carbon-carbon triple bond moiety (C ⁇ C) is introduced, the antibody is immobilized on the antigen, and both the antibody and the phosphor-aggregated nanoparticles are obtained by a Husgen cycloaddition reaction between the azide group and the carbon-carbon triple bond moiety.
- a bond via a triazole ring is formed between molecules, and the antigen is fluorescently labeled with the phosphor-integrated nanoparticles by the formation.
- the phosphor-integrated nanoparticles are obtained by accumulating phosphors. By using such phosphor-integrated nanoparticles, it is possible to increase the amount of fluorescence emitted per particle, that is, the brightness of a bright spot marking a predetermined biomolecule, compared to the phosphor itself.
- the term “phosphor” refers to a general substance that emits light in a process from an excited state to a ground state by being excited by irradiation with external X-rays, ultraviolet rays, or visible rays. Therefore, the “phosphor” in the present invention is not limited to the transition mode when returning from the excited state to the ground state, but is a substance that emits narrowly defined fluorescence that is light emission accompanying deactivation from the excited singlet. It may be a substance that emits phosphorescence, which is light emission accompanying deactivation from a triplet.
- the “phosphor” referred to in the present invention is not limited by the light emission lifetime after blocking the excitation light. Therefore, it may be a substance known as a phosphorescent substance such as zinc sulfide or strontium aluminate. Such phosphors can be broadly classified into organic phosphors (fluorescent dyes) and inorganic phosphors.
- organic phosphors examples include fluorescein dye molecules, rhodamine dye molecules, Alexa Fluor (registered trademark, manufactured by Invitrogen Corporation) dye molecules, BODIPY (registered trademark, manufactured by Invitrogen Corporation) dyes Molecule, cascade (registered trademark, Invitrogen) dye molecule, coumarin dye molecule, NBD (registered trademark) dye molecule, pyrene dye molecule, Texas Red (registered trademark) dye molecule, cyanine dye molecule, perylene dye Examples thereof include substances known as organic fluorescent dyes, such as dye molecules and oxazine dye molecules.
- inorganic phosphor examples include quantum dots containing II-VI group compounds, III-V group compounds, or group IV elements as components ("II-VI group quantum dots", " Or III-V quantum dots ”or“ IV quantum dots ”). You may use individually or what mixed multiple types.
- the quantum dots may be commercially available. Specific examples include, but are not limited to, CdSe, CdS, CdTe, ZnSe, ZnS, ZnTe, InP, InN, InAs, InGaP, GaP, GaAs, Si, and Ge.
- a quantum dot having the above quantum dot as a core and a shell provided thereon.
- the core is CdSe and the shell is ZnS
- CdSe / ZnS when the core is CdSe and the shell is ZnS, it is expressed as CdSe / ZnS.
- CdSe / ZnS, CdS / ZnS, InP / ZnS, InGaP / ZnS, Si / SiO 2 , Si / ZnS, Ge / GeO 2 , Ge / ZnS, and the like can be used, but are not limited thereto.
- Quantum dots may be subjected to surface treatment with an organic polymer or the like as necessary.
- organic polymer or the like as necessary. Examples thereof include CdSe / ZnS having a surface carboxy group (manufactured by Invitrogen), CdSe / ZnS having a surface amino group (manufactured by Invitrogen), and the like.
- the method for producing the phosphor-integrated nanoparticles is not particularly limited, and can be produced by a known method. In general, a production method can be used in which phosphors are gathered together using a resin or silica as a base material (the phosphors are immobilized inside or on the surface of the base material).
- Examples of a method for producing phosphor-integrated nanoparticles using organic phosphors include a method of forming resin particles having a diameter of nanometer order by fixing a fluorescent dye, which is a phosphor, inside or on the surface of a matrix made of resin. Can do.
- the method for preparing the phosphor-integrated nanoparticles is not particularly limited.
- a (co) monomer for synthesizing a resin (thermoplastic resin or thermosetting resin) that forms the matrix of the phosphor-integrated nanoparticles While (co) polymerizing the phosphor, a method of adding the phosphor and incorporating the phosphor into the inside or the surface of the (co) polymer can be used.
- thermoplastic resin for example, polystyrene, polyacrylonitrile, polyfuran, or a similar resin
- thermosetting resin for example, polyxylene, polylactic acid, glycidyl methacrylate, polymelamine, polyurea, polybenzoguanamine, polyamide, phenol resin, polysaccharide or similar resin
- Thermosetting resins, particularly melamine resins are preferred in that elution of the dye encapsulated in the dye resin can be suppressed by treatments such as dehydration, penetration, and encapsulation using an organic solvent such as xylene.
- polystyrene nanoparticles encapsulating an organic fluorescent dye can be obtained by a copolymerization method using an organic dye having a polymerizable functional group described in US Pat. No. 4,326,008 (1982), or US Pat. No. 5,326,692 (1992). ), And can be used as phosphor-integrated nanoparticles.
- silica nanoparticles in which an organic phosphor is immobilized inside or on the surface of a matrix made of silica can also be produced.
- the method for synthesizing FITC-encapsulated silica particles described in Langmuir Vol. 8, Vol. 8, page 2921 (1992) can be referred to.
- silica nanoparticles encapsulating various fluorescent dyes can be synthesized and used as phosphor-integrated nanoparticles.
- Examples of a method for producing phosphor-integrated nanoparticles using an inorganic phosphor include a method of forming silica nanoparticles in which quantum dots, which are phosphors, are fixed inside or on the surface of a matrix made of silica. This production method can be referred to the synthesis of CdTe-containing silica nanoparticles described in New Journal of Chemistry Vol. 33, p. 561 (2009).
- the silica beads are treated with a silane coupling agent to aminate the ends, and semiconductor fine particles as phosphors having carboxy group ends are amided on the surface of the silica beads.
- a method for collecting phosphors to form phosphor-integrated nanoparticles is also exemplified.
- a reverse micelle method and a mixture of organoalkoxysilane and alkoxide having an organic functional group with good adsorptivity to semiconductor nanoparticles at the molecular end as a glass precursor are used.
- glass-like particles in which semiconductor nanoparticles are dispersed and fixed are formed to form phosphor-integrated nanoparticles.
- EDC 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride
- phosphor-integrated nanoparticles can be produced by immobilizing inorganic phosphors inside or on the surface of a matrix made of resin.
- polymer nanoparticles encapsulating quantum dots can be prepared using the method of impregnating quantum nanoparticles into polystyrene nanoparticles described in Nature Biotechnology Vol. 19, p. 631 (2001).
- the average particle size of the phosphor-integrated nanoparticles is preferably from 150 nm to 800 nm, more preferably from 150 nm to 500 nm, from the viewpoint of fluorescence signal intensity.
- the average particle size of the phosphor-integrated nanoparticles can be examined by a known measurement method.
- the phosphor-integrated nanoparticles are observed with a transmission electron microscope (TEM), and the number-average particle size of the particle size distribution is obtained therefrom.
- the particle size distribution of the semiconductor nanoparticles is measured by the dynamic light scattering method. And the method etc. which are calculated
- the average particle diameter can be measured by observing with a gas adsorption method, a light scattering method, an X-ray small angle scattering method (SAXS), or a scanning electron microscope (SEM).
- SAXS X-ray small angle scattering method
- SEM scanning electron microscope
- the surface of the phosphor-integrated nanoparticles may be optionally modified with a hydrophilic polymer.
- the hydrophilic polymer include polyethylene glycol, ficoll, polyvinyl alcohol, styrene-maleic anhydride alternating copolymer, divinyl ether-maleic anhydride alternating copolymer, polyvinyl pyrrolidone, polyvinyl methyl ether, polyvinyl methyl oxazoline, Polyethyloxazoline, polyhydroxypropyloxazoline, polyhydroxypropylmethacrylamide, polymethacrylamide, polydimethylacrylamide, polyhydroxypropyl methacrylate, polyhydroxyethyl acrylate, hydroxymethylcellulose, hydroxyethylcellulose, polyaspartamide, synthetic polyamino acid, etc. Can be mentioned.
- the antibody used in the present invention is selected according to the use, for example, an antibody (primary antibody) against an antigen (eg, HER2 etc.) associated with a disease (malignant tumor etc.), or an antigen-antibody reaction with the primary antibody Means a secondary antibody to an n-th antibody that bind to each other (hereinafter also referred to as “predetermined antibody”).
- predetermined antibody a secondary antibody to an n-th antibody that bind to each other
- an azide or alkyne compound is bound to any of these antibodies, and has an azide group or a carbon-carbon triple bond moiety.
- the term “antibody” is used to include any antibody fragment or derivative, and includes, for example, Fab, Fab′2, CDR, humanized antibody, multifunctional antibody, single chain antibody (ScFv) and the like. .
- antigens include proteins (polypeptides, oligopeptides, etc.) and amino acids (including modified amino acids), and the proteins or amino acids and carbohydrates (oligosaccharides, polysaccharides, sugar chains, etc.), lipids. Or a complex with these modified molecules.
- antigens tumor markers, signal transduction substances, hormones, etc.
- antigens related to the diseases to be pathologically diagnosed are not particularly limited.
- examples of the antigen include, for example, TNF- ⁇ (Tumor Necrosis Factor ⁇ ), IL, in addition to antigens related to cancer such as cancer growth regulator, metastasis regulator, growth regulator receptor, and metastasis regulator receptor.
- Inflammatory cytokines such as the ⁇ 6 (Interleukin-6) receptor and virus-related molecules such as RSV F protein are also included in the “antigen”.
- proteins derived from cancer-related genes include ALK, FLT3, AXL, FLT4 (VEGFR3, DDR1, FMS (CSF1R), DDR2, EGFR (ERBB1), HER4 (ERBB4), EML4.
- Proteins derived from breast cancer-related genes that can serve as the above antigens are ATM, BRCA1, and BRCA2. , BRCA3, CCND1, E-Cadherin, ERBB2, ETV6, FGFR1, HRAS, KRAS, NRAS, NTRK3, p53, and PTEN Further, as a protein derived from a gene related to a carcinoid tumor, the antigen can be used. Include BCL2, BRD4, CCND1, CDKN1A, CDKN2A, CTNNB1, HES1, MAP2, MEN1, NF1, NOTCH1, NUT, RAF, SDHD, and VEGFA.
- proteins that can be used as the antigen and are derived from lung cancer-related genes include ALK, PTEN, CCND1, RASSF1A, CDKN2A, RB1, EGFR, RET, EML4, ROS1, KRAS2, TP53, and MYC.
- proteins derived from liver cancer-related genes that can serve as the antigen include Axin1, MALAT1, b-catenin, p16 INK4A, c-ERBB-2, p53, CTNNB1, RB1, C clin D1, SMAD2, EGFR, SMAD4, IGFR2, TCF1, KRAS and the like.
- Alpha, PRCC, ASPSCR1, PSF, CLTC, TFE3, p54nrb / NONO, and TFEB are examples of proteins that can be used as the antigen and are derived from kidney cancer-related genes.
- proteins that can serve as the antigen and are derived from thyroid cancer-related genes include AKAP10, NTRK1, AKAP9, RET, BRAF, TFG, ELE1, TPM3, H4 / D10S170, and TPR.
- proteins derived from ovarian cancer-related genes that can be used as the antigen include AKT2, MDM2, BCL2, MYC, BRCA1, NCOA4, CDKN2A, p53, ERBB2, PIK3CA, GATA4, RB, HRAS, RET, KRAS, and RNASET2.
- proteins that can serve as the antigen and are derived from prostate cancer-related genes can be mentioned as proteins that can serve as the antigen and are derived from prostate cancer-related genes.
- proteins that can be used as the antigen and derived from bone tumor-related genes include CDH11, COL12A1, CNBP, OMD, COL1A1, THRAP3, COL4A5, and USP6.
- the linker used in the present invention is a molecule for linking the phosphor-integrated nanoparticles and a predetermined antibody. It is desirable that the predetermined antibody (any one of the primary antibody to the n-th antibody) and the phosphor-integrated nanoparticles are bound by a linker. This is because a clearance is formed between the antibody and the phosphor-integrated nanoparticles by the linker portion, and a decrease in the fluorescence signal of the phosphor-integrated nanoparticles due to an insoluble compound (DAB or the like) can be suppressed.
- DAB insoluble compound
- an alkyne compound or an azide is bonded to one end of the hydrophilic polymer (eg, PEG), and a functional group (NHS group, thiol group (—SH), etc.) is bonded to the other end.
- a functional group such as an amino group or a maleimide group
- a reaction between the functional group of the linker and a functional group such as an NHS group or an SH group introduced on the surface of the phosphor-aggregated nanoparticle or a predetermined antibody is performed.
- linker can be introduced into the phosphor-integrated nanoparticles and antibody, and can be used for the Husgen cycloaddition reaction.
- a linker can be purchased from Thermo Scientific or NANOCOS.
- the linker is preferably a hydrophilic polymer linker, particularly preferably a polyethylene glycol (PEG) linker, from the viewpoint of hardly causing nonspecific adsorption with biomolecules.
- PEG polyethylene glycol
- the length of the linker is used to suppress a reduction in the signal intensity of the fluorescence obtained when the target antigen is stained with an insoluble byproduct caused by a staining reagent for morphological observation (eg, DAB). Therefore, it is preferable to set as follows.
- the linker directly involved in linking the antibody and the phosphor-integrated nanoparticle is present between the phosphor-integrated nanoparticle and the azide-alkyne bond.
- the number of oxyethylene units (unit number) is preferably 8 or more, more preferably 8 to 70.
- the length of the linker is preferably a length corresponding to the PEG linker (having oxyethylene units of 8 to 70).
- One of the predetermined antibody and phosphor-integrated nanoparticles used in the present invention (one having no carbon-carbon triple bond) has an azide group (-N 3 ) that causes a cycloaddition reaction with the carbon-carbon triple bond moiety.
- ⁇ Azide ⁇ A method for introducing an azide group into an antibody (any of primary to n-order antibodies) or phosphor-integrated nanoparticles is not particularly limited.
- an antibody or phosphor-integrated nanoparticles together with an azide group A method of reacting a functional group of such an azide with a functional group of an antibody or phosphor-integrated nanoparticle using a compound (azide) having another functional group capable of binding to a functional group present on the surface of the antibody is preferable. .
- a preferred azide has an azide group at one end of the molecule and reacts with a functional group (eg, —NH 3 , —SH group) present on the surface of the antibody or phosphor-integrated nanoparticle at the other end to form a covalent bond.
- a functional group eg, —NH 3 , —SH group
- examples thereof include azides having other functional groups that can be formed (eg, NHS group, maleimide group, etc.).
- a portion derived from the hydrophilic polymer described above may be included between the azide group and the functional group of such “azide”.
- azides examples include NHS (N-hydroxysuccinimide) esters having an azide group, other activated esters having an azide group (sulfo-NHS ester, sulfotetrafluorphenyl (STP) ester, etc.). It can be illustrated. Specific examples of these esters include “Azidobutyric acid NHS ester” (Product No. Cat. # 33720, manufactured by Lumi Probe) (see the following formula (1)), “Sulfo-SANPAH (sulfosuccinimidyl-6- ⁇ 4′-azido -2'-nitrophenylamino ⁇ hexanoate) "(product number 22589, manufactured by Thermo Scientific) (see formula (2) below).
- NHS N-hydroxysuccinimide
- STP sulfotetrafluorphenyl
- azides that can be used in the present invention other than those described above have functional groups such as thiol groups (SH groups) and maleimide groups as in the case of the azides, and are derived from a hydrophilic polymer linker (eg, PEG). Mention may be made of azides having a moiety (see formulas (3) and (4) below).
- the length of the portion derived from the linker of the hydrophilic polymer in the azide molecule is the number of units (as described above). The length is preferably 8 or more (in oxyethylene units), more preferably 8 or more and 70 or less.
- ⁇ Maleimide ester> A specific example (maleimide ester) of an azide having a linker-derived moiety other than the above is “Azide-PEG-Maleimide” (Product No .: PG2-AZML-400, 600, 1k, 2k, 3k, 5k, NANOCS) Manufactured).
- PG2-AZML-400” to “PG2-AZML-5K” are obtained by substituting the NHS groups of the above “PG2-AZNS-400” to “PG2-AZNS-5K” with maleimide groups, respectively.
- the oxyethylene unit and molecular length are almost the same as the corresponding product (see Table 1).
- it is preferable that m 8 to 70.
- the binding between the antibody and the azide is not particularly limited as long as the antibody and the azide can be covalently bound so that the immunoreactivity of the azide-derived azide group (—N 3 ) and the antigen of the antibody is not impaired.
- the reaction can be performed by reacting the amino group of the antibody with an azide compound having an NHS group. For example, it can be carried out by adding 5 to 100 mol of an azide compound having an NHS group to 1 mol of antibody in 0.05 M sodium borate buffer.
- the antibody and azide can be bound by reacting the antibody thiol group with an azide compound having maleimide.
- the antibody is previously reduced or thiolated (2-iminothiolane (2-IT), succinimidylacetylthiopropionate (SATP, N-succinimidyl-S-acetylthiopropionate (manufactured by Thermoscience)) ), Thiolated using succinimido 2-pyridyldithiopropionate (SPDP), etc., and then in 0.05 M sodium borate buffer (sodium borate buffer) to 1 mol of antibody.
- the azide compound having maleimide can be added in an amount of 5 to 100 mol.
- azide compound having a maleimide group or an NHS group those described above can be used.
- the pH value of the above binding reaction is preferably adjusted to 6-8, and 8.3-8. It is more preferable to adjust to 5.
- the pH can be adjusted with sodium borate or potassium hydroxide.
- the conditions for the binding reaction are not particularly limited.
- the binding reaction may be performed at room temperature for at least 1 hour, or may be performed overnight on ice.
- the antibody obtained by the binding reaction and the azide bound to each other can be purified by removing unreacted substances using a spin column for antibody purification containing a resin or the like.
- confirmation that the azide and the antibody are bound can be confirmed by, for example, ICP-MS (inductively coupled plasma mass spectrometer).
- the method for binding the azide to the phosphor-aggregated nanoparticles is not particularly limited as long as the azide can be bound to the phosphor-aggregated nanoparticles.
- azide (mainly commercially available azide)
- a functional group e.g., NHS group, maleimide group
- a functional group e.g., NHS group, maleimide group
- a functional group e.g., amino group, SH group
- a method comprising a step of reacting the functional group of the azide and the functional group of the phosphor-integrated nanoparticles to bond the azide to the phosphor-integrated nanoparticles (that is, introducing an azide group) is exemplified.
- each functional group is phosphor-assembled using a coupling agent such as a silane coupling agent. It can be introduced into nanoparticles (having OH groups on the particle surface).
- a coupling agent such as a silane coupling agent
- amino groups can be introduced onto the surface of the phosphor-integrated nanoparticles using aminopropylethyl silicate, tris (2-aminoethyl) amine, or the like.
- the reaction between the coupling agent and the surface of the phosphor-integrated nanoparticles can be carried out by reacting in the presence of the coupling agent under the general use conditions of the coupling agent. Usually, a method of stirring and reacting at room temperature for several tens of minutes to several tens of hours can be used.
- the ratio of the coupling agent to be used is 300 to 6000 times, preferably 600 to 5400 times, more preferably 2100 to 3000 times in terms of molar ratio with respect to 1 mol of the phosphor-integrated nanoparticles.
- the functional groups (amino group, SH group, etc.) on the surface of the phosphor-integrated nanoparticles can be appropriately selected and introduced depending on the type of the base material used for producing the phosphor-integrated nanoparticles. For example, if phosphor-integrated nanoparticles are produced using melamine resin, phosphor-integrated nanoparticles having an amino group or a hydroxyl group can be obtained.
- a melamine resin When a melamine resin is used, the melamine resin has many secondary amine and tertiary amine moieties, and there are few primary amine moieties (-NH 2 groups) and poor reactivity with NHS esters.
- the primary amine moiety (—NH 2 group) can be introduced to increase the reactivity with the NHS ester. Good.
- a thiol group (—SH group) can be introduced on the surface of the phosphor-integrated nanoparticles.
- a method of once introducing an amino group on the surface of the phosphor-integrated nanoparticles and converting the amino group into a thiol group can be mentioned.
- the thiolation reagent include 2-iminothiolane, N-succinimidyl-S-acetylthioacetate (SATA), and the like.
- a molar amount of 2-iminothiolane of 5000 to 50000 times is added to 1 mol of particles in a solvent such as water.
- the amino group can be introduced into the thiol group by reacting at room temperature for about 1 hour.
- an amino group or SH group is introduced on the surface of the phosphor-integrated nanoparticles is confirmed by whether or not absorption derived from the amino group or SH group can be observed by, for example, FT-IR method and XPS measurement. be able to.
- step (II) the functional group (NHS group or the like) of the azide is reacted with the functional group (amino group or the like) of the phosphor integrated nanoparticle to bond the azide to the surface of the phosphor integrated nanoparticle.
- a buffer solution eg, sodium borate buffer, PBS, etc.
- the phosphor-integrated nanoparticles having the functional group such as amino group are adjusted to 0.3 to 30 nM, and the azide is mixed so that the final concentration is 0.6 to 120 mM. And an example of reacting at room temperature for several hours (eg, 0.5 to 1.5 hours).
- washing process (III) after process (II).
- the reaction mixture obtained through the above step (II) is centrifuged, the supernatant is removed, and a buffer solution such as water or PBS containing 2 mM EDTA is further dispersed in the precipitate. It can be carried out by repeating it twice (a few times).
- One of the predetermined antibody and phosphor-integrated nanoparticles used in the present invention (one not having an azido group) has a carbon-carbon triple bond (C ⁇ C) that causes a cycloaddition reaction with the azide group.
- the method for introducing the carbon-carbon triple bond moiety into the antibody (any one of the primary to n-order antibodies) or the phosphor-integrated nanoparticles is not particularly limited.
- a reactive functional group capable of reacting with a functional group present on the surface of the phosphor-integrated nanoparticle to form a covalent bond unless the carbon-carbon triple bond itself is used to form the covalent bond,
- a method in which a functional group of such a compound is reacted with a functional group of an antibody or phosphor-integrated nanoparticles using a compound having a reactive group itself may be the reactive group is suitable.
- a resin having a carbon-carbon triple bond moiety in the side chain portion of the monomer that does not participate in the polymerization reaction in the process of polymerizing the resin monomer while incorporating the aforementioned fluorescent dye By using a monomer, a carbon-carbon triple bond portion can be directly introduced into the phosphor-integrated nanoparticles by the polymerization. Further, for example, a resin monomer having an allyl halide in the side chain is reacted with a compound of R—C ⁇ C—H in the side chain portion to form a terminal portion or a center of the raw material monomer for forming silica resin particles. A carbon-carbon triple bond portion may be introduced into the portion, the polymerization may be performed using this monomer, and the carbon-carbon triple bond portion may be directly introduced into the phosphor-integrated nanoparticles.
- alkyne compounds are collectively referred to as “alkyne compounds”. That is, the term “alkyne compound” in the present invention is not a term indicating only a linear hydrocarbon (strictly alkyne) and cyclic hydrocarbon (strictly cycloalkyne) having one carbon-carbon triple bond, but an azide group. As long as it contains a carbon-carbon triple bond moiety capable of undergoing a cycloaddition reaction with the group, it may be linear or cyclic, and a group containing an atom other than carbon or a carbon-carbon triple bond moiety It is a broad term that refers to all compounds that may further contain a group other than (for example, the reactive functional group). Such alkyne compounds include, of course, the narrowly defined alkynes and cycloalkynes themselves.
- Type of alkyne Preferred alkyne compounds have a carbon-carbon triple bond moiety at one end of the molecule and react with a functional group (eg, —NH 3 , —SH group) present on the surface of the antibody or phosphor-integrated nanoparticle at the other end.
- a functional group eg, —NH 3 , —SH group
- bifunctional alkyne compounds having a reactive functional group capable of forming a covalent bond eg, NHS group, maleimide group, etc.
- Such an alkyne compound is capable of covalently bonding a compound having a reactive group to a compound having a carbon-carbon triple bond moiety (which may be the above-described alkyne in a narrow sense) via a molecule serving as a linker as necessary.
- NHS N-hydroxysuccinimide
- sulfo-NHS-esters compounds obtained by linking with, for example, compounds having an intercarbon triple bond moiety And sulfotetrafluorophenyl (STP) ester).
- bifunctional alkyne compound examples include “Pentynoic acid STP ester” (product number Cat. # 33720, manufactured by Lumi Probe Co., Ltd.) (see the following formula (5)).
- alkyne compound having a linker-derived moiety examples include alkyne compounds having the above-described functional groups (eg, NHS group, maleimide group, etc.) and having a portion derived from a hydrophilic polymer linker (eg, PEG, etc.). (Refer to each formula (6) below).
- AK-PEG-NHS catalog numbers: PG2-AKNS-400, PG2-AKNS-600, PG2-AKNS-800, PG2-AKNS-1k, PG2-AKNS-2k, PG2-AKNS-3k, PG2- AKNS-5k (manufactured by NANOCS) (see the following formula (6) and table).
- PG2-AKNS-400, PG2-AKNS-600, PG2-AKNS-800, PG2-AKNS-1k, and PG2-AKNS-2k in which the number (n) of oxyethylene units falls within the range of 8 to 70 are preferable.
- “NHS-PEG (NH-Boc) -alkyne” product number PEG2920; Iris BIOTECH GMBH
- n 8 to 70 is preferable.
- an alkyne compound having a cyclic structure having a carbon-carbon triple bond for example, an 8-membered ring structure in the molecule is preferable.
- a bonding reaction Husgen cycloaddition reaction
- a metal catalyst eg, copper catalyst
- alkyne compound having such a cycloalkyl structure and a reactive functional group for binding to the antibody or phosphor-aggregated nanoparticles as described above include the following.
- the binding between the antibody and the alkyne is not particularly limited as long as the carbon-carbon triple bond portion derived from the alkyne is not impaired, and the antibody and the alkyne can be covalently bound so that the immunoreactivity of the antibody is not impaired.
- This can be carried out by reacting the amino group of the antibody with an alkyne compound having an NHS group. For example, it can be carried out by adding 5 to 100 mol of an alkyne compound having an NHS group to 1 mol of antibody in 0.05 M sodium borate buffer.
- the binding between the antibody and the alkyne can also be performed by reacting the thiol group of the antibody with the alkyne compound having maleimide.
- the antibody is reduced beforehand or a thiolation reagent (2-iminothiolane (2-IT), succinimidylacetylthiopropionate (SATP, N-succinimidyl-S-acetylthiopropionate (manufactured by Thermoscience)) ), N-succinimidyl 3- (2-pyridyldithio) propionate (succinimido3- (2-pyridyldithio) propionate, SPDP), etc., and then 0.05M sodium borate buffer (Sodium borate buffer) ) Can be carried out by adding 5 to 100 mol of an alkyne compound having maleimide to 1 mol of antibody.
- alkyne compound having a maleimide group or an NHS group those described above can be used.
- the pH value of the binding reaction is preferably adjusted to 6-8. More preferably, the pH is adjusted to 8.3 to 8.5. In the example using the sodium borate buffer, the pH can be adjusted with sodium borate or potassium hydroxide.
- the conditions for the binding reaction are not particularly limited.
- the binding reaction may be performed at room temperature for at least 1 hour, or may be performed overnight on ice.
- the antibody obtained by the binding reaction and the alkyne compound bound to each other can be purified by removing unreacted substances using a spin column for antibody purification containing a resin or the like.
- the confirmation that the alkyne compound and the antibody are bound can be confirmed by, for example, ICP-MS (inductively coupled plasma mass spectrometer).
- the method for binding the alkyne compound to the phosphor-aggregated nanoparticles is not particularly limited as long as the alkyne compound can be bound to the phosphor-aggregated nanoparticles.
- As a preferable method for bonding the alkyne compound and the phosphor-aggregated nanoparticles it can be achieved by using an alkyne compound instead of the azide in the above-mentioned “Method of binding phosphor-aggregated nanoparticles and azide”. Therefore, the description is omitted.
- An immunostaining reagent kit is an immunostaining reagent kit for fluorescently labeling an antigen of a tissue section on a tissue section with phosphor-integrated nanoparticles, the labeling reagent containing the phosphor-integrated nanoparticles, An antibody reagent containing an antibody directly immobilized on an antigen by an antigen-antibody reaction, or another antibody indirectly immobilized via the antibody, and the phosphor-integrated nanoparticles and the antibody An azido group (—N 3 ) is introduced into one of them, and a carbon-carbon triple bond moiety (C ⁇ C) is introduced into the other, and the Huisgen cycloaddition of the azide group and the carbon-carbon triple bond moiety By the reaction, a bond via a triazole ring is formed between the antibody and the phosphor-integrated nanoparticles, and the antigen is fluorescently labeled by directly or indirectly binding the both molecules
- the antibody reagent is obtained by dissolving a predetermined antibody (eg, HER2 antibody) to which alkyne (or alkyne compound) or azide is bound in a predetermined buffer solution, and the antibody is a specific antigen on a tissue section. That can specifically bind to.
- a predetermined antibody eg, HER2 antibody
- alkyne or alkyne compound
- azide is bound in a predetermined buffer solution
- the antibody is a specific antigen on a tissue section. That can specifically bind to.
- secondary antibodies to n-order antibodies may be included in the immunostaining reagent kit of the present invention as separate antibody reagents.
- the antibody concentration in the antibody reagent is preferably adjusted to a concentration range in which a Huisgen cyclization reaction can occur with the alkyne compound or azide of the phosphor-integrated nanoparticles.
- the molar concentration of the predetermined antibody in the antibody reagent is set to the phosphor in the labeling reagent. It is desirable to set the molar concentration of the integrated nanoparticles to be approximately the same. For example, if the molar concentration of the phosphor-integrated nanoparticles in the labeling reagent is set to 0.005 nM to 0.5 nM, the molar concentration of the antibody in the antibody reagent is also set in the range of 0.005 nM to 0.5 nM. It is desirable to do.
- buffers examples include phosphate buffers (including PBS), water, and the like.
- various blocking agents may be included in the antibody reagent, and the concentration of this blocking agent is preferably set to 1% or less in terms of final concentration.
- blocking agents include biological substances such as bovine serum albumin (BSA), casein ( ⁇ -casein, ⁇ -casein, ⁇ -casein) and gelatin.
- the labeling reagent is a fluorinated nanoparticle with alkyne (or alkyne compound) or azide bound dispersed in a specified solvent, and Huisgen cyclization between the antigen and the antibody bound to the tissue section It is used for fluorescent labeling of the antigen by an addition reaction.
- the concentration of the phosphor-aggregated nanoparticles in the labeling reagent only needs to be adjusted to be higher than the concentration causing the Husgen cycloaddition reaction on the tissue section.
- An example of the concentration of the phosphor-integrated nanoparticles contained in the labeling reagent is set to 0.005 to 0.500 nM.
- the buffer that can be used for the labeling reagent examples include phosphate buffer (including PBS), water, MES, and the like.
- the labeling reagent may contain various blocking agents, and the concentration of the blocking agent is preferably set to 1% or less in terms of final concentration.
- blocking agents include biological substances such as bovine serum albumin (BSA), casein ( ⁇ -casein, ⁇ -casein, ⁇ -casein) and gelatin.
- the metal catalyst solution optionally contained in the immunostaining reagent kit according to the present invention is a solution containing a metal ion having a catalytic ability for the Husgen cycloaddition reaction between a predetermined antibody and the above-described phosphor-aggregated nanoparticles.
- a metal ion having a catalytic ability for the Husgen cycloaddition reaction between a predetermined antibody and the above-described phosphor-aggregated nanoparticles As catalysts, Cu, Zr, W, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Ag, Au, Zn, Cd, Hg, and others that can catalyze the Husgen cycloaddition reaction of azide and alkyne Any one or two or more selected from the group consisting of metal ions can be used, and among them, Cu having excellent reaction efficiency is particularly preferable. In addition to this, for example, a particulate metal catalyst capable of generating metal ions in a solution
- the average particle diameter of the particulate metal catalyst is preferably 10 nm to 1000 ⁇ m, preferably 10 ⁇ m to 200 ⁇ m or 10 nm to 1000 nm.
- the catalyst may be a porous non-particulate catalyst, for example, a solid substrate in which catalytically active particles are embedded.
- the concentration of metal ions in the catalyst solution is such that when the catalyst solution is added to the reaction system, the concentration of metal ions in the reaction system can be adjusted to a concentration at which the Husgen cycloaddition reaction can proceed.
- concentration at which the Husgen cycloaddition reaction can proceed For example, it is preferable to contain 5 to 500 mM in total of any one or more of the metal ions listed above.
- the immunostaining method according to the present invention includes an immunoreaction step of binding and fixing the above-mentioned antibody conjugated with alkyne (or alkyne compound) or azide to an antigen on a tissue section by an antigen-antibody reaction, and azide or A staining reaction step of binding the above-described phosphor-aggregated nanoparticles, to which alkyne (or alkyne compound) is bound, to the antibody immobilized on the antigen by Huesgen cycloaddition reaction.
- the immunostaining method is preferably carried out through the following series of steps including the above two steps (immune reaction step and staining reaction step).
- the tissue section may be purchased from a commercially available one.
- the tissue of a subject human, dog, cat, etc.
- suspected of having various cancers as described above for antigen is used for general histopathological diagnosis. It can be prepared by a known method used. In this case, the tissue section of the subject is first fixed with formalin or the like, dehydrated with alcohol, then treated with xylene, and immersed in high temperature paraffin to embed the paraffin into a tissue section.
- tissue section is immersed in xylene to remove paraffin.
- the temperature is not particularly limited, but can be performed at room temperature.
- the immersion time is preferably 3 minutes or longer and 30 minutes or shorter. If necessary, xylene may be exchanged during the immersion.
- the tissue section is immersed in ethanol to remove xylene.
- the temperature is not particularly limited, but can be performed at room temperature.
- the immersion time is preferably 3 minutes or longer and 30 minutes or shorter. Further, if necessary, ethanol may be exchanged during the immersion.
- the tissue section is immersed in water (eg, distilled water) to remove ethanol.
- the temperature is not particularly limited, but can be performed at room temperature.
- the immersion time is preferably 3 minutes or longer and 30 minutes or shorter. Moreover, you may exchange water in the middle of immersion as needed.
- Activation treatment step When immunohistochemical staining is performed as histochemical staining, it is preferable to perform activation treatment of a target biomolecule according to a known method.
- the activation conditions are not particularly defined, but as the activation liquid, 0.01 M citrate buffer (pH 6.0), 1 mM ethylenediaminetetraacetic acid (EDTA) solution (pH 8.0), 5% urea, 0.1 M Tris
- EDTA ethylenediaminetetraacetic acid
- a hydrochloric acid buffer or the like can be used.
- a heating device an autoclave, a microwave, a pressure cooker, a water bath, etc. can be used.
- the temperature is not particularly limited, but can be performed at room temperature.
- the heat treatment temperature for the activation treatment can be 50 to 130 ° C., and the heat treatment time can be 5 to 30 minutes.
- washing is performed by immersing the sections after the activation treatment in PBS placed in a container.
- the temperature is not particularly limited, but can be performed at room temperature.
- the immersion time is preferably 3 minutes or longer and 30 minutes or shorter. If necessary, PBS may be replaced during the immersion.
- the immune reaction step is a step of immobilizing the aforementioned antibody against an antigen on a tissue section. Specifically, a step of directly immobilizing a primary antibody to an antigen on a tissue section by an antigen-antibody reaction, or in addition to the immobilization, the antigen is separated via the primary antibody. This is a step of indirectly fixing the antibodies (secondary to nth antibodies).
- the above-mentioned primary antibody (or primary to n-th antibody) is in a concentration higher than the final concentration of the reaction system (eg, 0.01 nM to 0.5 nM) in a buffer solution such as PBS containing 1% by weight or less of a blocking agent.
- a dispersion prepared by dispersing (or each) the antibody reagent of the immunostaining reagent kit in place of the dispersion, and placing the antigen and the primary antibody (and the primary antibody) (Secondary to nth antibody) are bound (sequentially) following the antibody.
- reaction conditions at this time include an example in which the antibody solution is reacted overnight at 4 ° C. with respect to a tissue section.
- the unreacted antibody after the reaction, it is preferable to remove the unreacted antibody by washing the tissue section with a buffer solution (PBS or the like).
- a buffer solution PBS or the like.
- the washing step include a process of removing unreacted antibody reagent and the like by immersing the stained tissue section in a container containing PBS or the like for 3 to 30 minutes, for example.
- PBS or the like may be exchanged during the immersion.
- any one of the primary antibody to the n-th antibody immobilized on the antigen in the above-described immune reaction step is performed by the Huisgen cyclization addition reaction between azide and alkyne, and the above-mentioned fluorescence This is a step of covalently bonding body-integrated nanoparticles.
- the reaction temperature of the staining reaction is not particularly limited as long as the Huesgen cycloaddition reaction proceeds, but it is preferably about 1 to 30 ° C., for example.
- the reaction time of the staining reaction is not particularly limited as long as the above-mentioned Huesgen cycloaddition reaction proceeds. For example, an example of setting it to 1 to 10 hours, more preferably about 2 to 4 hours is given.
- the final antibody concentration in the reaction system of the staining reaction is preferably 0.01 to 0.50 nM.
- the phosphor-integrated nanoparticles only need to have a sufficient amount to label the antibody part in the reaction system, and the final concentration is preferably 0.01 to 0.50 nM.
- a sufficient amount of the catalyst is sufficient in the system, and the final concentration is preferably 5 to 500 mM.
- washing step After the staining reaction step, it is preferable to perform a washing step of washing the tissue section with PBS to remove unreacted phosphor-integrated nanoparticles.
- a washing step for example, a washing step in which a tissue section is immersed in PBS adjusted to room temperature (1 to 30 ° C.) and left for 0.5 to 1 hour can be performed.
- PBS or the like may be exchanged during the immersion.
- the tissue section is stained with hematoxylin / eosin staining (HE staining) to obtain the cell shape of the tissue section and the position information of each part of the cell.
- the morphological observation processing step can be arbitrarily performed.
- the tissue section may be subjected to processing such as penetration and encapsulation for observation.
- HE staining for example, an immunostained section is stained with Mayer's hematoxylin solution for 5 minutes and then stained with hematoxylin, and then the tissue sample is washed with running water at 45 ° C. for 3 minutes, and then 5% with 1% eosin solution. Perform eosin staining with minute staining.
- Bright field observation is performed in order to acquire distribution information of cells of tissue sections or cell organs to be stained in the tissue.
- a tissue section that has been subjected to hematoxylin / eosin staining (HE staining) after immunostaining as described above is observed with an optical microscope.
- HE staining hematoxylin / eosin staining
- eosin used for morphological observation staining can not only observe in a bright field, but also emits autofluorescence when irradiated with excitation light of a predetermined wavelength, so that an excitation light with an appropriate wavelength and output is applied to a stained tissue sample. Irradiation can be observed with a fluorescence microscope.
- HER2 protein as an antigen to be detected as another staining
- a 4 ⁇ objective lens of an optical microscope is used under irradiation with appropriate illumination light.
- the objective lens is switched to 10 times, it is confirmed whether the positive findings are localized in the cell membrane or the cytoplasm, and if necessary, further searching is performed with the objective lens 20 times.
- Fluorescence observation Using a fluorescence microscope, the number of fluorescent bright spots or emission luminance is measured from a wide-field microscope image for the stained section. An excitation light source and a fluorescence detection optical filter corresponding to the absorption maximum wavelength and fluorescence wavelength of the fluorescent substance used are selected. The number of bright spots or emission luminance can be measured by using commercially available image analysis software, for example, all bright spot automatic measurement software G-Count manufactured by Zeonstrom Co., Ltd. Note that image analysis itself using a microscope is well known, and for example, a technique disclosed in Japanese Patent Laid-Open No. 9-197290 can be used.
- the field of view of the microscopic image is preferably 3 mm 2 or more, more preferably 30 mm 2 or more, and further preferably 300 mm 2 or more. Based on the number of bright spots and / or emission luminance measured from the microscopic image, the expression level of the protein (described above) derived from the specific gene of interest is evaluated.
- the long-term storage stability of the labeling reagent contained in the immunostaining reagent kit according to the present invention can be evaluated as follows, for example. Using the labeling reagent immediately after production and the labeling reagent exposed to the predetermined acceleration conditions (eg, 30 ° C., 1 month), the above-described immunostaining is performed in the same manner, and the resulting fluorescence intensity (specific signal (Strength) can be determined by quantitative and relative evaluation.
- the predetermined acceleration conditions eg, 30 ° C., 1 month
- the intensity of the fluorescent signal obtained using a labeling reagent exposed under accelerated conditions is 70% or more compared to the intensity of the fluorescent signal obtained using a labeling reagent immediately after production, a long-term storage It can be evaluated as a labeling reagent having excellent properties.
- an immunostaining method in which an antigen of a tissue section is fluorescently labeled with phosphor-integrated nanoparticles on the tissue section, and is directly fixed to the antigen by an antigen-antibody reaction.
- An azide group (—N 3 ) is introduced into one of the antibody or another antibody immobilized indirectly through the antibody and the phosphor-integrated nanoparticles, and the carbon-carbon triple bond moiety (C ⁇ C) is introduced, the antibody is immobilized on the antigen, and both the antibody and the phosphor-aggregated nanoparticles are obtained by a Husgen cycloaddition reaction between the azide group and the carbon-carbon triple bond moiety.
- a bond via a triazole ring is formed between molecules, and the antigen is fluorescently labeled with the phosphor-integrated nanoparticles by the formation. Since neither an azide group nor a carbon-carbon triple bond is present in the living body, according to the immunostaining method according to the present invention, an endogenous compound (see FIG. 4) that is a problem in the method using the biotin-avidin reaction (see FIG. 4). Noise due to endogenous biotin can be suppressed.
- the hapten-antihapten Since the binding ability of the antibody and the phosphor-integrated nanoparticles is higher than that due to the antigen-antibody reaction, and the phosphor-aggregated nanoparticles bind strongly to the antibody, the antibody is immobilized on the tissue section via the antibody. Is less likely to be released, and the decrease in the number of bright spots due to the release is suppressed, resulting in an increase in the fluorescence signal from the bright spots detected by fluorescence observation after immunostaining.
- the average particle diameter of the phosphor-integrated nanoparticles is 40 nm or more and 500 nm or less, in immunostaining using the phosphor-integrated nanoparticles, at least the position of the antibody specifically bound to the antigen is detected.
- a fluorescent signal having a sufficiently detectable intensity can be obtained from the bright spot.
- the tissue is comparable to that immediately after production.
- a fluorescent signal with an intensity sufficient to detect the antigen on the section is obtained.
- the average particle of the phosphor-integrated nanoparticles is 150 nm to 500 nm, and further 40 nm to 500 nm, the above-described effect on the fluorescence signal can be suitably obtained.
- the phosphor-integrated nanoparticles are introduced into the phosphor-integrated nanoparticles by the PEG moiety by introducing the azido group or the carbon-carbon triple bond moiety via a hydrophilic polymer linker (eg, PEG linker).
- a hydrophilic polymer linker eg, PEG linker
- the phosphors are accumulated at a position spatially separated from the position of the antibody bound to the antigen on the tissue section by at least the length of the PEG linker.
- nanoparticles can be arranged, the phosphor-aggregated nanoparticles are not easily obscured by insoluble precipitates by-produced by other staining methods combined with the above immunostaining, resulting in a reduction in fluorescence signal.
- a fluorescent signal from a bright spot can be more suitably obtained by suppressing the above.
- the effect (3) can be more suitably obtained. If the linkers of other hydrophilic polymers have the same length, the effect (3) can be obtained more suitably.
- the Husgen cycloaddition reaction is carried out in the presence of a predetermined metal catalyst (eg, copper catalyst), the Husgen cycloaddition reaction is dramatically accelerated by the predetermined metal catalyst (eg, copper catalyst). Because of acceleration, even when a predetermined antibody or phosphor-integrated nanoparticle has a low concentration (eg, around 0.05 nM), both can be reacted and bonded.
- a predetermined metal catalyst eg, copper catalyst
- the Husgen cycloaddition reaction proceeds even without the above-mentioned predetermined metal catalyst, so that the labor of immunostaining can be omitted. It is possible to reduce the number of parts for the immunostaining reagent kit.
- An immunostaining reagent kit is an immunostaining reagent kit for fluorescently labeling an antigen of a tissue section on a tissue section with phosphor-integrated nanoparticles, the labeling reagent containing the phosphor-integrated nanoparticles, An antibody reagent containing an antibody directly immobilized on an antigen by an antigen-antibody reaction, or another antibody indirectly immobilized via the antibody, and the phosphor-integrated nanoparticles and the antibody An azido group (—N 3 ) is introduced into one of them, and a carbon-carbon triple bond moiety (C ⁇ C) is introduced into the other, and the Huisgen cycloaddition of the azide group and the carbon-carbon triple bond moiety By the reaction, a bond via a triazole ring is formed between the antibody and the phosphor-integrated nanoparticles, and the antigen is fluorescently labeled by directly or indirectly binding the both molecules.
- the immunostaining kit Like From it and is used to, by using the immunostaining kit, it is possible to highly inspection accuracy immunostaining as described above (1). Furthermore, when the immunostaining kit has the same configuration as the above (2) to (6), the effects described in (2) to (6) can be obtained when the kit is used for fluorescent immunostaining. .
- sulforhodamine 101 (Sulforhodamine 101, Sigma-Aldrich), which is a red luminescent dye, was added as a fluorescent dye to 22 mL of distilled water and dissolved. Thereafter, 2 mL of a 5% by weight aqueous solution of an emulsion of an emulsifier for emulsion polymerization (registered trademark) 430 (polyoxyethylene oleyl ether, manufactured by Kao Corporation) or “Latemul (registered trademark) PD-430” (Kao Chemical Co., Ltd.) is added to this solution. added. This solution was heated to 70 ° C. while stirring on a hot stirrer, and then 0.65 g of melamine resin raw material Nicalak MX-035 (manufactured by Nippon Carbide Industries Co., Ltd.) was added to this solution.
- the mixture was centrifuged at 20000 G for 15 minutes in a centrifuge (Kubota Micro Cooling Centrifuge 3740), and after removing the supernatant, ultrapure water was added and ultrasonically irradiated to redisperse. Centrifugation, supernatant removal, and washing by redispersion in ultrapure water were repeated 5 times.
- the obtained melamine particles were positively charged because the melamine resin itself contains many amino groups in the skeleton.
- the charge of the resin particles was evaluated by analyzing resin components by NMR, IR, etc. and measuring zeta potential.
- the nanoparticles were observed with a scanning electron microscope (SEM; Model S-800 manufactured by Hitachi (registered trademark)), and the average particle size and coefficient of variation were calculated.
- the average particle diameter of the obtained phosphor-integrated nanoparticles was 150 nm, and the coefficient of variation was 12%.
- Production Example 1 was the same as Production Example 1 except that 20.9 mg of sulforhodamine 101 (Sulforhodamine 101, Sigma-Aldrich) and 0.95 g of melamine resin raw material Nicalac MX-035 (Nihon Carbide Industries) were used. Phosphor integrated nanoparticles (average particle size 550 nm) were produced.
- ⁇ Production Example III ⁇ Manufacture of phosphor-integrated nanoparticles (average particle size 800 nm) ⁇
- Production Example 1 the same procedure as in Production Example 1 was conducted except that 23.1 mg of sulforhodamine 101 (Sulforhodamine 101, Sigma-Aldrich) and 1.05 g of melamine resin raw material Nicalac MX-035 (Nippon Carbide Industries) were used. Phosphor integrated nanoparticles (average particle size 800 nm) were produced.
- ⁇ Production Example IV ⁇ Production of phosphor-integrated nanoparticles (average particle size 40 nm) ⁇
- the phosphor integrated nano-particles were manufactured in the same manner as in Production Example 1 except that 9.9 mg of Sulforhodamine 101 (Sigma Aldrich) and 0.45 g of melamine resin raw material Nicalac MX-035 (Nihon Carbide Industries) were used. Particles (average particle size 40 nm) were produced.
- Example 1-1 In Example 1-1, as described below, an alkyne compound is bound to an antibody, an azide is bound to a phosphor-aggregated nanoparticle, and a copper ion catalyst solution made of 50 mM copper bromide (CuBr).
- An immunostaining reagent kit was prepared. At this time, copper bromide (CuBr) was put in the kit in a solid state, and a predetermined amount of water was added to obtain a solution having a predetermined concentration. Furthermore, using this, immunostaining was performed on a specimen slide (tissue array slide) on which tissue sections with different expression levels of HER2 antigen were mounted.
- Step (1) 1 mg of the above phosphor-integrated nanoparticles were dispersed in 5 mL of pure water to prepare a dispersion. Subsequently, 20 ⁇ L of Tris (2-aminoethyl) amine (Tris (2-aminoethyl) amine) was added to the above dispersion, followed by heating and stirring at 70 ° C. for 20 minutes.
- Tris (2-aminoethyl) amine Tris (2-aminoethyl) amine
- Step (2) The reaction mixture was centrifuged at 10,000 G for 60 minutes, and the supernatant was removed.
- Step (3) Ethanol was added to disperse the sediment and centrifuged again. Washing with ethanol and pure water was performed once by the same procedure. When the FT-IR measurement and XPS measurement of the resulting amino group-modified nanoparticles were performed, absorption derived from the amino group could be observed, confirming that the amino group was modified.
- Step (4) The amino group-modified nanoparticles obtained in step (3) were adjusted to 3 nM using PBS.
- Step (5) ALK-PEG-NHS (PG2-AKNS-2k, NANOCOS) was mixed with the solution prepared in step (4) to a final concentration of 10 mM and reacted at room temperature for 1 hour.
- PG2-AKNS-2k, NANOCOS PG2-AKNS-2k, NANOCOS
- Step (6) The reaction mixture was centrifuged at 10,000 G for 60 minutes, and the supernatant was removed.
- Step (7) PBS containing 2 mM of EDTA was added to disperse the sediment of phosphor-aggregated nanoparticles, and then centrifuged again. The washing
- an anti-rabbit antibody (5196-4504) manufactured by AbD Serotec was dissolved in PBS so as to be 1.0 mg / mL.
- "NHS-PEG12-Azide” (Catalog No. 26131, manufactured by Thermo Scientific (or Thermo Fisher Scientific, the same shall apply hereinafter)) is added to 100 mol per 1 mol of this anti-rabbit antibody. And mixed. The mixed solution was further allowed to stand at 37 ° C. for 2 hours to carry out a reaction for binding the NHS group of “NHS-PEG12-Azide” to the amino group of the antibody. After the reaction, the reaction solution was subjected to a gel filtration column (Zaba Spin Desaling Columns: Funakoshi) and fractionated to produce an antibody reagent in which the antibody was dissolved in PBS.
- a gel filtration column Zaba Spin Desaling Columns: Funakoshi
- Copper bromide (CuBr) (product number 212865, manufactured by Sigma-Aldrich) was purchased as a copper catalyst, and diluted with PBS so that the copper ion concentration was 50 mM to prepare a metal catalyst solution.
- IHC Immunohistochemistry
- a dispersion (labeling reagent) of phosphor-aggregated nanoparticles modified with the alkyne compound, an anti-HER2 antibody (from rabbit, 4B5, manufactured by Ventana), a solution of an anti-rabbit antibody modified with the azide (secondary antibody reagent), and Immunostaining was performed using an immunostaining reagent kit comprising the metal catalyst solution as described below.
- the tissue array slide was immunostained by performing the following steps in order using the above immunostaining reagent kit and the like.
- a tissue array slide (br243) manufactured by US Biomax was used, and a tissue section of a breast cancer tissue (HER2 (+) positive) and a normal cell tissue section (HER2 ( ⁇ ) negative) were used. Using.
- HER2 staining concentration of each tissue section described above was observed by DAB staining, and three lots of HER2 high expression (HER2 3+), HER2 low expression (HER2 +), and HER2 negative (HER2 ⁇ ) were selected. Prepared and immunostained each lot. Note that the “HER2 3+”, “HER2 +”, and “HER2 ⁇ ” correspond to the IHC method criteria “3+”, “1+”, and “0” in Table 3 above, respectively.
- Step (2C) The tissue section of the tissue array slide that had undergone the step (2B) was immersed in PBS for 30 minutes.
- HE staining immunostained tissue sections were stained with Mayer's hematoxylin solution for 5 minutes to perform hematoxylin staining. The sections were then washed with running water at 45 ° C. for 3 minutes.
- eosin staining was performed by staining with 1% eosin solution for 5 minutes. Then, the operation which was immersed in pure ethanol for 5 minutes was performed 4 times, and washing
- the excitation light was set to 575 to 600 nm by passing through an optical filter.
- the range of the wavelength (nm) of fluorescence to be observed was also set to 612 to 682 nm by passing through an optical filter.
- the excitation wavelength conditions at the time of microscopic observation and image acquisition were such that the irradiation energy near the center of the field of view was 900 W / cm 2 for excitation at 580 nm.
- the exposure time at the time of image acquisition was arbitrarily set (for example, set to 4000 ⁇ sec) so as not to saturate the luminance of the image.
- a microscope image taken with a fluorescence microscope or the like a portion where the luminance exceeds a predetermined threshold is measured as a bright spot, and the number of phosphor-integrated nanoparticles per cell and the intensity of the fluorescence signal are measured. Calculation and accuracy evaluation were performed (see Table 4).
- evaluation value (Evaluation value) (Evaluation 1) ⁇ Evaluation of low non-specific adsorption ⁇
- “Evaluation 1” indicates the result of performing a series of steps including the above immunostaining on a tissue section in which HER2 antigen is not present (IHC method score HER2 (0)) and the evaluation result based on the result.
- the upper is the result of evaluation 1, the lower number is the number of bright spots), the smaller the number of bright spots, the less non-specific adsorption and the higher the accuracy of antigen detection.
- the number of bright spots resulting from non-specific adsorption per average cell in the observation field of the tissue section where the HER2 antigen is not present, and the results of accuracy evaluation based on the number of bright spots are shown.
- the evaluation “ ⁇ ” is the case where the number of bright spots per cell is 5 or less in the above observation, and the non-specific adsorption of the phosphor-integrated nanoparticles and the predetermined antibody is small and the detection accuracy is low. Indicates high.
- the evaluation “x” is a case where the number of bright spots per cell measured in the above observation is 6 or more, and indicates that non-specific adsorption of phosphor-integrated nanoparticles is large and detection accuracy is low.
- the evaluation “impossible to measure” indicates a case where the bright spot itself cannot be confirmed.
- Evaluation 2 is a result of performing a series of steps including the above immunostaining on a tissue section highly expressing the HER2 antigen (IHC method score HER2 (3+)) and an evaluation result (fluorescence signal) (Strength evaluation results). The stronger the fluorescent signal from the bright spot, the easier it is to detect the antigen (the higher the detection accuracy of the antigen).
- the numerical value of the item of evaluation 2 in Table 4 shows the relative value of the intensity of the fluorescence signal. This relative value is a relative value with respect to other examples and comparative examples, and is expressed as “100” of Example 1-1.
- the evaluation “ ⁇ ” indicates that the relative value is 70 or more, and that the intensity of the fluorescent signal is sufficient for the bright spot measurement.
- Evaluation “ ⁇ ” indicates a case where the relative value is 50 or more and less than 70, and indicates that the intensity of the fluorescent signal is slightly inferior, but is a level at which a bright spot can be measured.
- the evaluation “ ⁇ ” indicates a case where the relative value is 0 or more and less than 50, and indicates that the intensity of the fluorescent signal is insufficient for the bright spot measurement.
- the evaluation “impossible to measure” indicates a case where the bright spot itself cannot be confirmed.
- Evaluation 3 indicates the intensity of the fluorescence signal obtained as a relative value when a series of steps including the immunostaining is performed using the labeling reagent stored at 30 ° C. for 1 month in the storage evaluation test ( This relative value is shown as a relative value when the intensity of the fluorescent signal in Evaluation 2 of Example 1-1 is set to “100” as a reference).
- the value (%) in parentheses indicates the following bright spot retention rate (%) (see the following formula 1).
- Bright spot retention rate (%) number of bright spots (stored at 30 ° C.
- the evaluation “ ⁇ ” indicates that the bright spot retention rate (%) is 70% or more, and that the storage stability of the labeling reagent is high (as a result, the storage stability of the immunostaining reagent kit is high). Show. Evaluation “x” shows that a bright spot retention rate (%) is less than 70%, and the said preservability is low.
- Example 1 except that the phosphor integrated nanoparticles (average particle diameter 550 nm) produced in Production Example II were used instead of the phosphor integrated nanoparticles (average particle diameter 150 nm) used in Example 1-1.
- phosphor-integrated nanoparticles modified with an alkyne compound (having a carbon-carbon triple bond moiety) were produced, and a series of steps including immunostaining and evaluation were performed. The results are shown in Table 4.
- Example 1 except that the phosphor-integrated nanoparticles (average particle diameter 800 nm) produced in Production Example III were used instead of the phosphor-integrated nanoparticles (average particle diameter 150 nm) used in Example 1-1.
- phosphor-integrated nanoparticles modified with an alkyne compound (having a carbon-carbon triple bond moiety) were produced, and a series of steps including immunostaining and evaluation were performed. The results are shown in Table 4.
- Example 1 except that the phosphor integrated nanoparticles (average particle size 40 nm) produced in Production Example IV were used instead of the phosphor integrated nanoparticles (average particle size 150 nm) used in Example 1-1.
- phosphor-integrated nanoparticles modified with an alkyne compound (having a carbon-carbon triple bond moiety) were produced, and a series of steps including immunostaining and evaluation were performed. The results are shown in Table 4.
- Example 2-1 ⁇ Manufacture of phosphor-integrated nanoparticles (150nm) modified with azide ⁇
- alkyne compound “ALK-PEG-NHS” PG2-AKNS-2k, NANOCOS
- Phosphor integrated nanoparticles modified with azide having an azide group
- NHS-PEG12-Azide Catalog No. 26131, manufactured by Thermo Scientific
- Example 2-1 The operations (preparation of copper catalyst, immunostaining, evaluation, etc.) other than the production of the phosphor-integrated nanoparticles and antibody were performed in the same manner as in Example 1-1.
- the results of Example 2-1 are shown in Table 4.
- Example 2-2 In Example 2-1, Example 2-1, except that the phosphor integrated nanoparticles (average particle diameter 550 nm) produced in Production Example II were used instead of the phosphor integrated nanoparticles (average particle diameter 150 nm).
- the phosphor integrated nanoparticles average particle diameter 150 nm.
- Example 2-3 In Example 2-1, Example 2-1, except that the phosphor integrated nanoparticles (average particle size 800 nm) produced in Production Example III were used instead of the phosphor integrated nanoparticles (average particle size 150 nm).
- Example 2-4 In Example 2-1, Example 2-1, except that the phosphor integrated nanoparticles (average particle size 40 nm) produced in Production Example IV were used instead of the phosphor integrated nanoparticles (average particle size 150 nm).
- the phosphor integrated nanoparticles average particle size 150 nm.
- streptavidin manufactured by Wako Pure Chemical Industries, Ltd.
- 2-Iminothiolane manufactured by Pierce
- This streptavidin solution was desalted with a gel filtration column (Zaba Spin Desaling Columns: Funakoshi) to obtain 0.04 mg of streptavidin having an SH group.
- Step (1) 1 mg of the above phosphor-integrated nanoparticles were dispersed in 5 mL of pure water to prepare a dispersion. Subsequently, 20 ⁇ L of Tris (2-aminoethyl) amine (Tris (2-aminoethyl) amine) was added to the above dispersion, followed by heating and stirring at 70 ° C. for 20 minutes.
- Tris (2-aminoethyl) amine Tris (2-aminoethyl) amine
- Step (2) The reaction mixture was centrifuged at 10,000 G for 60 minutes, and the supernatant was removed.
- Step (3) Ethanol was added to disperse the sediment and centrifuged again. Washing with ethanol and pure water was performed once by the same procedure.
- the obtained amino group-modified nanoparticles were subjected to FT-IR measurement and XPS measurement. As a result, absorption derived from the amino group was observed, and it was confirmed that the amino group was modified.
- step (A) was performed using the biotinylated anti-HER2 antibody and phosphor-integrated nanoparticles modified with streptavidin. Went. Other than that, immunostaining and evaluation were performed in the same manner as in Example 1-1. The results are shown in Table 4.
- anti-fluorescein antibody Anti-Fluorescein, Go-Poly, SP-0601, Vector Laboratories
- Anti-Fluorescein Go-Poly, SP-0601, Vector Laboratories
- 2-Iminothiolane Pirce
- 64 mg / mL at room temperature For 1 hour. That is, a thiol group was introduced to the amino group of the anti-fluorescein antibody.
- the anti-fluorescein antibody solution was desalted with a gel filtration column (Zaba Spin Desaling Columns: Funakoshi) to obtain 0.04 mg of an anti-fluorescein antibody having an SH group.
- Step (1) 1 mg of the above phosphor-integrated nanoparticles were dispersed in 5 mL of pure water to prepare a dispersion. Next, 20 ⁇ L of Tris (2-aminoethyl) amine was added to the dispersion, and the mixture was heated and stirred at 70 ° C. for 20 minutes.
- Step (2) The reaction mixture was centrifuged at 10,000 G for 60 minutes, and the supernatant was removed.
- Step (3) Ethanol was added to disperse the sediment and centrifuged again. Washing with ethanol and pure water was performed once by the same procedure.
- the obtained amino group-modified nanoparticles were subjected to FT-IR measurement and XPS analysis. As a result, absorption derived from the amino group was observed, and it was confirmed that the amino group was modified.
- Example 1-1 ⁇ Immunostaining ⁇ Instead of the ⁇ immune reaction step ⁇ and ⁇ staining reaction step ⁇ in Example 1-1, the above-described fluorescein-modified anti-rabbit antibody and phosphor-integrated nanoparticles modified with the anti-fluorescein antibody were used, and the following steps (B ) Other than that, immunostaining and evaluation were performed in the same manner as in Example 1-1. The results are shown in Table 4.
- the sulforhodamine 101 having an amino group introduced therein is dissolved in 1 mL of dichloromethane (CH 2 Cl 2 ), and an amount of “ALK-PEG corresponding to 1.1 mol per 1 mol of the sulforhodamine 101 having an amino group introduced thereinto.
- -NHS (PG2-AKNS-2k, NANOCOS) was added and mixed and allowed to react overnight at room temperature.
- the resulting reaction solution was purified by silica gel chromatography.
- a solution of sulforhodamine 101 having an alkyne-derived carbon-carbon triple bond moiety via PEG was prepared. When FT-IR measurement was performed on this sulforhodamine 101, absorption derived from a carbon-carbon triple bond was observed, and it was confirmed that an alkyne compound was bound (not shown).
- Comparative Example 1 using the biotin-streptavidin bond, the biotin-streptavidin bond is a strong bond as in the Husgen cycloaddition reaction and a strong fluorescence signal is obtained. Since it binds to endogenous biotin, nonspecific adsorption cannot be suppressed. Therefore, Comparative Example 1 cannot achieve both staining specificity and luminescence performance in immunostaining.
- Comparative Example 2 using the binding between the hapten and the anti-hapten antibody, since the binding between the hapten and the anti-hapten antibody is specific, nonspecific binding is unlikely to occur.
- the bond is weaker than the bond due to the Husgen cycloaddition reaction, and the binding between the fluorescent aggregate nanoparticle and the antibody is easily released accordingly. The decline cannot be suppressed. Therefore, Comparative Example 2 cannot achieve both staining specificity and luminescence performance in immunostaining.
- the immunostaining method according to the present invention and the immunostaining reagent kit used therefor have been described in detail based on the embodiments and examples.
- the present invention is not limited to these examples and the like, and is claimed. Changes in design are allowed without departing from the scope of the present invention described in the above.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Pathology (AREA)
- Biotechnology (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
An azide group (-N3) is introduced into one of an antibody which can be immobilized onto an antigen directly by an antigen-antibody reaction or another antibody which can be immobilized onto the antigen indirectly through the aforementioned antibody and a phosphor-integrated nanoparticle and a carbon-carbon triple bond part (C≡C) is introduced into the other, the antibody is immobilized onto the antigen, a bond through a triazole ring is formed between a molecule of the antibody and a molecule of the phosphor-integrated nanoparticle by a Huisgen cycloaddition reaction between the azide group and the carbon-carbon triple bond part, and the antigen is fluorescently labeled with the phosphor-integrated nanoparticle through the aforementioned formation. In this manner, it becomes possible to prevent the occurrence of non-specific adsorption of a fluorescent dye nanoparticle which may cause the generation of signal noise, and it also becomes possible to prevent the drop out of the bonding between the antibody bonded to the antigen to be detected and the phosphor-integrated nanoparticle and therefore prevent the reduction in signals due to the aforementioned drop out.
Description
本発明は、免疫染色法、およびこれに用いられる免疫染色試薬キットに関する。 The present invention relates to an immunostaining method and an immunostaining reagent kit used therefor.
従来、医学的診断の1つとして病理診断が行なわれている。病理医は人体から採取した組織片に対して行った生体検査の結果を示すデータから病気を診断し、治療や手術の要不要を臨床医に伝える。患者の状態と病理診断によって、内科系医師は薬物治療方針、外科系の医師は手術を行うか否かを決定する。 Conventionally, pathological diagnosis is performed as one of medical diagnosis. A pathologist diagnoses a disease from data indicating the result of a biopsy performed on a tissue piece collected from a human body, and informs a clinician whether treatment or surgery is necessary. Depending on the patient's condition and pathological diagnosis, the medical doctor decides the drug treatment policy, and the surgical doctor decides whether or not to perform the operation.
前記診断のためのデータを提供するために、臓器摘出や針生検によって得た組織検体を厚さ数ミクロン程度に薄切して組織切片(組織標本)を作成し、組織切片に対して所定の染色処理を行った後、様々な所見を得るために光学顕微鏡や蛍光顕微鏡を用いて観察することが広く行われている。多くの場合、組織切片は、採取した組織を固定するため脱水し、パラフィンブロック化した後、数μmの厚さに薄切りし、パラフィンを取り除いて作製される。ここで、組織切片は光を殆ど吸収および散乱せず無色透明に近いため、上記観察に先立って、組織切片の細胞形態を観察するための形態観察染色(ヘマトキシリンおよびエオジンの2つの色素を用いるヘマトキシリン・エオジン染色(HE染色))が標準的に行われる。他の形態観察染色としては、例えば細胞診に用いられるパパニコロウ染色(Pap染色)等が挙げられる。 In order to provide data for the diagnosis, a tissue specimen (tissue specimen) is prepared by slicing a tissue specimen obtained by organ excision or needle biopsy to a thickness of several microns, In order to obtain various findings after dyeing treatment, observation using an optical microscope or a fluorescence microscope is widely performed. In many cases, tissue sections are prepared by dehydrating and fixing paraffin blocks to fix the collected tissues, then slicing them to a thickness of several μm and removing the paraffin. Here, since the tissue section hardly absorbs and scatters light and is almost colorless and transparent, prior to the above observation, morphological observation staining for observing the cell morphology of the tissue section (hematoxylin using two dyes, hematoxylin and eosin) -Eosin staining (HE staining) is performed as standard. Examples of other morphological observation staining include Papanicolaou staining (Pap staining) used for cytodiagnosis.
さらに、被験者が対象疾患に罹患しているか否かを判断するためのデータを提供するために、被験者の組織切片等について免疫染色が行われている。この免疫染色では、例えば、前記罹患の有無によって発現量が増減する生体内の分子(抗原)に蛍光標識した抗体を特異的に結合させ、蛍光標識した抗体由来の蛍光シグナルの量から疾患に関連する抗原の量を定量することが行われる。これにより、被験者が対象の疾患に罹患しているか否かを診断するためのデータが提供される。 Furthermore, in order to provide data for determining whether or not the subject suffers from the target disease, immunostaining is performed on the tissue sections and the like of the subject. In this immunostaining, for example, a fluorescently labeled antibody is specifically bound to an in vivo molecule (antigen) whose expression level increases or decreases depending on the presence or absence of the disease, and the amount of fluorescent signal derived from the fluorescently labeled antibody is related to the disease. The amount of antigen to be quantified is performed. Thereby, data for diagnosing whether or not the subject suffers from the target disease is provided.
従来から知られている免疫染色法としては蛍光標識(蛍光色素や蛍光体ナノ粒子、蛍光色素や蛍光ナノ粒子を樹脂等で集積した粒子)を用いた方法があり、蛍光体集積ナノ粒子を共有結合させた1次抗体を組織切片上の抗原に結合させることで前記抗原を蛍光染色する方法(1次抗体法)、組織切片上の抗原に1次抗体を結合させた状態で、蛍光体集積ナノ粒子と共有結合を介して連結された2次抗体を前記1次抗体に結合させて抗原を蛍光染色する方法(2次抗体法)、ビオチン(またはアビジン)を付加した蛍光集積体ナノ粒子と、アビジン(またはビオチン)を付加した2次抗体とをそれぞれ調製し、組織切片上の抗原に対して1次抗体を結合させた後、該1次抗体に対して前記2次抗体を結合させ、さらに、該2次抗体に対してストレプトアビジン-ビオチンの特異的な結合を介して蛍光体集積ナノ粒子を結合させて前記抗原を蛍光標識する方法(ビオチン-アビジン法)が知られている(例えば特許文献1参照)。 Conventionally known immunostaining methods include methods using fluorescent labels (fluorescent dyes and fluorescent nanoparticles, particles in which fluorescent dyes and fluorescent nanoparticles are integrated with resin, etc.), and share fluorescent integrated nanoparticles. Method of fluorescently staining the antigen by binding the bound primary antibody to the antigen on the tissue section (primary antibody method), phosphor accumulation in a state where the primary antibody is bound to the antigen on the tissue section A method in which a secondary antibody linked to a nanoparticle via a covalent bond is bound to the primary antibody to fluorescently stain an antigen (secondary antibody method), a fluorescent aggregate nanoparticle to which biotin (or avidin) is added; And a secondary antibody added with avidin (or biotin), and after binding the primary antibody to the antigen on the tissue section, the secondary antibody is bound to the primary antibody, In addition, the secondary antibody Streptavidin - how through specific binding of biotin to bind the fluorescent integrated nanoparticles fluorescently labeling the antigen (biotin - avidin method) is known (for example, see Patent Document 1).
国際公開2012/029752号International Publication 2012/029752
しかしながら、前述したビオチン-アビジン法の場合、生体内(組織切片内)に天然のビオチン(内因性のビオチン)が存在しているため、上記蛍光体集積ナノ粒子に連結されたストレプトアビジンが内因性のビオチンと意図しない結合反応(非特異的な吸着)をしてしまい、組織切片上の抗原以外の部分も蛍光標識される結果、シグナルノイズが増加してしまう問題がある。 However, in the case of the biotin-avidin method described above, natural biotin (endogenous biotin) is present in the living body (in the tissue section), so that the streptavidin linked to the phosphor-integrated nanoparticles is endogenous. As a result of unintentional binding reaction (nonspecific adsorption) with biotin, and fluorescent labeling of parts other than the antigen on the tissue section, there is a problem that signal noise increases.
一方、上述した1次抗体法または2次抗体法に関連する方法として、以下の免疫染色法(ハプテン-抗ハプテン抗体法)が考えられる。このハプテン-抗ハプテン抗体法は、まず、1次抗体または2次抗体に連結させるためのハプテン(低分子化合物、たとえばFITC)に対するモノクロナール抗体(抗ハプテン抗体、たとえば抗FITC抗体)を作製する。次に、この抗ハプテン抗体に対して蛍光体集積ナノ粒子を共有結合等により連結させる。そして、組織切片上の抗原に結合した1次抗体に連結されたハプテン、または該1次抗体と結合した2次抗体に連結されたハプテンに対して、前記抗ハプテン抗体を特異的に結合させて、前記抗原を蛍光標識する方法である。 On the other hand, the following immunostaining method (hapten-anti-hapten antibody method) can be considered as a method related to the primary antibody method or the secondary antibody method described above. In this hapten-anti-hapten antibody method, first, a monoclonal antibody (anti-hapten antibody, eg, anti-FITC antibody) against a hapten (low molecular compound, eg, FITC) to be linked to the primary antibody or secondary antibody is prepared. Next, the phosphor-aggregated nanoparticles are linked to the anti-hapten antibody by a covalent bond or the like. The anti-hapten antibody is specifically bound to a hapten linked to a primary antibody bound to an antigen on a tissue section or to a hapten linked to a secondary antibody bound to the primary antibody. , A method of fluorescently labeling the antigen.
ハプテン-抗ハプテン抗体法の場合、使用するハプテンとして生体内に存在しないハプテンを使用すれば、上記ビオチン-アビジン法のように生体内の分子と反応することがなく非特異的な結合が起きることはない。したがって、上述したシグナルノイズが増えるという問題は生じない。しかし、ハプテン-抗ハプテンの結合はビオチン-アビジン間の結合と比べて結合能(結合力)が劣るため、蛍光体集積ナノ粒子をハプテン-抗ハプテンの結合を介して1次抗体や2次抗体に結合する場合に結合効率が低かったり、結合後に結合が外れて蛍光体集積ナノ粒子が脱落したりするため、蛍光シグナルの強度の低下に繋がるという問題がある。このため、上述した非特異的な吸着をすることがなく、且つ、蛍光体集積ナノ粒子を高い結合能でもって1次抗体や2次抗体等と結合させる免疫染色法が望ましい。 In the case of the hapten-anti-hapten antibody method, if a hapten that does not exist in the living body is used as the hapten to be used, non-specific binding occurs without reacting with molecules in the living body as in the biotin-avidin method described above. There is no. Therefore, the problem that the signal noise described above increases does not occur. However, since the binding of hapten-anti-hapten is inferior to the binding between biotin and avidin (binding force), phosphor-aggregated nanoparticles can be converted into primary and secondary antibodies via hapten-anti-hapten binding. In the case of binding to the phosphor, there is a problem that the coupling efficiency is low, or the coupling is released after the coupling and the phosphor-integrated nanoparticles are dropped off, leading to a decrease in the intensity of the fluorescence signal. For this reason, the above-mentioned immunostaining method is preferred in which the non-specific adsorption described above is performed and the phosphor-aggregated nanoparticles are bound to the primary antibody, the secondary antibody or the like with high binding ability.
また、ビオチン-アビジン法やハプテン-抗ハプテン抗体法の場合、これらの方法で用いる標識試薬(ビオチンや抗ハプテン抗体を付加した蛍光集積体ナノ粒子の分散液)を長期保存すると、保存中にストレプトアビジンや抗ハプテン抗体の劣化が起こり、標識試薬の染色性能が低下してしまう問題があり、高い保存性が望ましい。 In addition, in the case of biotin-avidin method or hapten-anti-hapten antibody method, if the labeling reagent used in these methods (dispersion of fluorescent aggregate nanoparticles added with biotin or anti-hapten antibody) is stored for a long time, it will be strept during storage. Avidin and anti-hapten antibodies are deteriorated and there is a problem that the staining performance of the labeling reagent is lowered, and high storage stability is desirable.
本発明は、上記問題に鑑みてなされたものであって、免疫染色において蛍光シグナルのノイズ原因となる蛍光色素ナノ粒子の非特異的吸着を抑制することができるとともに、抗体と蛍光集積ナノ粒子との結合力を高めて蛍光シグナルの低下を抑制することができる免疫染色法の提供、および該免疫染色法に使用可能であり、長期保存性に優れる免疫染色試薬キットの提供をすることを目的とする。 The present invention has been made in view of the above problems, and can suppress non-specific adsorption of fluorescent dye nanoparticles that cause noise of fluorescent signals in immunostaining, and can be combined with antibodies and fluorescent integrated nanoparticles. The purpose of the present invention is to provide an immunostaining method that can suppress the decrease in the fluorescence signal by increasing the binding force of the protein, and to provide an immunostaining reagent kit that can be used in the immunostaining method and has excellent long-term storage stability. To do.
本発明者らは、(1)アジドとアルキンの間で起こるヒュスゲン環化付加反応は、反応の選択性が非常に高く、アジドやアルキンが他の化合物と反応して結合をつくることがほぼないこと、さらに、(2)銅触媒の存在、あるいは、アルキンの構造を工夫する(例;8員環構造のアルキンを用いる)ことにより、水中、中性、室温という温和な条件であってもヒュスゲン環化反応が速やかに起こること、さらには、(3)ヒュスゲン環化付加反応を用いて、モノマー等の分子同士を共有結合させることができること、(4)アジドとアルキンのヒュスゲン環化反応は、カルボン酸活性エステルとアミンの結合反応や、マレイミドとチオールとの結合反応と同じように共有結合を形成可能であること、に着目し、抗原と蛍光体集積ナノ粒子との結合にアジド-アルキン間のヒュスゲン環化付加反応を利用することで上記問題が解決できることを見出して本発明に至った。 The inventors of the present invention (1) The Husgen cycloaddition reaction occurring between an azide and an alkyne has very high reaction selectivity, and the azide or alkyne hardly reacts with other compounds to form a bond. In addition, (2) the presence of a copper catalyst or the structure of the alkyne (eg, using an alkyne having an 8-membered ring structure) makes it possible to use Husgen even under mild conditions in water, neutrality, and room temperature. The cyclization reaction occurs rapidly, and further, (3) the Husgen cycloaddition reaction can be used to covalently bond molecules such as monomers, and (4) the auside and alkyne Huisgen cyclization reaction Focusing on the fact that covalent bonds can be formed in the same way as the carboxylic acid active ester-amine coupling reaction and the maleimide-thiol coupling reaction, Coupled to azido - and found that the above problems can be solved by utilizing Hyusugen cycloaddition reaction between an alkyne leading to the present invention.
すなわち、上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した免疫染色法は、組織切片上で該組織切片の抗原を蛍光体集積ナノ粒子により蛍光標識する免疫染色法であって、
前記抗原に対して抗原抗体反応により直接的に固定される抗体、または該抗体を介して間接的に固定される別の抗体と蛍光体集積ナノ粒子との、いずれか一方にアジ基(-N3)が導入され、他方に炭素間三重結合部分(C≡C)が導入されており、
前記抗原に前記抗体を固定させ、
前記アジ基と前記炭素間三重結合部分とのヒュスゲン環化付加反応でもって、前記抗体と蛍光体集積ナノ粒子との両分子間にトリアゾール環を介した結合を形成し、該形成により前記抗原を前記蛍光体集積ナノ粒子により蛍光標識する免疫染色法である。
That is, in order to achieve at least one of the above-mentioned objects, an immunostaining method reflecting one aspect of the present invention is an immunostaining in which an antigen of the tissue section is fluorescently labeled with phosphor-integrated nanoparticles on the tissue section. Law,
Either an antibody directly immobilized on the antigen by an antigen-antibody reaction, or another antibody immobilized indirectly via the antibody, and the phosphor-aggregated nanoparticles may have an azide group (—N 3 ) is introduced, and the carbon-carbon triple bond moiety (C≡C) is introduced on the other side,
Immobilizing the antibody to the antigen;
In the Huisgen cycloaddition reaction between the azide group and the carbon-carbon triple bond moiety, a bond via a triazole ring is formed between both molecules of the antibody and the phosphor-aggregated nanoparticle, and the antigen is formed by the formation. In this immunostaining method, fluorescent labeling is performed with the phosphor-integrated nanoparticles.
また、上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した免疫染色試薬キットは、組織切片上で該組織切片の抗原を蛍光体集積ナノ粒子により蛍光標識するため免疫染色試薬キットであって、
蛍光体集積ナノ粒子を含む標識試薬と、前記抗原に対して抗原抗体反応により直接的に固定される抗体、または、該抗体を介して間接的に固定される別の抗体を含む抗体試薬とを備えており、
前記蛍光体集積ナノ粒子および前記抗体のいずれか一方にアジ基(-N3)が導入され、他方に炭素間三重結合部分(C≡C)が導入されており、
前記アジ基と前記炭素間三重結合部分とのヒュスゲン環化付加反応により、前記抗体と前記蛍光体集積ナノ粒子との分子間にトリアゾール環を介した結合を形成し、該形成により当該両分子が結合することで前記抗原を蛍光標識するようにして用いられる、免疫染色試薬キットである。
In order to achieve at least one of the above-described objects, an immunostaining reagent kit reflecting one aspect of the present invention is to fluorescently label the antigen of the tissue section with phosphor-integrated nanoparticles on the tissue section. An immunostaining reagent kit comprising:
A labeling reagent comprising phosphor-integrated nanoparticles and an antibody reagent comprising an antibody directly immobilized on the antigen by an antigen-antibody reaction, or another antibody indirectly immobilized via the antibody Has
An azide group (—N 3 ) is introduced into one of the phosphor-integrated nanoparticles and the antibody, and a carbon-carbon triple bond moiety (C≡C) is introduced into the other;
By the Husgen cycloaddition reaction between the azide group and the carbon-carbon triple bond moiety, a bond via a triazole ring is formed between the antibody and the phosphor-aggregated nanoparticle, and the two molecules are formed by the formation. It is an immunostaining reagent kit that is used so as to fluorescently label the antigen by binding.
本発明によれば、免疫染色において蛍光シグナルのノイズ原因となる蛍光色素ナノ粒子の非特異的吸着を抑制することができるとともに、抗体と蛍光集積ナノ粒子との結合力を高めて蛍光シグナルの低下を抑制することができる免疫染色法が提供される。さらに、該免疫染色法に用いられるキットであって、長期保存性に優れる免疫染色試薬キットが提供される。 According to the present invention, it is possible to suppress nonspecific adsorption of fluorescent dye nanoparticles that cause noise of fluorescent signals in immunostaining, and to increase the binding force between antibodies and fluorescent integrated nanoparticles to reduce the fluorescent signal. There is provided an immunostaining method capable of suppressing the above. Furthermore, there is provided an immunostaining reagent kit that is used in the immunostaining method and has excellent long-term storage stability.
図1は、本発明に係る免疫染色法を説明した図である。組織切片上に呈示されている抗原に対して1次抗体が結合し、該1次抗体に2次抗体が結合し、該2次抗体と連結されたアルキン化合物に由来する炭素間三重結合部分に対して、蛍光体集積ナノ粒子に連結されたアジドに由来するアジ基が特異的にヒュスゲン環化付加反応を引き起こすことで抗原が蛍光標識される。図1に示すように、組織切片には内因性のビオチンや他の抗原が存在するが、蛍光体集積ナノ粒子のアジ基部分は、内因性のビオチンや他の抗原とは反応しないため、この反応に起因する蛍光体集積ナノ粒子の非特異的な吸着が生じることがなく、蛍光シグナルのノイズの発生が抑制される。FIG. 1 is a diagram illustrating an immunostaining method according to the present invention. A primary antibody binds to an antigen presented on a tissue section, a secondary antibody binds to the primary antibody, and a carbon-carbon triple bond portion derived from an alkyne compound linked to the secondary antibody. On the other hand, the antigen is fluorescently labeled by specifically causing the Huisgen cycloaddition reaction by the azide group derived from the azide linked to the phosphor-integrated nanoparticles. As shown in FIG. 1, endogenous biotin and other antigens are present in the tissue section. However, the azide group portion of the phosphor-aggregated nanoparticles does not react with endogenous biotin or other antigens. Non-specific adsorption of the phosphor-integrated nanoparticles due to the reaction does not occur, and the generation of noise in the fluorescence signal is suppressed. 図2は、図1に示すアジドとアルキン化合物とを置き換えたものであり、本発明に係る免疫染色法の別の例を示した図である。蛍光体集積ナノ粒子の炭素間三重結合部分は、内因性のビオチンや他の抗原とは反応しないため、この反応に起因する蛍光体集積ナノ粒子の非特異的な吸着が生じることがなく、蛍光シグナルのノイズの発生が抑制される。FIG. 2 is a diagram showing another example of the immunostaining method according to the present invention in which the azide and the alkyne compound shown in FIG. 1 are replaced. Since the carbon-carbon triple bond part of the phosphor-integrated nanoparticles does not react with endogenous biotin or other antigens, non-specific adsorption of the phosphor-accumulated nanoparticles does not occur due to this reaction. Generation of signal noise is suppressed. 図3は、従来技術にかかる免疫染色法(ハプテン-抗ハプテン抗体法)を説明した図である。図3に示すように、組織切片上に呈示されている抗原に対して1次抗体が結合し、該1次抗体に2次抗体(ハプテンと連結したもの)が結合し、該2次抗体に対して、蛍光体集積ナノ粒子が付加された抗ハプテン抗体が特異的に結合することで抗原が蛍光標識される。しかしながら、ハプテン-抗ハプテンの結合は、ビオチン‐アビジン間の結合よりも弱く、脱結合が起こりやすい。その結果、蛍光体集積ナノ粒子が非特異的な吸着により意図しない部位に結合し、蛍光シグナルのノイズ原因となる。FIG. 3 is a diagram for explaining an immunostaining method (hapten-anti-hapten antibody method) according to the prior art. As shown in FIG. 3, the primary antibody binds to the antigen presented on the tissue section, the secondary antibody (linked to the hapten) binds to the primary antibody, and the secondary antibody binds to the secondary antibody. On the other hand, the antigen is fluorescently labeled by specifically binding to the anti-hapten antibody to which the phosphor-integrated nanoparticles are added. However, the hapten-anti-hapten binding is weaker than the biotin-avidin binding and is likely to decouple. As a result, the phosphor-aggregated nanoparticles bind to unintended sites by non-specific adsorption and cause noise in the fluorescence signal. 図4は、従来技術の免疫染色法(ビオチン-アビジン法)を説明した図である。ビオチン‐アビジン法では、図4に示すように、組織切片上に呈示されている抗原に対して1次抗体が結合し、該1次抗体に2次抗体が結合し、2次抗体と連結されたビオチンに対して、蛍光体集積ナノ粒子に連結されたアビジンが特異的に反応することで抗原が蛍光標識される。しかしながら、組織切片に存在する内因性のビオチンと蛍光体集積ナノ粒子に付加されているストレプトアビジンの部分とが反応してしまい、蛍光体集積ナノ粒子が非特異的な吸着をして意図しない部位に結合し、蛍光シグナルのノイズ原因となる。FIG. 4 is a diagram for explaining a conventional immunostaining method (biotin-avidin method). In the biotin-avidin method, as shown in FIG. 4, the primary antibody binds to the antigen presented on the tissue section, the secondary antibody binds to the primary antibody, and is linked to the secondary antibody. Antigen is fluorescently labeled by specifically reacting avidin linked to the phosphor-integrated nanoparticles with biotin. However, the endogenous biotin present in the tissue section reacts with the streptavidin portion added to the phosphor-integrated nanoparticles, and the phosphor-integrated nanoparticles are non-specifically adsorbed and are not intended. To cause noise in the fluorescence signal.
以下、本発明に係る免疫染色法、およびこれに用いられる免疫染色試薬キットについて、図1~図4を参照しながら説明する。 Hereinafter, the immunostaining method according to the present invention and the immunostaining reagent kit used therein will be described with reference to FIGS.
本発明に係る免疫染色法は、組織切片上で該組織切片の抗原を蛍光体集積ナノ粒子により蛍光標識する免疫染色法であって、前記抗原に対して抗原抗体反応により直接的に固定される抗体または該抗体を介して間接的に固定される別の抗体と、蛍光体集積ナノ粒子との、いずれか一方にアジ基(-N3)が導入され、他方に炭素間三重結合部分(C≡C)が導入されており、前記抗原に前記抗体を固定させ、前記アジ基と、前記炭素間三重結合部分とのヒュスゲン環化付加反応でもって、前記抗体と蛍光体集積ナノ粒子との両分子間にトリアゾール環を介した結合を形成し、該形成により前記抗原を前記蛍光体集積ナノ粒子により蛍光標識する。 The immunostaining method according to the present invention is an immunostaining method in which an antigen on a tissue section is fluorescently labeled with phosphor-integrated nanoparticles on the tissue section, and is directly fixed to the antigen by an antigen-antibody reaction. An azide group (—N 3 ) is introduced into one of the antibody or another antibody immobilized indirectly through the antibody and the phosphor-integrated nanoparticles, and the carbon-carbon triple bond moiety (C ≡C) is introduced, the antibody is immobilized on the antigen, and both the antibody and the phosphor-aggregated nanoparticles are obtained by a Husgen cycloaddition reaction between the azide group and the carbon-carbon triple bond moiety. A bond via a triazole ring is formed between molecules, and the antigen is fluorescently labeled with the phosphor-integrated nanoparticles by the formation.
以下、先ず、上記蛍光体集積ナノ粒子、抗体、抗原およびリンカーについて説明する。 Hereinafter, the phosphor-integrated nanoparticles, antibody, antigen and linker will be described first.
{蛍光体集積ナノ粒子}
蛍光体集積ナノ粒子は、蛍光体を集積したものである。このような蛍光体集積ナノ粒子を用いることで、蛍光体自体と比較して、1粒子当たりの発する蛍光の量、すなわち所定の生体分子を標記する輝点の輝度を高めることができる。
{Phosphor-integrated nanoparticles}
The phosphor-integrated nanoparticles are obtained by accumulating phosphors. By using such phosphor-integrated nanoparticles, it is possible to increase the amount of fluorescence emitted per particle, that is, the brightness of a bright spot marking a predetermined biomolecule, compared to the phosphor itself.
{蛍光体}
本明細書において「蛍光体」とは、外部からのX線、紫外線または可視光線の照射を受けて励起し、励起状態から基底状態に到る過程において光を発光する物質一般を指す。したがって、本発明にいう「蛍光体」は、励起状態から基底状態に戻るときの遷移態様の如何を問うものでなく、励起一重項からの失活に伴う発光である狭義の蛍光を発する物質であってもよいし、三重項からの失活に伴う発光である燐光を発する物質であってもよい。
{Phosphor}
In the present specification, the term “phosphor” refers to a general substance that emits light in a process from an excited state to a ground state by being excited by irradiation with external X-rays, ultraviolet rays, or visible rays. Therefore, the “phosphor” in the present invention is not limited to the transition mode when returning from the excited state to the ground state, but is a substance that emits narrowly defined fluorescence that is light emission accompanying deactivation from the excited singlet. It may be a substance that emits phosphorescence, which is light emission accompanying deactivation from a triplet.
また、本発明にいう「蛍光体」は、励起光を遮断してからの発光寿命によって限定されるものでもない。したがって、硫化亜鉛やアルミン酸ストロンチウム等の蓄光物質として知られている物質であってもよい。このような蛍光体は、有機蛍光体(蛍光色素)および無機蛍光体に大別することができる。 Further, the “phosphor” referred to in the present invention is not limited by the light emission lifetime after blocking the excitation light. Therefore, it may be a substance known as a phosphorescent substance such as zinc sulfide or strontium aluminate. Such phosphors can be broadly classified into organic phosphors (fluorescent dyes) and inorganic phosphors.
(有機蛍光体)
蛍光体としての使用可能な有機蛍光体の例としては、フルオレセイン系色素分子、ローダミン系色素分子、Alexa Fluor(登録商標、インビトロジェン社製)系色素分子、BODIPY(登録商標、インビトロジェン社製)系色素分子、カスケード(登録商標、インビトロジェン社)系色素分子、クマリン系色素分子、NBD(登録商標)系色素分子、ピレン系色素分子、Texas Red(登録商標)系色素分子、シアニン系色素分子、ペリレン系色素分子、オキサジン系色素分子等、有機蛍光色素として知られている物質を挙げることができる。
(Organic phosphor)
Examples of organic phosphors that can be used as phosphors include fluorescein dye molecules, rhodamine dye molecules, Alexa Fluor (registered trademark, manufactured by Invitrogen Corporation) dye molecules, BODIPY (registered trademark, manufactured by Invitrogen Corporation) dyes Molecule, cascade (registered trademark, Invitrogen) dye molecule, coumarin dye molecule, NBD (registered trademark) dye molecule, pyrene dye molecule, Texas Red (registered trademark) dye molecule, cyanine dye molecule, perylene dye Examples thereof include substances known as organic fluorescent dyes, such as dye molecules and oxazine dye molecules.
具体的には、5-カルボキシ-フルオレセイン、6-カルボキシ-フルオレセイン、5,6-ジカルボキシ-フルオレセイン、6-カルボキシ-2',4,4',5',7,7'-ヘキサクロロフルオレセイン、6-カルボキシ-2',4,7,7'-テトラクロロフルオレセイン、6-カルボキシ-4',5'-ジクロロ-2',7'-ジメトキシフルオレセイン、ナフトフルオレセイン、5-カルボキシ-ローダミン、6-カルボキシ-ローダミン、5,6-ジカルボキシ-ローダミン、ローダミン 6G、テトラメチルローダミン、X-ローダミン、ローダミン110、ローダミン101、スルホローダミン101、スルホローダミンG,スルホローダミンB、Pyrromethene 546、Pyrromethene 556、Pyrromethene 567、Pyrromethene 580、Pyrromethene 597、Pyrromethene 605、Pyrromethene 650及びAlexa Fluor 350、Alexa Fluor 405、Alexa Fluor 430、Alexa Fluor 488、Alexa Fluor 500、Alexa Fluor 514、Alexa Fluor 532、Alexa Fluor 546、Alexa Fluor 555、Alexa Fluor 568、Alexa Fluor 594、Alexa Fluor 610、Alexa Fluor 633、Alexa Fluor 635、Alexa Fluor 647、Alexa Fluor 660、Alexa Fluor 680、Alexa Fluor 700、Alexa Fluor 750、Oregon Green 488、Oregon Green 514、BODIPY FL、BODIPY TMR、BODIPY 493/503、BODIPY 530/550、BODIPY 558/568、BODIPY 564/570、BODIPY 576/589、BODIPY 581/591、BODIPY 630/650、BODIPY 650/665(以上インビトロジェン社製)、HiLyte Fluor 488、HiLyte Fluor 555、HiLyte Fluor 594、HiLyte Fluor 647、HiLyte Fluor 680、HiLyte Fluor 750(AnaSpec社製)、DyLight 350、DyLight 405、DyLight 488、DyLight 549、DyLight 594、DyLight 633、DyLight 649、DyLight 680、DyLight 750、DyLight 800(Thermo Fisher Scientific社製)、メトキシクマリン、エオジン、NBD、ピレン、Cy5、Cy5.5、Cy7等を挙げることができる。単独でも複数種を混合したものを用いてもよい。 Specifically, 5-carboxy-fluorescein, 6-carboxy-fluorescein, 5,6-dicarboxy-fluorescein, 6-carboxy-2 ′, 4,4 ′, 5 ′, 7,7′-hexachlorofluorescein, 6 -Carboxy-2 ', 4,7,7'-tetrachlorofluorescein, 6-carboxy-4', 5'-dichloro-2 ', 7'-dimethoxyfluorescein, naphthofluorescein, 5-carboxy-rhodamine, 6-carboxy -Rhodamine, 5,6-dicarboxy-rhodamine, rhodamine 6G, tetramethylrhodamine, X-rhodamine, rhodamine 110, rhodamine 101, sulforhodamine 101, sulforhodamine B, sulforhodamine B, Pyrromethene 546, Pyrromene ethene 567, Pyrromethene 580, Pyrromethene 597, Pyrromethene 605, Pyrromethene 650 and Alexa Fluor 350, Alexa Fluor 405, Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 500, Alexa Fluor 514, Alexa Fluor 532, Alexa Fluor 546, Alexa Fluor 555 , Alexa Fluor 68 568, Alexa Fluor 594, Alexa Fluor 610, Alexa Fluor 633, Alexa Fluor 635, Alexa lu Fluor 647, Alexa Fluor 660, Alexa Fluor r 680, Alexa Fluor 700, Alexa Fluor 750, Oregon Green 488, Oregon Green 514, BODIPY FL, BODIPY TMR, BODIPY 493/503, BODIPY 530 / 550Y OD BODIPY 581/591, BODIPY 630/650, BODIPY 650/665 (manufactured by Invitrogen), HiLyte Fluor 488, HiLyte Fluor 555, HiLyte Fluor 594, HiLyte Fluor Fluor 807, HiLite Fluor 807 DyL ght 350, DyLight 405, DyLight 488, DyLight 549, DyLight 594, DyLight 633, DyLight 649, DyLight 680N, DyLight 750N, DyLight 5, Cy7 and the like. You may use individually or what mixed multiple types.
(無機蛍光体)
蛍光体として使用可能な無機蛍光体の例としては、II-VI族化合物、III-V族化合物、又はIV族元素を成分として含有する量子ドット(それぞれ、「II-VI族量子ドット」、「III-V族量子ドット」、「IV族量子ドット」ともいう。)のいずれかを挙げることができる。単独でも複数種を混合したものを用いてもよい。量子ドットは、市販されているものでもよい。具体的には、CdSe、CdS、CdTe、ZnSe、ZnS、ZnTe、InP、InN、InAs、InGaP、GaP、GaAs、Si、Geが挙げられるが、これらに限定されない。
(Inorganic phosphor)
Examples of inorganic phosphors that can be used as phosphors include quantum dots containing II-VI group compounds, III-V group compounds, or group IV elements as components ("II-VI group quantum dots", " Or III-V quantum dots ”or“ IV quantum dots ”). You may use individually or what mixed multiple types. The quantum dots may be commercially available. Specific examples include, but are not limited to, CdSe, CdS, CdTe, ZnSe, ZnS, ZnTe, InP, InN, InAs, InGaP, GaP, GaAs, Si, and Ge.
上記量子ドットをコアとし、その上にシェルを設けた量子ドットを用いることもできる。以下、シェルを有する量子ドットの表記法として、コアがCdSe、シェルがZnSの場合、CdSe/ZnSと表記する。例えば、CdSe/ZnS、CdS/ZnS、InP/ZnS、InGaP/ZnS、Si/SiO2、Si/ZnS、Ge/GeO2、Ge/ZnS等を用いることができるが、これらに限定されない。 It is also possible to use a quantum dot having the above quantum dot as a core and a shell provided thereon. Hereinafter, as a notation of quantum dots having a shell, when the core is CdSe and the shell is ZnS, it is expressed as CdSe / ZnS. For example, CdSe / ZnS, CdS / ZnS, InP / ZnS, InGaP / ZnS, Si / SiO 2 , Si / ZnS, Ge / GeO 2 , Ge / ZnS, and the like can be used, but are not limited thereto.
量子ドットは必要に応じて、有機ポリマー等により表面処理が施されているものを用いてもよい。例えば、表面カルボキシ基を有するCdSe/ZnS(インビトロジェン社製)、表面アミノ基を有するCdSe/ZnS(インビトロジェン社製)等が挙げられる。 Quantum dots may be subjected to surface treatment with an organic polymer or the like as necessary. Examples thereof include CdSe / ZnS having a surface carboxy group (manufactured by Invitrogen), CdSe / ZnS having a surface amino group (manufactured by Invitrogen), and the like.
{蛍光体集積ナノ粒子の製造方法}
蛍光体集積ナノ粒子の製造方法は、特に制限されず、公知の方法により製造することができる。一般的には、樹脂またはシリカを母体として蛍光体をまとめ上げる(当該母体の内部または表面に蛍光体を固定化する)製造方法を用いることができる。
{Method for producing phosphor-integrated nanoparticles}
The method for producing the phosphor-integrated nanoparticles is not particularly limited, and can be produced by a known method. In general, a production method can be used in which phosphors are gathered together using a resin or silica as a base material (the phosphors are immobilized inside or on the surface of the base material).
{有機蛍光体の場合}
有機蛍光体を用いた蛍光体集積ナノ粒子の製造方法として、蛍光体である蛍光色素を樹脂からなる母体の内部または表面に固定した、直径がナノメートルオーダーの樹脂粒子を形成させる方法を挙げることができる。この蛍光体集積ナノ粒子の調製方法は特に限定されるものではないが、例えば、蛍光体集積ナノ粒子の母体をなす樹脂(熱可塑性樹脂または熱硬化性樹脂)を合成するための(コ)モノマーを(共)重合させながら、蛍光体を添加し、当該(共)重合体の内部または表面に当該蛍光体を取り込ませる方法を用いることができる。
{In the case of organic phosphor}
Examples of a method for producing phosphor-integrated nanoparticles using organic phosphors include a method of forming resin particles having a diameter of nanometer order by fixing a fluorescent dye, which is a phosphor, inside or on the surface of a matrix made of resin. Can do. The method for preparing the phosphor-integrated nanoparticles is not particularly limited. For example, a (co) monomer for synthesizing a resin (thermoplastic resin or thermosetting resin) that forms the matrix of the phosphor-integrated nanoparticles. While (co) polymerizing the phosphor, a method of adding the phosphor and incorporating the phosphor into the inside or the surface of the (co) polymer can be used.
上記の熱可塑性樹脂としては、例えば、ポリスチレン、ポリアクリロニトリル、ポリフラン、または、これに類する樹脂を好適に用いることができる。上記の熱硬化性樹脂としては、例えば、ポリキシレン、ポリ乳酸、グリシジルメタクリレート、ポリメラミン、ポリウレア、ポリベンゾグアナミン、ポリアミド、フェノール樹脂、多糖類またはこれに類する樹脂を好適に用いることができる。熱硬化性樹脂、特にメラミン樹脂は、キシレン等の有機溶媒を用いる脱水、透徹、封入などの処理によっても、色素樹脂に内包させた色素の溶出を抑制することができる点で好ましい。 As the above-mentioned thermoplastic resin, for example, polystyrene, polyacrylonitrile, polyfuran, or a similar resin can be suitably used. As the thermosetting resin, for example, polyxylene, polylactic acid, glycidyl methacrylate, polymelamine, polyurea, polybenzoguanamine, polyamide, phenol resin, polysaccharide or similar resin can be preferably used. Thermosetting resins, particularly melamine resins are preferred in that elution of the dye encapsulated in the dye resin can be suppressed by treatments such as dehydration, penetration, and encapsulation using an organic solvent such as xylene.
例えば、有機の蛍光色素(蛍光体)を内包したポリスチレンナノ粒子は、米国特許4326008(1982)に記載されている重合性官能基をもつ有機色素を用いた共重合法や、米国特許5326692(1992)に記載されているポリスチレンナノ粒子への蛍光有機色素の含浸法を用いて作製することができ、蛍光体集積ナノ粒子として用いることができる。 For example, polystyrene nanoparticles encapsulating an organic fluorescent dye (phosphor) can be obtained by a copolymerization method using an organic dye having a polymerizable functional group described in US Pat. No. 4,326,008 (1982), or US Pat. No. 5,326,692 (1992). ), And can be used as phosphor-integrated nanoparticles.
一方で、有機蛍光体をシリカからなる母体の内部または表面に固定化したシリカナノ粒子を製造することもできる。そのような製造方法としては、ラングミュア 8巻 2921ページ(1992)に記載されているFITC内包シリカ粒子の合成方法を参考にすることができる。FITCの代わりに所望の蛍光色素を用いることで種々の蛍光色素を内包したシリカナノ粒子を合成することができ、蛍光体集積ナノ粒子として用いることができる。 On the other hand, silica nanoparticles in which an organic phosphor is immobilized inside or on the surface of a matrix made of silica can also be produced. As such a production method, the method for synthesizing FITC-encapsulated silica particles described in Langmuir Vol. 8, Vol. 8, page 2921 (1992) can be referred to. By using a desired fluorescent dye in place of FITC, silica nanoparticles encapsulating various fluorescent dyes can be synthesized and used as phosphor-integrated nanoparticles.
{無機蛍光体の場合}
無機蛍光体を用いた蛍光体集積ナノ粒子の製造方法として、蛍光体である量子ドットをシリカからなる母体の内部または表面に固定した、シリカナノ粒子を形成させる方法が挙げられる。この製造方法は、ニュー・ジャーナル・オブ・ケミストリー 33巻 561ページ(2009)に記載されているCdTe内包シリカナノ粒子の合成を参考にすることができる。
{In case of inorganic phosphor}
Examples of a method for producing phosphor-integrated nanoparticles using an inorganic phosphor include a method of forming silica nanoparticles in which quantum dots, which are phosphors, are fixed inside or on the surface of a matrix made of silica. This production method can be referred to the synthesis of CdTe-containing silica nanoparticles described in New Journal of Chemistry Vol. 33, p. 561 (2009).
また、上記とは異なる蛍光体集積ナノ粒子の製造方法として、シリカビーズをシランカップリング剤で処理して末端をアミノ化し、カルボキシ基末端を有する蛍光体としての半導体微粒子をシリカビーズの表面にアミド結合により結合することで集積し、蛍光体集積ナノ粒子とする方法も挙げられる。 Further, as a method for producing phosphor-integrated nanoparticles different from the above, the silica beads are treated with a silane coupling agent to aminate the ends, and semiconductor fine particles as phosphors having carboxy group ends are amided on the surface of the silica beads. A method for collecting phosphors to form phosphor-integrated nanoparticles is also exemplified.
さらに別の蛍光体集積ナノ粒子の製造方法として、逆ミセル法と、ガラスの前駆体として分子の末端に半導体ナノ粒子への吸着性が良い有機官能基を有する有機アルコキシシランとアルコキシドの混合物を用いたゾル-ゲル法とを組み合わせることにより、半導体ナノ粒子を内部に分散固定したガラス状の粒子を形成し、蛍光体集積ナノ粒子とする例が挙げられる。 As another method for producing phosphor-integrated nanoparticles, a reverse micelle method and a mixture of organoalkoxysilane and alkoxide having an organic functional group with good adsorptivity to semiconductor nanoparticles at the molecular end as a glass precursor are used. In combination with the conventional sol-gel method, glass-like particles in which semiconductor nanoparticles are dispersed and fixed are formed to form phosphor-integrated nanoparticles.
さらに別の蛍光体集積ナノ粒子の製造方法として、1-エチル‐3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)の存在化で、アミノ基末端の半導体ナノ粒子と、カルボキシ基末端の半導体ナノ粒子を混合し、半導体ナノ粒子間をアミド結合で介して結合することで半導体ナノ粒子を集積し、蛍光体集積ナノ粒子を製造する例が挙げられる。 As another method for producing phosphor-integrated nanoparticles, the presence of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) makes it possible to produce amino-terminal-terminated semiconductor nanoparticles and carboxy-terminal-terminal nanoparticles. An example in which semiconductor nanoparticles are mixed and the semiconductor nanoparticles are bonded via an amide bond to integrate the semiconductor nanoparticles to produce phosphor integrated nanoparticles.
さらに、無機蛍光体を樹脂からなる母体の内部または表面に固定化して蛍光体集積ナノ粒子を製造することもできる。たとえば、量子ドットを内包したポリマーナノ粒子は、ネイチャー・バイオテクノロジー19巻631ページ(2001)に記載されているポリスチレンナノ粒子への量子ドットの含浸法を用いて作製することができる。 Furthermore, phosphor-integrated nanoparticles can be produced by immobilizing inorganic phosphors inside or on the surface of a matrix made of resin. For example, polymer nanoparticles encapsulating quantum dots can be prepared using the method of impregnating quantum nanoparticles into polystyrene nanoparticles described in Nature Biotechnology Vol. 19, p. 631 (2001).
{蛍光体集積ナノ粒子の平均粒子径}
蛍光体集積ナノ粒子の平均粒子径は、蛍光シグナルの強度の観点から、150nm以上~800nm以下が好ましく、150nm以上~500nm以下がより好ましい。
{Average particle diameter of phosphor-integrated nanoparticles}
The average particle size of the phosphor-integrated nanoparticles is preferably from 150 nm to 800 nm, more preferably from 150 nm to 500 nm, from the viewpoint of fluorescence signal intensity.
蛍光体集積ナノ粒子の平均粒子径は、公知の測定方法により調べることができる。例えば、透過型電子顕微鏡(TEM)により蛍光体集積ナノ粒子の粒子観察を行い、そこから粒子径分布の数平均粒子径として求める方法、動的光散乱法により半導体ナノ粒子の粒子径分布を測定し、その数平均粒子径として求める方法等が挙げられる。この他にも、例えば、ガス吸着法、光散乱法、X線小角散乱法(SAXS)、あるいは走査型電子顕微鏡(SEM)で観察して平均粒子径を計測する方法により測定できる。TEMを用いる場合、粒子径分布が広い場合には、視野内に入った粒子が全粒子を代表しているか否かに注意を払う必要がある。吸着法は、N2吸着等によりBET表面積を評価するものである。 The average particle size of the phosphor-integrated nanoparticles can be examined by a known measurement method. For example, the phosphor-integrated nanoparticles are observed with a transmission electron microscope (TEM), and the number-average particle size of the particle size distribution is obtained therefrom. The particle size distribution of the semiconductor nanoparticles is measured by the dynamic light scattering method. And the method etc. which are calculated | required as the number average particle diameter are mentioned. In addition, for example, the average particle diameter can be measured by observing with a gas adsorption method, a light scattering method, an X-ray small angle scattering method (SAXS), or a scanning electron microscope (SEM). When using a TEM, when the particle size distribution is wide, it is necessary to pay attention to whether or not the particles entering the field of view represent all the particles. In the adsorption method, the BET surface area is evaluated by N 2 adsorption or the like.
{表面修飾}
上記蛍光体集積ナノ粒子の表面は任意に親水性高分子で修飾されていてもよい。該親水性高分子としては、例えば、ポリエチレングリコール、フィコール、ポリビニルアルコール、スチレン-無水マレイン酸交互共重合体、ジビニルエーテル-無水マレイン酸交互共重合体、ポリビニルピロリドン、ポリビニルメチルエーテル、ポリビニルメチルオキサゾリン、ポリエチルオキサゾリン、ポリヒドロキシプロピルオキサゾリン、ポリヒドロキシプロピルメタアクリルアミド、ポリメタアクリルアミド、ポリジメチルアクリルアミド、ポリヒドロキシプロピルメタアクリレート、ポリヒドロキシエチルアクリレート、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ポリアスパルトアミド、合成ポリアミノ酸などが挙げられる。
{Surface modification}
The surface of the phosphor-integrated nanoparticles may be optionally modified with a hydrophilic polymer. Examples of the hydrophilic polymer include polyethylene glycol, ficoll, polyvinyl alcohol, styrene-maleic anhydride alternating copolymer, divinyl ether-maleic anhydride alternating copolymer, polyvinyl pyrrolidone, polyvinyl methyl ether, polyvinyl methyl oxazoline, Polyethyloxazoline, polyhydroxypropyloxazoline, polyhydroxypropylmethacrylamide, polymethacrylamide, polydimethylacrylamide, polyhydroxypropyl methacrylate, polyhydroxyethyl acrylate, hydroxymethylcellulose, hydroxyethylcellulose, polyaspartamide, synthetic polyamino acid, etc. Can be mentioned.
{抗体}
本発明で用いられる抗体は、用途に応じて選択される、例えば疾病(悪性腫瘍等)に関連する抗原(例;HER2等)に対する抗体(1次抗体)、または該1次抗体と抗原抗体反応により結合する2次抗体~n次抗体を意味する(以下「所定の抗体」と称することもある。)。これら抗体のいずれかに対して、後述するようにアジドまたはアルキン化合物が結合されており、アジ基または炭素間三重結合の部分を有している。ここで、「抗体」という用語は、任意の抗体断片または誘導体を含む意味で用いられ、例えば、Fab、Fab'2、CDR、ヒト化抗体、多機能抗体、単鎖抗体(ScFv)などを含む。
{antibody}
The antibody used in the present invention is selected according to the use, for example, an antibody (primary antibody) against an antigen (eg, HER2 etc.) associated with a disease (malignant tumor etc.), or an antigen-antibody reaction with the primary antibody Means a secondary antibody to an n-th antibody that bind to each other (hereinafter also referred to as “predetermined antibody”). As will be described later, an azide or alkyne compound is bound to any of these antibodies, and has an azide group or a carbon-carbon triple bond moiety. Here, the term “antibody” is used to include any antibody fragment or derivative, and includes, for example, Fab, Fab′2, CDR, humanized antibody, multifunctional antibody, single chain antibody (ScFv) and the like. .
{抗原}
上記抗原としては、例えば、タンパク質(ポリペプチド、オリゴペプチド等)、アミノ酸(修飾アミノ酸も含む。)であるが、該タンパク質またはアミノ酸と、糖質(オリゴ糖、多糖類、糖鎖等)、脂質、またはこれらの修飾分子との複合体なども含まれる。具体的には、例えば上記病理診断の対象となる疾病に関連する抗原(腫瘍マーカー、シグナル伝達物質、ホルモンなど)であり、特に限定されない。抗原として、例えば、がんの増殖制御因子,転移制御因子,増殖制御因子受容体および転移制御因子受容体等のがんに関連する抗原の他に、TNF-α(Tumor Necrosis Factor α),IL-6(Interleukin-6)受容体などの炎症性サイトカイン、RSV F蛋白質等のウィルス関連分子なども「抗原」に含まれる。
{antigen}
Examples of the antigen include proteins (polypeptides, oligopeptides, etc.) and amino acids (including modified amino acids), and the proteins or amino acids and carbohydrates (oligosaccharides, polysaccharides, sugar chains, etc.), lipids. Or a complex with these modified molecules. Specifically, for example, antigens (tumor markers, signal transduction substances, hormones, etc.) related to the diseases to be pathologically diagnosed are not particularly limited. Examples of the antigen include, for example, TNF-α (Tumor Necrosis Factor α), IL, in addition to antigens related to cancer such as cancer growth regulator, metastasis regulator, growth regulator receptor, and metastasis regulator receptor. Inflammatory cytokines such as the −6 (Interleukin-6) receptor and virus-related molecules such as RSV F protein are also included in the “antigen”.
この他にも、例えば、がん関連遺伝子由来のタンパク質である、HER2、TOP2A、HER3、EGFR、P53、METが挙げられる。さらに、上記抗原となりうるものであって各種癌関連遺伝子由来の蛋白質として知られているものとして、以下のものが挙げられる。また、上記抗原となりうるものであってチロシンキナーゼ関連遺伝子由来の蛋白質としては、ALK、FLT3、AXL、FLT4(VEGFR3、DDR1、FMS(CSF1R)、DDR2、EGFR(ERBB1)、HER4(ERBB4)、EML4-ALK、IGF1R、EPHA1、INSR、EPHA2、IRR(INSRR)、EPHA3、KIT、EPHA4、LTK、EPHA5、MER(MERTK)、EPHA6、MET、EPHA7、MUSK、EPHA8、NPM1-ALK、EPHB1、PDGFRα(PDGFRA)、EPHB2、PDGFRβ(PDGFRB)EPHB3、RET、EPHB4、RON(MST1R)、FGFR1、ROS(ROS1)、FGFR2、TIE2(TEK)、FGFR3、TRKA(NTRK1)、FGFR4、TRKB(NTRK2)、FLT1(VEGFR1)、TRKC(NTRK3)が挙げられる。また、上記抗原となりうるものであって乳がん関連の遺伝子由来の蛋白質としては、ATM、BRCA1、BRCA2、BRCA3、CCND1、E-Cadherin、ERBB2、ETV6、FGFR1、HRAS、KRAS、NRAS、NTRK3、p53、PTENが挙げられる。さらに、上記抗原となりうるものであってカルチノイド腫瘍に関連する遺伝子由来の蛋白質としては、BCL2、BRD4、CCND1、CDKN1A、CDKN2A、CTNNB1、HES1、MAP2、MEN1、NF1、NOTCH1、NUT、RAF、SDHD、VEGFAが挙げられる。また、上記抗原となりうるものであって大腸がん関連遺伝子由来の蛋白質として、APC、MSH6、AXIN2、MYH、BMPR1A、p53、DCC、PMS2、KRAS2 (or Ki-ras)、PTEN、MLH1、SMAD4、MSH2、STK11、MSH6が挙げられる。さらに、上記抗原となりうるものであって肺がん関連の遺伝子由来の蛋白質としては、ALK、PTEN、CCND1、RASSF1A、CDKN2A、RB1、EGFR、RET、EML4、ROS1、KRAS2、TP53、MYCが挙げられる。また、上記抗原となりうるものであって肝臓がん関連の遺伝子由来の蛋白質としては、Axin1、MALAT1、b-catenin、p16 INK4A、c-ERBB-2、p53、CTNNB1、RB1、Cyclin D1、SMAD2、EGFR、SMAD4、IGFR2、TCF1、KRASが挙げられる。上記抗原となりうるものであって腎臓がん関連遺伝子由来の蛋白質として、Alpha、PRCC、ASPSCR1、PSF、CLTC、TFE3、p54nrb/NONO、TFEBが挙げられる。上記抗原となりうるものであって甲状腺がん関連遺伝子由来の蛋白質としては、AKAP10、NTRK1、AKAP9、RET、BRAF、TFG、ELE1、TPM3、H4/D10S170、TPRが挙げられる。上記抗原となりうるものであって卵巣がん関連遺伝子由来の蛋白質として、AKT2、MDM2、BCL2、MYC、BRCA1、NCOA4、CDKN2A、p53、ERBB2、PIK3CA、GATA4、RB、HRAS、RET、KRAS、RNASET2が挙げられる。さらに、上記抗原となりうるものであって前立腺がん関連遺伝子由来の蛋白質として、AR、KLK3、BRCA2、MYC、CDKN1B、NKX3.1、EZH2、p53、GSTP1、PTENが挙げられる。また、上記抗原となりうるものであって骨腫瘍関連遺伝子由来の蛋白質としては、CDH11、COL12A1、CNBP、OMD、COL1A1、THRAP3、COL4A5、USP6が挙げられる。 Other examples include HER2, TOP2A, HER3, EGFR, P53, and MET, which are proteins derived from cancer-related genes. Furthermore, the following are mentioned as what can be said antigen and are known as proteins derived from various cancer-related genes. Further, proteins that can be used as the antigen and are derived from tyrosine kinase-related genes include ALK, FLT3, AXL, FLT4 (VEGFR3, DDR1, FMS (CSF1R), DDR2, EGFR (ERBB1), HER4 (ERBB4), EML4. -ALK, IGF1R, EPHA1, INSR, EPHA2, IRR (INSRR), EPHA3, KIT, EPHA4, LTK, EPHA5, MER (MERTK), EPHA6, MET, EPHA7, MUSK, EPHA8, NPM1-ALK, EPHB1, PDGFR ), EPHB2, PDGFRβ (PDGFRB) EPHB3, RET, EPHB4, RON (MST1R), FGFR1, ROS (ROS1), FGFR2, TIE2 (TEK), FGFR3, TRKA (NTRK1), FGFR4, TRKB (NTRK2), FLT1 (VEGFR1), TRKC (NTRK3), etc. Proteins derived from breast cancer-related genes that can serve as the above antigens are ATM, BRCA1, and BRCA2. , BRCA3, CCND1, E-Cadherin, ERBB2, ETV6, FGFR1, HRAS, KRAS, NRAS, NTRK3, p53, and PTEN Further, as a protein derived from a gene related to a carcinoid tumor, the antigen can be used. Include BCL2, BRD4, CCND1, CDKN1A, CDKN2A, CTNNB1, HES1, MAP2, MEN1, NF1, NOTCH1, NUT, RAF, SDHD, and VEGFA. As a protein derived from a colon cancer-related gene, APC, MSH6, AXIN2, MYH, BMPR1A, p53, DCC, PMS2, KRAS2RA (or Ki-ras), PTEN, MLH1, SMAD4, MSH2, STK11, Furthermore, proteins that can be used as the antigen and are derived from lung cancer-related genes include ALK, PTEN, CCND1, RASSF1A, CDKN2A, RB1, EGFR, RET, EML4, ROS1, KRAS2, TP53, and MYC. Examples of proteins derived from liver cancer-related genes that can serve as the antigen include Axin1, MALAT1, b-catenin, p16 INK4A, c-ERBB-2, p53, CTNNB1, RB1, C clin D1, SMAD2, EGFR, SMAD4, IGFR2, TCF1, KRAS and the like. Alpha, PRCC, ASPSCR1, PSF, CLTC, TFE3, p54nrb / NONO, and TFEB are examples of proteins that can be used as the antigen and are derived from kidney cancer-related genes. Examples of proteins that can serve as the antigen and are derived from thyroid cancer-related genes include AKAP10, NTRK1, AKAP9, RET, BRAF, TFG, ELE1, TPM3, H4 / D10S170, and TPR. Examples of proteins derived from ovarian cancer-related genes that can be used as the antigen include AKT2, MDM2, BCL2, MYC, BRCA1, NCOA4, CDKN2A, p53, ERBB2, PIK3CA, GATA4, RB, HRAS, RET, KRAS, and RNASET2. Can be mentioned. Furthermore, AR, KLK3, BRCA2, MYC, CDKN1B, NKX3.1, EZH2, p53, GSTP1, and PTEN can be mentioned as proteins that can serve as the antigen and are derived from prostate cancer-related genes. Examples of proteins that can be used as the antigen and derived from bone tumor-related genes include CDH11, COL12A1, CNBP, OMD, COL1A1, THRAP3, COL4A5, and USP6.
{リンカー}
本発明で使用されるリンカーは、蛍光体集積ナノ粒子と所定の抗体とを連結するための分子である。所定の抗体(1次抗体~n次抗体のいずれか)と蛍光体集積ナノ粒子とはリンカーにより結合されていることが望ましい。リンカー部分により抗体と蛍光体集積ナノ粒子との間にクリアランスが形成され、不溶性の化合物(DAB等)等による蛍光体集積ナノ粒子の蛍光シグナルの低下を抑制することができるからである。また、抗体と蛍光体集積ナノ粒子との間のクリアランスが少ないと、抗原または該抗原に結合した1次抗体に固定される2~n次抗体の反応基と、蛍光体集積ナノ粒子の粒子表面の反応基とが十分に接近できず、反応効率が低下するからである。
{Linker}
The linker used in the present invention is a molecule for linking the phosphor-integrated nanoparticles and a predetermined antibody. It is desirable that the predetermined antibody (any one of the primary antibody to the n-th antibody) and the phosphor-integrated nanoparticles are bound by a linker. This is because a clearance is formed between the antibody and the phosphor-integrated nanoparticles by the linker portion, and a decrease in the fluorescence signal of the phosphor-integrated nanoparticles due to an insoluble compound (DAB or the like) can be suppressed. In addition, when the clearance between the antibody and the phosphor-integrated nanoparticles is small, the reactive group of the 2nd to n-th antibodies immobilized on the antigen or the primary antibody bound to the antigen, and the particle surface of the phosphor-integrated nanoparticles This is because the reactive group cannot be sufficiently approached and the reaction efficiency is lowered.
本発明に使用できるリンカーとして、上記親水性高分子(例;PEG等)の一端部にアルキン化合物またはアジドが結合されており、他端部に官能基(NHS基、チオール基(-SH)等)を有するリンカーを例示することができる。リンカーがアミノ基やマレイミド基等の官能基を有することで、リンカーの官能基と、蛍光体集積ナノ粒子または所定の抗体の表面に導入したNHS基やSH基等の官能基との反応を介して、リンカーの一端部にあるアジ基や炭素間三重結合部分を蛍光体集積ナノ粒子や抗体へ導入することができ、ヒュスゲン環化付加反応に利用することができるからである。このようなリンカーは、サーモサイエンティフィック社やNANOCOS社等から購入することができる。 As a linker that can be used in the present invention, an alkyne compound or an azide is bonded to one end of the hydrophilic polymer (eg, PEG), and a functional group (NHS group, thiol group (—SH), etc.) is bonded to the other end. ) Can be exemplified. By having a functional group such as an amino group or a maleimide group in the linker, a reaction between the functional group of the linker and a functional group such as an NHS group or an SH group introduced on the surface of the phosphor-aggregated nanoparticle or a predetermined antibody is performed. This is because the azide group and the carbon-carbon triple bond moiety at one end of the linker can be introduced into the phosphor-integrated nanoparticles and antibody, and can be used for the Husgen cycloaddition reaction. Such a linker can be purchased from Thermo Scientific or NANOCOS.
上記リンカーとしては、生体分子と非特異的な吸着を起こしにくい観点から、親水性高分子製のリンカーが好ましく、特にポリエチレングリコール(PEG)製のリンカーが好ましい。PEG製のリンカーを用いた場合、PEGリンカーの先端に前記アジドまたはアルキン化合物が結合されているものが好ましい。 The linker is preferably a hydrophilic polymer linker, particularly preferably a polyethylene glycol (PEG) linker, from the viewpoint of hardly causing nonspecific adsorption with biomolecules. When a PEG linker is used, it is preferable that the azide or alkyne compound is bonded to the tip of the PEG linker.
リンカーの長さは、上述したように形態観察用の染色試薬(例;DAB)等に起因する不溶性の副生物によって目的の抗原を染色した際に得られる蛍光のシグナル強度の低減を抑制する観点から、以下のように設定することが好ましい。 As described above, the length of the linker is used to suppress a reduction in the signal intensity of the fluorescence obtained when the target antigen is stained with an insoluble byproduct caused by a staining reagent for morphological observation (eg, DAB). Therefore, it is preferable to set as follows.
PEG製のリンカーを用いる場合では、抗体と蛍光体集積ナノ粒子の両分子の連結に直接関与しているリンカーの部分のうち、少なくとも蛍光体集積ナノ粒子からアジド-アルキン結合までの間に存在するオキシエチレン単位の数(ユニット数)が、8以上であることが好ましく、8~70であることがより好ましい。その他の親水性高分子製のリンカーの場合、該リンカーの長さは上記PEG製リンカー(オキシエチレン単位8~70のもの)に相当する長さであることが好ましい。 In the case of using a PEG linker, at least a portion of the linker directly involved in linking the antibody and the phosphor-integrated nanoparticle is present between the phosphor-integrated nanoparticle and the azide-alkyne bond. The number of oxyethylene units (unit number) is preferably 8 or more, more preferably 8 to 70. In the case of other hydrophilic polymer linkers, the length of the linker is preferably a length corresponding to the PEG linker (having oxyethylene units of 8 to 70).
{アジ基}
本発明で用いる所定の抗体および蛍光体集積ナノ粒子のいずれか一方(炭素間三重結合を有さない方)は、炭素間三重結合部分と付加環化反応を起こすアジ基(-N3)を有する。
{Aji group}
One of the predetermined antibody and phosphor-integrated nanoparticles used in the present invention (one having no carbon-carbon triple bond) has an azide group (-N 3 ) that causes a cycloaddition reaction with the carbon-carbon triple bond moiety. Have.
{アジド}
抗体(1次~n次抗体のいずれか)または蛍光体集積ナノ粒子にアジ基を導入するための手法は特に限定されるものではないが、たとえば、アジ基とともに、抗体または蛍光体集積ナノ粒子の表面に存在する官能基と結合可能な他の官能基を有する化合物(アジド)を用いて、そのようなアジドの官能基と抗体または蛍光体集積ナノ粒子の官能基とを反応させる手法が好ましい。
{Azide}
A method for introducing an azide group into an antibody (any of primary to n-order antibodies) or phosphor-integrated nanoparticles is not particularly limited. For example, an antibody or phosphor-integrated nanoparticles together with an azide group A method of reacting a functional group of such an azide with a functional group of an antibody or phosphor-integrated nanoparticle using a compound (azide) having another functional group capable of binding to a functional group present on the surface of the antibody is preferable. .
(アジドの種類)
好ましいアジドとしては、分子の一端にアジ基を有し、他端に抗体または蛍光体集積ナノ粒子の表面に存在する官能基(例;-NH3、-SH基)と反応して共有結合を形成可能な他の官能基(例;NHS基、マレイミド基等)を有するアジドが挙げられる。このような「アジド」のアジ基と官能基との間には、前述した親水性高分子に由来する部分が含まれていてもよい。
(Type of azide)
A preferred azide has an azide group at one end of the molecule and reacts with a functional group (eg, —NH 3 , —SH group) present on the surface of the antibody or phosphor-integrated nanoparticle at the other end to form a covalent bond. Examples thereof include azides having other functional groups that can be formed (eg, NHS group, maleimide group, etc.). A portion derived from the hydrophilic polymer described above may be included between the azide group and the functional group of such “azide”.
このようなアジドとしては、アジ基を有するNHS(N-ヒドロキシスクシンイミド)エステル、アジ基を有する他の活性化エステル(スルホ-NHSエステル(sulfo-NHS-ester)、sulfotetrafluorophenyl(STP)エステル等)を例示することができる。これらエステルの具体例としては、「Azidobutyric acid NHS ester」(製品番号Cat.♯33720、ルミプローブ社製)(下記式(1)参照)、「Sulfo-SANPAH (sulfosuccinimidyl-6-{4´-azido-2´-nitrophenylamino}hexanoate)」(製品番号22589,サーモサイエンティフィック社製)(下記式(2)参照)等が挙げられる。 Examples of such azides include NHS (N-hydroxysuccinimide) esters having an azide group, other activated esters having an azide group (sulfo-NHS ester, sulfotetrafluorphenyl (STP) ester, etc.). It can be illustrated. Specific examples of these esters include “Azidobutyric acid NHS ester” (Product No. Cat. # 33720, manufactured by Lumi Probe) (see the following formula (1)), “Sulfo-SANPAH (sulfosuccinimidyl-6- {4′-azido -2'-nitrophenylamino} hexanoate) "(product number 22589, manufactured by Thermo Scientific) (see formula (2) below).
〈リンカー由来部分を有するアジド〉
上記以外の本発明に使用可能な他のアジドとして、上記アジドと同様にチオール基(SH基)やマレイミド基等の官能基を有し、さらに親水性高分子のリンカー(例;PEG等)由来部分を有するアジドを挙げることができる(下記式(3)および(4)参照)。ここで、DAB染色等により副生される不溶性物質の蛍光シグナルへの悪影響を避けるために、アジド分子中の親水性高分子のリンカーに由来する部分の長さは、前述したとおり、ユニット数(オキシエチレン単位で)8以上の長さであることが好ましく、8以上70以下であることがより好ましい。
<Azide with linker-derived moiety>
Other azides that can be used in the present invention other than those described above have functional groups such as thiol groups (SH groups) and maleimide groups as in the case of the azides, and are derived from a hydrophilic polymer linker (eg, PEG). Mention may be made of azides having a moiety (see formulas (3) and (4) below). Here, in order to avoid an adverse effect on the fluorescence signal of insoluble substances by-produced by DAB staining or the like, the length of the portion derived from the linker of the hydrophilic polymer in the azide molecule is the number of units (as described above). The length is preferably 8 or more (in oxyethylene units), more preferably 8 or more and 70 or less.
〈NHSエステル〉
リンカー由来部分を有するアジドの好適な具体例(NHSエステル)としては、「Azide polyethylene glycol NHS」(製品番号:PG2-AZNS-400, PG2-AZNS-600, PG2-AZNS-1k, PG2-AZNS-2k, PG2-AZNS-3k, PG2-AZNS-5k、NANOCS社製)、「Azido-PEG8-NHS ester」(製品番号:CLK-L032-5、jenabioscience社製)(下記式(3)でn=7の場合)、「NHS-PEG12-Azide」(サーモサイエンティフィック社製、製品コード:11338251)(下記式(3)でn=11の場合)が挙げられる。
<NHS ester>
Preferred examples of azides having a linker-derived moiety (NHS ester) include “Azide polyethylene glycol NHS” (Product Nos .: PG2-AZNS-400, PG2-AZNS-600, PG2-AZNS-1k, PG2-AZNS- 2k, PG2-AZNS-3k, PG2-AZNS-5k, manufactured by NANOCS, “Azido-PEG8-NHS ester” (product number: CLK-L032-5, manufactured by jenabioscience) (n = 7), “NHS-PEG 12 -Azide” (manufactured by Thermo Scientific, product code: 11338251) (when n = 11 in the following formula (3)).
〈マレイミドエステル〉
上記以外のリンカー由来部分を有するアジドの好適な具体例(マレイミドエステル)としては、「Azide-PEG-Maleimide」(製品番号:PG2-AZML-400, 600, 1k, 2k, 3k, 5k、NANOCS社製)が挙げられる。ここで、これら「PG2-AZML-400」~「PG2-AZML-5K」は、それぞれ、上記「PG2-AZNS-400」~「PG2-AZNS-5K」のNHS基をマレイミド基に置換したものであるので、オキシエチレン単位や分子長は対応する製品(表1参照)とほぼ同じである。また、下記式においてm=8以上~70以下であることが好ましい。
<Maleimide ester>
A specific example (maleimide ester) of an azide having a linker-derived moiety other than the above is “Azide-PEG-Maleimide” (Product No .: PG2-AZML-400, 600, 1k, 2k, 3k, 5k, NANOCS) Manufactured). Here, “PG2-AZML-400” to “PG2-AZML-5K” are obtained by substituting the NHS groups of the above “PG2-AZNS-400” to “PG2-AZNS-5K” with maleimide groups, respectively. As such, the oxyethylene unit and molecular length are almost the same as the corresponding product (see Table 1). In the following formula, it is preferable that m = 8 to 70.
(抗体とアジドとの結合方法)
抗体とアジドとの結合は、アジド由来のアジ基(-N3)および抗体の抗原との免疫反応性が損なわれないように抗体とアジドとを共有結合することができれば特に限定されないが、例えば、抗体のアミノ基と、NHS基を有するアジド化合物を反応させる事で行なうことができる。例えば、0.05M ホウ酸ナトリウム緩衝液(sodium borate buffer)中において、抗体1モルに対してNHS基を有するアジド化合物を5~100モル加えることにより行なうことができる。
(Method of binding antibody to azide)
The binding between the antibody and the azide is not particularly limited as long as the antibody and the azide can be covalently bound so that the immunoreactivity of the azide-derived azide group (—N 3 ) and the antigen of the antibody is not impaired. The reaction can be performed by reacting the amino group of the antibody with an azide compound having an NHS group. For example, it can be carried out by adding 5 to 100 mol of an azide compound having an NHS group to 1 mol of antibody in 0.05 M sodium borate buffer.
同様に、抗体とアジドの結合は、抗体のチオール基と、マレイミドを有するアジド化合物を反応させて行なうこともできる。例えば、あらかじめ抗体を還元処理またはチオール化試薬(2-イミノチオラン(2-iminothiolane)(2-IT)、スクシンイミジルアセチルチオプロピオン酸塩(SATP,N-succinimidyl-S-acetylthiopropionate(サーモサイエンス社製)、スクシンイミド2-ピリジルジチオプロピオン酸塩(succinimido 2-pyridyldithiopropionate)(SPDP))等を用いてチオール化した後、0.05M ホウ酸ナトリウム緩衝液(sodium borate buffer)中において、抗体1モルに対してマレイミドを有するアジド化合物を5~100モル加えることにより行なうことができる。 Similarly, the antibody and azide can be bound by reacting the antibody thiol group with an azide compound having maleimide. For example, the antibody is previously reduced or thiolated (2-iminothiolane (2-IT), succinimidylacetylthiopropionate (SATP, N-succinimidyl-S-acetylthiopropionate (manufactured by Thermoscience)) ), Thiolated using succinimido 2-pyridyldithiopropionate (SPDP), etc., and then in 0.05 M sodium borate buffer (sodium borate buffer) to 1 mol of antibody. The azide compound having maleimide can be added in an amount of 5 to 100 mol.
なお、マレイミド基またはNHS基を有するアジド化合物としては、前述したものを使用することができる。 In addition, as the azide compound having a maleimide group or an NHS group, those described above can be used.
ここで、NHSエステルと所定の抗体のアミノ基との結合反応は反応液のpHに強く依存するため、上記結合反応のpH値は6~8に調整することが好ましく、8.3~8.5に調整することがより好ましい。上記ホウ酸ナトリウム緩衝液を用いる例では、pH調整はホウ酸ナトリウムまたは水酸化カリウムで行うことができる。 Here, since the binding reaction between the NHS ester and the amino group of the predetermined antibody strongly depends on the pH of the reaction solution, the pH value of the above binding reaction is preferably adjusted to 6-8, and 8.3-8. It is more preferable to adjust to 5. In the example using the sodium borate buffer, the pH can be adjusted with sodium borate or potassium hydroxide.
上記結合反応の条件としては、特に制限ないが、例えば、室温で少なくとも1時間、上記結合反応をさせるか、一晩氷上で上記結合反応をさせることで行うことができる。 The conditions for the binding reaction are not particularly limited. For example, the binding reaction may be performed at room temperature for at least 1 hour, or may be performed overnight on ice.
結合反応により得られた抗体とアジドとが結合したものは、レジン等を含む抗体精製用のスピンカラムで未反応物を除去して精製することができる。 The antibody obtained by the binding reaction and the azide bound to each other can be purified by removing unreacted substances using a spin column for antibody purification containing a resin or the like.
また、アジドと抗体が結合したことの確認は、例えば、ICP-MS(誘導結合プラズマ質量分析計)等で確認することができる。 Also, confirmation that the azide and the antibody are bound can be confirmed by, for example, ICP-MS (inductively coupled plasma mass spectrometer).
(蛍光体集積ナノ粒子とアジドとの結合方法)
蛍光体集積ナノ粒子に対してアジドを結合する方法は、蛍光体集積ナノ粒子に上記アジドを結合させることができれば特に限定されないが、好適な方法として、(I)アジド(主として市販されているアジド)が有する官能基(例;NHS基、マレイミド基)と反応して共有結合を形成することができる官能基(例;アミノ基、SH基)を蛍光体集積ナノ粒子の表面に導入する工程、(II)上記アジドの官能基と蛍光体集積ナノ粒子の官能基とを反応させて、蛍光体集積ナノ粒子にアジドを結合させる(つまりアジ基を導入する)工程、を有する方法が例示される。
(Method of binding phosphor-aggregated nanoparticles and azide)
The method for binding the azide to the phosphor-aggregated nanoparticles is not particularly limited as long as the azide can be bound to the phosphor-aggregated nanoparticles. However, as a preferred method, (I) azide (mainly commercially available azide) ) A functional group (e.g., NHS group, maleimide group) having a functional group (e.g., NHS group, maleimide group), and a functional group (e.g., amino group, SH group) capable of forming a covalent bond, (II) A method comprising a step of reacting the functional group of the azide and the functional group of the phosphor-integrated nanoparticles to bond the azide to the phosphor-integrated nanoparticles (that is, introducing an azide group) is exemplified. .
工程(I)で、官能基(アミノ基,SH基等)を蛍光体集積ナノ粒子の表面に導入する方法として、シランカップリング剤等のカップリング剤を使用して各官能基を蛍光体集積ナノ粒子(粒子表面にOH基を有するもの)に導入することができる。例えば、アミノプロピルエチルシリケート、またはトリス(2‐アミノエチル)アミン等により蛍光体集積ナノ粒子の表面にアミノ基を導入することができる。 In step (I), as a method of introducing functional groups (amino group, SH group, etc.) to the surface of the phosphor-integrated nanoparticles, each functional group is phosphor-assembled using a coupling agent such as a silane coupling agent. It can be introduced into nanoparticles (having OH groups on the particle surface). For example, amino groups can be introduced onto the surface of the phosphor-integrated nanoparticles using aminopropylethyl silicate, tris (2-aminoethyl) amine, or the like.
カップリング剤と上記蛍光体集積ナノ粒子の表面との反応は、カップリング剤の存在下、一般的なカップリング剤の使用条件下で反応することによって行うことができる。通常、室温下で数十分~数十時間攪拌反応する方法を用いることができる。使用するカップリング剤の割合は、蛍光体集積ナノ粒子1モルに対して、モル比で300~6000倍、好ましくは600~5400倍、より好ましくは2100~3000倍である。 The reaction between the coupling agent and the surface of the phosphor-integrated nanoparticles can be carried out by reacting in the presence of the coupling agent under the general use conditions of the coupling agent. Usually, a method of stirring and reacting at room temperature for several tens of minutes to several tens of hours can be used. The ratio of the coupling agent to be used is 300 to 6000 times, preferably 600 to 5400 times, more preferably 2100 to 3000 times in terms of molar ratio with respect to 1 mol of the phosphor-integrated nanoparticles.
蛍光体集積ナノ粒子の表面の官能基(アミノ基、SH基等)は、蛍光体集積ナノ粒子の製造に用いる母材の種類によっても適宜選択して導入することができる。例えば、メラミン樹脂を用いて蛍光体集積ナノ粒子を製造すれば、アミノ基やヒドロキシル基を有する蛍光体集積ナノ粒子が得られる。メラミン樹脂を用いる場合、メラミン樹脂には2級アミンや3級アミンの部分が多く存在し、1級アミンの部分(-NH2基)が少なくNHSエステルとの反応性に乏しいことから、メラミン樹脂のヒドロキシメチル基(-CH2OH)のヒドロキシル基に対してシランカップリング剤を作用させることで、1級アミンの部分(-NH2基)を導入しNHSエステルとの反応性を高めてもよい。 The functional groups (amino group, SH group, etc.) on the surface of the phosphor-integrated nanoparticles can be appropriately selected and introduced depending on the type of the base material used for producing the phosphor-integrated nanoparticles. For example, if phosphor-integrated nanoparticles are produced using melamine resin, phosphor-integrated nanoparticles having an amino group or a hydroxyl group can be obtained. When a melamine resin is used, the melamine resin has many secondary amine and tertiary amine moieties, and there are few primary amine moieties (-NH 2 groups) and poor reactivity with NHS esters. By reacting the hydroxyl group of the hydroxymethyl group (—CH 2 OH) with a silane coupling agent, the primary amine moiety (—NH 2 group) can be introduced to increase the reactivity with the NHS ester. Good.
一方、チオール化試薬を用いることで、蛍光体集積ナノ粒子の表面にチオール基(-SH基)を導入することができる。この場合、蛍光体集積ナノ粒子の表面に一旦アミノ基を導入し、このアミノ基をチオール基に変換する方法が挙げられる。上記チオール化試薬としては、2-イミノチオラン、N-succinimidyl-S-acetylthioacetate(SATA)等が挙げられる。 On the other hand, by using a thiolation reagent, a thiol group (—SH group) can be introduced on the surface of the phosphor-integrated nanoparticles. In this case, a method of once introducing an amino group on the surface of the phosphor-integrated nanoparticles and converting the amino group into a thiol group can be mentioned. Examples of the thiolation reagent include 2-iminothiolane, N-succinimidyl-S-acetylthioacetate (SATA), and the like.
2-イミノチオランを用いてメラミン系樹脂製の蛍光体集積ナノ粒子のアミノ基をチオール化する場合、水等の溶媒中で粒子1モルに対して5000~50000倍のモル量の2-イミノチオランを添加し、室温で1時間程度反応させることでアミノ基をチオール基に導入することができる。なお、蛍光体集積ナノ粒子の表面にアミノ基やSH基が導入されたか否かは、例えばFT-IR法およびXPS測定によりアミノ基やSH基に由来する吸収が観測できるか否かにより確認することができる。 When using 2-iminothiolane to thiolate the amino group of phosphor-integrated nanoparticles made of melamine resin, a molar amount of 2-iminothiolane of 5000 to 50000 times is added to 1 mol of particles in a solvent such as water. The amino group can be introduced into the thiol group by reacting at room temperature for about 1 hour. Whether or not an amino group or SH group is introduced on the surface of the phosphor-integrated nanoparticles is confirmed by whether or not absorption derived from the amino group or SH group can be observed by, for example, FT-IR method and XPS measurement. be able to.
工程(II)では、アジドの官能基(NHS基等)と蛍光体集積ナノ粒子の官能基(アミノ基等)とを反応させて、蛍光体集積ナノ粒子の表面にアジドを結合させる。この結合反応には、緩衝液(例;ホウ酸ナトリウム緩衝液(sodium borate buffer)、PBS等)を使用することが好ましい。また、反応のモル比として、蛍光体集積ナノ粒子1モルに対して200万~400万倍のモル量のアジドを反応させることが好ましい。 In step (II), the functional group (NHS group or the like) of the azide is reacted with the functional group (amino group or the like) of the phosphor integrated nanoparticle to bond the azide to the surface of the phosphor integrated nanoparticle. For this binding reaction, it is preferable to use a buffer solution (eg, sodium borate buffer, PBS, etc.). Further, it is preferable to react a molar amount of the azide of 2 million to 4 million times with respect to 1 mol of the phosphor-integrated nanoparticles as the molar ratio of the reaction.
例えば、PBS等の緩衝液を用いて、アミノ基等の上記官能基を有する蛍光体集積ナノ粒子を0.3~30nMに調整し、最終濃度0.6~120mMとなるように上記アジドを混合し、室温にて数時間(例;0.5時間~1.5時間)反応させる例が挙げられる。 For example, using a buffer solution such as PBS, the phosphor-integrated nanoparticles having the functional group such as amino group are adjusted to 0.3 to 30 nM, and the azide is mixed so that the final concentration is 0.6 to 120 mM. And an example of reacting at room temperature for several hours (eg, 0.5 to 1.5 hours).
なお、工程(II)の後に洗浄工程(III)を設けてもよい。洗浄工程(III)では、上記工程(II)を経た反応混合液を遠心分離し、上澄みを除去して、EDTAを2mM含有した水やPBS等の緩衝液をさらに沈降物を分散させる操作を数回(2,3回)繰り返すことにより行うことができる。 In addition, you may provide washing | cleaning process (III) after process (II). In the washing step (III), the reaction mixture obtained through the above step (II) is centrifuged, the supernatant is removed, and a buffer solution such as water or PBS containing 2 mM EDTA is further dispersed in the precipitate. It can be carried out by repeating it twice (a few times).
{炭素間三重結合}
本発明で用いる所定の抗体および蛍光体集積ナノ粒子のいずれか一方(アジ基を有さない方)は、アジ基と付加環化反応を起こす炭素間三重結合(C≡C)を有する。
{Inter-carbon triple bond}
One of the predetermined antibody and phosphor-integrated nanoparticles used in the present invention (one not having an azido group) has a carbon-carbon triple bond (C≡C) that causes a cycloaddition reaction with the azide group.
{アルキン化合物}
抗体(1次~n次抗体のいずれか)または蛍光体集積ナノ粒子に炭素間三重結合部分を導入するための手法は特に限定されるものではないが、たとえば、炭素間三重結合部分とともに、抗体または蛍光体集積ナノ粒子の表面に存在する官能基と反応して共有結合を形成可能な反応性官能基(当該共有結合の形成に炭素間三重結合自体が用いられない限り、炭素間三重結合を有する基自体が当該反応性基であってもよい。)を有する化合物を用いて、そのような化合物の官能基と抗体または蛍光体集積ナノ粒子の官能基とを反応させる手法が好適である。
{Alkyne compound}
The method for introducing the carbon-carbon triple bond moiety into the antibody (any one of the primary to n-order antibodies) or the phosphor-integrated nanoparticles is not particularly limited. Alternatively, a reactive functional group capable of reacting with a functional group present on the surface of the phosphor-integrated nanoparticle to form a covalent bond (unless the carbon-carbon triple bond itself is used to form the covalent bond, A method in which a functional group of such a compound is reacted with a functional group of an antibody or phosphor-integrated nanoparticles using a compound having a reactive group itself may be the reactive group is suitable.
また、蛍光体集積ナノ粒子の母体を樹脂により形成する場合、前述の蛍光色素を取り込みつつ樹脂モノマーを重合する過程で、重合反応に関与しないモノマーの側鎖部分に炭素間三重結合部分を有する樹脂モノマーを用いることで、上記重合により蛍光体集積ナノ粒子に直接炭素間三重結合部分を導入することができる。また、例えばハロゲン化アリルを側鎖に有する樹脂モノマーに対して、側鎖部分にR-C≡C-Hの化合物を反応させて、シリカ樹脂粒子を形成するための原料モノマーの末端部分または中央部分に炭素間三重結合部分を導入し、このモノマーを用いて上記重合を行い、蛍光体集積ナノ粒子に直接炭素間三重結合部分を導入してもよい。 Also, when the matrix of phosphor-integrated nanoparticles is formed from a resin, a resin having a carbon-carbon triple bond moiety in the side chain portion of the monomer that does not participate in the polymerization reaction in the process of polymerizing the resin monomer while incorporating the aforementioned fluorescent dye By using a monomer, a carbon-carbon triple bond portion can be directly introduced into the phosphor-integrated nanoparticles by the polymerization. Further, for example, a resin monomer having an allyl halide in the side chain is reacted with a compound of R—C≡C—H in the side chain portion to form a terminal portion or a center of the raw material monomer for forming silica resin particles. A carbon-carbon triple bond portion may be introduced into the portion, the polymerization may be performed using this monomer, and the carbon-carbon triple bond portion may be directly introduced into the phosphor-integrated nanoparticles.
本発明では、前述した化合物を「アルキン化合物」と総称する。すなわち、本発明における「アルキン化合物」という用語は、炭素間三重結合を一つ有する直鎖状炭化水素(狭義のアルキン)および環状炭化水素(狭義のシクロアルキン)のみを指す用語ではなく、アジ基との付加環化反応を起こすことのできる炭素間三重結合部分を含んでいれば、直鎖状であっても環状であってもよく、また炭素以外の原子や炭素間三重結合部分を含む基以外の基(例えば前記反応性官能基)をさらに含んでいてもよい、化合物全般を指す広義の用語である。このようなアルキン化合物にはもちろん、前記狭義のアルキンおよびシクロアルキン自体も包含される。 In the present invention, the aforementioned compounds are collectively referred to as “alkyne compounds”. That is, the term “alkyne compound” in the present invention is not a term indicating only a linear hydrocarbon (strictly alkyne) and cyclic hydrocarbon (strictly cycloalkyne) having one carbon-carbon triple bond, but an azide group. As long as it contains a carbon-carbon triple bond moiety capable of undergoing a cycloaddition reaction with the group, it may be linear or cyclic, and a group containing an atom other than carbon or a carbon-carbon triple bond moiety It is a broad term that refers to all compounds that may further contain a group other than (for example, the reactive functional group). Such alkyne compounds include, of course, the narrowly defined alkynes and cycloalkynes themselves.
(アルキンの種類)
好ましいアルキン化合物としては、分子の一端に炭素間三重結合部分を有し、他端に抗体または蛍光体集積ナノ粒子の表面に存在する官能基(例;-NH3、-SH基)と反応して共有結合を形成可能な反応性官能基(例;NHS基、マレイミド基等)を有する、二官能性のアルキン化合物が挙げられる。
(Type of alkyne)
Preferred alkyne compounds have a carbon-carbon triple bond moiety at one end of the molecule and react with a functional group (eg, —NH 3 , —SH group) present on the surface of the antibody or phosphor-integrated nanoparticle at the other end. And bifunctional alkyne compounds having a reactive functional group capable of forming a covalent bond (eg, NHS group, maleimide group, etc.).
このようなアルキン化合物は、炭素間三重結合部分を有する化合物(前述した狭義のアルキンであってもよい)に、必要に応じてリンカーとなる分子を介して、反応性基を有する化合物を共有結合によって連結することにより得られる化合物(誘導体)、例えば炭素間三重結合部分を有する化合物との、NHS(N-ヒドロキシスクシンイミド)エステルおよび他の活性化エステル(スルホ-NHSエステル(sulfo-NHS-ester)、sulfotetrafluorophenyl(STP)エステル等)を例示することができる。 Such an alkyne compound is capable of covalently bonding a compound having a reactive group to a compound having a carbon-carbon triple bond moiety (which may be the above-described alkyne in a narrow sense) via a molecule serving as a linker as necessary. NHS (N-hydroxysuccinimide) esters and other activated esters (sulfo-NHS-esters) with compounds (derivatives) obtained by linking with, for example, compounds having an intercarbon triple bond moiety And sulfotetrafluorophenyl (STP) ester).
上記二官能性のアルキン化合物の具体例としては、「Pentynoic acid STP ester」(製品番号Cat.♯33720、ルミプローブ社製)(下記式(5)参照)等が挙げられる。 Specific examples of the bifunctional alkyne compound include “Pentynoic acid STP ester” (product number Cat. # 33720, manufactured by Lumi Probe Co., Ltd.) (see the following formula (5)).
〈リンカー由来部分を有するアルキン化合物〉
本発明に使用可能な他のアルキン化合物として、上述した官能基(例;NHS基、マレイミド基等)を有し、親水性高分子のリンカー(例;PEG等)由来部分を有するアルキン化合物を挙げることができる(下記各式(6)参照)。
<Alkyne compound having a linker-derived moiety>
Examples of other alkyne compounds that can be used in the present invention include alkyne compounds having the above-described functional groups (eg, NHS group, maleimide group, etc.) and having a portion derived from a hydrophilic polymer linker (eg, PEG, etc.). (Refer to each formula (6) below).
例えば「ALK-PEG-NHS」(カタログ番号:PG2-AKNS-400、PG2-AKNS-600、PG2-AKNS-800、PG2-AKNS-1k、PG2-AKNS-2k、PG2-AKNS-3k, PG2-AKNS-5k、NANOCS社製)(下記式(6)および表参照)を挙げることができる。上述したように、オキシエチレン単位数(n)が8~70に入るPG2-AKNS-400、PG2-AKNS-600、PG2-AKNS-800、PG2-AKNS-1k、PG2-AKNS-2kが好ましい。 For example, “ALK-PEG-NHS” (catalog numbers: PG2-AKNS-400, PG2-AKNS-600, PG2-AKNS-800, PG2-AKNS-1k, PG2-AKNS-2k, PG2-AKNS-3k, PG2- AKNS-5k (manufactured by NANOCS) (see the following formula (6) and table). As described above, PG2-AKNS-400, PG2-AKNS-600, PG2-AKNS-800, PG2-AKNS-1k, and PG2-AKNS-2k in which the number (n) of oxyethylene units falls within the range of 8 to 70 are preferable.
この他にも、「NHS-PEG(NH-Boc)-alkyne」(製品番号PEG2920;Iris BIOTECH GMBH社)を挙げることができる(下記式(7)参照)。ここで、n=8~70が好ましい。 In addition, “NHS-PEG (NH-Boc) -alkyne” (product number PEG2920; Iris BIOTECH GMBH) can be mentioned (see the following formula (7)). Here, n = 8 to 70 is preferable.
〈8員環のアルキン化合物〉
本発明に使用可能なアルキン化合物として、炭素間三重結合を有する環状構造(シクロアルキル構造)、たとえば8員環構造を分子内にもつアルキン化合物が好ましい。そのような8員環部分を分子内にもつアルキン化合物であれば、金属触媒(例;銅触媒)を用いずにアジ基と炭素環三重結合部分との結合反応(ヒュスゲン環化付加反応)を引き起こすことができるからである。
<8-membered ring alkyne compound>
As the alkyne compound usable in the present invention, an alkyne compound having a cyclic structure having a carbon-carbon triple bond (cycloalkyl structure), for example, an 8-membered ring structure in the molecule is preferable. In the case of such an alkyne compound having an 8-membered ring moiety in the molecule, a bonding reaction (Husgen cycloaddition reaction) between the azide group and the carbocyclic triple bond moiety is performed without using a metal catalyst (eg, copper catalyst) Because it can cause.
このようなシクロアルキル構造とともに、前述したような抗体または蛍光体集積ナノ粒子に結合させるための反応性官能基を有するアルキン化合物としては、以下のものを例示することができる。 Examples of the alkyne compound having such a cycloalkyl structure and a reactive functional group for binding to the antibody or phosphor-aggregated nanoparticles as described above include the following.
(1)「Click-iT(登録商標) maleimide DIBO alkyne」(C27H26N2O4;分子量442.51)(製品番号C-10413、ライフサイエンステクノロジーズ社製)(下記式(8)参照) (1) “Click-iT (registered trademark) maleimide DIBO alkyne” (C 27 H 26 N 2 O 4 ; molecular weight 442.51) (product number C-10413, manufactured by Life Science Technologies) (see the following formula (8))
(2)「Click-iT(登録商標) succinimidyl ester DIBO alkyne」(下記式(9)参照) (2) “Click-iT (registered trademark) succinimidyl ester DIBO alkyne” (see formula (9) below)
(抗体とアルキンとの結合方法)
抗体とアルキンとの結合は、アルキン由来の炭素間三重結合部分が損なわれず、また、抗体の免疫反応性が損なわれないように抗体とアルキンとを共有結合することができれば特に限定されないが、例えば、抗体のアミノ基と、NHS基を有するアルキン化合物を反応せせることで行なうことができる。例えば、0.05M ホウ酸ナトリウム緩衝液(Sodium Borate buffer)中において、抗体1モルに対してNHS基を有するアルキン化合物を5~100モル加えることにより行なうことができる。
(Method of binding antibody to alkyne)
The binding between the antibody and the alkyne is not particularly limited as long as the carbon-carbon triple bond portion derived from the alkyne is not impaired, and the antibody and the alkyne can be covalently bound so that the immunoreactivity of the antibody is not impaired. This can be carried out by reacting the amino group of the antibody with an alkyne compound having an NHS group. For example, it can be carried out by adding 5 to 100 mol of an alkyne compound having an NHS group to 1 mol of antibody in 0.05 M sodium borate buffer.
同様に、抗体とアルキンとの結合は、抗体のチオール基と、マレイミドを有するアルキン化合物を反応させて行なうこともできる。例えば、あらかじめ抗体を還元処理またはチオール化試薬(2-イミノチオラン(2-iminothiolane)(2-IT)、スクシンイミジルアセチルチオプロピオン酸塩(SATP,N-succinimidyl-S-acetylthiopropionate(サーモサイエンス社製)、N-スクシンイミジル3-(2-ピリジルジチオ)プロピオン酸塩(succinimido3-(2-pyridyldithio)propionate,SPDP))等を用いてチオール化した後、0.05M ホウ酸ナトリウム緩衝液(Sodium borate buffer)中において、抗体1モルに対してマレイミドを有するアルキン化合物を5~100モル加えることにより行なうことができる。 Similarly, the binding between the antibody and the alkyne can also be performed by reacting the thiol group of the antibody with the alkyne compound having maleimide. For example, the antibody is reduced beforehand or a thiolation reagent (2-iminothiolane (2-IT), succinimidylacetylthiopropionate (SATP, N-succinimidyl-S-acetylthiopropionate (manufactured by Thermoscience)) ), N-succinimidyl 3- (2-pyridyldithio) propionate (succinimido3- (2-pyridyldithio) propionate, SPDP), etc., and then 0.05M sodium borate buffer (Sodium borate buffer) ) Can be carried out by adding 5 to 100 mol of an alkyne compound having maleimide to 1 mol of antibody.
なお、マレイミド基またはNHS基を有するアルキン化合物としては、前述したものを使用することができる。 In addition, as the alkyne compound having a maleimide group or an NHS group, those described above can be used.
ここで、NHSエステル基と所定の抗体のアミノ基との間の結合反応の反応性は、反応液のpHに強く依存するため、上記結合反応のpH値は6~8に調整することが好ましく、pH8.3~8.5に調整することがより好ましい。上記ホウ酸ナトリウム緩衝液を用いる例では、pH調整はホウ酸ナトリウムまたは水酸化カリウムで行うことができる。 Here, since the reactivity of the binding reaction between the NHS ester group and the amino group of the predetermined antibody strongly depends on the pH of the reaction solution, the pH value of the binding reaction is preferably adjusted to 6-8. More preferably, the pH is adjusted to 8.3 to 8.5. In the example using the sodium borate buffer, the pH can be adjusted with sodium borate or potassium hydroxide.
上記結合反応の条件としては、特に制限ないが、例えば、室温で少なくとも1時間、上記結合反応をさせるか、一晩氷上で上記結合反応をさせることで行うことができる。 The conditions for the binding reaction are not particularly limited. For example, the binding reaction may be performed at room temperature for at least 1 hour, or may be performed overnight on ice.
結合反応により得られた抗体とアルキン化合物とが結合したものは、レジン等を含む抗体精製用のスピンカラムで未反応物を除去して精製することができる。 The antibody obtained by the binding reaction and the alkyne compound bound to each other can be purified by removing unreacted substances using a spin column for antibody purification containing a resin or the like.
また、アルキン化合物と抗体が結合したことの確認は、例えば、ICP-MS(誘導結合プラズマ質量分析計)等で確認することができる。 The confirmation that the alkyne compound and the antibody are bound can be confirmed by, for example, ICP-MS (inductively coupled plasma mass spectrometer).
(蛍光体集積ナノ粒子とアルキン化合物との結合方法)
蛍光体集積ナノ粒子に対してアルキン化合物を結合させる方法は、蛍光体集積ナノ粒子にアルキン化合物を結合させることができれば特に限定されない。アルキン化合物と蛍光体集積ナノ粒子との結合の好適な方法としては、前述した「蛍光体集積ナノ粒子とアジドとの結合方法」において、アジドの代わりにアルキン化合物を用いることで行うことで達成できるため、その説明を省略する。
(Binding method of phosphor-integrated nanoparticles and alkyne compound)
The method for binding the alkyne compound to the phosphor-aggregated nanoparticles is not particularly limited as long as the alkyne compound can be bound to the phosphor-aggregated nanoparticles. As a preferable method for bonding the alkyne compound and the phosphor-aggregated nanoparticles, it can be achieved by using an alkyne compound instead of the azide in the above-mentioned “Method of binding phosphor-aggregated nanoparticles and azide”. Therefore, the description is omitted.
≪免疫染色試薬キット≫
本発明に係る免疫染色試薬キットは、組織切片上で該組織切片の抗原を蛍光体集積ナノ粒子により蛍光標識するため免疫染色試薬キットであって、蛍光体集積ナノ粒子を含む標識試薬と、前記抗原に対して抗原抗体反応により直接的に固定される抗体、または該抗体を介して間接的に固定される別の抗体を含む抗体試薬とを備えており、前記蛍光体集積ナノ粒子および前記抗体のいずれか一方にアジ基(-N3)が導入され、他方に炭素間三重結合部分(C≡C)が導入されており、前記アジ基と前記炭素間三重結合部分とのヒュスゲン環化付加反応により、前記抗体と前記蛍光体集積ナノ粒子との分子間にトリアゾール環を介した結合を形成し、該形成により当該両分子が直接的または間接的に結合することで前記抗原を蛍光標識するようにして用いられる。また、免疫染色試薬キットは、金属触媒の溶液をさらに有してもよい。
≪Immunostaining reagent kit≫
An immunostaining reagent kit according to the present invention is an immunostaining reagent kit for fluorescently labeling an antigen of a tissue section on a tissue section with phosphor-integrated nanoparticles, the labeling reagent containing the phosphor-integrated nanoparticles, An antibody reagent containing an antibody directly immobilized on an antigen by an antigen-antibody reaction, or another antibody indirectly immobilized via the antibody, and the phosphor-integrated nanoparticles and the antibody An azido group (—N 3 ) is introduced into one of them, and a carbon-carbon triple bond moiety (C≡C) is introduced into the other, and the Huisgen cycloaddition of the azide group and the carbon-carbon triple bond moiety By the reaction, a bond via a triazole ring is formed between the antibody and the phosphor-integrated nanoparticles, and the antigen is fluorescently labeled by directly or indirectly binding the both molecules. Like Used in. The immunostaining reagent kit may further include a metal catalyst solution.
{抗体試薬}
抗体試薬は、前述したアルキン(若しくはアルキン化合物)またはアジドが結合された所定の抗体(例;HER2抗体等)を所定の緩衝液に溶解したものであり、該抗体は組織切片上の特定の抗原に特異的に結合しうるものである。抗原に結合する1次抗体のみならず、1次抗体に加えて2次抗体~n次抗体を別の抗体試薬として本発明に係る免疫染色試薬キット中に含める場合もある。
{Antibody reagent}
The antibody reagent is obtained by dissolving a predetermined antibody (eg, HER2 antibody) to which alkyne (or alkyne compound) or azide is bound in a predetermined buffer solution, and the antibody is a specific antigen on a tissue section. That can specifically bind to. In addition to the primary antibody that binds to the antigen, in addition to the primary antibody, secondary antibodies to n-order antibodies may be included in the immunostaining reagent kit of the present invention as separate antibody reagents.
抗体試薬中の抗体濃度は、蛍光体集積ナノ粒子のアルキン化合物又はアジドとの間でヒュスゲン環化反応が生じうる濃度範囲に調節されていることが好ましい。 The antibody concentration in the antibody reagent is preferably adjusted to a concentration range in which a Huisgen cyclization reaction can occur with the alkyne compound or azide of the phosphor-integrated nanoparticles.
上記蛍光体集積ナノ粒子と所定の抗体とはモル比1:1でヒュスゲン環化付加反応を行うことが理想であるため、抗体試薬中の所定の抗体のモル濃度を上記標識試薬中の蛍光体集積ナノ粒子のモル濃度とほぼ同一となるように設定することが望ましい。例えば、標識試薬中の蛍光体集積ナノ粒子のモル濃度を0.005nM~0.5nMに設定する場合であれば、抗体試薬中の抗体のモル濃度も0.005nM~0.5nMの範囲で設定することが望ましい。 Since it is ideal that the Husgen cycloaddition reaction be performed at a molar ratio of 1: 1 between the phosphor-integrated nanoparticles and the predetermined antibody, the molar concentration of the predetermined antibody in the antibody reagent is set to the phosphor in the labeling reagent. It is desirable to set the molar concentration of the integrated nanoparticles to be approximately the same. For example, if the molar concentration of the phosphor-integrated nanoparticles in the labeling reagent is set to 0.005 nM to 0.5 nM, the molar concentration of the antibody in the antibody reagent is also set in the range of 0.005 nM to 0.5 nM. It is desirable to do.
抗体試薬に使用可能な緩衝液としては、リン酸緩衝液(PBSを含む)、水等が挙げられる。また、抗体試薬には、各種のブロッキング剤を含めてもよく、このブロッキング剤の濃度は終濃度で1%以下に設定することが好ましい。このようなブロッキング剤としては、ウシ血清アルブミン(BSA)、カゼイン(αカゼイン、βカゼイン、γカゼイン)、ゼラチン等の生物由来物質が挙げられる。 Examples of buffers that can be used for antibody reagents include phosphate buffers (including PBS), water, and the like. Moreover, various blocking agents may be included in the antibody reagent, and the concentration of this blocking agent is preferably set to 1% or less in terms of final concentration. Examples of such blocking agents include biological substances such as bovine serum albumin (BSA), casein (α-casein, β-casein, γ-casein) and gelatin.
{標識試薬}
標識試薬は、アルキン(若しくはアルキン化合物)またはアジドが結合された蛍光体集積ナノ粒子を所定の溶媒中に分散させたものであり、組織切片上の抗原と結合した抗体との間でヒュスゲン環化付加反応により前記抗原の蛍光標識に用いられるものである。標識試薬中の蛍光体集積ナノ粒子の濃度は、組織切片上で上記ヒュスゲン環化付加反応を引き起こす濃度以上に調節されていればよい。標識試薬に含有させる蛍光体集積ナノ粒子の濃度としては、0.005~0.500nMに設定する例が挙げられる。標識試薬に使用可能な緩衝液としては、リン酸緩衝液(PBSを含む)、水、MES等が挙げられる。また、標識試薬には、各種のブロッキング剤を含めてもよく、このブロッキング剤の濃度は終濃度で1%以下に設定することが好ましい。このようなブロッキング剤としては、ウシ血清アルブミン(BSA)、カゼイン(αカゼイン、βカゼイン、γカゼイン)、ゼラチン等の生物由来物質が挙げられる。
{Labeling reagent}
The labeling reagent is a fluorinated nanoparticle with alkyne (or alkyne compound) or azide bound dispersed in a specified solvent, and Huisgen cyclization between the antigen and the antibody bound to the tissue section It is used for fluorescent labeling of the antigen by an addition reaction. The concentration of the phosphor-aggregated nanoparticles in the labeling reagent only needs to be adjusted to be higher than the concentration causing the Husgen cycloaddition reaction on the tissue section. An example of the concentration of the phosphor-integrated nanoparticles contained in the labeling reagent is set to 0.005 to 0.500 nM. Examples of the buffer that can be used for the labeling reagent include phosphate buffer (including PBS), water, MES, and the like. The labeling reagent may contain various blocking agents, and the concentration of the blocking agent is preferably set to 1% or less in terms of final concentration. Examples of such blocking agents include biological substances such as bovine serum albumin (BSA), casein (α-casein, β-casein, γ-casein) and gelatin.
{金属触媒の溶液}
本発明に係る免疫染色試薬キットに任意で含まれる金属触媒の溶液は、所定の抗体と上記蛍光体集積ナノ粒子とのヒュスゲン環化付加反応の触媒能を有する金属イオンを含有する溶液である。触媒として、アジドとアルキンのヒュスゲン環化付加反応を触媒可能なCu、Zr、W、Fe、Ru、Co、Rh、Ir、Ni、Pd、Pt、Ag、Au、Zn、Cd、Hgおよび他の金属のイオンからなる群から選択されるいずれか1種または2種以上を使用することができるが、このうち反応効率に優れるCuが特に好ましい。この他にも、例えば、溶液中で金属イオンを生じうる粒子状の金属触媒を使用することができる。
{Metal catalyst solution}
The metal catalyst solution optionally contained in the immunostaining reagent kit according to the present invention is a solution containing a metal ion having a catalytic ability for the Husgen cycloaddition reaction between a predetermined antibody and the above-described phosphor-aggregated nanoparticles. As catalysts, Cu, Zr, W, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Ag, Au, Zn, Cd, Hg, and others that can catalyze the Husgen cycloaddition reaction of azide and alkyne Any one or two or more selected from the group consisting of metal ions can be used, and among them, Cu having excellent reaction efficiency is particularly preferable. In addition to this, for example, a particulate metal catalyst capable of generating metal ions in a solution can be used.
上記粒子状の金属触媒の平均粒径は、10nm~1000μm、好ましくは10μm~200μmまたは10nm~1000nmを有するものが好ましい。この他にも、上記触媒として、多孔質非粒子状触媒、例えば触媒活性粒子が中に埋め込まれた固体基材であってもよい。 The average particle diameter of the particulate metal catalyst is preferably 10 nm to 1000 μm, preferably 10 μm to 200 μm or 10 nm to 1000 nm. In addition, the catalyst may be a porous non-particulate catalyst, for example, a solid substrate in which catalytically active particles are embedded.
また、触媒溶液中の金属イオン濃度は、該触媒溶液を反応系に添加した際に、反応系中の金属イオンの濃度を上記ヒュスゲン環化付加反応が進行しうる濃度に調整できる濃度であればよく、例えば、上記列挙した金属のイオンのいずれか1種または2種以上を合計で、5~500mM含むものが好ましい。 The concentration of metal ions in the catalyst solution is such that when the catalyst solution is added to the reaction system, the concentration of metal ions in the reaction system can be adjusted to a concentration at which the Husgen cycloaddition reaction can proceed. For example, it is preferable to contain 5 to 500 mM in total of any one or more of the metal ions listed above.
なお、8員環化合物として既に例示したアルキン化合物を所定の抗体または上記蛍光体集積ナノ粒子に結合させた場合については、上記金属触媒を用いなくとも蛍光体集積ナノ粒子と抗体とのヒュスゲン環化付加反応が進行するので、その場合は上述した金属触媒の溶液を本発明に係る免疫染色試薬キットに含めなくともよい。 In the case where an alkyne compound already exemplified as an 8-membered ring compound is bound to a predetermined antibody or the above-described phosphor-integrated nanoparticle, the Heusgen cyclization between the phosphor-integrated nanoparticle and the antibody without using the above-described metal catalyst. Since the addition reaction proceeds, in that case, the above-described metal catalyst solution may not be included in the immunostaining reagent kit according to the present invention.
≪免疫染色法≫
本発明に係る免疫染色法は、換言すれば、アルキン(もしくはアルキン化合物)またはアジドが結合された前述の抗体を抗原抗体反応により組織切片上の抗原に結合・固定させる免疫反応工程と、アジドまたはアルキン(もしくはアルキン化合物)が結合された前述の蛍光体集積ナノ粒子を、抗原に固定された上記抗体にヒュスゲン環化付加反応により結合させる染色反応工程を含む。免疫染色法は、上記2工程(免疫反応工程、染色反応工程)を含む下記一連の工程を経て実施されることが好ましい。
≪Immunostaining method≫
In other words, the immunostaining method according to the present invention includes an immunoreaction step of binding and fixing the above-mentioned antibody conjugated with alkyne (or alkyne compound) or azide to an antigen on a tissue section by an antigen-antibody reaction, and azide or A staining reaction step of binding the above-described phosphor-aggregated nanoparticles, to which alkyne (or alkyne compound) is bound, to the antibody immobilized on the antigen by Huesgen cycloaddition reaction. The immunostaining method is preferably carried out through the following series of steps including the above two steps (immune reaction step and staining reaction step).
(組織切片の調製)
組織切片は、一般に市販されているものを購入してもよいが、例えば抗原について前述したところの各種のガンが疑われる被験者(ヒト、イヌ、ネコ等)の組織について一般的な病理組織診断に用いる公知の方法で調製することができる。この場合、まず被験者の組織切片をホルマリン等により固定し、アルコールで脱水処理した後、キシレン処理を行い、高温のパラフィン中に浸してパラフィン包埋を行うことで組織切片を作製することができる。
(Preparation of tissue section)
The tissue section may be purchased from a commercially available one. For example, the tissue of a subject (human, dog, cat, etc.) suspected of having various cancers as described above for antigen is used for general histopathological diagnosis. It can be prepared by a known method used. In this case, the tissue section of the subject is first fixed with formalin or the like, dehydrated with alcohol, then treated with xylene, and immersed in high temperature paraffin to embed the paraffin into a tissue section.
(1)脱パラフィン処理工程
キシレンに組織切片を浸漬させてパラフィンを除去する。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は3分以上30分以下であることが好ましい。また、必要により浸漬途中でキシレンを交換してもよい。次に、エタノールに組織切片を浸漬させてキシレンを除去する。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は3分以上30分以下であることが好ましい。また、必要により浸漬途中でエタノールを交換してもよい。次に、水(例;蒸留水)に組織切片を浸漬させてエタノールを除去する。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は3分以上30分以下であることが好ましい。また、必要により浸漬途中で水を交換してもよい。
(1) Deparaffinization treatment step A tissue section is immersed in xylene to remove paraffin. The temperature is not particularly limited, but can be performed at room temperature. The immersion time is preferably 3 minutes or longer and 30 minutes or shorter. If necessary, xylene may be exchanged during the immersion. Next, the tissue section is immersed in ethanol to remove xylene. The temperature is not particularly limited, but can be performed at room temperature. The immersion time is preferably 3 minutes or longer and 30 minutes or shorter. Further, if necessary, ethanol may be exchanged during the immersion. Next, the tissue section is immersed in water (eg, distilled water) to remove ethanol. The temperature is not particularly limited, but can be performed at room temperature. The immersion time is preferably 3 minutes or longer and 30 minutes or shorter. Moreover, you may exchange water in the middle of immersion as needed.
(2)賦活化処理工程
組織化学染色として免疫組織化学染色を行う場合、公知の方法にならい、目的とする生体分子の賦活化処理を行うことが好ましい。賦活化条件に特に定めはないが、賦活液としては、0.01Mクエン酸緩衝液(pH6.0)、1mMエチレンジアミン四酢酸(EDTA)溶液(pH8.0)、5%尿素、0.1Mトリス塩酸緩衝液等を用いることができる。加熱機器としては、オートクレーブ、マイクロウェーブ、圧力鍋、ウォーターバス等を用いることができる。温度は特に限定されるものではないが、室温で行うことができる。賦活化処理の加熱処理の温度は50~130℃、加熱処理の時間は5~30分で行うことができる。次に、容器に入れたPBSに賦活処理後の切片を浸漬させて洗浄を行う。温度は特に限定されるものではないが、室温で行うことができる。浸漬時間は3分以上30分以下であることが好ましい。また必要により浸漬途中でPBSを交換してもよい。
(2) Activation treatment step When immunohistochemical staining is performed as histochemical staining, it is preferable to perform activation treatment of a target biomolecule according to a known method. The activation conditions are not particularly defined, but as the activation liquid, 0.01 M citrate buffer (pH 6.0), 1 mM ethylenediaminetetraacetic acid (EDTA) solution (pH 8.0), 5% urea, 0.1 M Tris A hydrochloric acid buffer or the like can be used. As a heating device, an autoclave, a microwave, a pressure cooker, a water bath, etc. can be used. The temperature is not particularly limited, but can be performed at room temperature. The heat treatment temperature for the activation treatment can be 50 to 130 ° C., and the heat treatment time can be 5 to 30 minutes. Next, washing is performed by immersing the sections after the activation treatment in PBS placed in a container. The temperature is not particularly limited, but can be performed at room temperature. The immersion time is preferably 3 minutes or longer and 30 minutes or shorter. If necessary, PBS may be replaced during the immersion.
(3)免疫反応工程
免疫反応工程は、組織切片上の抗原に対して前述の抗体を固定させる工程である。具体的には、抗原抗体反応により、組織切片上の抗原に対して直接的に1次抗体を固定する工程、または、該固定に加えて、前記抗原に対して該1次抗体を介して別の抗体(2次~n次抗体)を間接的に固定する工程である。
(3) Immune reaction step The immune reaction step is a step of immobilizing the aforementioned antibody against an antigen on a tissue section. Specifically, a step of directly immobilizing a primary antibody to an antigen on a tissue section by an antigen-antibody reaction, or in addition to the immobilization, the antigen is separated via the primary antibody. This is a step of indirectly fixing the antibodies (secondary to nth antibodies).
ブロッキング剤を1重量%以下で含むPBS等の緩衝液に前述の1次抗体(または1次~n次抗体)を反応系終濃度以上の濃度(例;0.01nM~0.5nM)となるように(それぞれ)分散させて調製した分散液、または該分散液に変えて上記免疫染色試薬キットの(各)抗体試薬を組織切片に載せて、前記抗原と1次抗体(さらには該1次抗体に続いて2次~n次抗体)を(順次)結合させる。このときの反応条件としては、例えば、該抗体の液を組織切片に対して4℃で1晩反応させる例が挙げられる。 The above-mentioned primary antibody (or primary to n-th antibody) is in a concentration higher than the final concentration of the reaction system (eg, 0.01 nM to 0.5 nM) in a buffer solution such as PBS containing 1% by weight or less of a blocking agent. (Respectively) a dispersion prepared by dispersing (or each) the antibody reagent of the immunostaining reagent kit in place of the dispersion, and placing the antigen and the primary antibody (and the primary antibody) (Secondary to nth antibody) are bound (sequentially) following the antibody. Examples of reaction conditions at this time include an example in which the antibody solution is reacted overnight at 4 ° C. with respect to a tissue section.
さらに、該反応後に、緩衝液(PBS等)により組織切片を洗浄して未反応の抗体を除くことが好ましい。この洗浄工程としては、例えば、PBS等を入れた容器に染色後の組織切片を例えば3分以上30分以下浸漬させて未反応の抗体試薬等を除去する処理が挙げられる。ここで、上記浸漬中にPBS等を交換してもよい。 Further, after the reaction, it is preferable to remove the unreacted antibody by washing the tissue section with a buffer solution (PBS or the like). Examples of the washing step include a process of removing unreacted antibody reagent and the like by immersing the stained tissue section in a container containing PBS or the like for 3 to 30 minutes, for example. Here, PBS or the like may be exchanged during the immersion.
(4)染色反応工程
染色反応工程は、上記免疫反応工程で抗原に固定された1次抗体~n次抗体のいずれかに対し、アジド-アルキン間のヒュスゲン環化付加反応でもって、前述の蛍光体集積ナノ粒子を共有結合させる工程である。
(4) Staining reaction step In the staining reaction step, any one of the primary antibody to the n-th antibody immobilized on the antigen in the above-described immune reaction step is performed by the Huisgen cyclization addition reaction between azide and alkyne, and the above-mentioned fluorescence This is a step of covalently bonding body-integrated nanoparticles.
この工程により、前記抗体と蛍光体集積ナノ粒子との両分子間にトリアゾール環を介した結合(共有結合)が形成され、該形成により前記抗原が前記蛍光体集積ナノ粒子により蛍光標識される。ここで、染色反応の反応温度は、上記ヒュスゲン環化付加反応が進行すれば特に制限されないが、例えば1~30℃程度であることが好ましい。また、染色反応の反応時間も上記ヒュスゲン環化付加反応が進行すれば特に制限されないが、例えば1~10時間、より好ましい例として2~4時間程度に設定する例が挙げられる。染色性の観点から、上記染色反応の反応系における抗体の終濃度は0.01~0.50nMが好ましい。また、蛍光体集積ナノ粒子は反応系中の抗体部を標識するのに十分な量があればよく、終濃度としては0.01~0.50nMが好ましい。触媒は系中に十分な量があればよく、終濃度としては5~500mMが好ましい。 Through this step, a bond (covalent bond) via a triazole ring is formed between both molecules of the antibody and the phosphor-integrated nanoparticles, and the antigen is fluorescently labeled with the phosphor-integrated nanoparticles by the formation. Here, the reaction temperature of the staining reaction is not particularly limited as long as the Huesgen cycloaddition reaction proceeds, but it is preferably about 1 to 30 ° C., for example. Also, the reaction time of the staining reaction is not particularly limited as long as the above-mentioned Huesgen cycloaddition reaction proceeds. For example, an example of setting it to 1 to 10 hours, more preferably about 2 to 4 hours is given. From the viewpoint of staining properties, the final antibody concentration in the reaction system of the staining reaction is preferably 0.01 to 0.50 nM. The phosphor-integrated nanoparticles only need to have a sufficient amount to label the antibody part in the reaction system, and the final concentration is preferably 0.01 to 0.50 nM. A sufficient amount of the catalyst is sufficient in the system, and the final concentration is preferably 5 to 500 mM.
(5)洗浄工程
染色反応工程の後に、PBSにより組織切片を洗浄する洗浄工程を行って未反応の蛍光体集積ナノ粒子を除くことが好ましい。この洗浄工程としては、例えば、室温(1~30℃)に調節されたPBSに組織切片を浸漬させて0.5~1時間放置する洗浄工程を行うことができる。ここで、上記浸漬中にPBS等を交換してもよい。
(5) Washing step After the staining reaction step, it is preferable to perform a washing step of washing the tissue section with PBS to remove unreacted phosphor-integrated nanoparticles. As this washing step, for example, a washing step in which a tissue section is immersed in PBS adjusted to room temperature (1 to 30 ° C.) and left for 0.5 to 1 hour can be performed. Here, PBS or the like may be exchanged during the immersion.
(6)形態観察用処理工程
上記免疫染色の後に、組織切片に対してヘマトキシリン・エオシン染色(HE染色)等の染色を行って、組織切片の細胞の形状や細胞の各部の位置情報を得るための形態観察用処理工程を任意に行うことができる。この染色にともなって組織切片を観察用に透徹、封入すること等の処理を行ってもよい。HE染色は、例えば、免疫染色した切片をマイヤーヘマトキシリン液で5分間染色してヘマトキシリン染色を行い、その後、該組織試料を45℃の流水で3分間洗浄し、次に、1%エオシン液で5分間染色してエオシン染色を行う。
(6) Morphological observation processing step After the immunostaining, the tissue section is stained with hematoxylin / eosin staining (HE staining) to obtain the cell shape of the tissue section and the position information of each part of the cell. The morphological observation processing step can be arbitrarily performed. Along with this staining, the tissue section may be subjected to processing such as penetration and encapsulation for observation. For HE staining, for example, an immunostained section is stained with Mayer's hematoxylin solution for 5 minutes and then stained with hematoxylin, and then the tissue sample is washed with running water at 45 ° C. for 3 minutes, and then 5% with 1% eosin solution. Perform eosin staining with minute staining.
(7)観察工程
(明視野観察)
明視野観察は、組織切片の細胞または組織内の染色対象とする細胞器官の分布情報を取得するために行われる。明視野観察の一般的な方法として、例えば、上記したように免疫染色の後にヘマトキシリン・エオシン染色(HE染色)を行った組織切片を光学顕微鏡で観察を行う。なお、形態観察染色に用いられるエオジンは、明視野において観察できるだけでなく、所定の波長の励起光を照射した時に自家蛍光も発するので、適切な波長および出力の励起光を染色された組織試料に照射することで、蛍光顕微鏡によっても観察できる。
(7) Observation process (bright field observation)
Bright field observation is performed in order to acquire distribution information of cells of tissue sections or cell organs to be stained in the tissue. As a general method for bright field observation, for example, a tissue section that has been subjected to hematoxylin / eosin staining (HE staining) after immunostaining as described above is observed with an optical microscope. In addition, eosin used for morphological observation staining can not only observe in a bright field, but also emits autofluorescence when irradiated with excitation light of a predetermined wavelength, so that an excitation light with an appropriate wavelength and output is applied to a stained tissue sample. Irradiation can be observed with a fluorescence microscope.
一方、その他の染色としてHER2タンパク質を検出対象の抗原として組織化学染色(DAB染色等)を行った場合の明視野観察においては、適切な照明光の照射下で、光学顕微鏡の4倍対物レンズを使用して、検体組織内の癌細胞のHER2タンパク陽性染色像、陽性染色の強度、陽性細胞率を観察する。次に対物レンズを10倍に切り替え、陽性所見が細胞膜か細胞質に局在するかを確認し、必要に応じてさらに対物レンズ20倍で検索する。 On the other hand, in the bright field observation in the case of performing histochemical staining (DAB staining, etc.) using HER2 protein as an antigen to be detected as another staining, a 4 × objective lens of an optical microscope is used under irradiation with appropriate illumination light. Use to observe the HER2 protein positive staining image, positive staining intensity, and positive cell rate of cancer cells in the specimen tissue. Next, the objective lens is switched to 10 times, it is confirmed whether the positive findings are localized in the cell membrane or the cytoplasm, and if necessary, further searching is performed with the objective lens 20 times.
(蛍光観察)
染色した上記切片に対し蛍光顕微鏡を用いて、広視野の顕微鏡画像から蛍光の輝点の数又は発光輝度を計測する。用いた蛍光物質の吸収極大波長及び蛍光波長に対応した励起光源及び蛍光検出用光学フィルターを選択する。輝点数又は発光輝度の計測は、市販の画像解析ソフト、例えば、株式会社ジーオングストローム社製の全輝点自動計測ソフトG-Countを用いて行うことができる。なお、顕微鏡を使用した画像解析自体は周知であり、例えば、特開平9-197290に開示される手法を用いることができる。顕微鏡画像の視野は、3mm2以上であることが好ましく、30mm2以上であることがさらに好ましく、300mm2以上であることがさらに好ましい。顕微鏡画像から計測された輝点数、及び/又は発光輝度に基づいて、目的とする特定の遺伝子由来のタンパク質(前述)の発現量等を評価する。
(Fluorescence observation)
Using a fluorescence microscope, the number of fluorescent bright spots or emission luminance is measured from a wide-field microscope image for the stained section. An excitation light source and a fluorescence detection optical filter corresponding to the absorption maximum wavelength and fluorescence wavelength of the fluorescent substance used are selected. The number of bright spots or emission luminance can be measured by using commercially available image analysis software, for example, all bright spot automatic measurement software G-Count manufactured by Zeonstrom Co., Ltd. Note that image analysis itself using a microscope is well known, and for example, a technique disclosed in Japanese Patent Laid-Open No. 9-197290 can be used. The field of view of the microscopic image is preferably 3 mm 2 or more, more preferably 30 mm 2 or more, and further preferably 300 mm 2 or more. Based on the number of bright spots and / or emission luminance measured from the microscopic image, the expression level of the protein (described above) derived from the specific gene of interest is evaluated.
{評価法}
{精度評価}
本発明に係る上記免疫染色法、該免疫染色法に用いられる免疫染色試薬キットの検出精度の評価方法については、以下のように行うことができる。
{Evaluation method}
{Accuracy evaluation}
The above-described immunostaining method according to the present invention and the method for evaluating the detection accuracy of the immunostaining reagent kit used in the immunostaining method can be performed as follows.
(非特異的吸着に起因する輝点数による精度評価)
免疫染色の検出対象をHER2タンパク質として評価する場合、HER2の発現が全くない組織切片(IHC法スコア=0のもの(下記表3参照))を用意し、これに対して上述した免疫染色および蛍光観察を行い、この結果から蛍光体集積ナノ粒子の組織切片への非特異的な吸着に起因する輝点数がどの程度出現するかを調べ、該出現数により上記検出精度を評価することができる(評価1)。この輝点数が0~5のものを精度が良好であるものと評価することができる。なお、IHC法とは、「HER2検査ガイド第三版」(2009年9月 トラスツズマブ病理部会作成)に記載の方法であり、IHC法スコアとは「HER2検査ガイド第三版」に記載の評価基準である(下記表3参照)。
(Accuracy evaluation based on the number of bright spots due to non-specific adsorption)
When evaluating the detection target of immunostaining as HER2 protein, a tissue section having no HER2 expression (IHC method score = 0 (see Table 3 below)) is prepared, and the immunostaining and fluorescence described above are prepared. Observation is performed, and from this result, it is examined how many bright spots due to non-specific adsorption of the phosphor-integrated nanoparticles to the tissue section appear, and the detection accuracy can be evaluated by the number of appearance ( Evaluation 1). A sample having 0 to 5 bright spots can be evaluated as having good accuracy. The IHC method is a method described in “HER2 Examination Guide Third Edition” (prepared by Trastuzumab Pathology Committee in September 2009), and the IHC method score is an evaluation standard described in “HER2 Examination Guide Third Edition” (See Table 3 below).
(特異的なシグナルの蛍光強度による精度評価)
上記とは別に、HER2の発現が顕著な組織切片(IHC法スコア=2や3のもの)を用意し、これに対して上述した免疫染色および蛍光観察を行い、この結果から蛍光体集積ナノ粒子の組織切片への特異的な吸着に起因する輝点の蛍光強度がどの程度得られるかを計測し、該蛍光強度により上記検出精度を評価することができる(評価2)。この際に、ポジティブコントロールの輝点から得られる蛍光強度との相対値として蛍光シグナルの強度を評価することができ、例えば相対値70以上を検出精度が問題ないものと判断することができる。
(Accuracy evaluation by fluorescence intensity of specific signal)
Separately from the above, a tissue section (IHC method score = 2 or 3) with remarkable HER2 expression was prepared, and the above-described immunostaining and fluorescence observation were performed. It is possible to measure how much the fluorescence intensity of the bright spot resulting from the specific adsorption to the tissue section is obtained, and to evaluate the detection accuracy based on the fluorescence intensity (Evaluation 2). At this time, the intensity of the fluorescence signal can be evaluated as a relative value with the fluorescence intensity obtained from the bright spot of the positive control. For example, a relative value of 70 or more can be determined as having no problem in detection accuracy.
(保存性評価)
本発明に係る免疫染色試薬キットに含まれる標識試薬の長期保存性の評価については、例えば、以下のように行うことができる。製造直後の標識試薬と、所定の促進条件(例;30℃、1カ月)に暴露した標識試薬とを使用してそれぞれ同様に前述の免疫染色等を行い、得られる蛍光強度(特異的シグナルの強度)を定量および相対評価することで行うことができる。例えば、促進条件下に暴露した標識試薬を使用して得られる蛍光シグナルの強度が、製造直後の標識試薬を使用して得られる蛍光シグナルの強度と比較して、70%以上のものを長期保存性に優れる標識試薬として評価することができる。
(Preservation evaluation)
The long-term storage stability of the labeling reagent contained in the immunostaining reagent kit according to the present invention can be evaluated as follows, for example. Using the labeling reagent immediately after production and the labeling reagent exposed to the predetermined acceleration conditions (eg, 30 ° C., 1 month), the above-described immunostaining is performed in the same manner, and the resulting fluorescence intensity (specific signal (Strength) can be determined by quantitative and relative evaluation. For example, when the intensity of the fluorescent signal obtained using a labeling reagent exposed under accelerated conditions is 70% or more compared to the intensity of the fluorescent signal obtained using a labeling reagent immediately after production, a long-term storage It can be evaluated as a labeling reagent having excellent properties.
以下、本発明に係る免疫染色法、および該免疫染色法に用いられる免疫染色試薬のキットによる作用・効果について説明する。 Hereinafter, the action and effect of the immunostaining method according to the present invention and the immunostaining reagent kit used in the immunostaining method will be described.
(1)本発明によれば、組織切片上で該組織切片の抗原を蛍光体集積ナノ粒子により蛍光標識する免疫染色法であって、前記抗原に対して抗原抗体反応により直接的に固定される抗体または該抗体を介して間接的に固定される別の抗体と、蛍光体集積ナノ粒子との、いずれか一方にアジ基(-N3)が導入され、他方に炭素間三重結合部分(C≡C)が導入されており、前記抗原に前記抗体を固定させ、前記アジ基と、前記炭素間三重結合部分とのヒュスゲン環化付加反応でもって、前記抗体と蛍光体集積ナノ粒子との両分子間にトリアゾール環を介した結合を形成し、該形成により前記抗原を前記蛍光体集積ナノ粒子により蛍光標識する免疫染色方法である。アジ基も炭素間三重結合も生体内にはほとんど存在しないため、本発明に係る免疫染色法によれば、ビオチン-アビジン反応を利用する方法(図4参照)で問題となる内因性の化合物(内因性のビオチン)によるノイズを抑制することができる。 (1) According to the present invention, an immunostaining method in which an antigen of a tissue section is fluorescently labeled with phosphor-integrated nanoparticles on the tissue section, and is directly fixed to the antigen by an antigen-antibody reaction. An azide group (—N 3 ) is introduced into one of the antibody or another antibody immobilized indirectly through the antibody and the phosphor-integrated nanoparticles, and the carbon-carbon triple bond moiety (C ≡C) is introduced, the antibody is immobilized on the antigen, and both the antibody and the phosphor-aggregated nanoparticles are obtained by a Husgen cycloaddition reaction between the azide group and the carbon-carbon triple bond moiety. In this immunostaining method, a bond via a triazole ring is formed between molecules, and the antigen is fluorescently labeled with the phosphor-integrated nanoparticles by the formation. Since neither an azide group nor a carbon-carbon triple bond is present in the living body, according to the immunostaining method according to the present invention, an endogenous compound (see FIG. 4) that is a problem in the method using the biotin-avidin reaction (see FIG. 4). Noise due to endogenous biotin can be suppressed.
また、アジ基部分と炭素間三重結合部分とが反応してヒュスゲン環化付加反応によりトリアゾール環を介した共有結合が抗体と蛍光体集積ナノ粒子との間に形成されるため、ハプテン-抗ハプテンの抗原抗体反応による抗体と蛍光体集積ナノ粒子との結合と比べて結合能が高く、蛍光体集積ナノ粒子が強く抗体と結合するために、該抗体を介した組織切片上の抗原への固定が解除されにくくなり、該解除による輝点数の減少が抑制される分、より免疫染色後の蛍光観察で検出される輝点からの蛍光シグナルが多くなる。 In addition, since the azide group moiety and the carbon-carbon triple bond moiety react to form a covalent bond via the triazole ring by the Husgen cycloaddition reaction, the hapten-antihapten Since the binding ability of the antibody and the phosphor-integrated nanoparticles is higher than that due to the antigen-antibody reaction, and the phosphor-aggregated nanoparticles bind strongly to the antibody, the antibody is immobilized on the tissue section via the antibody. Is less likely to be released, and the decrease in the number of bright spots due to the release is suppressed, resulting in an increase in the fluorescence signal from the bright spots detected by fluorescence observation after immunostaining.
(2)前記蛍光体集積ナノ粒子の平均粒子径が40nm以上500nm以下であることにより、該蛍光体集積ナノ粒子を用いた免疫染色において、少なくとも、上記抗原に特異的に結合した抗体の位置の輝点から十分に検出可能な強度の蛍光シグナルが得られる。また、上記蛍光体集積ナノ粒子および後述の抗体等(上記免疫染色キット)を促進条件(例;室温で1カ月)下で放置した場合であっても、製造直後の時点に匹敵する程度に組織切片上の抗原を十分に検出可能な強度の蛍光シグナルが得られる。ここで、前記蛍光体集積ナノ粒子の平均粒子が150nm以上~500nm以下、さらには40nm以上~500nm以下である場合に上記蛍光シグナルに関する効果が好適に得られる。 (2) When the average particle diameter of the phosphor-integrated nanoparticles is 40 nm or more and 500 nm or less, in immunostaining using the phosphor-integrated nanoparticles, at least the position of the antibody specifically bound to the antigen is detected. A fluorescent signal having a sufficiently detectable intensity can be obtained from the bright spot. In addition, even when the phosphor-integrated nanoparticles and the later-described antibodies (the immunostaining kit) are left under an accelerating condition (eg, one month at room temperature), the tissue is comparable to that immediately after production. A fluorescent signal with an intensity sufficient to detect the antigen on the section is obtained. Here, when the average particle of the phosphor-integrated nanoparticles is 150 nm to 500 nm, and further 40 nm to 500 nm, the above-described effect on the fluorescence signal can be suitably obtained.
(3)前記蛍光体集積ナノ粒子に親水性高分子のリンカー(例;PEGリンカー)を介して前記アジ基または炭素間三重結合部分が導入されていることにより、PEG部分により蛍光体集積ナノ粒子の生体分子への非特異的な吸着を防止することができる上に、少なくともPEGリンカーの長さ分だけ、組織切片上の抗原に結合した抗体の位置から空間的に離れた位置に蛍光体集積ナノ粒子を配置させることができることから、上記免疫染色と併せて行う他の染色法により副生される不溶性沈殿物等により蛍光体集積ナノ粒子が覆い隠されにくくなり、この結果、蛍光シグナルの低減を抑制して輝点からの蛍光シグナルがより好適に得られるという利点がある。 (3) The phosphor-integrated nanoparticles are introduced into the phosphor-integrated nanoparticles by the PEG moiety by introducing the azido group or the carbon-carbon triple bond moiety via a hydrophilic polymer linker (eg, PEG linker). In addition to preventing non-specific adsorption of biomolecules to the biomolecule, the phosphors are accumulated at a position spatially separated from the position of the antibody bound to the antigen on the tissue section by at least the length of the PEG linker. Since nanoparticles can be arranged, the phosphor-aggregated nanoparticles are not easily obscured by insoluble precipitates by-produced by other staining methods combined with the above immunostaining, resulting in a reduction in fluorescence signal. There is an advantage that a fluorescent signal from a bright spot can be more suitably obtained by suppressing the above.
(4)ここで、上記PEGリンカーのオキシエチレン単位(ユニット数)が8以上70以下であれば、上記(3)の効果がより好適に得られる。他の親水性高分子のリンカーも同様の長さであれば、上記(3)の効果がより好適に得られる。 (4) When the oxyethylene unit (number of units) of the PEG linker is 8 or more and 70 or less, the effect (3) can be more suitably obtained. If the linkers of other hydrophilic polymers have the same length, the effect (3) can be obtained more suitably.
(5)前記ヒュスゲン環化付加反応を所定の金属触媒(例;銅触媒)存在下で行うこととすれば、所定の金属触媒(例;銅触媒)によって前記ヒュスゲン環化付加反応が飛躍的に加速することから、所定の抗体や蛍光体集積ナノ粒子が低濃度(例;0.05nM前後)であっても両者を反応させて結合させることができる。 (5) If the Husgen cycloaddition reaction is carried out in the presence of a predetermined metal catalyst (eg, copper catalyst), the Husgen cycloaddition reaction is dramatically accelerated by the predetermined metal catalyst (eg, copper catalyst). Because of acceleration, even when a predetermined antibody or phosphor-integrated nanoparticle has a low concentration (eg, around 0.05 nM), both can be reacted and bonded.
(6)上記アルキン化合物のアルキン由来の部分が8員環であれば、上述した所定の金属触媒が存在しなくともヒュスゲン環化付加反応が進行するため、免疫染色の手間等を省略することができ、上記免疫染色試薬キットについては部品点数を減らすことができる。 (6) If the alkyne-derived portion of the alkyne compound is an 8-membered ring, the Husgen cycloaddition reaction proceeds even without the above-mentioned predetermined metal catalyst, so that the labor of immunostaining can be omitted. It is possible to reduce the number of parts for the immunostaining reagent kit.
本発明に係る免疫染色試薬キットは、組織切片上で該組織切片の抗原を蛍光体集積ナノ粒子により蛍光標識するため免疫染色試薬キットであって、蛍光体集積ナノ粒子を含む標識試薬と、前記抗原に対して抗原抗体反応により直接的に固定される抗体、または該抗体を介して間接的に固定される別の抗体を含む抗体試薬とを備えており、前記蛍光体集積ナノ粒子および前記抗体のいずれか一方にアジ基(-N3)が導入され、他方に炭素間三重結合部分(C≡C)が導入されており、前記アジ基と前記炭素間三重結合部分とのヒュスゲン環化付加反応により、前記抗体と前記蛍光体集積ナノ粒子との分子間にトリアゾール環を介した結合を形成し、該形成により当該両分子が直接的または間接的に結合することで前記抗原を蛍光標識するようにして用いられるものであることから、該免疫染色キットを使用することで、上記(1)で記載したように検査精度の高い免疫染色が可能となる。さらに、上記免疫染色キットが上記(2)~(6)と同様の構成を有することにより、蛍光免疫染色で上記キットを使用した際に上記(2)~(6)に記載の効果が得られる。 An immunostaining reagent kit according to the present invention is an immunostaining reagent kit for fluorescently labeling an antigen of a tissue section on a tissue section with phosphor-integrated nanoparticles, the labeling reagent containing the phosphor-integrated nanoparticles, An antibody reagent containing an antibody directly immobilized on an antigen by an antigen-antibody reaction, or another antibody indirectly immobilized via the antibody, and the phosphor-integrated nanoparticles and the antibody An azido group (—N 3 ) is introduced into one of them, and a carbon-carbon triple bond moiety (C≡C) is introduced into the other, and the Huisgen cycloaddition of the azide group and the carbon-carbon triple bond moiety By the reaction, a bond via a triazole ring is formed between the antibody and the phosphor-integrated nanoparticles, and the antigen is fluorescently labeled by directly or indirectly binding the both molecules. Like From it and is used to, by using the immunostaining kit, it is possible to highly inspection accuracy immunostaining as described above (1). Furthermore, when the immunostaining kit has the same configuration as the above (2) to (6), the effects described in (2) to (6) can be obtained when the kit is used for fluorescent immunostaining. .
以下、本発明に係る免疫染色法および免疫染色試薬キットの実施例および比較例について以下説明する。 Hereinafter, examples and comparative examples of the immunostaining method and immunostaining reagent kit according to the present invention will be described.
{製造例I}{蛍光体集積ナノ粒子(平均粒子径150nm)の製造}
蛍光体集積ナノ粒子(平均粒子径150nm)の製造を以下の方法で行った。
{Production Example I} {Manufacture of phosphor-integrated nanoparticles (average particle size 150 nm)}
Production of phosphor-integrated nanoparticles (average particle diameter 150 nm) was carried out by the following method.
蛍光色素として赤色発光色素であるスルホローダミン101(Sulforhodamine101、シグマアルドリッチ社製)14.4mgを蒸留水22mLに加えて溶解させた。その後、この溶液に乳化重合用乳化剤のエマルジョン(登録商標)430(ポリオキシエチレンオレイルエーテル、花王社製)または「ラテムル(登録商標)PD-430」(花王ケミカル社)の5重量%水溶液を2mL加えた。この溶液をホットスターラー上で撹拌しながら70℃まで昇温させた後、この溶液にメラミン樹脂原料ニカラックMX-035(日本カーバイド工業社製)を0.65g加えた。 14.4 mg of sulforhodamine 101 (Sulforhodamine 101, Sigma-Aldrich), which is a red luminescent dye, was added as a fluorescent dye to 22 mL of distilled water and dissolved. Thereafter, 2 mL of a 5% by weight aqueous solution of an emulsion of an emulsifier for emulsion polymerization (registered trademark) 430 (polyoxyethylene oleyl ether, manufactured by Kao Corporation) or “Latemul (registered trademark) PD-430” (Kao Chemical Co., Ltd.) is added to this solution. added. This solution was heated to 70 ° C. while stirring on a hot stirrer, and then 0.65 g of melamine resin raw material Nicalak MX-035 (manufactured by Nippon Carbide Industries Co., Ltd.) was added to this solution.
さらに、この溶液に界面活性剤としてドデシルベンゼンスルホン酸(関東化学社製)の10重量%水溶液を1000μL加え、70℃で50分間加熱撹拌した。その後、90℃に昇温して20分間加熱撹拌した。得られた蛍光体集積ナノ粒子の分散液から、余剰の樹脂原料や蛍光色素等の不純物を除くため、純水による洗浄を行った。具体的には、遠心分離機(クボタ社製マイクロ冷却遠心機3740)にて20000Gで15分間、遠心分離し、上澄み除去後、超純水を加えて超音波照射して再分散した。遠心分離、上澄み除去および超純水への再分散による洗浄を5回繰り返した。得られたメラミン粒子はメラミン樹脂自体が骨格に多くのアミノ基を含むことから、プラス電荷となった。樹脂粒子の電荷の評価は、NMRやIR等による樹脂成分分析と、ゼータ電位測定により行なった。ナノ粒子を走査型電子顕微鏡(SEM;日立(登録商標)社製S-800型)で観察し、平均粒径及び変動係数を算出した。得られた蛍光体集積ナノ粒子の平均粒径は150nmであり、変動係数は12%であった。 Furthermore, 1000 μL of a 10 wt% aqueous solution of dodecylbenzenesulfonic acid (manufactured by Kanto Chemical Co., Inc.) as a surfactant was added to this solution, and the mixture was heated and stirred at 70 ° C. for 50 minutes. Then, it heated up at 90 degreeC and heat-stirred for 20 minutes. In order to remove excess impurities such as resin raw materials and fluorescent dyes from the obtained phosphor-integrated nanoparticle dispersion, washing with pure water was performed. Specifically, the mixture was centrifuged at 20000 G for 15 minutes in a centrifuge (Kubota Micro Cooling Centrifuge 3740), and after removing the supernatant, ultrapure water was added and ultrasonically irradiated to redisperse. Centrifugation, supernatant removal, and washing by redispersion in ultrapure water were repeated 5 times. The obtained melamine particles were positively charged because the melamine resin itself contains many amino groups in the skeleton. The charge of the resin particles was evaluated by analyzing resin components by NMR, IR, etc. and measuring zeta potential. The nanoparticles were observed with a scanning electron microscope (SEM; Model S-800 manufactured by Hitachi (registered trademark)), and the average particle size and coefficient of variation were calculated. The average particle diameter of the obtained phosphor-integrated nanoparticles was 150 nm, and the coefficient of variation was 12%.
{製造例II}{蛍光体集積ナノ粒子(平均粒子径550nm)の製造}
製造例1において、スルホローダミン101(Sulforhodamine101、シグマアルドリッチ社製)20.9mg、メラミン樹脂原料ニカラックMX-035(日本カーバイド工業社製)0.95gを用いたこと以外は製造例1と同様にして蛍光体集積ナノ粒子(平均粒子径550nm)を製造した。
{Production Example II} {Manufacture of phosphor-integrated nanoparticles (average particle size 550 nm)}
Production Example 1 was the same as Production Example 1 except that 20.9 mg of sulforhodamine 101 (Sulforhodamine 101, Sigma-Aldrich) and 0.95 g of melamine resin raw material Nicalac MX-035 (Nihon Carbide Industries) were used. Phosphor integrated nanoparticles (average particle size 550 nm) were produced.
{製造例III}{蛍光体集積ナノ粒子(平均粒子径800nm)の製造}
製造例1において、スルホローダミン101(Sulforhodamine101、シグマアルドリッチ社製)23.1mg、メラミン樹脂原料ニカラックMX-035(日本カーバイド工業社製)1.05gを用いたこと以外は製造例1と同様にして蛍光体集積ナノ粒子(平均粒子径800nm)を製造した。
{Production Example III} {Manufacture of phosphor-integrated nanoparticles (average particle size 800 nm)}
In Production Example 1, the same procedure as in Production Example 1 was conducted except that 23.1 mg of sulforhodamine 101 (Sulforhodamine 101, Sigma-Aldrich) and 1.05 g of melamine resin raw material Nicalac MX-035 (Nippon Carbide Industries) were used. Phosphor integrated nanoparticles (average particle size 800 nm) were produced.
{製造例IV}{蛍光体集積ナノ粒子(平均粒子径40nm)の製造}
製造例1において、Sulforhodamine101(シグマアルドリッチ社製)9.9mg、メラミン樹脂原料ニカラックMX-035(日本カーバイド工業社製)0.45gを用いたこと以外は製造例1と同様にして蛍光体集積ナノ粒子(平均粒子径40nm)を製造した。
{Production Example IV} {Production of phosphor-integrated nanoparticles (average particle size 40 nm)}
The phosphor integrated nano-particles were manufactured in the same manner as in Production Example 1 except that 9.9 mg of Sulforhodamine 101 (Sigma Aldrich) and 0.45 g of melamine resin raw material Nicalac MX-035 (Nihon Carbide Industries) were used. Particles (average particle size 40 nm) were produced.
{実施例1-1}
実施例1-1では、以下に説明するように、アルキン化合物を抗体に結合させるとともに、アジドを蛍光体集積ナノ粒子に結合し、さらに50mMの臭化銅(CuBr)からなる銅イオンの触媒溶液を用意することで免疫染色試薬キットを製造した。このときに臭化銅(CuBr)を固体状態でキット内に入れておき、所定量の水を加える事で所定濃度の溶液となるようにした。さらに、これを用いてHER2抗原の発現量の異なる組織切片を載せた検体スライド(組織アレイスライド)について免疫染色を行った。
{Example 1-1}
In Example 1-1, as described below, an alkyne compound is bound to an antibody, an azide is bound to a phosphor-aggregated nanoparticle, and a copper ion catalyst solution made of 50 mM copper bromide (CuBr). An immunostaining reagent kit was prepared. At this time, copper bromide (CuBr) was put in the kit in a solid state, and a predetermined amount of water was added to obtain a solution having a predetermined concentration. Furthermore, using this, immunostaining was performed on a specimen slide (tissue array slide) on which tissue sections with different expression levels of HER2 antigen were mounted.
{アルキン化合物で修飾した蛍光体集積ナノ粒子(150nm)の製造}
下記工程(1)~(7)の方法により、{製造例I}で製造した蛍光体集積ナノ粒子に対してアルキン化合物を結合させた。
{Manufacture of phosphor integrated nanoparticles (150nm) modified with alkyne compounds}
The alkyne compound was bound to the phosphor-aggregated nanoparticles produced in {Production Example I} by the following steps (1) to (7).
工程(1):1mgの上記蛍光体集積ナノ粒子を純水5mLに分散させ、分散液を調製した。次いで、トリス(2‐アミノエチル)アミン(Tris(2-aminoethyl)amine)20μLを上記分散液に添加し、70℃で20分加熱撹拌した。 Step (1): 1 mg of the above phosphor-integrated nanoparticles were dispersed in 5 mL of pure water to prepare a dispersion. Subsequently, 20 μL of Tris (2-aminoethyl) amine (Tris (2-aminoethyl) amine) was added to the above dispersion, followed by heating and stirring at 70 ° C. for 20 minutes.
工程(2):反応混合物を10000Gで60分遠心分離を行い、上澄みを除去した。 Step (2): The reaction mixture was centrifuged at 10,000 G for 60 minutes, and the supernatant was removed.
工程(3):エタノールを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順でエタノールと純水による洗浄を1回ずつ行った。得られたアミノ基修飾したナノ粒子のFT-IR測定及びXPS測定を行なったところ、アミノ基に由来する吸収が観測でき、アミノ基修飾されたことが確認できた。 Step (3): Ethanol was added to disperse the sediment and centrifuged again. Washing with ethanol and pure water was performed once by the same procedure. When the FT-IR measurement and XPS measurement of the resulting amino group-modified nanoparticles were performed, absorption derived from the amino group could be observed, confirming that the amino group was modified.
工程(4):工程(3)で得られたアミノ基修飾したナノ粒子を、PBSを用いて3nMに調整した。 Step (4): The amino group-modified nanoparticles obtained in step (3) were adjusted to 3 nM using PBS.
工程(5):工程(4)で調整した溶液に、最終濃度10mMとなるようにALK-PEG-NHS(PG2-AKNS-2k、NANOCOS社)を混合し、室温にて1時間反応させた。 Step (5): ALK-PEG-NHS (PG2-AKNS-2k, NANOCOS) was mixed with the solution prepared in step (4) to a final concentration of 10 mM and reacted at room temperature for 1 hour.
工程(6):反応混合液を10000Gで60分遠心分離を行い、上澄みを除去した。 Step (6): The reaction mixture was centrifuged at 10,000 G for 60 minutes, and the supernatant was removed.
工程(7):EDTAを2mM含有したPBSを加え、蛍光体集積ナノ粒子の沈降物を分散させ、再度遠心分離を行った。同様の手順による洗浄を3回行った。最後に500μLのPBSを用いて蛍光体集積ナノ粒子の沈降物を再分散させることで、PEGを介して炭素間三重結合のアルキン由来部分を有する蛍光体集積ナノ粒子の溶液(標識試薬)を製造した。この粒子についてFT-IR測定を行ったところ、炭素間三重結合に由来する吸収が観測でき、アルキン化合物が結合されたことが確認できた(不図示)。 Step (7): PBS containing 2 mM of EDTA was added to disperse the sediment of phosphor-aggregated nanoparticles, and then centrifuged again. The washing | cleaning by the same procedure was performed 3 times. Finally, by redispersing the sediment of phosphor-aggregated nanoparticles using 500 μL of PBS, a solution (labeling reagent) of phosphor-aggregated nanoparticles having an alkyne-derived portion of a carbon-carbon triple bond is produced via PEG. did. When this particle was subjected to FT-IR measurement, absorption derived from a carbon-carbon triple bond was observed, and it was confirmed that an alkyne compound was bound (not shown).
{アジドで修飾した抗ウサギ抗体の製造}
2次抗体としてAbD serotec社製の抗ウサギ抗体(5196-4504)をPBSに1.0mg/mLとなるように溶解した。この抗ウサギ抗体1モルに対して「NHS-PEG12-Azide」(カタログNo. 26131,サーモサイエンティフィック社製(またはサーモフィッシャーサイエンティフィック社製,以下同様))を100モルとなるように加えて混合した。混合した溶液をさらに37℃で2時間放置して「NHS-PEG12-Azide」のNHS基と上記抗体のアミノ基とを結合する反応を行った。該反応の後に反応液についてゲル濾過カラム(Zaba Spin Desalting Columns:フナコシ)に供して、分画することで、PBSに上記抗体が溶解した抗体試薬を製造した。
{Production of anti-rabbit antibodies modified with azide}
As a secondary antibody, an anti-rabbit antibody (5196-4504) manufactured by AbD Serotec was dissolved in PBS so as to be 1.0 mg / mL. "NHS-PEG12-Azide" (Catalog No. 26131, manufactured by Thermo Scientific (or Thermo Fisher Scientific, the same shall apply hereinafter)) is added to 100 mol per 1 mol of this anti-rabbit antibody. And mixed. The mixed solution was further allowed to stand at 37 ° C. for 2 hours to carry out a reaction for binding the NHS group of “NHS-PEG12-Azide” to the amino group of the antibody. After the reaction, the reaction solution was subjected to a gel filtration column (Zaba Spin Desaling Columns: Funakoshi) and fractionated to produce an antibody reagent in which the antibody was dissolved in PBS.
{銅触媒の準備}
銅触媒として、臭化銅(CuBr)(製品番号212865、シグマアルドリッチ社製)購入し、銅イオン濃度が50mMとなるようにPBSにより希釈して金属触媒の溶液を調製した。
{Preparation of copper catalyst}
Copper bromide (CuBr) (product number 212865, manufactured by Sigma-Aldrich) was purchased as a copper catalyst, and diluted with PBS so that the copper ion concentration was 50 mM to prepare a metal catalyst solution.
{免疫染色}(免疫組織化学(IHC)法)
上記アルキン化合物で修飾した蛍光体集積ナノ粒子の分散液(標識試薬)、抗HER2抗体(ウサギ由来、4B5、ベンタナ社製)上記アジドで修飾した抗ウサギ抗体の溶液(2次抗体試薬)、および上記金属触媒の溶液で構成される免疫染色試薬のキットを用いて、以下に説明するように、免疫染色を行った。
{Immunostaining} (Immunohistochemistry (IHC) method)
A dispersion (labeling reagent) of phosphor-aggregated nanoparticles modified with the alkyne compound, an anti-HER2 antibody (from rabbit, 4B5, manufactured by Ventana), a solution of an anti-rabbit antibody modified with the azide (secondary antibody reagent), and Immunostaining was performed using an immunostaining reagent kit comprising the metal catalyst solution as described below.
上記免疫染色試薬キット等を用いて、下記工程を順に行うことで組織アレイスライドについて免疫染色等を行った。免疫染色では、US Biomax社製の組織アレイスライド(br243)を用い、乳がん組織の組織切片(HER2(+)陽性のもの)と、正常細胞の組織切片(HER2(-)陰性のもの)とを用いた。 The tissue array slide was immunostained by performing the following steps in order using the above immunostaining reagent kit and the like. For immunostaining, a tissue array slide (br243) manufactured by US Biomax was used, and a tissue section of a breast cancer tissue (HER2 (+) positive) and a normal cell tissue section (HER2 (−) negative) were used. Using.
免疫染色に先立ってDAB染色により上述した各組織切片のHER2染色濃度を観察して、HER2高発現(HER2 3+)、HER2低発現(HER2 +)、HER2陰性(HER2 -)の3種のロットを用意し、それぞれのロットについて免疫染色を行った。なお、上記「HER2 3+」、「HER2 +」および「HER2 -」は、それぞれ上記表3のIHC法判定基準のスコア「3+」「1+」および「0」に該当する。 Prior to immunostaining, the HER2 staining concentration of each tissue section described above was observed by DAB staining, and three lots of HER2 high expression (HER2 3+), HER2 low expression (HER2 +), and HER2 negative (HER2 −) were selected. Prepared and immunostained each lot. Note that the “HER2 3+”, “HER2 +”, and “HER2 −” correspond to the IHC method criteria “3+”, “1+”, and “0” in Table 3 above, respectively.
{脱パラフィン処理工程}
工程(1A):組織アレイスライドをキシレンに30分浸漬させて組織切片中のパラフィンを除去してキシレンで置換した。途中3回キシレンを交換した。
{Deparaffinization process}
Step (1A): The tissue array slide was immersed in xylene for 30 minutes to remove paraffin in the tissue section and replaced with xylene. The xylene was changed three times during the process.
工程(1B):工程(1A)を経た組織アレイスライドをエタノールに30分浸漬させて組織切片中のキシレンをエタノールで置換した。途中3回エタノールを交換した。 Step (1B): The tissue array slide that had undergone the step (1A) was immersed in ethanol for 30 minutes to replace xylene in the tissue section with ethanol. The ethanol was changed three times during the process.
工程(1C):工程(1B)を経た組織アレイスライドを蒸留水に30分浸漬させて、組織切片中のエタノールを蒸留水で置換した。途中3回蒸留水を交換した。 Step (1C): The tissue array slide that had undergone the step (1B) was immersed in distilled water for 30 minutes, and the ethanol in the tissue section was replaced with distilled water. The distilled water was changed three times during the process.
{賦活化処理工程}
工程(2A):工程(1C)を経た組織アレイスライドを10mMクエン酸緩衝液(pH6.0)に30分浸漬させて、組織切片中の水をクエン酸緩衝液で置換した。
{Activation process}
Step (2A): The tissue array slide that had undergone step (1C) was immersed in 10 mM citrate buffer (pH 6.0) for 30 minutes, and water in the tissue section was replaced with citrate buffer.
工程(2B):工程(2A)を経た組織アレイスライドをオートクレーブ処理(121℃で10分間)した。 Step (2B): The tissue array slide that had undergone the step (2A) was autoclaved (at 121 ° C. for 10 minutes).
工程(2C):工程(2B)を経た組織アレイスライドの組織切片をPBSに30分浸漬させた。 Step (2C): The tissue section of the tissue array slide that had undergone the step (2B) was immersed in PBS for 30 minutes.
工程(2D):工程(2C)を経た組織アレイスライドの組織切片全体に対して、BSAを1重量%含有するPBSを滴下して室温で1時間放置した。 Step (2D): PBS containing 1% by weight of BSA was dropped onto the entire tissue section of the tissue array slide that had undergone the step (2C) and left at room temperature for 1 hour.
{免疫反応工程}
工程(3A):抗HER2抗体液(ウサギ由来、4B5、ベンタナ社製)を、工程(2D)を経た組織アレイスライドの組織切片全体に滴下して室温で30分放置した。
{Immune reaction process}
Step (3A): An anti-HER2 antibody solution (from rabbit, 4B5, manufactured by Ventana) was dropped on the entire tissue section of the tissue array slide that had undergone the step (2D) and left at room temperature for 30 minutes.
工程(3B):BSAを1重量%含有するPBSでもって、上記アルキン化合物を結合した(炭素間三重結合部分を有する)抗ウサギ抗体を0.05nMに希釈した。次に、該希釈に得られる抗ウサギ抗体の溶液を、工程(2D)を経た組織アレイスライドの組織切片全体に滴下して室温で30分放置した。 Step (3B): The anti-rabbit antibody bound to the alkyne compound (having a carbon-carbon triple bond moiety) was diluted to 0.05 nM with PBS containing 1 wt% of BSA. Next, the solution of the anti-rabbit antibody obtained by the dilution was dropped on the entire tissue section of the tissue array slide that had undergone the step (2D) and left at room temperature for 30 minutes.
{染色反応工程}
工程(4A):BSAを1重量%含有するPBSでもって、上記アジドで修飾した(アジ基を有する)蛍光体集積ナノ粒子を0.05nMに希釈した。次に、該希釈により得られる蛍光体集積ナノ粒子を含む標識試薬0.1mLを組織切片全体に滴下して室温で1時間放置した。
{Dyeing reaction process}
Step (4A): The phosphor-aggregated nanoparticles modified with the azide (having an azide group) were diluted to 0.05 nM with PBS containing 1% by weight of BSA. Next, 0.1 mL of a labeling reagent containing phosphor-integrated nanoparticles obtained by the dilution was dropped onto the entire tissue section and left at room temperature for 1 hour.
{洗浄工程}
工程(5A):工程(4A)を経た組織アレイスライドの組織切片をそれぞれ30分PBSに浸漬させた。
{Washing process}
Step (5A): The tissue sections of the tissue array slide that had undergone the step (4A) were each immersed in PBS for 30 minutes.
{形態観察用処理工程}
工程(6A):工程(5A)を経た組織アレイスライドの組織切片を4%中性パラホルムアルデヒド溶液で10分間固定処理した後、ヘマトキシリン・エオジン染色(HE染色)を行った。HE染色は、免疫染色した組織切片をマイヤーヘマトキシリン液で5分間染色してヘマトキシリン染色を行った。その後、該切片を45℃の流水で3分間洗浄した。次に、1%エオジン液で5分間染色してエオジン染色を行った。その後、純エタノールに5分間漬ける操作4回行い、洗浄・脱水を行った。続いてキシレンに5分間漬ける操作を4回行い、透徹を行った。
{Processing for morphology observation}
Step (6A): The tissue section of the tissue array slide that had undergone the step (5A) was fixed with a 4% neutral paraformaldehyde solution for 10 minutes, and then stained with hematoxylin and eosin (HE staining). For HE staining, immunostained tissue sections were stained with Mayer's hematoxylin solution for 5 minutes to perform hematoxylin staining. The sections were then washed with running water at 45 ° C. for 3 minutes. Next, eosin staining was performed by staining with 1% eosin solution for 5 minutes. Then, the operation which was immersed in pure ethanol for 5 minutes was performed 4 times, and washing | cleaning and dehydration were performed. Subsequently, the operation of immersing in xylene for 5 minutes was carried out 4 times to perform clearing.
工程(6B):工程(6A)を経た組織アレイスライドの組織切片全体に対して「Aquatex(登録商標)」(製品番号108562、Merck Millipore社製)を滴下した後、室温で20分放置することでカバーガラスを載せて前記組織切片を封入した。 Step (6B): “Aquatex (registered trademark)” (Product No. 108562, manufactured by Merck Millipore) is dropped on the entire tissue section of the tissue array slide that has undergone Step (6A), and then left at room temperature for 20 minutes. The tissue slice was sealed with a cover glass.
{観察工程}
上記一連の工程を経た組織切片に対して所定の励起光を照射して蛍光を発光させた。その状態の組織切片を蛍光顕微鏡(BX-53,オリンパス社製)により観察および撮像を行った。また、輝点計測は、ImageJ FindMaxima法により計測した。
{Observation process}
Fluorescence was emitted by irradiating the tissue section having undergone the above series of steps with predetermined excitation light. The tissue section in this state was observed and imaged with a fluorescence microscope (BX-53, manufactured by Olympus). Further, the bright spot measurement was performed by the ImageJ FindMaxima method.
上記励起光は、光学フィルターに通すことで575~600nmに設定した。また、観察する蛍光の波長(nm)の範囲についても、光学フィルターに通すことで612~682nmに設定した。 The excitation light was set to 575 to 600 nm by passing through an optical filter. The range of the wavelength (nm) of fluorescence to be observed was also set to 612 to 682 nm by passing through an optical filter.
顕微鏡観察、画像取得時の励起波長条件は、580nmの励起では視野中心部付近の照射エネルギーが900W/cm2となるようにした。画像取得時の露光時間は画像の輝度が飽和しないように任意に設定(例えば4000μ秒に設定)して撮像した。次に、蛍光顕微鏡等を用いて撮像した顕微鏡画像を用いて、輝度が所定の閾値を超えた部分を輝点として計測し、1細胞当たりの蛍光体集積ナノ粒子の数や蛍光シグナルの強度を算出し精度評価を行った(表4参照)。 The excitation wavelength conditions at the time of microscopic observation and image acquisition were such that the irradiation energy near the center of the field of view was 900 W / cm 2 for excitation at 580 nm. The exposure time at the time of image acquisition was arbitrarily set (for example, set to 4000 μsec) so as not to saturate the luminance of the image. Next, using a microscope image taken with a fluorescence microscope or the like, a portion where the luminance exceeds a predetermined threshold is measured as a bright spot, and the number of phosphor-integrated nanoparticles per cell and the intensity of the fluorescence signal are measured. Calculation and accuracy evaluation were performed (see Table 4).
(評価値)
(評価1){非特異的な吸着の少なさの評価}
表4において、「評価1」は、HER2抗原が存在しない組織切片(IHC法スコアでHER2(0)のもの)について上記免疫染色を含む一連の工程を行った結果とそれに基づく評価結果を示しており(表4において、上が評価1の結果、下の数字が輝点数)、より輝点数が少ない方が非特異的な吸着が少なく抗原の検出精度が高いことを示す。具体的には、上記HER2抗原が存在しない組織切片の観察視野中の平均1細胞当たりについての非特異的吸着に起因する輝点数と、該輝点数に基づく精度評価の結果を示す。この精度評価については、評価「○」は、上記観察で1細胞当たりの輝点数が5以下となる場合であり、蛍光体集積ナノ粒子や所定の抗体の非特異的な吸着が少なく検出精度が高いことを示す。また、評価「×」は、上記観察で計測された1細胞当たりの輝点数が6以上となる場合であり、蛍光体集積ナノ粒子の非特異的な吸着が多く検出精度が低いことを示す。評価「計測不可」は、輝点自体が確認できない場合を示す。
(Evaluation value)
(Evaluation 1) {Evaluation of low non-specific adsorption}
In Table 4, “Evaluation 1” indicates the result of performing a series of steps including the above immunostaining on a tissue section in which HER2 antigen is not present (IHC method score HER2 (0)) and the evaluation result based on the result. (In Table 4, the upper is the result of evaluation 1, the lower number is the number of bright spots), the smaller the number of bright spots, the less non-specific adsorption and the higher the accuracy of antigen detection. Specifically, the number of bright spots resulting from non-specific adsorption per average cell in the observation field of the tissue section where the HER2 antigen is not present, and the results of accuracy evaluation based on the number of bright spots are shown. For this accuracy evaluation, the evaluation “◯” is the case where the number of bright spots per cell is 5 or less in the above observation, and the non-specific adsorption of the phosphor-integrated nanoparticles and the predetermined antibody is small and the detection accuracy is low. Indicates high. In addition, the evaluation “x” is a case where the number of bright spots per cell measured in the above observation is 6 or more, and indicates that non-specific adsorption of phosphor-integrated nanoparticles is large and detection accuracy is low. The evaluation “impossible to measure” indicates a case where the bright spot itself cannot be confirmed.
(評価2){特異的吸着のシグナルの強さの評価}
「評価2」は、HER2抗原を高発現している組織切片(IHC法スコアでHER2(3+)のもの)について上記免疫染色を含む一連の工程を行った結果とそれに基づく評価結果(蛍光シグナルの強さの評価結果)を示しており、輝点からの蛍光シグナルがより強いほど抗原が検出されやすい(抗原の検出精度が高い)ことを示す。
(Evaluation 2) {Evaluation of signal strength of specific adsorption}
“Evaluation 2” is a result of performing a series of steps including the above immunostaining on a tissue section highly expressing the HER2 antigen (IHC method score HER2 (3+)) and an evaluation result (fluorescence signal) (Strength evaluation results). The stronger the fluorescent signal from the bright spot, the easier it is to detect the antigen (the higher the detection accuracy of the antigen).
なお、表4中の評価2の項目の数値は蛍光シグナルの強さの相対値を示している。この相対値は、他の実施例や比較例との相対値であり、実施例1-1を基準の「100」として表されている。 In addition, the numerical value of the item of evaluation 2 in Table 4 shows the relative value of the intensity of the fluorescence signal. This relative value is a relative value with respect to other examples and comparative examples, and is expressed as “100” of Example 1-1.
表4の「評価2」の項目について、評価「○」は、上記相対値が70以上の場合を示し、蛍光シグナルの強さが輝点計測にとって十分であることを示す。評価「△」は、上記相対値が50以上~70未満の場合を示し、蛍光シグナルの強さがやや劣るが輝点計測可能なレベルであることを示す。評価「△」は、上記相対値が0以上~50未満の場合を示し、蛍光シグナルの強さが輝点計測にとって不十分であることを示す。評価「計測不可」は、輝点自体が確認できない場合を示す。 For the item “Evaluation 2” in Table 4, the evaluation “◯” indicates that the relative value is 70 or more, and that the intensity of the fluorescent signal is sufficient for the bright spot measurement. Evaluation “Δ” indicates a case where the relative value is 50 or more and less than 70, and indicates that the intensity of the fluorescent signal is slightly inferior, but is a level at which a bright spot can be measured. The evaluation “Δ” indicates a case where the relative value is 0 or more and less than 50, and indicates that the intensity of the fluorescent signal is insufficient for the bright spot measurement. The evaluation “impossible to measure” indicates a case where the bright spot itself cannot be confirmed.
(評価3){保存性評価試験}
実施例1-1で製造した標識試薬の一部を取り分けて製造直後の時点から30℃で1カ月間保存し、保存した標識試薬を用いて、HER2抗原を高発現している組織切片(IHC法スコアでHER2(3+)のもの)について、上記免疫染色を含む一連の工程を同様に行った。そして、この操作で得られた蛍光シグナルの強度および輝点数を、上記製造の直後の標識試薬を用いて同様に免疫染色等した場合に得られる蛍光シグナルの強度および輝点数とそれぞれ比較し、標識試薬を30℃で1カ月間保存することにより蛍光シグナルの強度および輝点数がどの程度低下・減少するかを調べた。
(Evaluation 3) {Storage stability evaluation test}
A part of the labeling reagent produced in Example 1-1 was separated and stored for 1 month at 30 ° C. immediately after the production, and using the stored labeling reagent, a tissue section highly expressing HER2 antigen (IHC A series of steps including the above immunostaining was performed in the same manner for the HER2 (3+) method score. Then, the intensity of the fluorescent signal and the number of bright spots obtained by this operation were respectively compared with the intensity of the fluorescent signal and the number of bright spots obtained when immunostaining or the like was performed using the labeling reagent immediately after the production described above. It was examined how much the intensity of the fluorescent signal and the number of bright spots decrease or decrease by storing the reagent at 30 ° C. for 1 month.
「評価3」は、上記保存評価試験において30℃で1カ月保存した標識試薬を用いて上記免疫染色を含む一連の工程を行った場合に得られる蛍光シグナルの強度を相対値として示している(なお、この相対値は、実施例1-1の評価2の蛍光シグナルの強度を基準の「100」とした場合の相対値として示している)。また、括弧内の値(%)は、下記の輝点保持率(%)を示している(下記数1参照)。
輝点保持率(%)=輝点数(30℃1カ月保存)/輝点数(製造直後)×100{%}
評価3の項目において、評価「○」は、上記輝点保持率(%)が70%以上のものを示し標識試薬の保存性が高いこと(ひいては免疫染色試薬キットの保存性が高いこと)を示す。評価「×」は、輝点保持率(%)が70%未満のものを示し、上記保存性が低いことを示す。
“Evaluation 3” indicates the intensity of the fluorescence signal obtained as a relative value when a series of steps including the immunostaining is performed using the labeling reagent stored at 30 ° C. for 1 month in the storage evaluation test ( This relative value is shown as a relative value when the intensity of the fluorescent signal in Evaluation 2 of Example 1-1 is set to “100” as a reference). The value (%) in parentheses indicates the following bright spot retention rate (%) (see the following formula 1).
Bright spot retention rate (%) = number of bright spots (stored at 30 ° C. for one month) / number of bright spots (immediately after production) × 100 {%}
In the item of evaluation 3, the evaluation “◯” indicates that the bright spot retention rate (%) is 70% or more, and that the storage stability of the labeling reagent is high (as a result, the storage stability of the immunostaining reagent kit is high). Show. Evaluation "x" shows that a bright spot retention rate (%) is less than 70%, and the said preservability is low.
{実施例1-2}
実施例1-1で使用した蛍光体集積ナノ粒子(平均粒子径150nm)の代わりに、製造例IIで製造した蛍光体集積ナノ粒子(平均粒子径550nm)を用いたこと以外は、実施例1-1と同様にして、アルキン化合物で修飾した(炭素間三重結合部分を有する)蛍光体集積ナノ粒子の製造を行ない、免疫染色を含む一連の工程と評価等を行った。この結果を表4に示す。
{Example 1-2}
Example 1 except that the phosphor integrated nanoparticles (average particle diameter 550 nm) produced in Production Example II were used instead of the phosphor integrated nanoparticles (average particle diameter 150 nm) used in Example 1-1. In the same manner as in -1, phosphor-integrated nanoparticles modified with an alkyne compound (having a carbon-carbon triple bond moiety) were produced, and a series of steps including immunostaining and evaluation were performed. The results are shown in Table 4.
{実施例1-3}
実施例1-1で使用した蛍光体集積ナノ粒子(平均粒子径150nm)の代わりに、製造例IIIで製造した蛍光体集積ナノ粒子(平均粒子径800nm)を用いたこと以外は、実施例1-1と同様にして、アルキン化合物で修飾した(炭素間三重結合部分を有する)蛍光体集積ナノ粒子の製造を行ない、免疫染色を含む一連の工程と評価等を行った。この結果を表4に示す。
{Example 1-3}
Example 1 except that the phosphor-integrated nanoparticles (average particle diameter 800 nm) produced in Production Example III were used instead of the phosphor-integrated nanoparticles (average particle diameter 150 nm) used in Example 1-1. In the same manner as in -1, phosphor-integrated nanoparticles modified with an alkyne compound (having a carbon-carbon triple bond moiety) were produced, and a series of steps including immunostaining and evaluation were performed. The results are shown in Table 4.
{実施例1-4}
実施例1-1で使用した蛍光体集積ナノ粒子(平均粒子径150nm)の代わりに、製造例IVで製造した蛍光体集積ナノ粒子(平均粒子径40nm)を用いたこと以外は、実施例1-1と同様にして、アルキン化合物で修飾した(炭素間三重結合部分を有する)蛍光体集積ナノ粒子の製造を行ない、免疫染色を含む一連の工程と評価等を行った。この結果を表4に示す。
{Example 1-4}
Example 1 except that the phosphor integrated nanoparticles (average particle size 40 nm) produced in Production Example IV were used instead of the phosphor integrated nanoparticles (average particle size 150 nm) used in Example 1-1. In the same manner as in -1, phosphor-integrated nanoparticles modified with an alkyne compound (having a carbon-carbon triple bond moiety) were produced, and a series of steps including immunostaining and evaluation were performed. The results are shown in Table 4.
{実施例2-1}
{アジドで修飾した蛍光体集積ナノ粒子(150nm)の製造}
実施例1-1の「アルキン化合物で修飾した蛍光体集積ナノ粒子(150nm)の製造」において、使用したアルキン化合物「ALK-PEG-NHS」(PG2-AKNS-2k、NANOCOS社)の代わりに、「NHS-PEG12-Azide」(カタログNo. 26131,サーモサイエンティフィック社製)を最終濃度が10mMとなるようにして使用することにより、アジドで修飾した(アジ基を有する)蛍光体集積ナノ粒子(150nm)を製造した。
{Example 2-1}
{Manufacture of phosphor-integrated nanoparticles (150nm) modified with azide}
Instead of the alkyne compound “ALK-PEG-NHS” (PG2-AKNS-2k, NANOCOS) used in “Production of phosphor-integrated nanoparticles (150 nm) modified with alkyne compound” in Example 1-1, Phosphor integrated nanoparticles modified with azide (having an azide group) by using “NHS-PEG12-Azide” (Catalog No. 26131, manufactured by Thermo Scientific) at a final concentration of 10 mM (150 nm) was produced.
{アルキン化合物で修飾した抗HER2抗体の製造}
実施例1-1の「アジドで修飾した抗ウサギ抗体の製造」において、使用した「NHS-PEG12-Azide」(カタログNo. 26131,サーモサイエンティフィック社製)の代わりに、「ALK-PEG-NHS」(PG2-AKNS-2k、NANOCOS社)を使用することにより、アルキンで修飾した(炭素間三重結合部分を有する)抗ウサギ抗体の製造を製造した。
{Production of anti-HER2 antibody modified with alkyne compound}
Instead of “NHS-PEG12-Azide” (catalog No. 26131, manufactured by Thermo Scientific) used in “Production of anti-rabbit antibody modified with azide” in Example 1-1, “ALK-PEG- The production of anti-rabbit antibodies modified with alkynes (having a carbon-carbon triple bond moiety) was produced by using “NHS” (PG2-AKNS-2k, NANOCOS).
上記蛍光体集積ナノ粒子および抗体の製造以外の操作(銅触媒の準備、免疫染色、評価等)については実施例1-1に同様に行った。実施例2-1の結果を表4に示す。 The operations (preparation of copper catalyst, immunostaining, evaluation, etc.) other than the production of the phosphor-integrated nanoparticles and antibody were performed in the same manner as in Example 1-1. The results of Example 2-1 are shown in Table 4.
{実施例2-2}
実施例2-1において、蛍光体集積ナノ粒子(平均粒子径150nm)の代わりに、製造例IIで製造した蛍光体集積ナノ粒子(平均粒子径550nm)を使用すること以外は実施例2-1と同様に、アジドで修飾した(アジ基を有する)蛍光体集積ナノ粒子の製造を行ない、アルキンで修飾した(炭素間三重結合部分を有する)抗ウサギ抗体を用い、一連の工程と評価等を行った。この結果を表4に示す。
{Example 2-2}
In Example 2-1, Example 2-1, except that the phosphor integrated nanoparticles (average particle diameter 550 nm) produced in Production Example II were used instead of the phosphor integrated nanoparticles (average particle diameter 150 nm). In the same way as above, we manufactured phosphor-aggregated nanoparticles modified with azide (having an azide group), and used an anti-rabbit antibody modified with alkyne (having a carbon-carbon triple bond moiety) to perform a series of steps and evaluation, etc. went. The results are shown in Table 4.
{実施例2-3}
実施例2-1において、蛍光体集積ナノ粒子(平均粒子径150nm)の代わりに、製造例IIIで製造した蛍光体集積ナノ粒子(平均粒子径800nm)を使用すること以外は実施例2-1と同様に、アジドで修飾した(アジ基を有する)蛍光体集積ナノ粒子の製造を行ない、アルキンで修飾した(炭素間三重結合部分を有する)抗ウサギ抗体を用い、一連の工程と評価等を行った。この結果を表4に示す。
{Example 2-3}
In Example 2-1, Example 2-1, except that the phosphor integrated nanoparticles (average particle size 800 nm) produced in Production Example III were used instead of the phosphor integrated nanoparticles (average particle size 150 nm). In the same way as above, we manufactured phosphor-aggregated nanoparticles modified with azide (having an azide group), and used an anti-rabbit antibody modified with alkyne (having a carbon-carbon triple bond moiety) to perform a series of steps and evaluation, etc. went. The results are shown in Table 4.
{実施例2-4}
実施例2-1において、蛍光体集積ナノ粒子(平均粒子径150nm)の代わりに、製造例IVで製造した蛍光体集積ナノ粒子(平均粒子径40nm)を使用すること以外は実施例2-1と同様に、アジドで修飾した(アジ基を有する)蛍光体集積ナノ粒子の製造を行ない、アルキンで修飾した(炭素間三重結合部分を有する)抗ウサギ抗体を用い、一連の工程と評価等を行った。この結果を表4に示す。
{Example 2-4}
In Example 2-1, Example 2-1, except that the phosphor integrated nanoparticles (average particle size 40 nm) produced in Production Example IV were used instead of the phosphor integrated nanoparticles (average particle size 150 nm). In the same way as above, we manufactured phosphor-aggregated nanoparticles modified with azide (having an azide group), and used an anti-rabbit antibody modified with alkyne (having a carbon-carbon triple bond moiety) to perform a series of steps and evaluation, etc. went. The results are shown in Table 4.
{比較例1}(ビオチン‐アビジン結合を利用した免疫染色)
{ビオチン化抗ウサギ抗体の製造}
AbD serotec社製 抗ウサギ抗体(5196-4504)を使用し、これに対して、Biotin Labeling kit-SH(同仁化学)を用いてビオチン化を行うことにより、ビオチン化した抗ウサギ抗体を得た。
{Comparative Example 1} (Immunostaining using biotin-avidin bond)
{Production of biotinylated anti-rabbit antibody}
An anti-rabbit antibody (5196-4504) manufactured by AbD serotec was used, and biotinylated using Biotin Labeling kit-SH (Dojindo Laboratories) to obtain a biotinylated anti-rabbit antibody.
{蛍光体集積ナノ粒子のストレプトアビジン修飾}
(ストレプトアビジンへのSH基導入)
SH基を有するストレプトアビジンの調製は以下のように行った。
{Streptavidin modification of phosphor-integrated nanoparticles}
(SH group introduction into streptavidin)
Preparation of streptavidin having an SH group was carried out as follows.
まず、1mg/mLに調整したストレプトアビジン(和光純薬工業社製)40μLに対して、64mg/mLに調整した2-Iminothiolane(pirce社製)70μLを室温で1時間反応させた。すなわち、ストレプトアビジンのアミノ基に対してチオール基を導入した。このストレプトアビジン溶液をゲルろ過カラム(Zaba Spin Desalting Columns:フナコシ)により脱塩し、SH基を有したストレプトアビジン0.04mgを得た。 First, 40 μL of streptavidin (manufactured by Wako Pure Chemical Industries, Ltd.) adjusted to 1 mg / mL was reacted with 70 μL of 2-Iminothiolane (manufactured by Pierce) adjusted to 64 mg / mL at room temperature for 1 hour. That is, a thiol group was introduced to the amino group of streptavidin. This streptavidin solution was desalted with a gel filtration column (Zaba Spin Desaling Columns: Funakoshi) to obtain 0.04 mg of streptavidin having an SH group.
(蛍光体集積ナノ粒子へのアミノ基導入)
製造例Iで製造した蛍光体集積ナノ粒子(平均粒子径150nm)に対して、下記工程(1)~(3)を行うことにより該蛍光体集積ナノ粒子にアミノ基を導入した。
(Introduction of amino groups into phosphor-integrated nanoparticles)
An amino group was introduced into the phosphor-integrated nanoparticles by performing the following steps (1) to (3) on the phosphor-integrated nanoparticles (average particle diameter 150 nm) produced in Production Example I.
工程(1):1mgの上記蛍光体集積ナノ粒子を純水5mLに分散させ、分散液を調製した。次いで、トリス(2‐アミノエチル)アミン(Tris(2-aminoethyl)amine)20μLを上記分散液に添加し、70℃で20分加熱撹拌した。 Step (1): 1 mg of the above phosphor-integrated nanoparticles were dispersed in 5 mL of pure water to prepare a dispersion. Subsequently, 20 μL of Tris (2-aminoethyl) amine (Tris (2-aminoethyl) amine) was added to the above dispersion, followed by heating and stirring at 70 ° C. for 20 minutes.
工程(2):反応混合物を10000Gで60分遠心分離を行い、上澄みを除去した。 Step (2): The reaction mixture was centrifuged at 10,000 G for 60 minutes, and the supernatant was removed.
工程(3):エタノールを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順でエタノールと純水による洗浄を1回ずつ行った。 Step (3): Ethanol was added to disperse the sediment and centrifuged again. Washing with ethanol and pure water was performed once by the same procedure.
得られたアミノ基修飾したナノ粒子のFT-IR測定およびXPS測定を行ったところ、アミノ基に由来する吸収が観測でき、アミノ基修飾されたことが確認できた。 The obtained amino group-modified nanoparticles were subjected to FT-IR measurement and XPS measurement. As a result, absorption derived from the amino group was observed, and it was confirmed that the amino group was modified.
(蛍光体集積ナノ粒子へのマレイミド基の導入)
アミノ基を導入した上記蛍光体集積ナノ粒子を、EDTAを2mM含有したPBS{リン酸緩衝液生理的食塩水}に3nMとなるように分散させた。この分散液に対して、終濃度10mMとなるように、リンカーとしてのSM(PEG)12(サーモサイエンティフィック社製、Succinimidyl-{(N-maleimidopropionamido)-dodecaethyleneglycol}ester)を混合し、混合液を室温で1時間反応させた。反応後の該混合液を10000Gで20分間遠心分離を行い、上澄みを除去した後、EDTA2mM含有したPBSを加えて沈殿物を分散させた。再度遠心分離を行った。同様の手順による洗浄を3回行うことで、蛍光体集積ナノ粒子にPEG鎖を介してマレイミド基が付加した蛍光体集積ナノ粒子が得られた。
(Introduction of maleimide groups into phosphor-integrated nanoparticles)
The phosphor-integrated nanoparticles into which amino groups were introduced were dispersed in PBS {phosphate buffer physiological saline} containing 2 mM of EDTA so as to have a concentration of 3 nM. SM (PEG) 12 (manufactured by Thermo Scientific, Succinimidyl-{(N-maleidopropionamido) -dodecaethyleneglycol} ester) as a linker is mixed with this dispersion so that the final concentration is 10 mM. For 1 hour at room temperature. The mixture after the reaction was centrifuged at 10,000 G for 20 minutes, and the supernatant was removed. Then, PBS containing 2 mM of EDTA was added to disperse the precipitate. Centrifugation was performed again. By performing washing by the same procedure three times, phosphor-integrated nanoparticles in which a maleimide group was added to the phosphor-integrated nanoparticles via a PEG chain were obtained.
(蛍光体集積ナノ粒子とストレプトアビジンとの結合)
マレイミド基を付加した上記蛍光体集積ナノ粒子を、EDTAを2mM含有したPBSに0.67nMとなるように分散させた。この蛍光体集積ナノ粒子の分散液740μLと、SH基を導入した上記ストレプトアビジン0.04mgとを混合し、室温で1時間反応させた。この反応液に10mMメルカプトエタノールを添加し、反応を停止させた。得られた溶液を遠心フィルターで濃縮後、精製用ゲル濾過カラムを用いて未反応のストレプトアビジン等を除去し、ストレプトアビジンで修飾された蛍光体集積ナノ粒子を得た。
(Binding of phosphor-integrated nanoparticles and streptavidin)
The phosphor-integrated nanoparticles to which the maleimide group was added were dispersed in PBS containing 2 mM of EDTA so that the concentration was 0.67 nM. 740 μL of this phosphor-integrated nanoparticle dispersion was mixed with 0.04 mg of the above streptavidin into which an SH group was introduced, and reacted at room temperature for 1 hour. 10 mM mercaptoethanol was added to the reaction solution to stop the reaction. After the obtained solution was concentrated with a centrifugal filter, unreacted streptavidin and the like were removed using a gel filtration column for purification, and phosphor-integrated nanoparticles modified with streptavidin were obtained.
{免疫染色}
実施例1-1の{免疫反応工程}と{染色反応工程}に代えて、上記ビオチン化した抗HER2抗体、およびストレプトアビジンで修飾した蛍光体集積ナノ粒子を用いて、以下の工程(A)を行った。それ以外は、実施例1-1と同様に免疫染色や評価等を行った。この結果を表4に示す。
{Immunostaining}
Instead of {immune reaction step} and {staining reaction step} in Example 1-1, the following step (A) was performed using the biotinylated anti-HER2 antibody and phosphor-integrated nanoparticles modified with streptavidin. Went. Other than that, immunostaining and evaluation were performed in the same manner as in Example 1-1. The results are shown in Table 4.
工程(A)
実施例1-1の{賦活化処理工程}後の組織アレイスライドをPBSで洗浄した後、BSAを1重量%含有するPBSを滴下して室温で1時間放置した。この組織アレイスライドをPBSで洗浄した後、抗HER2抗体液(ウサギ由来、4B5、ベンタナ社製)を、工程(2D)を経た組織アレイスライドの組織切片全体に滴下して室温で30分放置した。その後、上記ビオチン化した抗ウサギ抗体の溶液(濃度0.05nM)を組織アレイスライドの組織切片全体に滴下して室温下30分間放置した。組織アレイスライドをPBSで洗浄後、ストレプトアビジンで修飾した蛍光体集積ナノ粒子の分散液(粒子濃度0.05nM)を上記組織切片全体に滴下し、室温下1時間反応させた。
Process (A)
The tissue array slide after the {activation process step} in Example 1-1 was washed with PBS, and PBS containing 1% by weight of BSA was added dropwise and left at room temperature for 1 hour. After washing this tissue array slide with PBS, an anti-HER2 antibody solution (from rabbit, 4B5, manufactured by Ventana) was dropped on the entire tissue section of the tissue array slide that had undergone the step (2D) and left at room temperature for 30 minutes. . Thereafter, the biotinylated anti-rabbit antibody solution (concentration 0.05 nM) was dropped on the entire tissue section of the tissue array slide and allowed to stand at room temperature for 30 minutes. After washing the tissue array slide with PBS, a dispersion of phosphor-integrated nanoparticles modified with streptavidin (particle concentration 0.05 nM) was dropped onto the entire tissue section and reacted at room temperature for 1 hour.
{比較例2}(ハプテン‐抗ハプテン結合を利用した免疫染色)
{フルオレセイン修飾抗ウサギ抗体の製造}
「抗ウサギ抗体」(5196-4504、AbD serotec社製)を使用し、これに対して、「Fluorescein Labeling Kit-NH2」(LK01、同仁化学研究所社製)を用いてフルオレセイン修飾を行うことにより、フルオレセイン修飾した抗ウサギ抗体を得た。
{Comparative Example 2} (Immunostaining using hapten-anti-hapten binding)
{Production of fluorescein-modified anti-rabbit antibody}
By using “anti-rabbit antibody” (5196-4504, manufactured by AbD serotec) and fluorescein modification using “Fluorescein Labeling Kit-NH2” (LK01, manufactured by Dojindo Laboratories) A fluorescein-modified anti-rabbit antibody was obtained.
{蛍光体集積ナノ粒子の抗フルオレセイン抗体修飾}
(抗フルオレセイン抗体へのSH基導入)
SH基を有するストレプトアビジンの調製は以下のように行った。
{Anti-fluorescein antibody modification of phosphor-integrated nanoparticles}
(SH group introduction into anti-fluorescein antibody)
Preparation of streptavidin having an SH group was carried out as follows.
まず、1mg/mLに調整した抗フルオレセイン抗体(Anti-Fluorescein, Goat-Poly、SP-0601、ベクターラボラトリーズ社)40μLに対して、64mg/mLに調整した2-Iminothiolane(pirce社製)70μLを室温で1時間反応させた。すなわち、抗フルオレセイン抗体のアミノ基に対してチオール基を導入した。 この抗フルオレセイン抗体溶液をゲルろ過カラム(Zaba Spin Desalting Columns:フナコシ)により脱塩し、SH基を有した抗フルオレセイン抗体0.04mgを得た。 First, 40 μL of anti-fluorescein antibody (Anti-Fluorescein, Go-Poly, SP-0601, Vector Laboratories) adjusted to 1 mg / mL, 70 μL of 2-Iminothiolane (Pirce) adjusted to 64 mg / mL at room temperature For 1 hour. That is, a thiol group was introduced to the amino group of the anti-fluorescein antibody. The anti-fluorescein antibody solution was desalted with a gel filtration column (Zaba Spin Desaling Columns: Funakoshi) to obtain 0.04 mg of an anti-fluorescein antibody having an SH group.
(蛍光体集積ナノ粒子へのアミノ基導入)
製造例Iで製造した蛍光体集積ナノ粒子(平均粒子径150nm)に対して、下記工程(1)~(3)を行うことにより該蛍光体集積ナノ粒子にアミノ基を導入した。
(Introduction of amino groups into phosphor-integrated nanoparticles)
An amino group was introduced into the phosphor-integrated nanoparticles by performing the following steps (1) to (3) on the phosphor-integrated nanoparticles (average particle diameter 150 nm) produced in Production Example I.
工程(1):1mgの上記蛍光体集積ナノ粒子を純水5mLに分散させ、分散液を調製した。次いで、Tris(2-aminoethyl)amine 20μLを上記分散液に添加し、70℃で20分加熱撹拌した。 Step (1): 1 mg of the above phosphor-integrated nanoparticles were dispersed in 5 mL of pure water to prepare a dispersion. Next, 20 μL of Tris (2-aminoethyl) amine was added to the dispersion, and the mixture was heated and stirred at 70 ° C. for 20 minutes.
工程(2):反応混合物を10000Gで60分遠心分離を行い、上澄みを除去した。 Step (2): The reaction mixture was centrifuged at 10,000 G for 60 minutes, and the supernatant was removed.
工程(3):エタノールを加え、沈降物を分散させ、再度遠心分離を行った。同様の手順でエタノールと純水による洗浄を1回ずつ行った。 Step (3): Ethanol was added to disperse the sediment and centrifuged again. Washing with ethanol and pure water was performed once by the same procedure.
得られたアミノ基修飾したナノ粒子のFT-IR測定およびXPS分析を行ったところ、アミノ基に由来する吸収が観測でき、アミノ基修飾されたことが確認できた。 The obtained amino group-modified nanoparticles were subjected to FT-IR measurement and XPS analysis. As a result, absorption derived from the amino group was observed, and it was confirmed that the amino group was modified.
(蛍光体集積ナノ粒子へのマレイミド基の導入)
アミノ基を導入した上記蛍光体集積ナノ粒子を、EDTAを2mM含有したPBS{リン酸緩衝液生理的食塩水}に3nMとなるように分散させた。この分散液に対して、終濃度10mMとなるように、リンカーとしてのSM(PEG)12(サーモサイエンティフィック社製、Succinimidyl-{(N-maleimidopropionamido)-dodecaethyleneglycol}ester)を混合し、混合液を室温で1時間反応させた。反応後の該混合液を10000Gで20分間遠心分離を行い、上澄みを除去した後、EDTA2mM含有したPBSを加えて沈殿物を分散させた。再度遠心分離を行った。同様の手順による洗浄を3回行うことで、蛍光体集積ナノ粒子にPEG鎖を介してマレイミド基が付加した蛍光体集積ナノ粒子が得られた。
(Introduction of maleimide groups into phosphor-integrated nanoparticles)
The phosphor-integrated nanoparticles into which amino groups were introduced were dispersed in PBS {phosphate buffer physiological saline} containing 2 mM of EDTA so as to have a concentration of 3 nM. SM (PEG) 12 (manufactured by Thermo Scientific, Succinimidyl-{(N-maleimidepropionamido) -dodecaethyleneglycol} ester) as a linker is mixed with this dispersion so that the final concentration is 10 mM. For 1 hour at room temperature. The mixture after the reaction was centrifuged at 10,000 G for 20 minutes, and the supernatant was removed. Then, PBS containing 2 mM of EDTA was added to disperse the precipitate. Centrifugation was performed again. By performing washing by the same procedure three times, phosphor-integrated nanoparticles in which a maleimide group was added to the phosphor-integrated nanoparticles via a PEG chain were obtained.
(蛍光体集積ナノ粒子とストレプトアビジンとの結合)
マレイミド基を付加した上記蛍光体集積ナノ粒子を、EDTAを2mM含有したPBSに0.67nMとなるように分散させた。この蛍光体集積ナノ粒子の分散液740μLと、SH基を導入した上記抗フルオレセイン抗体0.04mgとを混合し、室温で1時間反応させた。この反応液に10mMメルカプトエタノールを添加し、反応を停止させた。得られた溶液を遠心フィルターで濃縮後、精製用ゲル濾過カラムを用いて未反応の抗フルオレセイン抗体等を除去し、抗フルオレセイン抗体で修飾された蛍光体集積ナノ粒子を得た。
(Binding of phosphor-integrated nanoparticles and streptavidin)
The phosphor-integrated nanoparticles to which the maleimide group was added were dispersed in PBS containing 2 mM of EDTA so that the concentration was 0.67 nM. 740 μL of this phosphor-integrated nanoparticle dispersion was mixed with 0.04 mg of the anti-fluorescein antibody into which an SH group had been introduced, and reacted at room temperature for 1 hour. 10 mM mercaptoethanol was added to the reaction solution to stop the reaction. After concentrating the obtained solution with a centrifugal filter, unreacted anti-fluorescein antibody and the like were removed using a gel filtration column for purification, and phosphor-integrated nanoparticles modified with anti-fluorescein antibody were obtained.
{免疫染色}
実施例1-1の{免疫反応工程}と{染色反応工程}に代えて、上記フルオレセイン修飾した抗ウサギ抗体、および抗フルオレセイン抗体で修飾した蛍光体集積ナノ粒子を用いて、以下の工程(B)を行った。それ以外は、実施例1-1と同様に免疫染色や評価等を行った。この結果を表4に示す。
{Immunostaining}
Instead of the {immune reaction step} and {staining reaction step} in Example 1-1, the above-described fluorescein-modified anti-rabbit antibody and phosphor-integrated nanoparticles modified with the anti-fluorescein antibody were used, and the following steps (B ) Other than that, immunostaining and evaluation were performed in the same manner as in Example 1-1. The results are shown in Table 4.
工程(B)
実施例1-1の{賦活化処理工程}後の組織アレイスライドをPBSで洗浄した後、BSAを1重量%含有するPBSを滴下して室温で1時間放置した。この組織アレイスライドをPBSで洗浄した後、抗HER2抗体液(ウサギ由来、4B5、ベンタナ社製)を、工程(2D)を経た組織アレイスライドの組織切片全体に滴下して室温で30分放置した。その後、上記フルオレセイン修飾した抗ウサギ抗体の溶液(濃度0.05nM)を組織アレイスライドの組織切片全体に滴下して室温下30分間放置した。抗フルオレセイン抗体で修飾した蛍光体集積ナノ粒子の分散液(粒子濃度0.05nM)を上記組織切片全体に滴下し、室温下1時間反応させた。
Process (B)
The tissue array slide after the {activation process step} in Example 1-1 was washed with PBS, and PBS containing 1% by weight of BSA was added dropwise and left at room temperature for 1 hour. After washing this tissue array slide with PBS, an anti-HER2 antibody solution (from rabbit, 4B5, manufactured by Ventana) was dropped on the entire tissue section of the tissue array slide that had undergone the step (2D) and left at room temperature for 30 minutes. . Thereafter, the above-described fluorescein-modified anti-rabbit antibody solution (concentration 0.05 nM) was dropped on the entire tissue section of the tissue array slide and allowed to stand at room temperature for 30 minutes. A dispersion of phosphor-integrated nanoparticles modified with an anti-fluorescein antibody (particle concentration 0.05 nM) was dropped onto the entire tissue section and reacted at room temperature for 1 hour.
{比較例3}(蛍光色素を用いた免疫染色)
実施例1-1で使用した蛍光体集積ナノ粒子(平均粒子径150nm)の代わりに蛍光色素のスルホローダミン101(Sulforhodamine101、製品番号S3388、シグマアルドリッチ社製)を用いて、以下の工程(C)を行うことで、アルキン化合物で修飾した蛍光色素の製造を行った。それ以外の操作については、実施例1-1と同様にして、アジドで修飾した抗HER2抗体の製造、および、免疫染色を含む一連の工程と評価等を行った。なお、免疫染色等では、アルキン化合物で修飾した蛍光体集積ナノ粒子に代えてアルキン化合物で修飾したスルホローダミン101を用いた。この結果を表4に示す。
{Comparative Example 3} (Immunostaining using fluorescent dye)
A fluorescent dye sulforhodamine 101 (Sulforhodamine 101, product number S3388, manufactured by Sigma-Aldrich) was used in place of the phosphor-integrated nanoparticles (average particle size 150 nm) used in Example 1-1, and the following step (C) As a result, a fluorescent dye modified with an alkyne compound was produced. For other operations, the production of an anti-HER2 antibody modified with azide and a series of steps including immunostaining and evaluation were performed in the same manner as in Example 1-1. In immunostaining and the like, sulforhodamine 101 modified with an alkyne compound was used instead of the phosphor-integrated nanoparticles modified with the alkyne compound. The results are shown in Table 4.
工程(C)
Journal of Physical Chemistry C, 114(14), 6255-6264; 2010に記載の方法を参考に、10mgの酸クロライド体のスルホローダミン101(シグマアルドリッチ社)とエチレンジアミン(E0077、東京化成社)とを、Et3N存在下、ジクロロメタン(CH2Cl2)1mLに分散させて一晩反応を行ない、スルホローダミン101にアミノ基を導入した。得られたアミノ基が導入されたスルホローダミン101はシリカゲルカラムクロマトグラフィーにより精製した。
Process (C)
With reference to the method described in Journal of Physical Chemistry C, 114 (14), 6255-6264; 2010, 10 mg of an acid chloride sulforhodamine 101 (Sigma Aldrich) and ethylenediamine (E0077, Tokyo Chemical Industry) In the presence of Et 3 N, the mixture was dispersed in 1 mL of dichloromethane (CH 2 Cl 2 ) and reacted overnight to introduce an amino group into sulforhodamine 101. The obtained sulforhodamine 101 introduced with an amino group was purified by silica gel column chromatography.
アミノ基が導入されたスルホローダミン101をジクロロメタン(CH2Cl2)1mLに溶解し、アミノ基が導入されたスルホローダミン101の1モルに対して1.1モルに相当する量の「ALK-PEG-NHS」(PG2-AKNS-2k、NANOCOS社)を加えて混合し、室温で一晩反応させた。得られた反応液はシリカゲルクロマトグラフィーにより精製した。PEGを介してアルキン由来の炭素間三重結合部分を有するスルホローダミン101の溶液を製造した。このスルホローダミン101についてFT-IR測定を行ったところ、炭素間三重結合に由来する吸収が観測でき、アルキン化合物が結合されたことが確認できた(不図示)。 The sulforhodamine 101 having an amino group introduced therein is dissolved in 1 mL of dichloromethane (CH 2 Cl 2 ), and an amount of “ALK-PEG corresponding to 1.1 mol per 1 mol of the sulforhodamine 101 having an amino group introduced thereinto. -NHS "(PG2-AKNS-2k, NANOCOS) was added and mixed and allowed to react overnight at room temperature. The resulting reaction solution was purified by silica gel chromatography. A solution of sulforhodamine 101 having an alkyne-derived carbon-carbon triple bond moiety via PEG was prepared. When FT-IR measurement was performed on this sulforhodamine 101, absorption derived from a carbon-carbon triple bond was observed, and it was confirmed that an alkyne compound was bound (not shown).
(結果と考察)
(1)実施例1-1~2-4では、アジ基(または炭素間三重結合部分を有する)抗体を組織切片上の抗原に結合・固定させた状態で、該抗体に対して、炭素間三重結合部分(またはアジ基を有する)蛍光体集積ナノ粒子をヒュスゲン環化付加反応により結合させた。実施例の免疫染色法(およびこれに用いられる免疫染色試薬キット)によれば、上記結合をビオチン-ストレプトアビジン間の結合で行う免疫染色法(比較例1)と比べて、非特異的な結合が減少させることができた(上記表4の評価1参照)。
(Results and discussion)
(1) In Examples 1-1 to 2-4, an azide group (or a carbon-carbon triple bond moiety) antibody is bound to and immobilized on an antigen on a tissue section. The triple bond moiety (or azide-containing) phosphor-integrated nanoparticles were bound by the Huesgen cycloaddition reaction. According to the immunostaining method of the example (and the immunostaining reagent kit used therein), non-specific binding compared to the immunostaining method (Comparative Example 1) in which the above binding is performed by the binding between biotin and streptavidin. (See Evaluation 1 in Table 4 above).
(2)また、実施例1-1~2-4では、上述したようにヒュスゲン環化付加反応による結合により蛍光体集積ナノ粒子と抗体との結合力が向上した結果、ハプテン-抗ハプテン抗体の弱い結合を利用した従来の免疫染色法(比較例2)と比べて輝点から得られる蛍光シグナルの強度が増加した(上記表4の評価2参照)。 (2) In Examples 1-1 to 2-4, as described above, the binding force between the phosphor-aggregated nanoparticles and the antibody was improved by the binding by the Husgen cycloaddition reaction. As a result, the hapten-anti-hapten antibody The intensity of the fluorescence signal obtained from the bright spot was increased as compared with the conventional immunostaining method (Comparative Example 2) using weak binding (see Evaluation 2 in Table 4 above).
ビオチン-ストレプトアビジン間の結合を利用する比較例1では、ビオチン-ストレプトアビジン間の結合がヒュスゲン環化付加反応による結合のように強結合であり強い蛍光シグナルが得られるが、使用するストレプトアビジンが内因性ビオチンに結合してしまうため、非特異的吸着を抑制することができない。したがって、比較例1では、免疫染色における染色の特異性と発光性能との両立ができない。 In Comparative Example 1 using the biotin-streptavidin bond, the biotin-streptavidin bond is a strong bond as in the Husgen cycloaddition reaction and a strong fluorescence signal is obtained. Since it binds to endogenous biotin, nonspecific adsorption cannot be suppressed. Therefore, Comparative Example 1 cannot achieve both staining specificity and luminescence performance in immunostaining.
一方、ハプテン-抗ハプテン抗体間の結合を利用する比較例2では、ハプテン-抗ハプテン抗体間の結合が特異的であるため、非特異的な結合が生じにくいが、ハプテン-抗ハプテン抗体間の結合はヒュスゲン環化付加反応による結合よりも弱い結合であり、蛍光集積体ナノ粒子と抗体との結合がその分解除されやすく、結合解除による蛍光体集積ナノ粒子が脱離に起因した蛍光シグナルの低下を抑制することができない。したがって、比較例2では、免疫染色における染色の特異性と発光性能との両立ができない。 On the other hand, in Comparative Example 2 using the binding between the hapten and the anti-hapten antibody, since the binding between the hapten and the anti-hapten antibody is specific, nonspecific binding is unlikely to occur. The bond is weaker than the bond due to the Husgen cycloaddition reaction, and the binding between the fluorescent aggregate nanoparticle and the antibody is easily released accordingly. The decline cannot be suppressed. Therefore, Comparative Example 2 cannot achieve both staining specificity and luminescence performance in immunostaining.
(保存性評価試験の結果と考察)
アジド(またはアルキン化合物)を結合した蛍光体集積ナノ粒子(標識試薬の染色成分)を1カ月30℃の厳しい促進条件下に放置後に前述した免疫染色に使用したところ、実施例1-1~2-4の「評価3」の結果として示したように(表4参照)、上記ヒュスゲン環化付加反応による結合が問題なくなされ、染色性能が安定に維持された。これは、アルキンやアジドは低分子の水中で安定な化合物であり、上記標識試薬の劣化が起きなかったためと考えられる。一方、アジドの代わりにストレプトアビジンや抗ハプテン抗体を利用した比較例1,2では染色性能が維持できなかった。これは、ストレプトアビジンや抗ハプテン抗体等のタンパク質分子に劣化が起きたためと考えられる。
(Results and discussion of storage stability evaluation test)
When phosphor-aggregated nanoparticles bound to an azide (or alkyne compound) (staining component of a labeling reagent) were used for the above-described immunostaining after being allowed to stand under severe acceleration conditions of 30 ° C. for one month, Examples 1-1 to 2 were used. As shown as the result of “Evaluation 3” of -4 (see Table 4), the binding by the Husgen cycloaddition reaction was performed without any problem, and the staining performance was stably maintained. This is presumably because alkyne and azide are stable compounds in low-molecular water, and the labeling reagent did not deteriorate. On the other hand, staining performance could not be maintained in Comparative Examples 1 and 2 using streptavidin or anti-hapten antibody instead of azide. This is thought to be due to degradation of protein molecules such as streptavidin and anti-hapten antibodies.
以上、本発明に係る免疫染色法、およびこれに用いられる免疫染色試薬キットについて、実施の形態および実施例に基づき詳細に説明してきたが、本発明はこれら実施例等に限定されず、特許請求の範囲に記載された本発明の要旨を逸脱しない限り、設計変更は許容される。 As described above, the immunostaining method according to the present invention and the immunostaining reagent kit used therefor have been described in detail based on the embodiments and examples. However, the present invention is not limited to these examples and the like, and is claimed. Changes in design are allowed without departing from the scope of the present invention described in the above.
Claims (12)
-
組織切片上で該組織切片の抗原を蛍光体集積ナノ粒子により蛍光標識する免疫染色法であって、
前記抗原に対して抗原抗体反応により直接的に固定される抗体または該抗体を介して間接的に固定される別の抗体と、蛍光体集積ナノ粒子との、いずれか一方にアジ基(-N3)が導入され、他方に炭素間三重結合部分(C≡C)が導入されており、
前記抗原に前記抗体を固定させ、
前記アジ基と、前記炭素間三重結合部分とのヒュスゲン環化付加反応でもって、前記抗体と蛍光体集積ナノ粒子との両分子間にトリアゾール環を介した結合を形成し、該形成により前記抗原を前記蛍光体集積ナノ粒子により蛍光標識する免疫染色法。 An immunostaining method in which an antigen of the tissue section is fluorescently labeled with phosphor-integrated nanoparticles on the tissue section,
Either an antibody that is directly immobilized on the antigen by an antigen-antibody reaction or another antibody that is indirectly immobilized via the antibody, and phosphor-aggregated nanoparticles may have an azide group (-N 3 ) is introduced, and the carbon-carbon triple bond moiety (C≡C) is introduced on the other side,
Immobilizing the antibody to the antigen;
In the Huisgen cycloaddition reaction between the azide group and the carbon-carbon triple bond moiety, a bond via a triazole ring is formed between both molecules of the antibody and the phosphor-integrated nanoparticles, and the antigen is thereby formed. An immunostaining method in which fluorescent labeling is performed using the phosphor-integrated nanoparticles. -
前記蛍光体集積ナノ粒子の平均粒子径が40nm以上500nm以下である、請求項1に記載の免疫染色法。 The immunostaining method according to claim 1, wherein an average particle size of the phosphor-integrated nanoparticles is 40 nm or more and 500 nm or less.
-
前記蛍光体集積ナノ粒子に、親水性高分子のリンカーを介して、前記アジ基または炭素間三重結合部分が導入されている、請求項1または2に記載の免疫染色法。 The immunostaining method according to claim 1 or 2, wherein the azido group or the carbon-carbon triple bond moiety is introduced into the phosphor-integrated nanoparticles via a hydrophilic polymer linker.
-
前記親水性高分子のオキシエチレン単位が8ユニット以上である、請求項3に記載の免疫染色法。 The immunostaining method according to claim 3, wherein the hydrophilic polymer has 8 or more oxyethylene units.
-
前記ヒュスゲン環化付加反応を金属触媒存在下で行う、請求項1~4のいずれか一項に記載の免疫染色法。 The immunostaining method according to any one of claims 1 to 4, wherein the Husgen cycloaddition reaction is performed in the presence of a metal catalyst.
-
前記炭素間三重結合部分(C≡C)は、炭素間三重結合部分(C≡C)を有する8員環化合物を結合させることにより導入される、請求項1~4のいずれか一項に記載の免疫染色法。 The carbon-carbon triple bond portion (C≡C) is introduced by bonding an 8-membered ring compound having a carbon-carbon triple bond portion (C≡C). Immunostaining method.
-
組織切片上で該組織切片の抗原を蛍光体集積ナノ粒子により蛍光標識するため免疫染色試薬キットであって、
蛍光体集積ナノ粒子を含む標識試薬と、前記抗原に対して抗原抗体反応により直接的に固定される抗体、または、該抗体を介して間接的に固定される別の抗体を含む抗体試薬とを備えており、
前記蛍光体集積ナノ粒子および前記抗体のいずれか一方にアジ基(-N3)が導入され、他方に炭素間三重結合部分(C≡C)が導入されており、
前記アジ基と前記炭素間三重結合部分とのヒュスゲン環化付加反応により、前記抗体と前記蛍光体集積ナノ粒子との分子間にトリアゾール環を介した結合を形成し、該形成により当該両分子が結合することで前記抗原を蛍光標識するようにして用いられる、免疫染色試薬キット。 An immunostaining reagent kit for fluorescently labeling an antigen of the tissue section with a phosphor-integrated nanoparticle on the tissue section,
A labeling reagent comprising phosphor-integrated nanoparticles and an antibody reagent comprising an antibody directly immobilized on the antigen by an antigen-antibody reaction, or another antibody indirectly immobilized via the antibody Has
An azide group (—N 3 ) is introduced into one of the phosphor-integrated nanoparticles and the antibody, and a carbon-carbon triple bond moiety (C≡C) is introduced into the other;
By the Husgen cycloaddition reaction between the azide group and the carbon-carbon triple bond moiety, a bond via a triazole ring is formed between the antibody and the phosphor-aggregated nanoparticle, and the two molecules are formed by the formation. An immunostaining reagent kit which is used so as to fluorescently label the antigen by binding. -
前記蛍光体集積ナノ粒子の平均粒子径が40nm以上500nm以下である、請求項7に記載の免疫染色試薬キット。 The immunostaining reagent kit according to claim 7, wherein an average particle diameter of the phosphor-integrated nanoparticles is 40 nm or more and 500 nm or less.
-
前記蛍光体集積ナノ粒子に、親水性高分子のリンカーを介して、前記アジ基または炭素間三重結合が導入されており、
該親水性高分子のリンカーの先端にアジドまたはアルキンが結合されている、請求項7または8に記載の免疫染色試薬キット。 The azide group or the carbon-carbon triple bond is introduced into the phosphor-integrated nanoparticles via a hydrophilic polymer linker,
The immunostaining reagent kit according to claim 7 or 8, wherein an azide or alkyne is bound to the tip of the linker of the hydrophilic polymer. -
前記親水性高分子のオキシエチレン単位が8ユニット以上である、請求項9に記載の免疫染色試薬キット。 The immunostaining reagent kit according to claim 9, wherein the hydrophilic polymer has 8 or more oxyethylene units.
-
前記ヒュスゲン環化付加反応を触媒する金属触媒試薬をさらに備えた、請求項7~10のいずれか一項に記載の免疫染色試薬キット。 The immunostaining reagent kit according to any one of claims 7 to 10, further comprising a metal catalyst reagent that catalyzes the Husgen cycloaddition reaction.
-
前記炭素間三重結合部分(C≡C)は、炭素間三重結合部分(C≡C)を有する8員環化合物を結合させることにより導入される、請求項7~10のいずれか一項に記載の免疫染色試薬キット。 The carbon-carbon triple bond portion (C≡C) is introduced by bonding an 8-membered ring compound having a carbon-carbon triple bond portion (C≡C). Immunostaining reagent kit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016557729A JP6743703B2 (en) | 2014-11-06 | 2015-10-29 | Immunostaining method and immunostaining reagent kit used therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014226170 | 2014-11-06 | ||
JP2014-226170 | 2014-11-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016072341A1 true WO2016072341A1 (en) | 2016-05-12 |
Family
ID=55909067
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/080512 WO2016072341A1 (en) | 2014-11-06 | 2015-10-29 | Immunostaining method, and immunostaining reagent kit for use in said method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6743703B2 (en) |
WO (1) | WO2016072341A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017227502A (en) * | 2016-06-21 | 2017-12-28 | コニカミノルタ株式会社 | Method of preventing dissociation of fluorescent nanoparticles from tissue section |
JPWO2018185943A1 (en) * | 2017-04-07 | 2020-02-13 | コニカミノルタ株式会社 | Fluorescent premix particles, fluorescent staining solution containing the same, and fluorescent staining method using them |
WO2022030371A1 (en) * | 2020-08-05 | 2022-02-10 | コニカミノルタ株式会社 | Immunostaining method and method for producing immunostained tissue sample |
EP3497445B1 (en) * | 2016-08-12 | 2022-02-16 | IST Austria - Institute of Science and Technology Austria | Methods for micropatterning and micropatterned devices |
CN115754281A (en) * | 2022-11-28 | 2023-03-07 | 广东省大湾区华南理工大学聚集诱导发光高等研究院 | Application of fluorescent nanoparticles in immunofluorescence histochemical staining |
GB2621185A (en) * | 2022-08-05 | 2024-02-07 | Sumitomo Chemical Co | Particulate probe |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008541015A (en) * | 2005-04-28 | 2008-11-20 | ベンタナ・メデイカル・システムズ・インコーポレーテツド | Nanoparticle conjugate |
JP2009292804A (en) * | 2007-11-28 | 2009-12-17 | Canon Inc | Ligand molecule-immobilized polymer, ligand molecule-immobilized particle, method for detecting target substance, and method for isolating the target substance |
JP2011153096A (en) * | 2010-01-27 | 2011-08-11 | Kaneka Corp | Fluorescent sugar-chain probe |
WO2012029752A1 (en) * | 2010-08-31 | 2012-03-08 | コニカミノルタエムジー株式会社 | Biological substance detection method |
JP2013032291A (en) * | 2009-11-27 | 2013-02-14 | Kyoto Univ | Fluorescent probe |
-
2015
- 2015-10-29 WO PCT/JP2015/080512 patent/WO2016072341A1/en active Application Filing
- 2015-10-29 JP JP2016557729A patent/JP6743703B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008541015A (en) * | 2005-04-28 | 2008-11-20 | ベンタナ・メデイカル・システムズ・インコーポレーテツド | Nanoparticle conjugate |
JP2009292804A (en) * | 2007-11-28 | 2009-12-17 | Canon Inc | Ligand molecule-immobilized polymer, ligand molecule-immobilized particle, method for detecting target substance, and method for isolating the target substance |
JP2013032291A (en) * | 2009-11-27 | 2013-02-14 | Kyoto Univ | Fluorescent probe |
JP2011153096A (en) * | 2010-01-27 | 2011-08-11 | Kaneka Corp | Fluorescent sugar-chain probe |
WO2012029752A1 (en) * | 2010-08-31 | 2012-03-08 | コニカミノルタエムジー株式会社 | Biological substance detection method |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017227502A (en) * | 2016-06-21 | 2017-12-28 | コニカミノルタ株式会社 | Method of preventing dissociation of fluorescent nanoparticles from tissue section |
EP3497445B1 (en) * | 2016-08-12 | 2022-02-16 | IST Austria - Institute of Science and Technology Austria | Methods for micropatterning and micropatterned devices |
JPWO2018185943A1 (en) * | 2017-04-07 | 2020-02-13 | コニカミノルタ株式会社 | Fluorescent premix particles, fluorescent staining solution containing the same, and fluorescent staining method using them |
EP3608669A4 (en) * | 2017-04-07 | 2020-06-03 | Konica Minolta, Inc. | Fluorescent premix particles, fluorescent stain containing same, and fluorescent staining method in which these are used |
WO2022030371A1 (en) * | 2020-08-05 | 2022-02-10 | コニカミノルタ株式会社 | Immunostaining method and method for producing immunostained tissue sample |
GB2621185A (en) * | 2022-08-05 | 2024-02-07 | Sumitomo Chemical Co | Particulate probe |
WO2024028470A1 (en) * | 2022-08-05 | 2024-02-08 | Cambridge Display Technology Limited | Particulate probe |
CN115754281A (en) * | 2022-11-28 | 2023-03-07 | 广东省大湾区华南理工大学聚集诱导发光高等研究院 | Application of fluorescent nanoparticles in immunofluorescence histochemical staining |
CN115754281B (en) * | 2022-11-28 | 2023-08-15 | 广东省大湾区华南理工大学聚集诱导发光高等研究院 | Application of fluorescent nanoparticles in immunofluorescence histochemical staining |
Also Published As
Publication number | Publication date |
---|---|
JP6743703B2 (en) | 2020-08-19 |
JPWO2016072341A1 (en) | 2017-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6740906B2 (en) | 2020-08-19 | Antibody-conjugated fluorescent substance-assembled nanoparticles, method for producing antibody-conjugated fluorescent substance-assembled nanoparticles, and immunostaining kit |
JP6743703B2 (en) | 2020-08-19 | Immunostaining method and immunostaining reagent kit used therefor |
JP6194882B2 (en) | 2017-09-13 | Detection method of biological material |
JP6129330B2 (en) | 2017-05-17 | Fluorescent substance-integrated nanoparticle labeling agent and fluorescent immunostaining method using the same |
US9972087B2 (en) | 2018-05-15 | Biological substance quantitative determination method, image processing device, pathological diagnosis support system, and computer readable medium |
JP6614161B2 (en) | 2019-12-04 | Phosphor integrated nanoparticles used for fluorescence observation |
WO2015045961A1 (en) | 2015-04-02 | Fluorescent nanoparticle label, multiple immunostain kit, and multiple immunostaining method |
JP6504159B2 (en) | 2019-04-24 | Phosphor-integrated nanoparticles, staining reagent using the same, kit and fluorescent immunostaining method |
US20120165646A1 (en) | 2012-06-28 | Composite particle, contrast agent for photoacoustic imaging, and photoacoustic imaging method |
JP6725045B2 (en) | 2020-07-15 | Diluent for fluorescent nanoparticles, fluorescent immunostaining kit using the same, fluorescent immunostaining solution, fluorescent immunostaining method, gene staining method |
JP6711352B2 (en) | 2020-06-17 | Probe reagents for in situ hybridization |
KR101368076B1 (en) | 2014-02-27 | Surface-modified fluorescent silica nanoparticles with excellent aqeous dispersibility and preparing method thereof |
EP3608669A1 (en) | 2020-02-12 | Fluorescent premix particles, fluorescent stain containing same, and fluorescent staining method in which these are used |
EP4320436A1 (en) | 2024-02-14 | Functionalized nanoparticles |
WO2020148985A1 (en) | 2020-07-23 | Phosphor-integrated nanoparticles for target substance detection |
JP7001083B2 (en) | 2022-01-19 | Fluorescent integrated nanoparticles used for fluorescence observation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
2016-06-22 | 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15857567 Country of ref document: EP Kind code of ref document: A1 |
2017-04-24 | ENP | Entry into the national phase |
Ref document number: 2016557729 Country of ref document: JP Kind code of ref document: A |
2017-05-08 | NENP | Non-entry into the national phase |
Ref country code: DE |
2017-11-29 | 122 | Ep: pct application non-entry in european phase |
Ref document number: 15857567 Country of ref document: EP Kind code of ref document: A1 |