pl.wikipedia.org

Funkcja symetryczna – Wikipedia, wolna encyklopedia

  • ️Sat Mar 12 2022

Funkcja symetryczna – termin matematyczny oznaczający dwa różne pojęcia:

  • Funkcją symetryczną {\displaystyle n} zmiennych nazywa się taką funkcję, która dla dowolnego {\displaystyle n}-elementowego ciągu argumentów daje tę samą wartość, co dla dowolnej permutacji tego ciągu argumentów[1]. Choć definicja ta obowiązuje dla funkcji, których {\displaystyle n} argumentów należy do tego samego zbioru, to zwykle dotyczy funkcji wielomianowych, które nazywane są wówczas wielomianami symetrycznymi. Teoria niewielomianowych funkcji symetrycznych {\displaystyle n} zmiennych jest bardzo słabo rozwinięta, tak więc pojęcie to jest rzadko używane w sensie ogólnym i pojawia się właściwie wyłącznie w definicji.
  • W algebrze, a szczególnie w kombinatoryce algebraicznej, terminu „funkcja symetryczna” używa się często w odniesieniu do elementów pierścienia funkcji symetrycznych, gdzie pierścień ten jest swoistą granicą wielomianów symetrycznych {\displaystyle n} zmiennych przy {\displaystyle n} dążącym do nieskończoności. Ma on zastosowanie jako uniwersalna struktura, w której relacje między wielomianami symetrycznymi dają się wyrazić w sposób niezależny od liczby zmiennych (jego elementy nie są jednak ani wielomianami, ani funkcjami). Pierścień ten odgrywa m.in. ważną rolę w teorii reprezentacji grup symetrycznych.

Więcej informacji o tych znaczeniach można znaleźć w artykułach o wielomianach symetrycznych i pierścieniach funkcji symetrycznych; pozostała część tego artykułu dotyczy ogólnych własności funkcji symetrycznych {\displaystyle n} zmiennych.

Symetryzacja

[edytuj | edytuj kod]

Daną funkcję {\displaystyle n} zmiennych o wartościach w grupie abelowej, dalej oznaczaną symbolem {\displaystyle f,} można przekształcić w funkcję symetryczną sumując ją względem wszystkich permutacji jej argumentów. Podobnie można przekształcić ją w funkcję antysymetryczną sumując względem permutacji parzystych, a następnie odejmując sumę permutacji nieparzystych. Operacje te są oczywiście nieodwracalne i mogą dać w wyniku dla nietrywialnych funkcji {\displaystyle f} funkcję tożsamościowo równą zeru. Jedynym ogólnym przypadkiem, w którym można odzyskać {\displaystyle f} jest, gdy tak jej symetryzacja jak i antysymetryzacja są znane przy {\displaystyle n=2,} a grupa abelowa umożliwia dzielenie przez {\displaystyle 2} (odwrotność podwojenia); wówczas {\displaystyle f} jest równa połowie sumy jej symetryzacji i antysymetryzacji (por. rozkład funkcji na część parzystą i nieparzystą).

Zobacz też

[edytuj | edytuj kod]

Przypisy

[edytuj | edytuj kod]

  1. funkcje symetryczne, [w:] Encyklopedia PWN [online], Wydawnictwo Naukowe PWN [dostęp 2022-03-12].
pojęcia podstawowe
obraz
przeciwobraz
typy (rodzaje)
ogólne
ciągi
inne funkcje jednej zmiennej
funkcje wielu zmiennych
funkcje zdefiniowane
samą przeciwdziedziną
działania algebraiczne
odmiany działań
jednoargumentowych
funkcje zdefiniowane
zbiorem wartości
zdefiniowane porządkiem
zdefiniowane algebraicznie
inne funkcje
pojęcia określone
głównie dla działań
jednoargumentowych
złożenie funkcji
(superpozycja)
przypadki działań
jednoargumentowych
przypadki bijekcji
struktury
definiowane funkcjami
inne powiązane
pojęcia
twierdzenia
uogólnienia