Interactions between potassium ions and glycine transport in the yeast Saccharomyces carlsbergensis
Abstract
A study has been made of the effects of both varying the pH and extracellular [K+] on the initial rate of uptake of glycine (v) by a strain of Saccharomyces carlsbergensis that concentrated the amino acid, with respect to the extracellular phase, by up to 1400 times. When no other substrate than glycine was provided and [glycine] was relatively small (≤0.2mm) (1) v increased fivefold when the pH was lowered from 7 to 4.5; (2) v fell by up to about 80% as [K+] rose, K+ behaving as a non-competitive inhibitor of the system, with Ki 0.33mequiv./l at pH7; (3) the absorption of glycine caused up to about 2 or 3 equiv. of K+ to leave the yeast cells. These three phenomena were each less evident when glucose was present. An analogy is drawn between the respective interactions of H+ and K+ with the yeast system and the well recognized effects of Na+ and K+ on amino acid transport in certain mammalian systems.

Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CONWAY E. J., DUGGAN F. A cation carrier in the yeast cell wall. Biochem J. 1958 Jun;69(2):265–274. doi: 10.1042/bj0690265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Curran P. F., Schultz S. G., Chez R. A., Fuisz R. E. Kinetic relations of the Na-amino acid interaction at the mucosal border of intestine. J Gen Physiol. 1967 May;50(5):1261–1286. doi: 10.1085/jgp.50.5.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIES R., FOLKES J. P., GALE E. F., BIGGER L. C. The assimilation of amino-acids by micro-organisms. XVI. Changes in sodium and potassium accompanying the accumulation of glutamic acid or lysine by bacteria and yeast. Biochem J. 1953 Jun;54(3):430–437. doi: 10.1042/bj0540430. [DOI] [PMC free article] [PubMed] [Google Scholar]
- EDDY A. A., RUDIN A. D. The structure of the yeast cell wall. I. Identification of charged groups at the surface. Proc R Soc Lond B Biol Sci. 1958 Mar 18;148(932):419–432. doi: 10.1098/rspb.1958.0035. [DOI] [PubMed] [Google Scholar]
- Eddy A. A. A net gain of sodium ions and a net loss of potassium ions accompanying the uptake of glycine by mouse ascites-tumour cells in the presence of sodium cyanide. Biochem J. 1968 Jun;108(2):195–206. doi: 10.1042/bj1080195. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eddy A. A. A sodium ion concentration gradient formed during the absorption of glycine by mouse ascites-tumour cells. Biochem J. 1969 Nov;115(3):505–509. doi: 10.1042/bj1150505. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eddy A. A., Backen K., Nowacki J. Translocation of protons and alkali-metal cations accompanying the uptake of neutral amino acids by yeast. Biochem J. 1970 Feb;116(4):34P–35P. doi: 10.1042/bj1160034pb. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eddy A. A., Hogg M. C. Further observations on the inhibitory effect of extracellular potassium ions on glycine uptake by mouse ascites-tumour cells. Biochem J. 1969 Oct;114(4):807–814. doi: 10.1042/bj1140807. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eddy A. A., Mulcahy M. F., Thomson P. J. The effects of sodium ions and potassium ions on glycine uptake by mouse ascites-tumour cells in the presence and absence of selected metabolic inhibitors. Biochem J. 1967 Jun;103(3):863–876. doi: 10.1042/bj1030863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eddy A. A. The effects of varying the cellular and extracellular concentrations of sodium and potassium ions on the uptake of glycine by mouse ascites-tumour cells in the presence and absence of sodium cyanide. Biochem J. 1968 Jul;108(3):489–498. doi: 10.1042/bj1080489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GALE E. F. Assimilation of amino acids by Gram-positive bacteria and some actions of antibiotics thereon. Adv Protein Chem. 1953;8:285–391. doi: 10.1016/s0065-3233(08)60094-7. [DOI] [PubMed] [Google Scholar]
- GALE E. F., FOLKES J. P. The assimilation of amino acids by bacteria. 18. The incorporation of glutamic acid into the protein fraction of Staphylococcus aureus. Biochem J. 1953 Dec;55(5):721–729. doi: 10.1042/bj0550721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gale E. F., Folkes J. P. The effect of lipids on the accumulation of certain amino acids by Staphylococcus aureus. Biochim Biophys Acta. 1967 Oct 2;144(2):461–466. doi: 10.1016/0005-2760(67)90177-4. [DOI] [PubMed] [Google Scholar]
- Gits J. J., Grenson M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. 3. Evidence for a specific methionine-transporting system. Biochim Biophys Acta. 1967 Jul 3;135(3):507–516. doi: 10.1016/0005-2736(67)90040-5. [DOI] [PubMed] [Google Scholar]
- Grenson M., Crabeel M., Wiame J. M., Béchet J. Inhibition of protein synthesis and simulation of permease turnover in yeast. Biochem Biophys Res Commun. 1968 Feb 26;30(4):414–419. doi: 10.1016/0006-291x(68)90760-2. [DOI] [PubMed] [Google Scholar]
- Harold F. M., Baarda J. R. Effects of nigericin and monactin on cation permeability of Streptococcus faecalis and metabolic capacities of potassium-depleted cells. J Bacteriol. 1968 Mar;95(3):816–823. doi: 10.1128/jb.95.3.816-823.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harold F. M., Baarda J. R. Inhibition of membrane transport in Streptococcus faecalis by uncouplers of oxidative phosphorylation and its relationship to proton conduction. J Bacteriol. 1968 Dec;96(6):2025–2034. doi: 10.1128/jb.96.6.2025-2034.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEMPNER E. S., COWIE D. B. Metabolic pools and the utilization of amino acid analogs for protein synthesis. Biochim Biophys Acta. 1960 Aug 26;42:401–408. doi: 10.1016/0006-3002(60)90817-9. [DOI] [PubMed] [Google Scholar]
- Magaña-Schwencke N., Schwencke J. A proline transport system in Saccharomyces chevalieri. Biochim Biophys Acta. 1969 Mar 11;173(2):313–323. doi: 10.1016/0005-2736(69)90114-x. [DOI] [PubMed] [Google Scholar]
- SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
- STACHIEWICZ E., QUASTEL J. H. Amino acid transport in yeast and effects of nystatin. Can J Biochem Physiol. 1963 Feb;41:397–407. [PubMed] [Google Scholar]
- Schwencke J., Magaña-Schwencke N. Derepression of a proline transport system in Saccharomyces chevalieri by nitrogen starvation. Biochim Biophys Acta. 1969 Mar 11;173(2):302–312. doi: 10.1016/0005-2736(69)90113-8. [DOI] [PubMed] [Google Scholar]
- Surdin Y., Sly W., Sire J., Bordes A. M., Robichon-Szulmajster H. Propriétés et contrôle génétique du système d'accumulation des acides aminés chez Saccharomyces cerevisiae. Biochim Biophys Acta. 1965 Oct 18;107(3):546–566. [PubMed] [Google Scholar]
- VIDAVER G. A. GLYCINE TRANSPORT BY HEMOLYZED AND RESTORED PIGEON RED CELLS. Biochemistry. 1964 Jun;3:795–799. doi: 10.1021/bi00894a011. [DOI] [PubMed] [Google Scholar]
- WILBRANDT W., ROSENBERG T. The concept of carrier transport and its corollaries in pharmacology. Pharmacol Rev. 1961 Jun;13:109–183. [PubMed] [Google Scholar]
- Wong P. T., Thompson J., MacLeod R. A. Nutrition and metabolism of marine bacteria. XVII. Ion-dependent retention of alpha-aminoisobutyric acid and its relation to Na+ dependent transport in a marine pseudomonad. J Biol Chem. 1969 Feb 10;244(3):1016–1025. [PubMed] [Google Scholar]