pmc.ncbi.nlm.nih.gov

Comparison of energy-transducing capabilities of the two- and three-subunit cytochromes aa3 from Paracoccus denitrificans and the 13-subunit beef heart enzyme

Abstract

In the accompanying paper, we have shown that the two-subunit cytochrome aa3 isolated from Paracoccus denitrificans displays the same kind of complex and interactive redox behavior as the 13-subunit cytochrome aa3 from beef heart. Therefore, the redox characteristics are not dependent on the additional 11 subunits. In the current work, we have examined the energy-transducing capabilities of both the two- and three-subunit enzymes obtained from Paracoccus denitrificans in relation to that of the 13-unit mammalian enzyme. We have found that in all of the tested functions, which included the development of delta psi and delta pH, and the pumping of protons, that the two-subunit enzyme is at least as efficient as the structurally more complex mammalian enzyme. There is thus a correlation between the complex redox behavior and energy transducing capabilities of the two enzymes. There was also no difference in energy-transducing capabilities between the two- and three-subunit forms of the bacterial enzyme. It seems that only 2 subunits are required for an efficient energy-transducing cytochrome aa3. The most likely role of the additional subunits in the mammalian enzyme, therefore, seems to be in regulation.

415

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berry E. A., Trumpower B. L. Isolation of ubiquinol oxidase from Paracoccus denitrificans and resolution into cytochrome bc1 and cytochrome c-aa3 complexes. J Biol Chem. 1985 Feb 25;260(4):2458–2467. [PubMed] [Google Scholar]
  2. Bill K., Casey R. P., Broger C., Azzi A. Affinity chromatography purification of cytochrome c oxidase: use of a yeast cytochrome c - thiol-Sepharose 4B column. FEBS Lett. 1980 Nov 3;120(2):248–250. doi: 10.1016/0014-5793(80)80308-5. [DOI] [PubMed] [Google Scholar]
  3. Gregory L. C., Ferguson-Miller S. Effect of subunit III removal on control of cytochrome c oxidase activity by pH. Biochemistry. 1988 Aug 23;27(17):6307–6314. doi: 10.1021/bi00417a016. [DOI] [PubMed] [Google Scholar]
  4. Gregory L., Ferguson-Miller S. Control of cytochrome c oxidase activity by pH and the electrical potential gradient occurs at separate electron transfer steps and does not require subunit III. Ann N Y Acad Sci. 1988;550:260–268. doi: 10.1111/j.1749-6632.1988.tb35341.x. [DOI] [PubMed] [Google Scholar]
  5. Gregory L., Ferguson-Miller S. Independent control of respiration in cytochrome c oxidase vesicles by pH and electrical gradients. Biochemistry. 1989 Mar 21;28(6):2655–2662. doi: 10.1021/bi00432a044. [DOI] [PubMed] [Google Scholar]
  6. Haltia T., Puustinen A., Finel M. The Paracoccus denitrificans cytochrome aa3 has a third subunit. Eur J Biochem. 1988 Mar 15;172(3):543–546. doi: 10.1111/j.1432-1033.1988.tb13923.x. [DOI] [PubMed] [Google Scholar]
  7. Hendler R. W., Setty O. H., Shrager R. I., Songco D. C., Friauf W. S. Instrumentation and procedures for real time measurements of proton motive force, membrane potential, delta pH, proton extrusion, and oxygen uptake in respiring cells and vesicles. Rev Sci Instrum. 1983 Dec;54(12):1749–1755. doi: 10.1063/1.1137326. [DOI] [PubMed] [Google Scholar]
  8. Hendler R. W., Shrager R. I. Problems in the experimental determination of substrate-specific H+/O ratios during respiration. J Bioenerg Biomembr. 1987 Oct;19(5):551–569. doi: 10.1007/BF00770037. [DOI] [PubMed] [Google Scholar]
  9. Hinkle P. C., Kim J. J., Racker E. Ion transport and respiratory control in vesicles formed from cytochrome oxidase and phospholipids. J Biol Chem. 1972 Feb 25;247(4):1338–1339. [PubMed] [Google Scholar]
  10. Hinkle P., Mitchell P. Effect of membrane potential on equilibrium poise between cytochrome a and cytochrome c in rat liver mitochondria. J Bioenerg. 1970 Jun;1(1):45–60. doi: 10.1007/BF01516088. [DOI] [PubMed] [Google Scholar]
  11. Hüther F. J., Kadenbach B. Intraliposomal nucleotides change the kinetics of reconstituted cytochrome c oxidase from bovine heart but not from Paracoccus denitrificans. Biochem Biophys Res Commun. 1988 Jun 16;153(2):525–534. doi: 10.1016/s0006-291x(88)81126-4. [DOI] [PubMed] [Google Scholar]
  12. Kadenbach B., Stroh A., Ungibauer M., Kuhn-Nentwig L., Büge U., Jarausch J. Isozymes of cytochrome-c oxidase: characterization and isolation from different tissues. Methods Enzymol. 1986;126:32–45. doi: 10.1016/s0076-6879(86)26006-1. [DOI] [PubMed] [Google Scholar]
  13. Ludwig B., Schatz G. A two-subunit cytochrome c oxidase (cytochrome aa3) from Paracoccus dentrificans. Proc Natl Acad Sci U S A. 1980 Jan;77(1):196–200. doi: 10.1073/pnas.77.1.196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Moroney P. M., Scholes T. A., Hinkle P. C. Effect of membrane potential and pH gradient on electron transfer in cytochrome oxidase. Biochemistry. 1984 Oct 9;23(21):4991–4997. doi: 10.1021/bi00316a025. [DOI] [PubMed] [Google Scholar]
  15. Nicholls P. Control of proteoliposomal cytochrome c oxidase: the partial reactions. Biochem Cell Biol. 1990 Sep;68(9):1135–1141. doi: 10.1139/o90-169. [DOI] [PubMed] [Google Scholar]
  16. Nicholls P., Hildebrandt V., Wrigglesworth J. M. Orientation and reactivity of cytochrome aa3 heme groups in proteoliposomes. Arch Biochem Biophys. 1980 Oct 15;204(2):533–543. doi: 10.1016/0003-9861(80)90065-x. [DOI] [PubMed] [Google Scholar]
  17. Papa S., Capitanio N., Steverding D. Characteristics of the protonmotive activity of mammalian cytochrome c oxidase and their modification by amino acid reagents. Ann N Y Acad Sci. 1988;550:238–253. doi: 10.1111/j.1749-6632.1988.tb35339.x. [DOI] [PubMed] [Google Scholar]
  18. Prochaska L. J., Fink P. S. On the role of subunit III in proton translocation in cytochrome c oxidase. J Bioenerg Biomembr. 1987 Apr;19(2):143–166. doi: 10.1007/BF00762722. [DOI] [PubMed] [Google Scholar]
  19. Reynafarje B. D., Davies P. W. The polyphasic nature of the respiratory process at the mitochondrial level. Am J Physiol. 1990 Mar;258(3 Pt 1):C504–C511. doi: 10.1152/ajpcell.1990.258.3.C504. [DOI] [PubMed] [Google Scholar]
  20. Reynafarje B., Alexandre A., Davies P., Lehninger A. L. Proton translocation stoichiometry of cytochrome oxidase: use of a fast-responding oxygen electrode. Proc Natl Acad Sci U S A. 1982 Dec;79(23):7218–7222. doi: 10.1073/pnas.79.23.7218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Setty O. H., Shrager R. I., Bunow B., Reynafarje B., Lehninger A. L., Hendler R. W. Direct measurement of the initial proton extrusion to oxygen uptake ratio accompanying succinate oxidation by rat liver mitochondria. Biophys J. 1986 Sep;50(3):391–404. doi: 10.1016/S0006-3495(86)83475-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shaughnessy S., Nicholls P. Control of respiration in sonicated cytochrome oxidase proteoliposomes by gated and ungated ionophores. Biochem Biophys Res Commun. 1985 Apr 30;128(2):1025–1030. doi: 10.1016/0006-291x(85)90150-0. [DOI] [PubMed] [Google Scholar]
  23. Sidhu G. S., Hendler R. W. Characterization of two low Em forms of cytochrome a3 and their carbon monoxide complexes in mammalian cytochrome c oxidase. Biophys J. 1990 Jun;57(6):1125–1140. doi: 10.1016/S0006-3495(90)82633-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Singh A. P., Nicholls P. Membrane potentials in reconstituted cytochrome c oxidase proteoliposomes determined by butyltriphenyl phosphonium cation distribution. Arch Biochem Biophys. 1986 Mar;245(2):436–445. doi: 10.1016/0003-9861(86)90235-3. [DOI] [PubMed] [Google Scholar]
  25. Solioz M., Carafoli E., Ludwig B. The cytochrome c oxidase of Paracoccus denitrificans pumps protons in a reconstituted system. J Biol Chem. 1982 Feb 25;257(4):1579–1582. [PubMed] [Google Scholar]
  26. Thelen M., O'Shea P. S., Petrone G., Azzi A. Proton translocation by a native and subunit III-depleted cytochrome c oxidase reconstituted into phospholipid vesicles. Use of fluorescein-phosphatidylethanolamine as an intravesicular pH indicator. J Biol Chem. 1985 Mar 25;260(6):3626–3631. [PubMed] [Google Scholar]
  27. Wrigglesworth J. M., Wooster M. S., Elsden J., Danneel H. J. Dynamics of proteoliposome formation. Intermediate states during detergent dialysis. Biochem J. 1987 Sep 15;246(3):737–744. doi: 10.1042/bj2460737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yoshikawa S., Choc M. G., O'Toole M. C., Caughey W. S. An infrared study of CO binding to heart cytochrome c oxidase and hemoglobin A. Implications re O2 reactions. J Biol Chem. 1977 Aug 10;252(15):5498–5508. [PubMed] [Google Scholar]