pmc.ncbi.nlm.nih.gov

Inhomogeneous translational diffusion of monoclonal antibodies on phospholipid Langmuir-Blodgett films

Abstract

The translational mobility of fluorescent-labeled monoclonal antibodies specifically bound to supported phospholipid bilayers containing hapten-conjugated phospholipids has been measured as a function of the surface concentration of bound antibodies using fluorescence recovery after photobleaching. Fluorescence recovery curves are fit well by a model that assumes the presence of two populations of antibodies with different lateral diffusion coefficients. The larger diffusion coefficient equals 3.5 x 10(-9) cm2/s, the smaller diffusion coefficient ranges from 1.5 x 10(-9) cm2/s to 2.5 x 10(-10) cm2/s, and the fractional fluorescence recovery associated with the smaller coefficient increases from approximately 0 to approximately 0.7 with increasing concentration of bound antibody. These results suggest that complexes of haptenated phospholipids and antibodies in phospholipid Langmuir-Blodgett films form clusters or domains in a concentration-dependent fashion.

463

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andries C., Guedens W., Clauwaert J., Geerts H. Photon and fluorescence correlation spectroscopy and light scattering of eye-lens proteins at moderate concentrations. Biophys J. 1983 Sep;43(3):345–354. doi: 10.1016/S0006-3495(83)84358-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Balakrishnan K., Hsu F. J., Cooper A. D., McConnell H. M. Lipid hapten containing membrane targets can trigger specific immunoglobulin E-dependent degranulation of rat basophil leukemia cells. J Biol Chem. 1982 Jun 10;257(11):6427–6433. [PubMed] [Google Scholar]
  3. Balakrishnan K., Hsu F. J., Hafeman D. G., McConnell H. M. Monoclonal antibodies to a nitroxide lipid hapten. Biochim Biophys Acta. 1982 Sep 13;721(1):30–38. doi: 10.1016/0167-4889(82)90020-9. [DOI] [PubMed] [Google Scholar]
  4. Cuatrecasas P. Developing concepts in receptor research. Drug Intell Clin Pharm. 1983 May;17(5):357–366. doi: 10.1177/106002808301700507. [DOI] [PubMed] [Google Scholar]
  5. Davies D. R., Metzger H. Structural basis of antibody function. Annu Rev Immunol. 1983;1:87–117. doi: 10.1146/annurev.iy.01.040183.000511. [DOI] [PubMed] [Google Scholar]
  6. Hackenbrock C. R., Chazotte B., Gupte S. S. The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J Bioenerg Biomembr. 1986 Oct;18(5):331–368. doi: 10.1007/BF00743010. [DOI] [PubMed] [Google Scholar]
  7. Hart M. J., Kimura K., Nakanishi M. Selected positions of acyl chains are affected differently by antibody binding which results in decreased membrane fluidity. FEBS Lett. 1985 Oct 14;190(2):249–252. doi: 10.1016/0014-5793(85)81293-x. [DOI] [PubMed] [Google Scholar]
  8. Koppel D. E. Association dynamics and lateral transport in biological membranes. J Supramol Struct Cell Biochem. 1981;17(1):61–67. doi: 10.1002/jsscb.380170107. [DOI] [PubMed] [Google Scholar]
  9. McCloskey M., Poo M. M. Protein diffusion in cell membranes: some biological implications. Int Rev Cytol. 1984;87:19–81. doi: 10.1016/s0074-7696(08)62439-0. [DOI] [PubMed] [Google Scholar]
  10. McConnell H. M., Watts T. H., Weis R. M., Brian A. A. Supported planar membranes in studies of cell-cell recognition in the immune system. Biochim Biophys Acta. 1986 Jun 12;864(1):95–106. doi: 10.1016/0304-4157(86)90016-x. [DOI] [PubMed] [Google Scholar]
  11. Metzger H. The receptor on mast cells and related cells with high affinity for IgE. Contemp Top Mol Immunol. 1983;9:115–145. doi: 10.1007/978-1-4684-4517-6_4. [DOI] [PubMed] [Google Scholar]
  12. Nitta T., Saito-Taki T., Suzuki T. Phospholipase A2 activity of Fc gamma 2b receptors of thioglycollate-elicited murine peritoneal macrophages. J Leukoc Biol. 1984 Oct;36(4):493–504. doi: 10.1002/jlb.36.4.493. [DOI] [PubMed] [Google Scholar]
  13. O'Leary T. J. Concentration dependence of protein diffusion. Biophys J. 1987 Jul;52(1):137–139. doi: 10.1016/S0006-3495(87)83199-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Palmer A. G., 3rd, Thompson N. L. Molecular aggregation characterized by high order autocorrelation in fluorescence correlation spectroscopy. Biophys J. 1987 Aug;52(2):257–270. doi: 10.1016/S0006-3495(87)83213-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Place J. F., Sutherland R. M., Dähne C. Opto-electronic immunosensors: a review of optical immunoassay at continuous surfaces. Biosensors. 1985;1(4):321–353. doi: 10.1016/0265-928x(85)80004-3. [DOI] [PubMed] [Google Scholar]
  16. Sheetz M. P., Koppel D. E. Membrane damage caused by irradiation of fluorescent concanavalin A. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3314–3317. doi: 10.1073/pnas.76.7.3314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Smith B. A., McConnell H. M. Determination of molecular motion in membranes using periodic pattern photobleaching. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2759–2763. doi: 10.1073/pnas.75.6.2759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Subramaniam S., Seul M., McConnell H. M. Lateral diffusion of specific antibodies bound to lipid monolayers on alkylated substrates. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1169–1173. doi: 10.1073/pnas.83.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tamm L. K. Lateral diffusion and fluorescence microscope studies on a monoclonal antibody specifically bound to supported phospholipid bilayers. Biochemistry. 1988 Mar 8;27(5):1450–1457. doi: 10.1021/bi00405a009. [DOI] [PubMed] [Google Scholar]
  20. Tamm L. K., McConnell H. M. Supported phospholipid bilayers. Biophys J. 1985 Jan;47(1):105–113. doi: 10.1016/S0006-3495(85)83882-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Thompson N. L., Brian A. A., McConnell H. M. Covalent linkage of a synthetic peptide to a fluorescent phospholipid and its incorporation into supported phospholipid monolayers. Biochim Biophys Acta. 1984 Apr 25;772(1):10–19. doi: 10.1016/0005-2736(84)90512-1. [DOI] [PubMed] [Google Scholar]
  22. Uzgiris E. E., Kornberg R. D. Two-dimensional crystallization technique for imaging macromolecules, with application to antigen--antibody--complement complexes. Nature. 1983 Jan 13;301(5896):125–129. doi: 10.1038/301125a0. [DOI] [PubMed] [Google Scholar]
  23. Uzgiris E. E. Supported phospholipid bilayers for two-dimensional protein crystallization. Biochem Biophys Res Commun. 1986 Jan 29;134(2):819–826. doi: 10.1016/s0006-291x(86)80494-6. [DOI] [PubMed] [Google Scholar]
  24. Yarden Y., Schlessinger J. Self-phosphorylation of epidermal growth factor receptor: evidence for a model of intermolecular allosteric activation. Biochemistry. 1987 Mar 10;26(5):1434–1442. doi: 10.1021/bi00379a034. [DOI] [PubMed] [Google Scholar]
  25. Young J. D., Unkeless J. C., Kaback H. R., Cohn Z. A. Macrophage membrane potential changes associated with gamma 2b/gamma 1 Fc receptor-ligand binding. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1357–1361. doi: 10.1073/pnas.80.5.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Young J. D., Unkeless J. C., Kaback H. R., Cohn Z. A. Mouse macrophage Fc receptor for IgG gamma 2b/gamma 1 in artificial and plasma membrane vesicles functions as a ligand-dependent ionophore. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1636–1640. doi: 10.1073/pnas.80.6.1636. [DOI] [PMC free article] [PubMed] [Google Scholar]